code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowercase : List[str] = get_logger(__name__) lowercase : str = Path(__file__).parent / """model_card_template.md""" lowercase : int = uuida().hex lowercase : str = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES lowercase : Union[str, Any] = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES lowercase : List[Any] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def _snake_case( SCREAMING_SNAKE_CASE__ = None ) -> str: lowercase : int = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"; torch/{_torch_version}" if is_flax_available(): ua += f"; jax/{_jax_version}" ua += f"; flax/{_flax_version}" if is_onnx_available(): ua += f"; onnxruntime/{_onnxruntime_version}" # CI will set this value to True if os.environ.get("""DIFFUSERS_IS_CI""" , """""" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ) -> Dict: if token is None: lowercase : Union[str, Any] = HfFolder.get_token() if organization is None: lowercase : Dict = whoami(SCREAMING_SNAKE_CASE__ )["""name"""] return f"{username}/{model_id}" else: return f"{organization}/{model_id}" def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: if not is_jinja_available(): raise ValueError( """Modelcard rendering is based on Jinja templates.""" """ Please make sure to have `jinja` installed before using `create_model_card`.""" """ To install it, please run `pip install Jinja2`.""" ) if hasattr(SCREAMING_SNAKE_CASE__ , """local_rank""" ) and args.local_rank not in [-1, 0]: return lowercase : List[str] = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , """hub_token""" ) else None lowercase : int = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) lowercase : int = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="""en""" , license="""apache-2.0""" , library_name="""diffusers""" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , """dataset_name""" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , """gradient_accumulation_steps""" ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , """adam_beta1""" ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , """adam_beta2""" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , """adam_weight_decay""" ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , """adam_epsilon""" ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , """lr_scheduler""" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , """lr_warmup_steps""" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , """ema_inv_gamma""" ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , """ema_power""" ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , """ema_max_decay""" ) else None , mixed_precision=args.mixed_precision , ) lowercase : List[str] = os.path.join(args.output_dir , """README.md""" ) model_card.save(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Tuple: if resolved_file is None or commit_hash is not None: return commit_hash lowercase : int = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) lowercase : List[Any] = re.search(R"""snapshots/([^/]+)/""" , SCREAMING_SNAKE_CASE__ ) if search is None: return None lowercase : int = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowercase : Union[str, Any] = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) lowercase : Tuple = os.path.join(hf_cache_home, """diffusers""") def _snake_case( SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ) -> None: if new_cache_dir is None: lowercase : List[str] = DIFFUSERS_CACHE if old_cache_dir is None: lowercase : Dict = old_diffusers_cache lowercase : Any = Path(SCREAMING_SNAKE_CASE__ ).expanduser() lowercase : Optional[int] = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob("""**/blobs/*""" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowercase : Union[str, Any] = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( """Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.""" ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowercase : Optional[Any] = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): lowercase : Any = 0 else: with open(cache_version_file) as f: try: lowercase : Optional[int] = int(f.read()) except ValueError: lowercase : Optional[Any] = 0 if cache_version < 1: lowercase : int = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: lowercase : Optional[int] = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( F'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( F'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' """the directory exists and can be written to.""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> str: if variant is not None: lowercase : Optional[int] = weights_name.split(""".""" ) lowercase : Dict = splits[:-1] + [variant] + splits[-1:] lowercase : Optional[Any] = """.""".join(SCREAMING_SNAKE_CASE__ ) return weights_name def _snake_case( SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ) -> Any: lowercase : str = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint lowercase : int = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): lowercase : Any = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse("""0.20.0""" ) ): try: lowercase : str = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead." , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}' so that the correct variant file can be added." , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual lowercase : str = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " """listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a """ """token having permission to this repo with `use_auth_token` or log in with `huggingface-cli """ """login`.""" ) except RevisionNotFoundError: raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " """this model name. Check the model page at """ f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." ) except HTTPError as err: raise EnvironmentError( f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}" ) except ValueError: raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" f" directory containing a file named {weights_name} or" """ \nCheckout your internet connection or see how to run the library in""" """ offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'.""" ) except EnvironmentError: raise EnvironmentError( f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " """'https://huggingface.co/models', make sure you don't have a local directory with the same name. """ f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " f"containing a file named {weights_name}" )
20
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def UpperCamelCase ( _lowerCAmelCase : Any, _lowerCAmelCase : List[str], _lowerCAmelCase : Dict ) -> str: _UpperCAmelCase : Union[str, Any] = OmegaConf.load(_lowerCAmelCase ) _UpperCAmelCase : str = torch.load(_lowerCAmelCase, map_location="""cpu""" )["""model"""] _UpperCAmelCase : Dict = list(state_dict.keys() ) # extract state_dict for VQVAE _UpperCAmelCase : List[str] = {} _UpperCAmelCase : List[str] = """first_stage_model.""" for key in keys: if key.startswith(_lowerCAmelCase ): _UpperCAmelCase : Dict = state_dict[key] # extract state_dict for UNetLDM _UpperCAmelCase : str = {} _UpperCAmelCase : Tuple = """model.diffusion_model.""" for key in keys: if key.startswith(_lowerCAmelCase ): _UpperCAmelCase : Tuple = state_dict[key] _UpperCAmelCase : Optional[Any] = config.model.params.first_stage_config.params _UpperCAmelCase : Optional[Any] = config.model.params.unet_config.params _UpperCAmelCase : List[str] = VQModel(**_lowerCAmelCase ).eval() vqvae.load_state_dict(_lowerCAmelCase ) _UpperCAmelCase : List[Any] = UNetLDMModel(**_lowerCAmelCase ).eval() unet.load_state_dict(_lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = DDIMScheduler( timesteps=config.model.params.timesteps, beta_schedule="""scaled_linear""", beta_start=config.model.params.linear_start, beta_end=config.model.params.linear_end, clip_sample=_lowerCAmelCase, ) _UpperCAmelCase : Tuple = LDMPipeline(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) pipeline.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowerCamelCase__ : List[str] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
246
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( __UpperCAmelCase , unittest.TestCase ): __snake_case = ShapEPipeline __snake_case = ['prompt'] __snake_case = ['prompt'] __snake_case = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] __snake_case = False @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return 32 @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return 32 @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return 8 @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase_ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowerCAmelCase_ = PriorTransformer(**UpperCamelCase__ ) return model @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase_ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowerCAmelCase_ = ShapERenderer(**UpperCamelCase__ ) return model def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.dummy_prior lowerCAmelCase_ = self.dummy_text_encoder lowerCAmelCase_ = self.dummy_tokenizer lowerCAmelCase_ = self.dummy_renderer lowerCAmelCase_ = HeunDiscreteScheduler( beta_schedule='''exp''', num_train_timesteps=1024, prediction_type='''sample''', use_karras_sigmas=UpperCamelCase__, clip_sample=UpperCamelCase__, clip_sample_range=1.0, ) lowerCAmelCase_ = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=0 ): """simple docstring""" if str(UpperCamelCase__ ).startswith('''mps''' ): lowerCAmelCase_ = torch.manual_seed(UpperCamelCase__ ) else: lowerCAmelCase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowerCAmelCase_ = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = '''cpu''' lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**UpperCamelCase__ ) lowerCAmelCase_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) lowerCAmelCase_ = output.images[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCAmelCase_ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = torch_device == '''cpu''' lowerCAmelCase_ = True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=UpperCamelCase__, relax_max_difference=UpperCamelCase__, ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**UpperCamelCase__ ) lowerCAmelCase_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 lowerCAmelCase_ = self.get_dummy_inputs(UpperCamelCase__ ) for key in inputs.keys(): if key in self.batch_params: lowerCAmelCase_ = batch_size * [inputs[key]] lowerCAmelCase_ = pipe(**UpperCamelCase__, num_images_per_prompt=UpperCamelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) lowerCAmelCase_ = ShapEPipeline.from_pretrained('''openai/shap-e''' ) lowerCAmelCase_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) lowerCAmelCase_ = pipe( '''a shark''', generator=UpperCamelCase__, guidance_scale=15.0, num_inference_steps=64, frame_size=64, output_type='''np''', ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase__, UpperCamelCase__ )
167
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = tempfile.mkdtemp() # fmt: off lowerCAmelCase_ = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on lowerCAmelCase_ = dict(zip(UpperCamelCase__, range(len(UpperCamelCase__ ) ) ) ) lowerCAmelCase_ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] lowerCAmelCase_ = {'''unk_token''': '''<unk>'''} lowerCAmelCase_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.merges_file, '''w''', encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) lowerCAmelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCAmelCase_ = os.path.join(self.tmpdirname, UpperCamelCase__ ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(UpperCamelCase__, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] lowerCAmelCase_ = [Image.fromarray(np.moveaxis(UpperCamelCase__, 0, -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=UpperCamelCase__ ) lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer, UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowerCAmelCase_ = self.get_image_processor(do_normalize=UpperCamelCase__, padding_value=1.0 ) lowerCAmelCase_ = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=UpperCamelCase__, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = image_processor(UpperCamelCase__, return_tensors='''np''' ) lowerCAmelCase_ = processor(images=UpperCamelCase__, return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = '''lower newer''' lowerCAmelCase_ = processor(text=UpperCamelCase__ ) lowerCAmelCase_ = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = '''lower newer''' lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = processor(text=UpperCamelCase__, images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = processor(images=UpperCamelCase__, visual_prompt=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase_ = processor.batch_decode(UpperCamelCase__ ) lowerCAmelCase_ = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ )
167
1
'''simple docstring''' import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __A = logging.get_logger(__name__) class A ( __UpperCAmelCase ): lowerCamelCase : str = ["""input_values""", """attention_mask"""] def __init__( self , lowerCamelCase__ = 1 , lowerCamelCase__ = 16_000 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = False , lowerCamelCase__ = 80 , lowerCamelCase__ = 16 , lowerCamelCase__ = 64 , lowerCamelCase__ = "hann_window" , lowerCamelCase__ = 1.0 , lowerCamelCase__ = 80 , lowerCamelCase__ = 7_600 , lowerCamelCase__ = 1e-10 , lowerCamelCase__ = 2 , lowerCamelCase__ = True , **lowerCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(feature_size=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , padding_value=lowerCamelCase__ , **lowerCamelCase__ ) lowercase__ = do_normalize lowercase__ = return_attention_mask lowercase__ = num_mel_bins lowercase__ = hop_length lowercase__ = win_length lowercase__ = win_function lowercase__ = frame_signal_scale lowercase__ = fmin lowercase__ = fmax lowercase__ = mel_floor lowercase__ = reduction_factor lowercase__ = win_length * sampling_rate // 1_000 lowercase__ = hop_length * sampling_rate // 1_000 lowercase__ = optimal_fft_length(self.sample_size ) lowercase__ = (self.n_fft // 2) + 1 lowercase__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCamelCase__ ) lowercase__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="""slaney""" , mel_scale="""slaney""" , ) if frame_signal_scale != 1.0: warnings.warn( """The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers""" , lowerCamelCase__ , ) if reduction_factor != 2.0: warnings.warn( """The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers""" , lowerCamelCase__ , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def A__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: lowercase__ = np.array(lowerCamelCase__ , np.intaa ) lowercase__ = [] for vector, length in zip(lowerCamelCase__ , attention_mask.sum(-1 ) ): lowercase__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowercase__ = padding_value normed_input_values.append(lowerCamelCase__ ) else: lowercase__ = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def A__ ( self , lowerCamelCase__ , ) -> np.ndarray: '''simple docstring''' lowercase__ = spectrogram( lowerCamelCase__ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="""log10""" , ) return log_mel_spec.T def __call__( self , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> BatchFeature: '''simple docstring''' if audio is None and audio_target is None: raise ValueError("""You must provide either `audio` or `audio_target` values.""" ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if audio is not None: lowercase__ = self._process_audio( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ , ) else: lowercase__ = None if audio_target is not None: lowercase__ = self._process_audio( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ , ) if inputs is None: return inputs_target else: lowercase__ = inputs_target["""input_values"""] lowercase__ = inputs_target.get("""attention_mask""" ) if decoder_attention_mask is not None: lowercase__ = decoder_attention_mask return inputs def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> BatchFeature: '''simple docstring''' lowercase__ = isinstance(lowerCamelCase__ , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowercase__ = is_batched_numpy or ( isinstance(lowerCamelCase__ , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(lowerCamelCase__ , np.ndarray ): lowercase__ = np.asarray(lowerCamelCase__ , dtype=np.floataa ) elif isinstance(lowerCamelCase__ , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): lowercase__ = speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [speech] # needed to make pad() work on spectrogram inputs lowercase__ = self.feature_size # convert into correct format for padding if is_target: lowercase__ = [self._extract_mel_features(lowerCamelCase__ ) for waveform in speech] lowercase__ = BatchFeature({"""input_values""": features} ) lowercase__ = self.num_mel_bins else: lowercase__ = BatchFeature({"""input_values""": speech} ) lowercase__ = self.pad( lowerCamelCase__ , padding=lowerCamelCase__ , max_length=lowerCamelCase__ , truncation=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , **lowerCamelCase__ , ) lowercase__ = feature_size_hack # convert input values to correct format lowercase__ = padded_inputs["""input_values"""] if not isinstance(input_values[0] , np.ndarray ): lowercase__ = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for array in input_values] elif ( not isinstance(lowerCamelCase__ , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): lowercase__ = [array.astype(np.floataa ) for array in input_values] elif isinstance(lowerCamelCase__ , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): lowercase__ = input_values.astype(np.floataa ) # convert attention_mask to correct format lowercase__ = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: lowercase__ = [np.asarray(lowerCamelCase__ , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: lowercase__ = ( attention_mask if self._get_padding_strategies(lowerCamelCase__ , max_length=lowerCamelCase__ ) is not PaddingStrategy.DO_NOT_PAD else None ) lowercase__ = self.zero_mean_unit_var_norm( padded_inputs["""input_values"""] , attention_mask=lowerCamelCase__ , padding_value=self.padding_value ) if return_tensors is not None: lowercase__ = padded_inputs.convert_to_tensors(lowerCamelCase__ ) return padded_inputs def A__ ( self ) -> Dict[str, Any]: '''simple docstring''' lowercase__ = super().to_dict() # Don't serialize these as they are derived from the other properties. lowercase__ = ["""window""", """mel_filters""", """sample_size""", """sample_stride""", """n_fft""", """n_freqs"""] for name in names: if name in output: del output[name] return output
164
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline __A = logging.get_logger(__name__) class A ( __UpperCAmelCase ): def A__ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowercase__ = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(lowerCamelCase__ ) ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowercase__ = [sequences] lowercase__ = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__UpperCAmelCase ) class A ( __UpperCAmelCase ): def __init__( self , lowerCamelCase__=ZeroShotClassificationArgumentHandler() , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' lowercase__ = args_parser super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def A__ ( self ) -> int: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def A__ ( self , lowerCamelCase__ , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=TruncationStrategy.ONLY_FIRST , **lowerCamelCase__ ) -> int: '''simple docstring''' lowercase__ = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) lowercase__ = self.tokenizer.eos_token try: lowercase__ = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , ) except Exception as e: if "too short" in str(lowerCamelCase__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. lowercase__ = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def A__ ( self , **lowerCamelCase__ ) -> Dict: '''simple docstring''' if kwargs.get("""multi_class""" , lowerCamelCase__ ) is not None: lowercase__ = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) lowercase__ = {} if "candidate_labels" in kwargs: lowercase__ = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: lowercase__ = kwargs["""hypothesis_template"""] lowercase__ = {} if "multi_label" in kwargs: lowercase__ = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ , ) -> Optional[int]: '''simple docstring''' if len(lowerCamelCase__ ) == 0: pass elif len(lowerCamelCase__ ) == 1 and "candidate_labels" not in kwargs: lowercase__ = args[0] else: raise ValueError(F'''Unable to understand extra arguments {args}''' ) return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__="This example is {}." ) -> Optional[Any]: '''simple docstring''' lowercase__ , lowercase__ = self._args_parser(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): lowercase__ = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCamelCase__ ) - 1, **model_input, } def A__ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' lowercase__ = inputs["""candidate_label"""] lowercase__ = inputs["""sequence"""] lowercase__ = {k: inputs[k] for k in self.tokenizer.model_input_names} lowercase__ = self.model(**lowerCamelCase__ ) lowercase__ = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def A__ ( self , lowerCamelCase__ , lowerCamelCase__=False ) -> int: '''simple docstring''' lowercase__ = [outputs["""candidate_label"""] for outputs in model_outputs] lowercase__ = [outputs["""sequence"""] for outputs in model_outputs] lowercase__ = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) lowercase__ = logits.shape[0] lowercase__ = len(lowerCamelCase__ ) lowercase__ = N // n lowercase__ = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCamelCase__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently lowercase__ = self.entailment_id lowercase__ = -1 if entailment_id == 0 else 0 lowercase__ = reshaped_outputs[..., [contradiction_id, entailment_id]] lowercase__ = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) lowercase__ = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels lowercase__ = reshaped_outputs[..., self.entailment_id] lowercase__ = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) lowercase__ = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
164
1
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __A : List[Any] = 3 def UpperCamelCase_ ( A__ : int ): '''simple docstring''' print("""Generating primitive root of p""" ) while True: lowerCAmelCase_ : Tuple = random.randrange(3 , A__ ) if pow(A__ , 2 , A__ ) == 1: continue if pow(A__ , A__ , A__ ) == 1: continue return g def UpperCamelCase_ ( A__ : int ): '''simple docstring''' print("""Generating prime p...""" ) lowerCAmelCase_ : Union[str, Any] = rabin_miller.generate_large_prime(A__ ) # select large prime number. lowerCAmelCase_ : Optional[int] = primitive_root(A__ ) # one primitive root on modulo p. lowerCAmelCase_ : int = random.randrange(3 , A__ ) # private_key -> have to be greater than 2 for safety. lowerCAmelCase_ : Tuple = cryptomath.find_mod_inverse(pow(A__ , A__ , A__ ) , A__ ) lowerCAmelCase_ : int = (key_size, e_a, e_a, p) lowerCAmelCase_ : str = (key_size, d) return public_key, private_key def UpperCamelCase_ ( A__ : str , A__ : int ): '''simple docstring''' if os.path.exists(f'{name}_pubkey.txt' ) or os.path.exists(f'{name}_privkey.txt' ): print("""\nWARNING:""" ) print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' """Use a different name or delete these files and re-run this program.""" ) sys.exit() lowerCAmelCase_, lowerCAmelCase_ : Optional[Any] = generate_key(A__ ) print(f'\nWriting public key to file {name}_pubkey.txt...' ) with open(f'{name}_pubkey.txt' , """w""" ) as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}' ) print(f'Writing private key to file {name}_privkey.txt...' ) with open(f'{name}_privkey.txt' , """w""" ) as fo: fo.write(f'{private_key[0]},{private_key[1]}' ) def UpperCamelCase_ ( ): '''simple docstring''' print("""Making key files...""" ) make_key_files("""elgamal""" , 20_48 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
89
'''simple docstring''' from __future__ import annotations def UpperCamelCase_ ( A__ : int | float | str , A__ : int | float | str ): '''simple docstring''' if nth_term == "": return [""] lowerCAmelCase_ : str = int(A__ ) lowerCAmelCase_ : Tuple = int(A__ ) lowerCAmelCase_ : list[str] = [] for temp in range(int(A__ ) ): series.append(f'1 / {pow(temp + 1 , int(A__ ) )}' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() __A : str = int(input("Enter the last number (nth term) of the P-Series")) __A : Tuple = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
89
1
from bisect import bisect from itertools import accumulate def UpperCamelCase( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict ,__UpperCamelCase : str ): lowerCAmelCase_ : Union[str, Any] = sorted(zip(__UpperCamelCase ,__UpperCamelCase ) ,key=lambda __UpperCamelCase : x[0] / x[1] ,reverse=__UpperCamelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Any = [i[0] for i in r], [i[1] for i in r] lowerCAmelCase_ : Union[str, Any] = list(accumulate(__UpperCamelCase ) ) lowerCAmelCase_ : List[Any] = bisect(__UpperCamelCase ,__UpperCamelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
103
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCamelCase( ): lowerCAmelCase_ : List[str] = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' ,type=__UpperCamelCase ,default=1 ,help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' ,type=__UpperCamelCase ,help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) ,) # rest from the training program parser.add_argument('''training_script_args''' ,nargs=__UpperCamelCase ) return parser.parse_args() def UpperCamelCase( ): lowerCAmelCase_ : str = parse_args() # Import training_script as a module. lowerCAmelCase_ : str = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCAmelCase_ : Tuple = script_fpath.stem lowerCAmelCase_ : Union[str, Any] = importlib.import_module(__UpperCamelCase ) # Patch sys.argv lowerCAmelCase_ : Optional[int] = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
103
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
48
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = {"""configuration_sew""": ["""SEW_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SEWConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """SEW_PRETRAINED_MODEL_ARCHIVE_LIST""", """SEWForCTC""", """SEWForSequenceClassification""", """SEWModel""", """SEWPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
48
1
import warnings from ..trainer import Trainer from ..utils import logging __lowerCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' warnings.warn( '`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ' 'instead.' , lowerCAmelCase__ , ) super().__init__(args=lowerCAmelCase__ , **lowerCAmelCase__ )
196
import math def snake_case_ ( snake_case , snake_case ) -> float: return math.pow(snake_case , 2 ) - a def snake_case_ ( snake_case ) -> float: return 2 * x def snake_case_ ( snake_case ) -> float: lowercase__: Dict = 2.0 while start <= a: lowercase__: str = math.pow(snake_case , 2 ) return start def snake_case_ ( snake_case , snake_case = 99_99 , snake_case = 0.0_0_0_0_0_0_0_0_0_0_0_0_0_1 ) -> float: if a < 0: raise ValueError('math domain error' ) lowercase__: Tuple = get_initial_point(snake_case ) for _ in range(snake_case ): lowercase__: List[Any] = value lowercase__: Any = value - fx(snake_case , snake_case ) / fx_derivative(snake_case ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
196
1
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __snake_case :Any = '''bart''' __snake_case :int = True @st.cache(allow_output_mutation=lowerCAmelCase_ ) def __snake_case ( ): if LOAD_DENSE_INDEX: __a = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __a = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __a = qar_model.eval() else: __a = (None, None) if MODEL_TYPE == "bart": __a = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __a = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __a = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __a = sas_model.eval() else: __a = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowerCAmelCase_ ) def __snake_case ( ): if LOAD_DENSE_INDEX: __a = faiss.StandardGpuResources() __a = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['train'] __a = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __a = faiss.IndexFlatIP(128 ) __a = faiss.index_cpu_to_gpu(lowerCAmelCase_ , 1 , lowerCAmelCase_ ) wikiaab_gpu_index_flat.add(lowerCAmelCase_ ) # TODO fix for larger GPU else: __a = (None, None) __a = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowerCAmelCase_ ) def __snake_case ( ): __a = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __a = elia['train_eli5'] __a = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __a = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(lowerCAmelCase_ ) return (elia_train, eli5_train_q_index) __snake_case ,__snake_case ,__snake_case :Any = load_indexes() __snake_case ,__snake_case ,__snake_case ,__snake_case :Union[str, Any] = load_models() __snake_case ,__snake_case :List[Any] = load_train_data() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase=10 ): __a = embed_questions_for_retrieval([question] , lowerCAmelCase_ , lowerCAmelCase_ ) __a = eli5_train_q_index.search(lowerCAmelCase_ , lowerCAmelCase_ ) __a = [elia_train[int(lowerCAmelCase_ )] for i in I[0]] return nn_examples def __snake_case ( _UpperCAmelCase , _UpperCAmelCase="wiki40b" , _UpperCAmelCase="dense" , _UpperCAmelCase=10 ): if source == "none": __a = (' <P> '.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __a = query_qa_dense_index( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: __a = query_es_index( lowerCAmelCase_ , lowerCAmelCase_ , index_name='''english_wiki40b_snippets_100w''' , n_results=lowerCAmelCase_ , ) __a = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] __a = 'question: {} context: {}'.format(lowerCAmelCase_ , lowerCAmelCase_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _UpperCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _UpperCAmelCase : None), } ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=64 , _UpperCAmelCase=256 , _UpperCAmelCase=False , _UpperCAmelCase=2 , _UpperCAmelCase=0.95 , _UpperCAmelCase=0.8 ): with torch.no_grad(): __a = qa_sas_generate( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , num_answers=1 , num_beams=lowerCAmelCase_ , min_len=lowerCAmelCase_ , max_len=lowerCAmelCase_ , do_sample=lowerCAmelCase_ , temp=lowerCAmelCase_ , top_p=lowerCAmelCase_ , top_k=lowerCAmelCase_ , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar __snake_case :Union[str, Any] = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' __snake_case :Any = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __snake_case :List[str] = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) __snake_case :Optional[Any] = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] __snake_case :str = st.sidebar.checkbox('''Demo options''') if demo_options: __snake_case :Optional[Any] = st.sidebar.selectbox( '''''', action_list, index=3, ) __snake_case :int = action_list.index(action_st) __snake_case :List[Any] = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) __snake_case :List[str] = show_type == '''Show full text of passages''' else: __snake_case :Tuple = 3 __snake_case :int = True __snake_case :Union[str, Any] = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: __snake_case :Union[str, Any] = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) __snake_case :Optional[Any] = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) __snake_case :Optional[int] = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: __snake_case :List[Any] = '''wiki40b''' __snake_case :Optional[int] = '''dense''' __snake_case :Optional[int] = '''beam''' __snake_case :List[Any] = 2 __snake_case :List[Any] = 64 __snake_case :Any = 256 __snake_case :Tuple = None __snake_case :int = None __snake_case :List[str] = st.sidebar.checkbox('''Generation options''') if generate_options: __snake_case :int = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) __snake_case :List[str] = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) __snake_case :Optional[Any] = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __snake_case :List[Any] = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __snake_case :Any = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __snake_case :Dict = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) __snake_case :Optional[Any] = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) __snake_case :Optional[int] = None # start main text __snake_case :Dict = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] __snake_case :List[Any] = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": __snake_case :Optional[int] = st.text_input('''Enter your question here:''', '''''') else: __snake_case :Tuple = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": __snake_case ,__snake_case :Dict = make_support(question, source=wiki_source, method='''dense''', n_results=10) __snake_case ,__snake_case :Optional[int] = make_support(question, source=wiki_source, method='''sparse''', n_results=10) __snake_case :int = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __snake_case :str = support_list[:10] __snake_case :Union[str, Any] = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: __snake_case ,__snake_case :List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __snake_case ,__snake_case :Any = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): __snake_case :Union[str, Any] = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) __snake_case :str = res[1].strip() if sec_titles == "": __snake_case :Optional[Any] = '''[{}]({})'''.format(res[0], wiki_url) else: __snake_case :int = sec_titles.split(''' & ''') __snake_case :int = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: __snake_case :List[str] = find_nearest_training(question) __snake_case :Tuple = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) __snake_case :Tuple = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) __snake_case :Tuple = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
369
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __snake_case :Dict = logging.get_logger(__name__) __snake_case :List[str] = {'''vocab_file''': '''spiece.model'''} __snake_case :Dict = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class _A ( __UpperCAmelCase ): def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Optional[int]="<s>" , __SCREAMING_SNAKE_CASE : Optional[Any]="</s>" , __SCREAMING_SNAKE_CASE : Union[str, Any]="<unk>" , __SCREAMING_SNAKE_CASE : Optional[int]="<sep>" , __SCREAMING_SNAKE_CASE : Optional[int]="<pad>" , __SCREAMING_SNAKE_CASE : List[Any]="<cls>" , __SCREAMING_SNAKE_CASE : Optional[int]="<mask>" , __SCREAMING_SNAKE_CASE : Any=["<eop>", "<eod>"] , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' __a = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) else mask_token __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) __a = 3 __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(__SCREAMING_SNAKE_CASE) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''') __a = jieba __a = str.maketrans(''' \n''' , '''\u2582\u2583''') @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _lowerCamelCase ( self : int): '''simple docstring''' return len(self.sp_model) def _lowerCamelCase ( self : str): '''simple docstring''' __a = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Any): '''simple docstring''' __a = self.__dict__.copy() __a = None return state def __setstate__( self : Tuple , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): __a = {} __a = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' if self.remove_space: __a = ''' '''.join(inputs.strip().split()) else: __a = inputs __a = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: __a = unicodedata.normalize('''NFKD''' , __SCREAMING_SNAKE_CASE) __a = ''''''.join([c for c in outputs if not unicodedata.combining(__SCREAMING_SNAKE_CASE)]) if self.do_lower_case: __a = outputs.lower() return outputs def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = self.preprocess_text(__SCREAMING_SNAKE_CASE) __a = self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE) __a = [] for piece in pieces: if len(__SCREAMING_SNAKE_CASE) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): __a = self.sp_model.EncodeAsPieces(piece[:-1].replace(__SCREAMING_SNAKE_CASE , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: __a = cur_pieces[1:] else: __a = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(__SCREAMING_SNAKE_CASE) else: new_pieces.append(__SCREAMING_SNAKE_CASE) return new_pieces def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a = ''''''.join(__SCREAMING_SNAKE_CASE).replace(__SCREAMING_SNAKE_CASE , ''' ''').strip() return out_string def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE) if token_ids_a is not None: return ([0] * len(__SCREAMING_SNAKE_CASE)) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE)) + [1, 1] return ([0] * len(__SCREAMING_SNAKE_CASE)) + [1, 1] def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None): '''simple docstring''' __a = [self.sep_token_id] __a = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None): '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __a = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(__SCREAMING_SNAKE_CASE) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE) elif not os.path.isfile(self.vocab_file): with open(__SCREAMING_SNAKE_CASE , '''wb''') as fi: __a = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE) return (out_vocab_file,) def _lowerCamelCase ( self : Any , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = super()._decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) __a = text.replace(''' ''' , '''''').replace('''\u2582''' , ''' ''').replace('''\u2583''' , '''\n''') return text
131
0
"""simple docstring""" import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : def __init__( self : Any , _lowerCamelCase : Optional[int] , _lowerCamelCase : str=13 , _lowerCamelCase : Optional[Any]=32 , _lowerCamelCase : Any=2 , _lowerCamelCase : int=3 , _lowerCamelCase : Dict=16 , _lowerCamelCase : Optional[Any]=[32, 64, 1_28] , _lowerCamelCase : Any=[1, 2, 1] , _lowerCamelCase : Optional[int]=[2, 2, 4] , _lowerCamelCase : Union[str, Any]=2 , _lowerCamelCase : List[str]=2.0 , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Any=0.0 , _lowerCamelCase : Optional[int]=0.1 , _lowerCamelCase : Dict="gelu" , _lowerCamelCase : List[Any]=False , _lowerCamelCase : Dict=True , _lowerCamelCase : List[str]=0.02 , _lowerCamelCase : int=1E-5 , _lowerCamelCase : Any=True , _lowerCamelCase : List[str]=None , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Optional[Any]=10 , _lowerCamelCase : Dict=8 , _lowerCamelCase : str=["stage1", "stage2"] , _lowerCamelCase : Optional[Any]=[1, 2] , ): """simple docstring""" A_ : int = parent A_ : Union[str, Any] = batch_size A_ : List[str] = image_size A_ : Union[str, Any] = patch_size A_ : str = num_channels A_ : int = embed_dim A_ : int = hidden_sizes A_ : Tuple = depths A_ : List[Any] = num_heads A_ : Optional[int] = window_size A_ : int = mlp_ratio A_ : Any = qkv_bias A_ : Optional[int] = hidden_dropout_prob A_ : Tuple = attention_probs_dropout_prob A_ : List[str] = drop_path_rate A_ : Union[str, Any] = hidden_act A_ : List[str] = use_absolute_embeddings A_ : Any = patch_norm A_ : List[Any] = layer_norm_eps A_ : Union[str, Any] = initializer_range A_ : Dict = is_training A_ : Optional[Any] = scope A_ : List[Any] = use_labels A_ : List[str] = type_sequence_label_size A_ : int = encoder_stride A_ : Tuple = out_features A_ : Tuple = out_indices def a_ ( self : Union[str, Any] ): """simple docstring""" A_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Union[str, Any] = None if self.use_labels: A_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Any = self.get_config() return config, pixel_values, labels def a_ ( self : List[str] ): """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a_ ( self : Any , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : List[str] = FocalNetModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Tuple = model(_lowerCamelCase ) A_ : int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) A_ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a_ ( self : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple ): """simple docstring""" A_ : int = FocalNetBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Dict = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None A_ : List[Any] = None A_ : Optional[int] = FocalNetBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : str = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a_ ( self : List[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : int = FocalNetForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[str] = model(_lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A_ : str = 1 A_ : Union[str, Any] = FocalNetForMaskedImageModeling(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Any = model(_lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a_ ( self : List[str] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Any ): """simple docstring""" A_ : int = self.type_sequence_label_size A_ : List[str] = FocalNetForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Any = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : List[str] = 1 A_ : Optional[int] = FocalNetForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Dict = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a_ ( self : Optional[int] ): """simple docstring""" A_ : Union[str, Any] = self.prepare_config_and_inputs() A_ , A_ , A_ : Tuple = config_and_inputs A_ : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase): __lowerCAmelCase : Union[str, Any] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) __lowerCAmelCase : int = ( {"""feature-extraction""": FocalNetModel, """image-classification""": FocalNetForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase : List[Any] = False __lowerCAmelCase : int = False __lowerCAmelCase : List[Any] = False __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Union[str, Any] = False def a_ ( self : int ): """simple docstring""" A_ : Union[str, Any] = FocalNetModelTester(self ) A_ : Union[str, Any] = ConfigTester(self , config_class=_lowerCamelCase , embed_dim=37 , has_text_modality=_lowerCamelCase ) def a_ ( self : Dict ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a_ ( self : Dict ): """simple docstring""" return def a_ ( self : Optional[int] ): """simple docstring""" A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def a_ ( self : Any ): """simple docstring""" A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) def a_ ( self : Dict ): """simple docstring""" A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase ) def a_ ( self : Optional[Any] ): """simple docstring""" A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @unittest.skip(reason='''FocalNet does not use inputs_embeds''' ) def a_ ( self : str ): """simple docstring""" pass @unittest.skip(reason='''FocalNet does not use feedforward chunking''' ) def a_ ( self : List[str] ): """simple docstring""" pass def a_ ( self : Tuple ): """simple docstring""" A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: A_ : str = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def a_ ( self : Optional[Any] ): """simple docstring""" A_ , A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: A_ : List[str] = model_class(_lowerCamelCase ) A_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Dict = [*signature.parameters.keys()] A_ : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def a_ ( self : Optional[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple ): """simple docstring""" A_ : str = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): A_ : Optional[int] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) A_ : str = outputs.hidden_states A_ : Optional[Any] = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # FocalNet has a different seq_length A_ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) A_ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) A_ : int = outputs.reshaped_hidden_states self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) A_ , A_ , A_ , A_ : List[str] = reshaped_hidden_states[0].shape A_ : str = ( reshaped_hidden_states[0].view(_lowerCamelCase , _lowerCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a_ ( self : Tuple ): """simple docstring""" A_ , A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: A_ : Optional[int] = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : Union[str, Any] = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def a_ ( self : Any ): """simple docstring""" A_ , A_ : str = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[Any] = 3 A_ : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) A_ : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) A_ : List[str] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) A_ : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: A_ : Tuple = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : int = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) @slow def a_ ( self : Tuple ): """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : str = FocalNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def a_ ( self : Union[str, Any] ): """simple docstring""" A_ , A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() A_ : str = _config_zero_init(_lowerCamelCase ) for model_class in self.all_model_classes: A_ : Optional[int] = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class lowercase ( unittest.TestCase): @cached_property def a_ ( self : Optional[Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('''microsoft/focalnet-tiny''' ) if is_vision_available() else None @slow def a_ ( self : Any ): """simple docstring""" A_ : Dict = FocalNetForImageClassification.from_pretrained('''microsoft/focalnet-tiny''' ).to(_lowerCamelCase ) A_ : str = self.default_image_processor A_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) A_ : Optional[Any] = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : List[Any] = model(**_lowerCamelCase ) # verify the logits A_ : str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Optional[Any] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class lowercase ( __UpperCAmelCase , unittest.TestCase): __lowerCAmelCase : Dict = (FocalNetBackbone,) if is_torch_available() else () __lowerCAmelCase : Any = FocalNetConfig __lowerCAmelCase : List[Any] = False def a_ ( self : str ): """simple docstring""" A_ : Any = FocalNetModelTester(self )
167
"""simple docstring""" import pprint import requests _lowerCamelCase : Tuple = 'https://zenquotes.io/api' def lowercase_ ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def lowercase_ ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": _lowerCamelCase : List[Any] = random_quotes() pprint.pprint(response)
167
1
'''simple docstring''' import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCAmelCase = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowerCAmelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING __lowerCAmelCase = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"""config.{attribute}""" in modeling_source or f"""getattr(config, \"{attribute}\"""" in modeling_source or f"""getattr(self.config, \"{attribute}\"""" in modeling_source ): _snake_case = True # Deal with multi-line cases elif ( re.search( Rf"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , _SCREAMING_SNAKE_CASE , ) is not None ): _snake_case = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: _snake_case = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files _snake_case = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] _snake_case = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed _snake_case = True if not attribute_used: _snake_case = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: _snake_case = True elif attribute in ["tie_word_embeddings"] and default_value is False: _snake_case = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: _snake_case = True elif attribute.endswith("""_token_id""" ): _snake_case = True # configuration class specific cases if not case_allowed: _snake_case = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) _snake_case = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = dict(inspect.signature(config_class.__init__ ).parameters ) _snake_case = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] _snake_case = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass _snake_case = {} if len(config_class.attribute_map ) > 0: _snake_case = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files _snake_case = inspect.getsourcefile(_SCREAMING_SNAKE_CASE ) _snake_case = os.path.dirname(_SCREAMING_SNAKE_CASE ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. _snake_case = [os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for fn in os.listdir(_SCREAMING_SNAKE_CASE ) if fn.startswith("""modeling_""" )] # Get the source code strings _snake_case = [] for path in modeling_paths: if os.path.isfile(_SCREAMING_SNAKE_CASE ): with open(_SCREAMING_SNAKE_CASE ) as fp: modeling_sources.append(fp.read() ) _snake_case = [] for config_param, default_value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # `attributes` here is all the variant names for `config_param` _snake_case = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): unused_attributes.append(attributes[0] ) return sorted(_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( ): _snake_case = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) _snake_case = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda _SCREAMING_SNAKE_CASE : inspect.isclass(_SCREAMING_SNAKE_CASE ) and issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and inspect.getmodule(_SCREAMING_SNAKE_CASE ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: _snake_case = check_config_attributes_being_used(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _snake_case = unused_attributes if len(_SCREAMING_SNAKE_CASE ) > 0: _snake_case = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += f"""{name}: {attributes}\n""" raise ValueError(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": check_config_attributes()
352
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( __snake_case , __snake_case ): '''simple docstring''' lowerCAmelCase_ = "nat" lowerCAmelCase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__(self , UpperCAmelCase=4 , UpperCAmelCase=3 , UpperCAmelCase=64 , UpperCAmelCase=[3, 4, 6, 5] , UpperCAmelCase=[2, 4, 8, 16] , UpperCAmelCase=7 , UpperCAmelCase=3.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=0.0 , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> str: super().__init__(**UpperCAmelCase ) _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(UpperCAmelCase ) _snake_case = num_heads _snake_case = kernel_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = layer_norm_eps _snake_case = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case = int(embed_dim * 2 ** (len(UpperCAmelCase ) - 1) ) _snake_case = layer_scale_init_value _snake_case = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase ) + 1 )] _snake_case, _snake_case = get_aligned_output_features_output_indices( out_features=UpperCAmelCase , out_indices=UpperCAmelCase , stage_names=self.stage_names )
270
0
'''simple docstring''' def __lowerCamelCase ( ) -> str: _a : Optional[Any] = [] _a : Optional[Any] = 1 while len(lowerCAmelCase_ ) < 1E6: constant.append(str(lowerCAmelCase_ ) ) i += 1 _a : List[Any] = ''.join(lowerCAmelCase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
89
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : str = LayoutLMTokenizer lowerCAmelCase : Tuple = LayoutLMTokenizerFast lowerCAmelCase : List[Any] = True lowerCAmelCase : int = True def __lowercase ( self : Dict ): super().setUp() _a : int = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _a : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __lowercase ( self : Dict ,**_UpperCAmelCase : List[str] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**_UpperCAmelCase ) def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : Tuple ): _a : Optional[int] = 'UNwant\u00E9d,running' _a : List[Any] = 'unwanted, running' return input_text, output_text def __lowercase ( self : Optional[int] ): _a : Optional[Any] = self.tokenizer_class(self.vocab_file ) _a : Optional[Any] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase ,['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) ,[7, 4, 5, 10, 8, 9] ) def __lowercase ( self : Optional[int] ): pass
89
1
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : float , _UpperCamelCase : float ) -> float: """simple docstring""" return round(float(moles / volume ) * nfactor ) def _lowerCAmelCase ( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float ) -> float: """simple docstring""" return round(float((moles * 0.08_21 * temperature) / (volume) ) ) def _lowerCAmelCase ( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float ) -> float: """simple docstring""" return round(float((moles * 0.08_21 * temperature) / (pressure) ) ) def _lowerCAmelCase ( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float ) -> float: """simple docstring""" return round(float((pressure * volume) / (0.08_21 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
114
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) lowerCamelCase : int = logging.getLogger(__name__) if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=3_0_5_2_2, type=int) lowerCamelCase : Optional[Any] = parser.parse_args() logger.info(f'''Loading data from {args.data_file}''') with open(args.data_file, "rb") as fp: lowerCamelCase : Optional[int] = pickle.load(fp) logger.info("Counting occurrences for MLM.") lowerCamelCase : Dict = Counter() for tk_ids in data: counter.update(tk_ids) lowerCamelCase : Tuple = [0] * args.vocab_size for k, v in counter.items(): lowerCamelCase : Any = v logger.info(f'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
114
1
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=4 , ) -> List[Any]: lowerCamelCase : Union[str, Any] = parent lowerCamelCase : Any = batch_size lowerCamelCase : Dict = seq_length lowerCamelCase : Optional[int] = is_training lowerCamelCase : int = use_attention_mask lowerCamelCase : Union[str, Any] = use_token_type_ids lowerCamelCase : List[str] = use_labels lowerCamelCase : Optional[Any] = vocab_size lowerCamelCase : int = hidden_size lowerCamelCase : Tuple = num_hidden_layers lowerCamelCase : List[str] = num_attention_heads lowerCamelCase : List[str] = intermediate_size lowerCamelCase : str = hidden_act lowerCamelCase : Any = hidden_dropout_prob lowerCamelCase : Optional[int] = attention_probs_dropout_prob lowerCamelCase : List[str] = max_position_embeddings lowerCamelCase : Optional[Any] = type_vocab_size lowerCamelCase : Tuple = type_sequence_label_size lowerCamelCase : Any = initializer_range lowerCamelCase : Optional[Any] = num_choices def _lowercase ( self ) -> Dict: lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase : str = None if self.use_attention_mask: lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase : Optional[int] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowercase ( self ) -> Tuple: lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : int = config_and_inputs lowerCamelCase : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def _lowercase ( self ) -> List[Any]: lowerCamelCase : str = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : Tuple = config_and_inputs lowerCamelCase : List[Any] = True lowerCamelCase : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class UpperCamelCase__ (lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : str = True lowerCamelCase_ : List[Any] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : Optional[int] = FlaxRobertaPreLayerNormModelTester(self ) @slow def _lowercase ( self ) -> List[Any]: for model_class_name in self.all_model_classes: lowerCamelCase : Dict = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=UpperCamelCase__ ) lowerCamelCase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase__ ) @require_flax class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> Any: lowerCamelCase : Optional[int] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=UpperCamelCase__ ) lowerCamelCase : Tuple = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) lowerCamelCase : List[str] = model(UpperCamelCase__ )[0] lowerCamelCase : List[str] = [1, 11, 5_0265] self.assertEqual(list(output.shape ) , UpperCamelCase__ ) # compare the actual values for a slice. lowerCamelCase : Dict = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def _lowercase ( self ) -> Optional[int]: lowerCamelCase : List[str] = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=UpperCamelCase__ ) lowerCamelCase : Optional[int] = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) lowerCamelCase : List[str] = model(UpperCamelCase__ )[0] # compare the actual values for a slice. lowerCamelCase : Dict = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 ) )
48
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def A ( _SCREAMING_SNAKE_CASE ) -> tuple: return (data["data"], data["target"]) def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> np.ndarray: lowerCamelCase : List[str] = XGBRegressor(verbosity=0 ,random_state=42 ) xgb.fit(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Predict target for test data lowerCamelCase : List[Any] = xgb.predict(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Tuple = predictions.reshape(len(_SCREAMING_SNAKE_CASE ) ,1 ) return predictions def A ( ) -> None: lowerCamelCase : Dict = fetch_california_housing() lowerCamelCase , lowerCamelCase : Tuple = data_handling(_SCREAMING_SNAKE_CASE ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[Any] = train_test_split( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,test_size=0.25 ,random_state=1 ) lowerCamelCase : Any = xgboost(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Error printing print(f'''Mean Absolute Error : {mean_absolute_error(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )}''' ) print(f'''Mean Square Error : {mean_squared_error(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
48
1
"""simple docstring""" import baseaa def _a ( _snake_case ): """simple docstring""" return baseaa.baaencode(string.encode("""utf-8""" ) ) def _a ( _snake_case ): """simple docstring""" return baseaa.baadecode(_snake_case ).decode("""utf-8""" ) if __name__ == "__main__": _UpperCamelCase = """Hello World!""" _UpperCamelCase = baseaa_encode(test) print(encoded) _UpperCamelCase = baseaa_decode(encoded) print(decoded)
234
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) def _a ( _snake_case ): """simple docstring""" if isinstance(_snake_case , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_snake_case , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_snake_case ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = ['''pixel_values'''] def __init__( self ,A = True ,A = None ,A = PILImageResampling.BILINEAR ,A = True ,A = None ,A = True ,A = 1 / 255 ,A = True ,A = True ,A = None ,A = None ,**A ,): super().__init__(**A ) UpperCAmelCase = size if size is not None else {"""shortest_edge""": 256} UpperCAmelCase = get_size_dict(A ,default_to_square=A ) UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase = get_size_dict(A ,param_name="""crop_size""" ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = resample UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = offset UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _UpperCamelCase ( self ,A ,A ,A = PILImageResampling.BILINEAR ,A = None ,**A ,): UpperCAmelCase = get_size_dict(A ,default_to_square=A ) if "shortest_edge" in size: UpperCAmelCase = get_resize_output_image_size(A ,size["""shortest_edge"""] ,default_to_square=A ) elif "height" in size and "width" in size: UpperCAmelCase = (size["""height"""], size["""width"""]) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(A ,size=A ,resample=A ,data_format=A ,**A ) def _UpperCamelCase ( self ,A ,A ,A = None ,**A ,): UpperCAmelCase = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(A ,size=(size["""height"""], size["""width"""]) ,data_format=A ,**A ) def _UpperCamelCase ( self ,A ,A ,A = True ,A = None ,**A ,): UpperCAmelCase = image.astype(np.floataa ) if offset: UpperCAmelCase = image - (scale / 2) return rescale(A ,scale=A ,data_format=A ,**A ) def _UpperCamelCase ( self ,A ,A ,A ,A = None ,**A ,): return normalize(A ,mean=A ,std=A ,data_format=A ,**A ) def _UpperCamelCase ( self ,A ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = ChannelDimension.FIRST ,): if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. UpperCAmelCase = to_numpy_array(A ) if do_resize: UpperCAmelCase = self.resize(image=A ,size=A ,resample=A ) if do_center_crop: UpperCAmelCase = self.center_crop(A ,size=A ) if do_rescale: UpperCAmelCase = self.rescale(image=A ,scale=A ,offset=A ) if do_normalize: UpperCAmelCase = self.normalize(image=A ,mean=A ,std=A ) UpperCAmelCase = to_channel_dimension_format(A ,A ) return image def _UpperCamelCase ( self ,A ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = ChannelDimension.FIRST ,**A ,): UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = offset if offset is not None else self.offset UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(A ,default_to_square=A ) UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(A ,param_name="""crop_size""" ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) UpperCAmelCase = make_batched(A ) UpperCAmelCase = [ [ self._preprocess_image( image=A ,do_resize=A ,size=A ,resample=A ,do_center_crop=A ,crop_size=A ,do_rescale=A ,rescale_factor=A ,offset=A ,do_normalize=A ,image_mean=A ,image_std=A ,data_format=A ,) for img in video ] for video in videos ] UpperCAmelCase = {"""pixel_values""": videos} return BatchFeature(data=A ,tensor_type=A )
234
1
'''simple docstring''' def _A ( A__ ): """simple docstring""" if edge <= 0 or not isinstance(A__ , A__ ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def _A ( A__ ): """simple docstring""" if edge <= 0 or not isinstance(A__ , A__ ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
104
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCamelCase = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCamelCase_ ( _a , _a , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , ): """simple docstring""" if attention_mask is None: lowerCAmelCase__ : List[Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCAmelCase__ : Dict = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCAmelCase__ : Any = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase__ : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase__ : Tuple = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _a : def __init__( self : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int]=13 , _SCREAMING_SNAKE_CASE : List[str]=7 , _SCREAMING_SNAKE_CASE : Optional[Any]=True , _SCREAMING_SNAKE_CASE : int=False , _SCREAMING_SNAKE_CASE : List[Any]=99 , _SCREAMING_SNAKE_CASE : List[Any]=16 , _SCREAMING_SNAKE_CASE : Dict=2 , _SCREAMING_SNAKE_CASE : List[str]=4 , _SCREAMING_SNAKE_CASE : Union[str, Any]=4 , _SCREAMING_SNAKE_CASE : Any="gelu" , _SCREAMING_SNAKE_CASE : str=0.1 , _SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , _SCREAMING_SNAKE_CASE : str=32 , _SCREAMING_SNAKE_CASE : Optional[int]=2 , _SCREAMING_SNAKE_CASE : str=1 , _SCREAMING_SNAKE_CASE : Optional[Any]=0 , _SCREAMING_SNAKE_CASE : List[str]=0.02 , )-> Any: lowerCAmelCase__ : Any = parent lowerCAmelCase__ : Dict = batch_size lowerCAmelCase__ : Any = seq_length lowerCAmelCase__ : Union[str, Any] = is_training lowerCAmelCase__ : Optional[Any] = use_labels lowerCAmelCase__ : List[str] = vocab_size lowerCAmelCase__ : Optional[int] = hidden_size lowerCAmelCase__ : List[str] = num_hidden_layers lowerCAmelCase__ : Optional[int] = num_attention_heads lowerCAmelCase__ : Optional[Any] = intermediate_size lowerCAmelCase__ : List[str] = hidden_act lowerCAmelCase__ : Tuple = hidden_dropout_prob lowerCAmelCase__ : Any = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : int = eos_token_id lowerCAmelCase__ : Dict = pad_token_id lowerCAmelCase__ : Optional[Any] = bos_token_id lowerCAmelCase__ : str = initializer_range def UpperCAmelCase__( self : List[str] )-> Any: lowerCAmelCase__ : Any = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCAmelCase__ : List[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCAmelCase__ : List[str] = shift_tokens_right(_SCREAMING_SNAKE_CASE , 1 , 2 ) lowerCAmelCase__ : List[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : Optional[Any] = prepare_blenderbot_inputs_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return config, inputs_dict def UpperCAmelCase__( self : List[str] )-> Union[str, Any]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] )-> str: lowerCAmelCase__ : str = 20 lowerCAmelCase__ : Dict = model_class_name(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = model.encode(inputs_dict['''input_ids'''] ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCAmelCase__ : str = model.init_cache(decoder_input_ids.shape[0] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) lowerCAmelCase__ : Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase__ : Dict = model.decode( decoder_input_ids[:, :-1] , _SCREAMING_SNAKE_CASE , decoder_attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , decoder_position_ids=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCAmelCase__ : Tuple = model.decode( decoder_input_ids[:, -1:] , _SCREAMING_SNAKE_CASE , decoder_attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : str = model.decode(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int )-> Tuple: lowerCAmelCase__ : int = 20 lowerCAmelCase__ : Tuple = model_class_name(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = model.encode(inputs_dict['''input_ids'''] ) lowerCAmelCase__ , lowerCAmelCase__ : Dict = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCAmelCase__ : Optional[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase__ : Tuple = model.init_cache(decoder_input_ids.shape[0] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase__ : Optional[Any] = model.decode( decoder_input_ids[:, :-1] , _SCREAMING_SNAKE_CASE , decoder_attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , decoder_position_ids=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCAmelCase__ : str = model.decode( decoder_input_ids[:, -1:] , _SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_SCREAMING_SNAKE_CASE , decoder_position_ids=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : Union[str, Any] = model.decode(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , decoder_attention_mask=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class _a ( unittest.TestCase): _a : Optional[int] = 99 def UpperCAmelCase__( self : int )-> Tuple: lowerCAmelCase__ : Any = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCAmelCase__ : Optional[Any] = input_ids.shape[0] lowerCAmelCase__ : Optional[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def UpperCAmelCase__( self : List[str] )-> Any: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self._get_config_and_data() lowerCAmelCase__ : Dict = FlaxBlenderbotForConditionalGeneration(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Dict = lm_model(input_ids=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Union[str, Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : str )-> Any: lowerCAmelCase__ : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCAmelCase__ : Dict = FlaxBlenderbotForConditionalGeneration(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) lowerCAmelCase__ : str = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) lowerCAmelCase__ : str = lm_model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : int )-> Dict: lowerCAmelCase__ : Union[str, Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) lowerCAmelCase__ : int = shift_tokens_right(_SCREAMING_SNAKE_CASE , 1 , 2 ) lowerCAmelCase__ : int = np.equal(_SCREAMING_SNAKE_CASE , 1 ).astype(np.floataa ).sum() lowerCAmelCase__ : int = np.equal(_SCREAMING_SNAKE_CASE , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_SCREAMING_SNAKE_CASE , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _a ( _lowercase , unittest.TestCase , _lowercase): _a : Optional[int] = True _a : List[str] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) _a : Dict = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def UpperCAmelCase__( self : Optional[Any] )-> Any: lowerCAmelCase__ : int = FlaxBlenderbotModelTester(self ) def UpperCAmelCase__( self : int )-> Optional[Any]: lowerCAmelCase__ , lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : List[Any] )-> Tuple: lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Tuple )-> Any: lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ : Tuple = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = model_class(_SCREAMING_SNAKE_CASE ) @jax.jit def encode_jitted(_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str]=None , **_SCREAMING_SNAKE_CASE : List[Any] ): return model.encode(input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase__ : str = encode_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase__ : Any = encode_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase__( self : Optional[Any] )-> Union[str, Any]: lowerCAmelCase__ , lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ : Dict = model_class(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) lowerCAmelCase__ : str = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any ): return model.decode( decoder_input_ids=_SCREAMING_SNAKE_CASE , decoder_attention_mask=_SCREAMING_SNAKE_CASE , encoder_outputs=_SCREAMING_SNAKE_CASE , ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase__ : List[Any] = decode_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase__ : Optional[Any] = decode_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase__( self : Dict )-> List[str]: for model_class_name in self.all_model_classes: lowerCAmelCase__ : List[Any] = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCAmelCase__ : List[str] = np.ones((1, 1) ) * model.config.eos_token_id lowerCAmelCase__ : Dict = model(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def UpperCAmelCase__( self : List[Any] )-> Union[str, Any]: lowerCAmelCase__ : Optional[int] = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} lowerCAmelCase__ : Tuple = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} lowerCAmelCase__ : Optional[int] = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) lowerCAmelCase__ : List[Any] = ['''Sam'''] lowerCAmelCase__ : Dict = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors='''jax''' ) lowerCAmelCase__ : List[str] = model.generate(**_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = '''Sam is a great name. It means "sun" in Gaelic.''' lowerCAmelCase__ : Union[str, Any] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) assert generated_txt[0].strip() == tgt_text
131
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = ["""input_features"""] def __init__( self : Any, __A : Optional[int]=8_0, __A : List[str]=1_6_0_0_0, __A : Any=1_6_0, __A : Union[str, Any]=3_0, __A : Optional[Any]=4_0_0, __A : Optional[int]=0.0, __A : Optional[Any]=False, **__A : List[Any], ): super().__init__( feature_size=__A, sampling_rate=__A, padding_value=__A, return_attention_mask=__A, **__A, ) UpperCAmelCase : int = n_fft UpperCAmelCase : Optional[int] = hop_length UpperCAmelCase : Dict = chunk_length UpperCAmelCase : List[Any] = chunk_length * sampling_rate UpperCAmelCase : Dict = self.n_samples // hop_length UpperCAmelCase : Any = sampling_rate UpperCAmelCase : Dict = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=__A, min_frequency=0.0, max_frequency=8_0_0_0.0, sampling_rate=__A, norm='''slaney''', mel_scale='''slaney''', ) def __magic_name__ ( self : Tuple, __A : np.array ): UpperCAmelCase : List[str] = spectrogram( __A, window_function(self.n_fft, '''hann''' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters, log_mel='''log10''', ) UpperCAmelCase : List[Any] = log_spec[:, :-1] UpperCAmelCase : Optional[Any] = np.maximum(__A, log_spec.max() - 8.0 ) UpperCAmelCase : Any = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __magic_name__ ( __A : List[np.ndarray], __A : List[np.ndarray], __A : float = 0.0 ): if attention_mask is not None: UpperCAmelCase : Tuple = np.array(__A, np.intaa ) UpperCAmelCase : str = [] for vector, length in zip(__A, attention_mask.sum(-1 ) ): UpperCAmelCase : Optional[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: UpperCAmelCase : Any = padding_value normed_input_values.append(__A ) else: UpperCAmelCase : int = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Any, __A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], __A : bool = True, __A : Optional[int] = None, __A : Optional[Union[str, TensorType]] = None, __A : Optional[bool] = None, __A : Optional[str] = "max_length", __A : Optional[int] = None, __A : Optional[int] = None, __A : Optional[bool] = None, **__A : Tuple, ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCAmelCase : str = isinstance(__A, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) UpperCAmelCase : str = is_batched_numpy or ( isinstance(__A, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase : Optional[int] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__A, np.ndarray ): UpperCAmelCase : Optional[int] = np.asarray(__A, dtype=np.floataa ) elif isinstance(__A, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase : str = [np.asarray([raw_speech] ).T] UpperCAmelCase : Any = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding UpperCAmelCase : Optional[Any] = self.pad( __A, padding=__A, max_length=max_length if max_length else self.n_samples, truncation=__A, pad_to_multiple_of=__A, return_attention_mask=return_attention_mask or do_normalize, ) # zero-mean and unit-variance normalization if do_normalize: UpperCAmelCase : Any = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''], attention_mask=padded_inputs['''attention_mask'''], padding_value=self.padding_value, ) UpperCAmelCase : Union[str, Any] = np.stack(padded_inputs['''input_features'''], axis=0 ) # make sure list is in array format UpperCAmelCase : Union[str, Any] = padded_inputs.get('''input_features''' ).transpose(2, 0, 1 ) UpperCAmelCase : Dict = [self._np_extract_fbank_features(__A ) for waveform in input_features[0]] if isinstance(input_features[0], __A ): UpperCAmelCase : Optional[Any] = [np.asarray(__A, dtype=np.floataa ) for feature in input_features] else: UpperCAmelCase : int = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) UpperCAmelCase : Optional[Any] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: UpperCAmelCase : List[str] = padded_inputs.convert_to_tensors(__A ) return padded_inputs def __magic_name__ ( self : List[Any] ): UpperCAmelCase : List[str] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Any = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
366
import torch from torch import nn class __UpperCAmelCase ( nn.Module ): def __init__( self : List[Any], __A : List[Any], __A : Optional[Any], __A : int, __A : List[Any], __A : int=1, __A : List[str]=False ): super().__init__() UpperCAmelCase : Union[str, Any] = n_token UpperCAmelCase : List[str] = d_embed UpperCAmelCase : Dict = d_proj UpperCAmelCase : List[Any] = cutoffs + [n_token] UpperCAmelCase : Dict = [0] + self.cutoffs UpperCAmelCase : int = div_val UpperCAmelCase : Union[str, Any] = self.cutoffs[0] UpperCAmelCase : str = len(self.cutoffs ) - 1 UpperCAmelCase : Optional[int] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCAmelCase : str = nn.Parameter(torch.zeros(self.n_clusters, self.d_embed ) ) UpperCAmelCase : List[str] = nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCAmelCase : Dict = nn.ModuleList() UpperCAmelCase : Optional[int] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__A, __A ) ) ) else: self.out_projs.append(__A ) self.out_layers.append(nn.Linear(__A, __A ) ) else: for i in range(len(self.cutoffs ) ): UpperCAmelCase , UpperCAmelCase : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase : str = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__A, __A ) ) ) self.out_layers.append(nn.Linear(__A, r_idx - l_idx ) ) UpperCAmelCase : Optional[int] = keep_order def __magic_name__ ( self : Union[str, Any], __A : List[str], __A : Any, __A : Dict, __A : Optional[Any] ): if proj is None: UpperCAmelCase : List[Any] = nn.functional.linear(__A, __A, bias=__A ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCAmelCase : Union[str, Any] = nn.functional.linear(__A, proj.t().contiguous() ) UpperCAmelCase : Optional[int] = nn.functional.linear(__A, __A, bias=__A ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def __magic_name__ ( self : int, __A : int, __A : List[Any]=None, __A : Dict=False ): if labels is not None: # Shift so that tokens < n predict n UpperCAmelCase : List[Any] = hidden[..., :-1, :].contiguous() UpperCAmelCase : Any = labels[..., 1:].contiguous() UpperCAmelCase : Optional[Any] = hidden.view(-1, hidden.size(-1 ) ) UpperCAmelCase : Union[str, Any] = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: UpperCAmelCase : str = hidden.view(-1, hidden.size(-1 ) ) if self.n_clusters == 0: UpperCAmelCase : List[str] = self._compute_logit(__A, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0] ) if labels is not None: UpperCAmelCase : Optional[int] = labels != -1_0_0 UpperCAmelCase : Dict = torch.zeros_like(__A, dtype=hidden.dtype, device=hidden.device ) UpperCAmelCase : Any = ( -nn.functional.log_softmax(__A, dim=-1 )[mask].gather(1, labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCAmelCase : Any = nn.functional.log_softmax(__A, dim=-1 ) else: # construct weights and biases UpperCAmelCase , UpperCAmelCase : Union[str, Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCAmelCase , UpperCAmelCase : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase : List[str] = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase : Optional[int] = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase : List[Any] = self.out_layers[i].weight UpperCAmelCase : Dict = self.out_layers[i].bias if i == 0: UpperCAmelCase : List[str] = torch.cat([weight_i, self.cluster_weight], dim=0 ) UpperCAmelCase : List[Any] = torch.cat([bias_i, self.cluster_bias], dim=0 ) weights.append(__A ) biases.append(__A ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = weights[0], biases[0], self.out_projs[0] UpperCAmelCase : Dict = self._compute_logit(__A, __A, __A, __A ) UpperCAmelCase : int = nn.functional.log_softmax(__A, dim=1 ) if labels is None: UpperCAmelCase : Optional[int] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCAmelCase : Union[str, Any] = torch.zeros_like(__A, dtype=hidden.dtype, device=hidden.device ) UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : Any = [0] + self.cutoffs for i in range(len(__A ) - 1 ): UpperCAmelCase , UpperCAmelCase : Optional[int] = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCAmelCase : List[str] = (labels >= l_idx) & (labels < r_idx) UpperCAmelCase : Tuple = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCAmelCase : Any = labels.index_select(0, __A ) - l_idx UpperCAmelCase : Dict = head_logprob.index_select(0, __A ) UpperCAmelCase : List[str] = hidden.index_select(0, __A ) else: UpperCAmelCase : Tuple = hidden if i == 0: if labels is not None: UpperCAmelCase : Union[str, Any] = head_logprob_i.gather(1, target_i[:, None] ).squeeze(1 ) else: UpperCAmelCase : Optional[int] = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = weights[i], biases[i], self.out_projs[i] UpperCAmelCase : List[str] = self._compute_logit(__A, __A, __A, __A ) UpperCAmelCase : Dict = nn.functional.log_softmax(__A, dim=1 ) UpperCAmelCase : int = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCAmelCase : Union[str, Any] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1, target_i[:, None] ).squeeze(1 ) else: UpperCAmelCase : int = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCAmelCase : Optional[Any] = logprob_i if labels is not None: if (hasattr(self, '''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0, __A, -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def __magic_name__ ( self : Tuple, __A : List[str] ): if self.n_clusters == 0: UpperCAmelCase : int = self._compute_logit(__A, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0] ) return nn.functional.log_softmax(__A, dim=-1 ) else: # construct weights and biases UpperCAmelCase , UpperCAmelCase : Any = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCAmelCase , UpperCAmelCase : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase : List[Any] = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase : List[str] = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase : List[str] = self.out_layers[i].weight UpperCAmelCase : Dict = self.out_layers[i].bias if i == 0: UpperCAmelCase : Dict = torch.cat([weight_i, self.cluster_weight], dim=0 ) UpperCAmelCase : str = torch.cat([bias_i, self.cluster_bias], dim=0 ) weights.append(__A ) biases.append(__A ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = weights[0], biases[0], self.out_projs[0] UpperCAmelCase : int = self._compute_logit(__A, __A, __A, __A ) UpperCAmelCase : Optional[int] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCAmelCase : Dict = nn.functional.log_softmax(__A, dim=1 ) UpperCAmelCase : List[str] = [0] + self.cutoffs for i in range(len(__A ) - 1 ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCAmelCase : Any = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = weights[i], biases[i], self.out_projs[i] UpperCAmelCase : Tuple = self._compute_logit(__A, __A, __A, __A ) UpperCAmelCase : List[Any] = nn.functional.log_softmax(__A, dim=1 ) UpperCAmelCase : Optional[int] = head_logprob[:, -i] + tail_logprob_i UpperCAmelCase : Optional[Any] = logprob_i return out
99
0
from math import sqrt def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" lowercase__ = 0 for i in range(1 , int(sqrt(__lowerCAmelCase ) + 1 ) ): if n % i == 0 and i != sqrt(__lowerCAmelCase ): total += i + n // i elif i == sqrt(__lowerCAmelCase ): total += i return total - n def UpperCamelCase ( __magic_name__ : int = 1_0000 ) -> int: """simple docstring""" lowercase__ = sum( i for i in range(1 , __lowerCAmelCase ) if sum_of_divisors(sum_of_divisors(__lowerCAmelCase ) ) == i and sum_of_divisors(__lowerCAmelCase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
305
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
270
0
import random from .binary_exp_mod import bin_exp_mod def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__=1_000 ): """simple docstring""" if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowercase__ : List[str] = n - 1 lowercase__ : List[Any] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowercase__ : List[str] = 0 while count < prec: lowercase__ : str = random.randint(2 , n - 1 ) lowercase__ : List[str] = bin_exp_mod(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if b != 1: lowercase__ : List[Any] = True for _ in range(lowerCamelCase__ ): if b == n - 1: lowercase__ : Optional[int] = False break lowercase__ : Union[str, Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase__ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
121
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__: """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str]=13 , SCREAMING_SNAKE_CASE : Union[str, Any]=10 , SCREAMING_SNAKE_CASE : Union[str, Any]=3 , SCREAMING_SNAKE_CASE : int=2 , SCREAMING_SNAKE_CASE : int=2 , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : str=True , SCREAMING_SNAKE_CASE : int=32 , SCREAMING_SNAKE_CASE : Dict=5 , SCREAMING_SNAKE_CASE : str=4 , SCREAMING_SNAKE_CASE : Optional[int]=37 , SCREAMING_SNAKE_CASE : Any="gelu" , SCREAMING_SNAKE_CASE : List[Any]=0.1 , SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE : Dict=10 , SCREAMING_SNAKE_CASE : Optional[int]=0.02 , SCREAMING_SNAKE_CASE : str="divided_space_time" , SCREAMING_SNAKE_CASE : Tuple=None , ): lowercase__ : List[str] = parent lowercase__ : Optional[int] = batch_size lowercase__ : List[Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : List[str] = patch_size lowercase__ : str = num_frames lowercase__ : List[str] = is_training lowercase__ : List[str] = use_labels lowercase__ : int = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : Union[str, Any] = hidden_act lowercase__ : str = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : Tuple = attention_type lowercase__ : Union[str, Any] = initializer_range lowercase__ : Any = scope lowercase__ : Optional[int] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token lowercase__ : Union[str, Any] = (image_size // patch_size) ** 2 lowercase__ : Union[str, Any] = (num_frames) * self.num_patches_per_frame + 1 def snake_case ( self : Optional[int] ): lowercase__ : Any = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : str = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ : List[Any] = self.get_config() return config, pixel_values, labels def snake_case ( self : Any ): lowercase__ : Optional[int] = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) lowercase__ : List[Any] = self.num_labels return config def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple ): lowercase__ : Optional[Any] = TimesformerModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any ): lowercase__ : List[Any] = TimesformerForVideoClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : List[str] = model(SCREAMING_SNAKE_CASE ) # verify the logits shape lowercase__ : List[str] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[Any] ): lowercase__ : List[str] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : int = config_and_inputs lowercase__ : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case__(_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase_ = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def snake_case ( self : Dict ): lowercase__ : Tuple = TimesformerModelTester(self ) lowercase__ : Any = ConfigTester( self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple=False ): lowercase__ : Union[str, Any] = copy.deepcopy(SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE ): lowercase__ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE ) return inputs_dict def snake_case ( self : Optional[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def snake_case ( self : Any ): pass def snake_case ( self : Tuple ): lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) ) def snake_case ( self : Union[str, Any] ): lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(SCREAMING_SNAKE_CASE ) lowercase__ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Any = [*signature.parameters.keys()] lowercase__ : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def snake_case ( self : Tuple ): lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def snake_case ( self : str ): lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*SCREAMING_SNAKE_CASE ) @slow def snake_case ( self : Optional[int] ): for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[int] = TimesformerModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def snake_case ( self : Any ): if not self.has_attentions: pass else: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = True for model_class in self.all_model_classes: lowercase__ : List[str] = self.model_tester.seq_length lowercase__ : Any = self.model_tester.num_frames lowercase__ : Optional[int] = True lowercase__ : List[str] = False lowercase__ : List[Any] = True lowercase__ : Tuple = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowercase__ : List[Any] = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : Dict = True lowercase__ : int = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowercase__ : Any = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) lowercase__ : Any = len(SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine lowercase__ : Tuple = True lowercase__ : Tuple = True lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowercase__ : Union[str, Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + 1 , len(SCREAMING_SNAKE_CASE ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def snake_case ( self : List[Any] ): def check_hidden_states_output(SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] ): lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowercase__ : Tuple = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowercase__ : Optional[Any] = outputs.hidden_states lowercase__ : List[str] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) lowercase__ : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Dict = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Tuple = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Optional[Any] = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) lowercase__ : Optional[Any] = np.load(lowerCamelCase__ ) return list(lowerCamelCase__ ) @require_torch @require_vision class snake_case__(unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self : Dict ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def snake_case ( self : List[Any] ): lowercase__ : List[Any] = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( SCREAMING_SNAKE_CASE ) lowercase__ : int = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : str = image_processor(video[:8] , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowercase__ : str = model(**SCREAMING_SNAKE_CASE ) # verify the logits lowercase__ : Union[str, Any] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
121
1
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a : Tuple = logging.get_logger(__name__) a : Dict = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class a ( lowercase__ ): """simple docstring""" a : int = 't5' a : Dict = ['past_key_values'] a : Tuple = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : str , __lowercase : Optional[int]=32128 , __lowercase : Optional[int]=512 , __lowercase : int=64 , __lowercase : Any=2048 , __lowercase : Tuple=6 , __lowercase : Tuple=None , __lowercase : int=8 , __lowercase : List[Any]=32 , __lowercase : Dict=128 , __lowercase : Optional[int]=0.1 , __lowercase : int=1e-6 , __lowercase : List[str]=1.0 , __lowercase : List[str]="relu" , __lowercase : Dict=True , __lowercase : Optional[Any]=True , __lowercase : Tuple=0 , __lowercase : List[str]=1 , **__lowercase : Any , ) -> str: __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Union[str, Any] = d_kv __UpperCAmelCase : Union[str, Any] = d_ff __UpperCAmelCase : int = num_layers __UpperCAmelCase : Any = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __UpperCAmelCase : Dict = num_heads __UpperCAmelCase : List[Any] = relative_attention_num_buckets __UpperCAmelCase : List[str] = relative_attention_max_distance __UpperCAmelCase : Union[str, Any] = dropout_rate __UpperCAmelCase : List[str] = layer_norm_epsilon __UpperCAmelCase : str = initializer_factor __UpperCAmelCase : Dict = feed_forward_proj __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : List[Any] = self.feed_forward_proj.split("""-""" ) __UpperCAmelCase : Tuple = act_info[-1] __UpperCAmelCase : int = act_info[0] == """gated""" if len(__lowercase ) > 1 and act_info[0] != "gated" or len(__lowercase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __UpperCAmelCase : Dict = """gelu_new""" super().__init__( pad_token_id=__lowercase , eos_token_id=__lowercase , is_encoder_decoder=__lowercase , **__lowercase , ) class a ( lowercase__ ): """simple docstring""" @property def UpperCAmelCase ( self : str ) -> Mapping[str, Mapping[int, str]]: __UpperCAmelCase : Union[str, Any] = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: __UpperCAmelCase : List[Any] = """past_encoder_sequence + sequence""" __UpperCAmelCase : Optional[int] = {0: """batch"""} __UpperCAmelCase : Union[str, Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __UpperCAmelCase : str = {0: """batch""", 1: """decoder_sequence"""} __UpperCAmelCase : str = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(__lowercase , direction="""inputs""" ) return common_inputs @property def UpperCAmelCase ( self : int ) -> int: return 13
114
from __future__ import annotations from math import pi def lowerCamelCase__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float ): if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
114
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _lowerCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> None: warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" ,__UpperCAmelCase ,) super().__init__(*__UpperCAmelCase ,**__UpperCAmelCase )
352
'''simple docstring''' class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : Union[str, Any] = n lowerCAmelCase__ : int = [None] * self.n lowerCAmelCase__ : Union[str, Any] = 0 # index of the first element lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : Union[str, Any] = 0 def __len__( self ) -> int: return self.size def UpperCAmelCase_ ( self ) -> bool: return self.size == 0 def UpperCAmelCase_ ( self ) -> Optional[Any]: return False if self.is_empty() else self.array[self.front] def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Union[str, Any]: if self.size >= self.n: raise Exception("""QUEUE IS FULL""" ) lowerCAmelCase__ : str = data lowerCAmelCase__ : List[str] = (self.rear + 1) % self.n self.size += 1 return self def UpperCAmelCase_ ( self ) -> int: if self.size == 0: raise Exception("""UNDERFLOW""" ) lowerCAmelCase__ : int = self.array[self.front] lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : int = (self.front + 1) % self.n self.size -= 1 return temp
184
0
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase__ = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } lowerCamelCase__ = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=False ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = create_model( "HTSAT-tiny" , "roberta" , __lowerCAmelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=__lowerCAmelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Dict = {} _UpperCAmelCase : str = R".*sequential.(\d+).*" _UpperCAmelCase : Any = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _UpperCAmelCase : Union[str, Any] = key.replace(__lowerCAmelCase , __lowerCAmelCase ) if re.match(__lowerCAmelCase , __lowerCAmelCase ): # replace sequential layers with list _UpperCAmelCase : List[Any] = re.match(__lowerCAmelCase , __lowerCAmelCase ).group(1 ) _UpperCAmelCase : Optional[int] = key.replace(F"""sequential.{sequential_layer}.""" , F"""layers.{int(__lowerCAmelCase )//3}.linear.""" ) elif re.match(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[str] = int(re.match(__lowerCAmelCase , __lowerCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... _UpperCAmelCase : str = 1 if projecton_layer == 0 else 2 _UpperCAmelCase : Tuple = key.replace(F"""_projection.{projecton_layer}.""" , F"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value _UpperCAmelCase : List[str] = value _UpperCAmelCase : Tuple = mixed_qkv.size(0 ) // 3 _UpperCAmelCase : Union[str, Any] = mixed_qkv[:qkv_dim] _UpperCAmelCase : int = mixed_qkv[qkv_dim : qkv_dim * 2] _UpperCAmelCase : Optional[int] = mixed_qkv[qkv_dim * 2 :] _UpperCAmelCase : List[Any] = query_layer _UpperCAmelCase : int = key_layer _UpperCAmelCase : Any = value_layer else: _UpperCAmelCase : Dict = value return model_state_dict def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): _UpperCAmelCase , _UpperCAmelCase : List[str] = init_clap(__lowerCAmelCase , enable_fusion=__lowerCAmelCase ) clap_model.eval() _UpperCAmelCase : List[str] = clap_model.state_dict() _UpperCAmelCase : str = rename_state_dict(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = ClapConfig() _UpperCAmelCase : str = enable_fusion _UpperCAmelCase : Union[str, Any] = ClapModel(__lowerCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) transformers_config.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') lowerCamelCase__ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
234
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[str] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = emb.weight.shape _UpperCAmelCase : str = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = emb.weight.data return lin_layer def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=None ): _UpperCAmelCase : int = {} for old_key in state_dict.keys(): _UpperCAmelCase : Tuple = old_key if "moe_layer.experts." in key: if expert_idx is not None: _UpperCAmelCase : Optional[int] = key.replace("moe_layer.experts.0" , F"""ffn.experts.expert_{expert_idx}""" ) else: _UpperCAmelCase : Any = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: _UpperCAmelCase : List[Any] = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: _UpperCAmelCase : Tuple = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: _UpperCAmelCase : List[Any] = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: _UpperCAmelCase : List[Any] = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: _UpperCAmelCase : Any = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: _UpperCAmelCase : int = key.replace("final_layer_norm" , "ff_layer_norm" ) _UpperCAmelCase : Tuple = state_dict[old_key] return new_dict def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = WEIGHTS_NAME ): _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Optional[Any] = 0 os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) for expert in range(__lowerCAmelCase ): _UpperCAmelCase : Tuple = switch_checkpoint_path + F"""-rank-{expert}.pt""" if os.path.isfile(__lowerCAmelCase ): _UpperCAmelCase : Tuple = torch.load(__lowerCAmelCase )["model"] remove_ignore_keys_(__lowerCAmelCase ) _UpperCAmelCase : Dict = rename_fairseq_keys(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : List[str] = os.path.join( __lowerCAmelCase , weights_name.replace(".bin" , F"""-{len(__lowerCAmelCase )+1:05d}-of-???.bin""" ) ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowerCAmelCase )[0]].dtype ) # Add the last block _UpperCAmelCase : Tuple = os.path.join(__lowerCAmelCase , weights_name.replace(".bin" , F"""-{len(__lowerCAmelCase )+1:05d}-of-???.bin""" ) ) _UpperCAmelCase : Union[str, Any] = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = rename_fairseq_keys(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Any = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowerCAmelCase ) == 1: _UpperCAmelCase : List[str] = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowerCAmelCase , __lowerCAmelCase ) # Otherwise, let's build the index _UpperCAmelCase : Union[str, Any] = {} for idx, shard in enumerate(__lowerCAmelCase ): _UpperCAmelCase : Tuple = weights_name.replace(".bin" , F"""-{idx+1:05d}-of-{len(__lowerCAmelCase ):05d}.bin""" ) _UpperCAmelCase : List[Any] = os.path.join(__lowerCAmelCase , weights_name.replace(".bin" , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) for key in shard: _UpperCAmelCase : List[Any] = shard_file # Add the metadata _UpperCAmelCase : Any = {"total_size": total_size} _UpperCAmelCase : List[str] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _UpperCAmelCase : Tuple = json.dumps(__lowerCAmelCase , indent=2 , sort_keys=__lowerCAmelCase ) + "\n" f.write(__lowerCAmelCase ) return metadata, index if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ ,lowerCamelCase__ = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) lowerCamelCase__ = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCamelCase__ = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
234
1
def UpperCAmelCase ( ) -> list[list[int]]: """simple docstring""" return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] SCREAMING_SNAKE_CASE :List[str] = generate_large_matrix() SCREAMING_SNAKE_CASE :str = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase ( a_ ) -> None: """simple docstring""" assert all(row == sorted(a_ , reverse=a_ ) for row in grid ) assert all(list(a_ ) == sorted(a_ , reverse=a_ ) for col in zip(*a_ ) ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 0 __A = len(a_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __A = (left + right) // 2 __A = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __A = mid + 1 else: __A = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(a_ ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 0 __A = len(grid[0] ) for i in range(len(a_ ) ): __A = find_negative_index(grid[i][:bound] ) total += bound return (len(a_ ) * len(grid[0] )) - total def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 0 for row in grid: for i, number in enumerate(a_ ): if number < 0: total += len(a_ ) - i break return total def UpperCAmelCase ( ) -> None: """simple docstring""" from timeit import timeit print("Running benchmarks" ) __A = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __A = timeit(F'''{func}(grid=grid)''' , setup=a_ , number=5_0_0 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
357
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "facebook/bart-large-mnli" snake_case_ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) snake_case_ = "text_classifier" snake_case_ = AutoTokenizer snake_case_ = AutoModelForSequenceClassification snake_case_ = ["text", ["text"]] snake_case_ = ["text"] def UpperCamelCase_ ( self : str ): super().setup() __A = self.model.config __A = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): __A = int(A ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def UpperCamelCase_ ( self : int ,A : Optional[Any] ,A : Dict ): __A = labels return self.pre_processor( [text] * len(A ) ,[f'''This example is {label}''' for label in labels] ,return_tensors="pt" ,padding="max_length" ,) def UpperCamelCase_ ( self : Union[str, Any] ,A : Tuple ): __A = outputs.logits __A = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
124
0
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __lowerCAmelCase = """base_with_context""" def snake_case_ ( snake_case , snake_case ) -> Any: lowercase__: str = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) lowercase__: List[str] = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=A__ ) for lyr_num, lyr in enumerate(model.encoders ): lowercase__: Tuple = weights[f'layers_{lyr_num}'] lowercase__: Tuple = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) lowercase__: Optional[int] = ly_weight['attention'] lowercase__: str = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowercase__: Any = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowercase__: Tuple = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowercase__: List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowercase__: int = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowercase__: Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowercase__: str = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowercase__: Union[str, Any] = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def snake_case_ ( snake_case , snake_case ) -> Tuple: lowercase__: Dict = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) lowercase__: Optional[int] = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=A__ ) for lyr_num, lyr in enumerate(model.encoders ): lowercase__: Optional[Any] = weights[f'layers_{lyr_num}'] lowercase__: Tuple = ly_weight['attention'] lowercase__: Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowercase__: Any = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowercase__: Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowercase__: int = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowercase__: Any = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowercase__: str = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowercase__: Optional[int] = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def snake_case_ ( snake_case , snake_case ) -> str: lowercase__: List[Any] = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) lowercase__: Optional[int] = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) lowercase__: Tuple = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=A__ ) lowercase__: Optional[int] = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowercase__: int = weights[f'layers_{lyr_num}'] lowercase__: Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) lowercase__: Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) lowercase__: int = ly_weight['self_attention'] lowercase__: Tuple = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowercase__: Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowercase__: str = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowercase__: Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowercase__: Tuple = ly_weight['MultiHeadDotProductAttention_0'] lowercase__: int = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowercase__: Any = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowercase__: int = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowercase__: List[str] = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) lowercase__: Tuple = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowercase__: Optional[int] = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) lowercase__: int = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowercase__: int = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) lowercase__: str = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def snake_case_ ( snake_case ) -> Optional[int]: lowercase__: List[str] = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowercase__: Any = jnp.tree_util.tree_map(onp.array , A__ ) lowercase__: Optional[Any] = [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] lowercase__: List[Any] = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) lowercase__: Union[str, Any] = inference.parse_training_gin_file(A__ , A__ ) lowercase__: Dict = inference.InferenceModel(args.checkpoint_path , A__ ) lowercase__: Tuple = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) lowercase__: Optional[int] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) lowercase__: Tuple = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) lowercase__: Any = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) lowercase__: str = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , A__ ) lowercase__: Tuple = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , A__ ) lowercase__: Tuple = load_decoder(ta_checkpoint['target']['decoder'] , A__ ) lowercase__: int = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) lowercase__: Optional[Any] = SpectrogramDiffusionPipeline( notes_encoder=A__ , continuous_encoder=A__ , decoder=A__ , scheduler=A__ , melgan=A__ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help='''Path to the original jax model checkpoint.''', ) __lowerCAmelCase = parser.parse_args() main(args)
196
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Optional[int] = ShapEImgaImgPipeline __A : Tuple = ['''image'''] __A : Any = ['''image'''] __A : Optional[Any] = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] __A : Dict = False @property def __lowercase ( self) -> Any: '''simple docstring''' return 32 @property def __lowercase ( self) -> Optional[int]: '''simple docstring''' return 32 @property def __lowercase ( self) -> Optional[Any]: '''simple docstring''' return self.time_input_dim * 4 @property def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' return 8 @property def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0) a__ : Any = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) a__ : Dict = CLIPVisionModel(lowercase) return model @property def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : str = CLIPImageProcessor( crop_size=224 , do_center_crop=lowercase , do_normalize=lowercase , do_resize=lowercase , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def __lowercase ( self) -> str: '''simple docstring''' torch.manual_seed(0) a__ : str = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } a__ : Any = PriorTransformer(**lowercase) return model @property def __lowercase ( self) -> Any: '''simple docstring''' torch.manual_seed(0) a__ : List[Any] = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } a__ : List[str] = ShapERenderer(**lowercase) return model def __lowercase ( self) -> str: '''simple docstring''' a__ : Dict = self.dummy_prior a__ : List[str] = self.dummy_image_encoder a__ : int = self.dummy_image_processor a__ : str = self.dummy_renderer a__ : Optional[int] = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=lowercase , clip_sample=lowercase , clip_sample_range=1.0 , ) a__ : List[Any] = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def __lowercase ( self , lowercase , lowercase=0) -> List[str]: '''simple docstring''' a__ : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase)).to(lowercase) if str(lowercase).startswith('mps'): a__ : List[str] = torch.manual_seed(lowercase) else: a__ : str = torch.Generator(device=lowercase).manual_seed(lowercase) a__ : Tuple = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def __lowercase ( self) -> Any: '''simple docstring''' a__ : int = 'cpu' a__ : List[str] = self.get_dummy_components() a__ : Dict = self.pipeline_class(**lowercase) a__ : Optional[int] = pipe.to(lowercase) pipe.set_progress_bar_config(disable=lowercase) a__ : Tuple = pipe(**self.get_dummy_inputs(lowercase)) a__ : Any = output.images[0] a__ : Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) a__ : List[str] = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __lowercase ( self) -> Any: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2]) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : str = torch_device == 'cpu' a__ : Tuple = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowercase , relax_max_difference=lowercase , ) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : List[str] = self.get_dummy_components() a__ : str = self.pipeline_class(**lowercase) a__ : List[str] = pipe.to(lowercase) pipe.set_progress_bar_config(disable=lowercase) a__ : Optional[Any] = 1 a__ : List[str] = 2 a__ : Optional[Any] = self.get_dummy_inputs(lowercase) for key in inputs.keys(): if key in self.batch_params: a__ : Any = batch_size * [inputs[key]] a__ : int = pipe(**lowercase , num_images_per_prompt=lowercase)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self) -> Dict: '''simple docstring''' a__ : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png') a__ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy') a__ : List[str] = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img') a__ : Tuple = pipe.to(lowercase) pipe.set_progress_bar_config(disable=lowercase) a__ : List[Any] = torch.Generator(device=lowercase).manual_seed(0) a__ : Optional[int] = pipe( lowercase , generator=lowercase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowercase , lowercase)
99
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class a ( a__ ): snake_case__ = '''yolos''' def __init__( self , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=[5_12, 8_64] , _snake_case=16 , _snake_case=3 , _snake_case=True , _snake_case=1_00 , _snake_case=True , _snake_case=False , _snake_case=1 , _snake_case=5 , _snake_case=2 , _snake_case=5 , _snake_case=2 , _snake_case=0.1 , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = qkv_bias lowerCAmelCase = num_detection_tokens lowerCAmelCase = use_mid_position_embeddings lowerCAmelCase = auxiliary_loss # Hungarian matcher lowerCAmelCase = class_cost lowerCAmelCase = bbox_cost lowerCAmelCase = giou_cost # Loss coefficients lowerCAmelCase = bbox_loss_coefficient lowerCAmelCase = giou_loss_coefficient lowerCAmelCase = eos_coefficient class a ( a__ ): snake_case__ = version.parse('''1.11''' ) @property def UpperCamelCase__ ( self ): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return 1E-4 @property def UpperCamelCase__ ( self ): """simple docstring""" return 12
309
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) @dataclass class a : snake_case__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) snake_case__ = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) snake_case__ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case__ = field( default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.task_name.lower() class a ( a__ ): snake_case__ = '''train''' snake_case__ = '''dev''' snake_case__ = '''test''' class a ( a__ ): snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 def __init__( self , _snake_case , _snake_case , _snake_case = None , _snake_case = Split.train , _snake_case = None , ): """simple docstring""" warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , _snake_case , ) lowerCAmelCase = args lowerCAmelCase = glue_processors[args.task_name]() lowerCAmelCase = glue_output_modes[args.task_name] if isinstance(_snake_case , _snake_case ): try: lowerCAmelCase = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) lowerCAmelCase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase ,lowerCAmelCase = label_list[2], label_list[1] lowerCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase = cached_features_file + '.lock' with FileLock(_snake_case ): if os.path.exists(_snake_case ) and not args.overwrite_cache: lowerCAmelCase = time.time() lowerCAmelCase = torch.load(_snake_case ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowerCAmelCase = self.processor.get_test_examples(args.data_dir ) else: lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowerCAmelCase = examples[:limit_length] lowerCAmelCase = glue_convert_examples_to_features( _snake_case , _snake_case , max_length=args.max_seq_length , label_list=_snake_case , output_mode=self.output_mode , ) lowerCAmelCase = time.time() torch.save(self.features , _snake_case ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _snake_case ): """simple docstring""" return self.features[i] def UpperCamelCase__ ( self ): """simple docstring""" return self.label_list
309
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : int = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
121
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return F"""gaussian_noise_s={seed}_shape={'_'.join([str(lowerCAmelCase_ ) for s in shape] )}.npy""" def __magic_name__ ( self : Tuple ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : Tuple=(4, 4, 6_4, 6_4) , lowerCAmelCase_ : List[str]=False ): """simple docstring""" _A: List[str] = jnp.bfloataa if fpaa else jnp.floataa _A: Optional[int] = jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase_ , lowerCAmelCase_ ) ) , dtype=lowerCAmelCase_ ) return image def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Optional[Any]="CompVis/stable-diffusion-v1-4" ): """simple docstring""" _A: Tuple = jnp.bfloataa if fpaa else jnp.floataa _A: str = '''bf16''' if fpaa else None _A , _A: Union[str, Any] = FlaxUNetaDConditionModel.from_pretrained( lowerCAmelCase_ , subfolder='''unet''' , dtype=lowerCAmelCase_ , revision=lowerCAmelCase_ ) return model, params def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Optional[int]=0 , lowerCAmelCase_ : str=(4, 7_7, 7_6_8) , lowerCAmelCase_ : Dict=False ): """simple docstring""" _A: Optional[int] = jnp.bfloataa if fpaa else jnp.floataa _A: Union[str, Any] = jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase_ , lowerCAmelCase_ ) ) , dtype=lowerCAmelCase_ ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any ): """simple docstring""" _A , _A: Optional[Any] = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=lowerCAmelCase_ ) _A: List[str] = self.get_latents(lowerCAmelCase_ , fpaa=lowerCAmelCase_ ) _A: Optional[int] = self.get_encoder_hidden_states(lowerCAmelCase_ , fpaa=lowerCAmelCase_ ) _A: List[str] = model.apply( {'''params''': params} , lowerCAmelCase_ , jnp.array(lowerCAmelCase_ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCAmelCase_ , ).sample assert sample.shape == latents.shape _A: Any = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _A: Tuple = jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def __magic_name__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple ): """simple docstring""" _A , _A: Union[str, Any] = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=lowerCAmelCase_ ) _A: Dict = self.get_latents(lowerCAmelCase_ , shape=(4, 4, 9_6, 9_6) , fpaa=lowerCAmelCase_ ) _A: Dict = self.get_encoder_hidden_states(lowerCAmelCase_ , shape=(4, 7_7, 1_0_2_4) , fpaa=lowerCAmelCase_ ) _A: Optional[int] = model.apply( {'''params''': params} , lowerCAmelCase_ , jnp.array(lowerCAmelCase_ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCAmelCase_ , ).sample assert sample.shape == latents.shape _A: List[str] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _A: List[str] = jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-2 )
121
1
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = Dict[str, Any] lowercase__ = List[Prediction] @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *lowercase , **lowercase ): super().__init__(*_snake_case , **_snake_case ) if self.framework == "tf": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , 'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def A_ ( self , **lowercase ): _lowerCamelCase : List[str] = {} if "threshold" in kwargs: _lowerCamelCase : Any = kwargs["threshold"] return {}, {}, postprocess_kwargs def __call__( self , *lowercase , **lowercase ): return super().__call__(*_snake_case , **_snake_case ) def A_ ( self , lowercase ): _lowerCamelCase : str = load_image(_snake_case ) _lowerCamelCase : Union[str, Any] = torch.IntTensor([[image.height, image.width]] ) _lowerCamelCase : Dict = self.image_processor(images=[image] , return_tensors='pt' ) if self.tokenizer is not None: _lowerCamelCase : Any = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' ) _lowerCamelCase : Union[str, Any] = target_size return inputs def A_ ( self , lowercase ): _lowerCamelCase : List[Any] = model_inputs.pop('target_size' ) _lowerCamelCase : Union[str, Any] = self.model(**_snake_case ) _lowerCamelCase : Optional[Any] = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: _lowerCamelCase : Union[str, Any] = model_inputs["bbox"] return model_outputs def A_ ( self , lowercase , lowercase=0.9 ): _lowerCamelCase : List[Any] = model_outputs["target_size"] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. _lowerCamelCase : Union[str, Any] = target_size[0].tolist() def unnormalize(lowercase ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) _lowerCamelCase : int = model_outputs["logits"].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) _lowerCamelCase : Dict = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] _lowerCamelCase : Tuple = [unnormalize(_snake_case ) for bbox in model_outputs["bbox"].squeeze(0 )] _lowerCamelCase : List[Any] = ["score", "label", "box"] _lowerCamelCase : List[Any] = [dict(zip(_snake_case , _snake_case ) ) for vals in zip(scores.tolist() , _snake_case , _snake_case ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel _lowerCamelCase : List[str] = self.image_processor.post_process_object_detection(_snake_case , _snake_case , _snake_case ) _lowerCamelCase : Union[str, Any] = raw_annotations[0] _lowerCamelCase : Optional[Any] = raw_annotation["scores"] _lowerCamelCase : Union[str, Any] = raw_annotation["labels"] _lowerCamelCase : Dict = raw_annotation["boxes"] _lowerCamelCase : str = scores.tolist() _lowerCamelCase : List[Any] = [self.model.config.idalabel[label.item()] for label in labels] _lowerCamelCase : List[str] = [self._get_bounding_box(_snake_case ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] _lowerCamelCase : List[Any] = ["score", "label", "box"] _lowerCamelCase : Any = [ dict(zip(_snake_case , _snake_case ) ) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] ) ] return annotation def A_ ( self , lowercase ): if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) _lowerCamelCase : Optional[Any] = box.int().tolist() _lowerCamelCase : Optional[Any] = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
350
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
12
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCamelCase__ ( lowercase__ , lowercase__): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__(self , UpperCAmelCase=2_0_0_0 , UpperCAmelCase=0.1 , UpperCAmelCase=2_0 , UpperCAmelCase=1e-3 ) -> List[Any]: _lowercase =None _lowercase =None _lowercase =None def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> Dict: _lowercase =torch.linspace(1 , self.config.sampling_eps , __lowerCamelCase , device=__lowerCamelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Tuple: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowercase =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowercase =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _lowercase =std.flatten() while len(std.shape ) < len(score.shape ): _lowercase =std.unsqueeze(-1 ) _lowercase =-score / std # compute _lowercase =-1.0 / len(self.timesteps ) _lowercase =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowercase =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _lowercase =beta_t.unsqueeze(-1 ) _lowercase =-0.5 * beta_t * x _lowercase =torch.sqrt(__lowerCamelCase ) _lowercase =drift - diffusion**2 * score _lowercase =x + drift * dt # add noise _lowercase =randn_tensor(x.shape , layout=x.layout , generator=__lowerCamelCase , device=x.device , dtype=x.dtype ) _lowercase =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__(self ) -> Optional[Any]: return self.config.num_train_timesteps
5
class _lowercase : """simple docstring""" def __init__( self : Any , __lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ : List[str] = n lowerCamelCase__ : Union[str, Any] = [None] * self.n lowerCamelCase__ : List[str] = 0 # index of the first element lowerCamelCase__ : Any = 0 lowerCamelCase__ : Any = 0 def __len__( self : Tuple ): '''simple docstring''' return self.size def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return self.size == 0 def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return False if self.is_empty() else self.array[self.front] def lowerCAmelCase ( self : str , __lowerCamelCase : List[str] ): '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL" ) lowerCamelCase__ : Optional[Any] = data lowerCamelCase__ : Tuple = (self.rear + 1) % self.n self.size += 1 return self def lowerCAmelCase ( self : Tuple ): '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW" ) lowerCamelCase__ : Any = self.array[self.front] lowerCamelCase__ : List[Any] = None lowerCamelCase__ : str = (self.front + 1) % self.n self.size -= 1 return temp
184
0
import math import sys def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" a = '''''' try: with open(snake_case_, '''rb''' ) as binary_file: a = binary_file.read() for dat in data: a = f"""{dat:08b}""" result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" a = {'''0''': '''0''', '''1''': '''1'''} a , a = '''''', '''''' a = len(snake_case_ ) for i in range(len(snake_case_ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue a = lexicon[curr_string] result += last_match_id a = last_match_id + '''0''' if math.loga(snake_case_ ).is_integer(): a = {} for curr_key in list(snake_case_ ): a = lexicon.pop(snake_case_ ) a = new_lex a = last_match_id + '''1''' index += 1 a = '''''' return result def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> None: """simple docstring""" a = 8 try: with open(snake_case_, '''wb''' ) as opened_file: a = [ to_write[i : i + byte_length] for i in range(0, len(snake_case_ ), snake_case_ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(snake_case_, 2 ).to_bytes(1, byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" a = 0 for letter in data_bits: if letter == "1": break counter += 1 a = data_bits[counter:] a = data_bits[counter + 1 :] return data_bits def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> None: """simple docstring""" a = read_file_binary(snake_case_ ) a = remove_prefix(snake_case_ ) a = decompress_data(snake_case_ ) write_file_binary(snake_case_, snake_case_ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
330
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int: """simple docstring""" a = '''''' for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" return data[1:] + data[0] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[str]: """simple docstring""" a = '''''' for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Dict: """simple docstring""" a = int('''0b''' + data[0] + data[-1], 2 ) a = int('''0b''' + data[1:3], 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Optional[int]: """simple docstring""" a = message[:4] a = message[4:] a = apply_table(snake_case_, snake_case_ ) a = xor(snake_case_, snake_case_ ) a = apply_sbox(snake_case_, temp[:4] ) # noqa: E741 a = apply_sbox(snake_case_, temp[4:] ) a = '''0''' * (2 - len(snake_case_ )) + l # noqa: E741 a = '''0''' * (2 - len(snake_case_ )) + r a = apply_table(l + r, snake_case_ ) a = xor(snake_case_, snake_case_ ) return temp + right if __name__ == "__main__": UpperCamelCase__ : int = input("""Enter 10 bit key: """) UpperCamelCase__ : Union[str, Any] = input("""Enter 8 bit message: """) UpperCamelCase__ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] UpperCamelCase__ : Union[str, Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] UpperCamelCase__ : Optional[int] = [2, 4, 3, 1] UpperCamelCase__ : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] UpperCamelCase__ : str = [4, 1, 3, 5, 7, 2, 8, 6] UpperCamelCase__ : List[Any] = [4, 1, 2, 3, 2, 3, 4, 1] UpperCamelCase__ : int = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCamelCase__ : Dict = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCamelCase__ : Optional[Any] = apply_table(key, paa_table) UpperCamelCase__ : str = temp[:5] UpperCamelCase__ : List[Any] = temp[5:] UpperCamelCase__ : Dict = left_shift(left) UpperCamelCase__ : Any = left_shift(right) UpperCamelCase__ : Optional[Any] = apply_table(left + right, pa_table) UpperCamelCase__ : List[str] = left_shift(left) UpperCamelCase__ : int = left_shift(right) UpperCamelCase__ : List[str] = left_shift(left) UpperCamelCase__ : Dict = left_shift(right) UpperCamelCase__ : List[str] = apply_table(left + right, pa_table) # encryption UpperCamelCase__ : Tuple = apply_table(message, IP) UpperCamelCase__ : Optional[Any] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Optional[int] = temp[4:] + temp[:4] UpperCamelCase__ : Any = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Tuple = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption UpperCamelCase__ : Union[str, Any] = apply_table(CT, IP) UpperCamelCase__ : List[str] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Optional[Any] = temp[4:] + temp[:4] UpperCamelCase__ : Optional[int] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Any = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
330
1
"""simple docstring""" def A__ ( UpperCamelCase = 50 ): A = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
292
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> float: if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) snake_case : Optional[Any] = sum(lowercase ) / len(lowercase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
124
0
"""simple docstring""" from __future__ import annotations class __UpperCamelCase : def __init__(self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str): A , A = text, pattern A , A = len(__SCREAMING_SNAKE_CASE), len(__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str): for i in range(self.patLen - 1 , -1 , -1): if char == self.pattern[i]: return i return -1 def SCREAMING_SNAKE_CASE__ (self : str , __SCREAMING_SNAKE_CASE : int): for i in range(self.patLen - 1 , -1 , -1): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def SCREAMING_SNAKE_CASE__ (self : List[Any]): # searches pattern in text and returns index positions A = [] for i in range(self.textLen - self.patLen + 1): A = self.mismatch_in_text(__SCREAMING_SNAKE_CASE) if mismatch_index == -1: positions.append(__SCREAMING_SNAKE_CASE) else: A = self.match_in_pattern(self.text[mismatch_index]) A = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __A : int = 'ABAABA' __A : Optional[Any] = 'AB' __A : Any = BoyerMooreSearch(text, pattern) __A : Any = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
57
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __A : Any = imread(R'digital_image_processing/image_data/lena_small.jpg') __A : Tuple = cvtColor(img, COLOR_BGR2GRAY) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = cn.convert_to_negative(lowercase__ ) # assert negative_img array for at least one True assert negative_img.any() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase__ , 110 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() A = canny.canny(lowercase__ ) # assert canny array for at least one True assert canny_array.any() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" assert gg.gaussian_filter(lowercase__ , 5 , sigma=0.9 ).all() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" # laplace diagonals A = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A = conv.img_convolve(lowercase__ , lowercase__ ).astype(lowercase__ ) assert res.any() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" assert med.median_filter(lowercase__ , 3 ).any() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A , A = sob.sobel_filter(lowercase__ ) assert grad.any() and theta.any() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = sp.make_sepia(lowercase__ , 20 ) assert sepia.all() def __SCREAMING_SNAKE_CASE ( lowercase__ = "digital_image_processing/image_data/lena_small.jpg" ): """simple docstring""" A = bs.Burkes(imread(lowercase__ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def __SCREAMING_SNAKE_CASE ( lowercase__ = "digital_image_processing/image_data/lena_small.jpg" , ): """simple docstring""" A = rs.NearestNeighbour(imread(lowercase__ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. A = imread(lowercase__ , 0 ) # Test for get_neighbors_pixel function() return not None A = 0 A = 0 A = image[x_coordinate][y_coordinate] A = lbp.get_neighbors_pixel( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): A = lbp.local_binary_value(lowercase__ , lowercase__ , lowercase__ ) assert lbp_image.any()
57
1
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : list , _lowerCamelCase : list , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int ) -> int: if index == number_of_items: return 0 _lowerCAmelCase : str = 0 _lowerCAmelCase : str = 0 _lowerCAmelCase : Optional[int] = knapsack(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , index + 1 ) if weights[index] <= max_weight: _lowerCAmelCase : Dict = values[index] + knapsack( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , max_weight - weights[index] , index + 1 ) return max(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
309
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean UpperCamelCase_ = 0 UpperCamelCase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right UpperCamelCase_ = tuple[int, int] class a_ : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _lowerCAmelCase : Optional[int] = pos_x _lowerCAmelCase : List[str] = pos_y _lowerCAmelCase : Tuple = (pos_y, pos_x) _lowerCAmelCase : List[Any] = goal_x _lowerCAmelCase : int = goal_y _lowerCAmelCase : Union[str, Any] = g_cost _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : List[Any] = self.calculate_heuristic() _lowerCAmelCase : Optional[int] = self.g_cost + self.h_cost def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.pos_x - self.goal_x _lowerCAmelCase : Optional[int] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(snake_case_ ) + abs(snake_case_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , snake_case_ ): return self.f_cost < other.f_cost class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : Optional[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case_ ) _lowerCAmelCase : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , snake_case_ ) _lowerCAmelCase : List[str] = [self.start] _lowerCAmelCase : list[Node] = [] _lowerCAmelCase : List[str] = False def __UpperCamelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCAmelCase : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(snake_case_ ) self.closed_nodes.append(snake_case_ ) _lowerCAmelCase : Optional[int] = self.get_successors(snake_case_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case_ ) else: self.open_nodes.append(snake_case_ ) return [self.start.pos] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Union[str, Any] = [] for action in delta: _lowerCAmelCase : Union[str, Any] = parent.pos_x + action[1] _lowerCAmelCase : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case_ , snake_case_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case_ , ) ) return successors def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[Any] = node _lowerCAmelCase : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCAmelCase : Optional[int] = current_node.parent path.reverse() return path class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : int = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = False def __UpperCamelCase ( self ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _lowerCAmelCase : Tuple = self.fwd_astar.open_nodes.pop(0 ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( snake_case_ , snake_case_ ) self.fwd_astar.closed_nodes.append(snake_case_ ) self.bwd_astar.closed_nodes.append(snake_case_ ) _lowerCAmelCase : List[str] = current_bwd_node _lowerCAmelCase : Dict = current_fwd_node _lowerCAmelCase : Any = { self.fwd_astar: self.fwd_astar.get_successors(snake_case_ ), self.bwd_astar: self.bwd_astar.get_successors(snake_case_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(snake_case_ ) else: astar.open_nodes.append(snake_case_ ) return [self.fwd_astar.start.pos] def __UpperCamelCase ( self , snake_case_ , snake_case_ ): _lowerCAmelCase : int = self.fwd_astar.retrace_path(snake_case_ ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.retrace_path(snake_case_ ) bwd_path.pop() bwd_path.reverse() _lowerCAmelCase : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] UpperCamelCase_ = (0, 0) UpperCamelCase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCamelCase_ = time.time() UpperCamelCase_ = AStar(init, goal) UpperCamelCase_ = a_star.search() UpperCamelCase_ = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') UpperCamelCase_ = time.time() UpperCamelCase_ = BidirectionalAStar(init, goal) UpperCamelCase_ = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
309
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all MVP models at https://huggingface.co/models?filter=mvp lowerCamelCase__ : Any = { 'vocab_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json', }, 'added_tokens.json': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json', }, 'merges_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt', }, 'tokenizer_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json', }, } lowerCamelCase__ : Tuple = { 'RUCAIBox/mvp': 1_024, } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] lowercase_ = MvpTokenizer def __init__( self : List[Any] , _lowerCAmelCase : str=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any="replace" , _lowerCAmelCase : int="<s>" , _lowerCAmelCase : Any="</s>" , _lowerCAmelCase : Dict="</s>" , _lowerCAmelCase : Any="<s>" , _lowerCAmelCase : Optional[int]="<unk>" , _lowerCAmelCase : Tuple="<pad>" , _lowerCAmelCase : List[Any]="<mask>" , _lowerCAmelCase : int=False , _lowerCAmelCase : Optional[Any]=True , **_lowerCAmelCase : List[Any] , ): super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , errors=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _lowerCAmelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE_ = getattr(_lowerCAmelCase , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE_ = add_prefix_space SCREAMING_SNAKE_CASE_ = pre_tok_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE_ = 'post_processor' SCREAMING_SNAKE_CASE_ = getattr(self.backend_tokenizer , _lowerCAmelCase , _lowerCAmelCase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE_ = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE_ = tuple(state['cls'] ) SCREAMING_SNAKE_CASE_ = False if state.get('add_prefix_space' , _lowerCAmelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE_ = add_prefix_space SCREAMING_SNAKE_CASE_ = True if state.get('trim_offsets' , _lowerCAmelCase ) != trim_offsets: SCREAMING_SNAKE_CASE_ = trim_offsets SCREAMING_SNAKE_CASE_ = True if changes_to_apply: SCREAMING_SNAKE_CASE_ = getattr(_lowerCAmelCase , state.pop('type' ) ) SCREAMING_SNAKE_CASE_ = component_class(**_lowerCAmelCase ) setattr(self.backend_tokenizer , _lowerCAmelCase , _lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : List[Any] ): SCREAMING_SNAKE_CASE_ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else value SCREAMING_SNAKE_CASE_ = value def lowerCAmelCase_ ( self : Optional[int] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = kwargs.get('is_split_into_words' , _lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_ = kwargs.get('is_split_into_words' , _lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " 'to use it with pretokenized inputs.' ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): SCREAMING_SNAKE_CASE_ = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=None ): SCREAMING_SNAKE_CASE_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
210
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> str: SCREAMING_SNAKE_CASE_ = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> dict[str, str]: SCREAMING_SNAKE_CASE_ = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key SCREAMING_SNAKE_CASE_ = remove_duplicates(key.upper() ) SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) # First fill cipher with key characters SCREAMING_SNAKE_CASE_ = {alphabet[i]: char for i, char in enumerate(__UpperCAmelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__UpperCAmelCase ) , 26 ): SCREAMING_SNAKE_CASE_ = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 SCREAMING_SNAKE_CASE_ = alphabet[i - offset] SCREAMING_SNAKE_CASE_ = char return cipher_alphabet def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : dict[str, str] ) -> str: return "".join(cipher_map.get(__UpperCAmelCase , __UpperCAmelCase ) for ch in message.upper() ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : dict[str, str] ) -> str: SCREAMING_SNAKE_CASE_ = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__UpperCAmelCase , __UpperCAmelCase ) for ch in message.upper() ) def UpperCAmelCase_ ( ) -> None: SCREAMING_SNAKE_CASE_ = input('Enter message to encode or decode: ' ).strip() SCREAMING_SNAKE_CASE_ = input('Enter keyword: ' ).strip() SCREAMING_SNAKE_CASE_ = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: SCREAMING_SNAKE_CASE_ = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) SCREAMING_SNAKE_CASE_ = create_cipher_map(__UpperCAmelCase ) print(func(__UpperCAmelCase , __UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
210
1
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> float: return sum(c * (x**i) for i, c in enumerate(UpperCamelCase__ ) ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> float: __lowerCamelCase = 0.0 for coeff in reversed(UpperCamelCase__ ): __lowerCamelCase = result * x + coeff return result if __name__ == "__main__": __UpperCAmelCase =(0.0, 0.0, 5.0, 9.3, 7.0) __UpperCAmelCase =10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
67
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = StableDiffusionInpaintPipeline UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCAmelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : int = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase__ : Union[str, Any] = frozenset([]) def lowerCAmelCase__ ( self: str ): torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , ) __lowerCamelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) __lowerCamelCase = CLIPTextModel(UpperCamelCase_ ) __lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any]=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) __lowerCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase__ ( self: str ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = StableDiffusionInpaintPipeline(**UpperCamelCase_ ) __lowerCamelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = sd_pipe(**UpperCamelCase_ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: int ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , ) __lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , torch_dtype=torch.floataa , safety_checker=UpperCamelCase_ , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="""np""" , ) __lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowerCAmelCase__ ( self: int ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCamelCase = """stabilityai/stable-diffusion-2-inpainting""" __lowerCamelCase = PNDMScheduler.from_pretrained(UpperCamelCase_ , subfolder="""scheduler""" ) __lowerCamelCase = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , safety_checker=UpperCamelCase_ , scheduler=UpperCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowerCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=2 , output_type="""np""" , ) __lowerCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
12
0
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _A = get_logger(__name__) _A = R'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class UpperCAmelCase__ : """simple docstring""" @add_start_docstrings(A_ ) def __call__( self , A_ , A_ ) -> jnp.ndarray: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class UpperCAmelCase__ : """simple docstring""" @add_start_docstrings(A_ ) def __call__( self , A_ , A_ ) -> jnp.ndarray: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class UpperCAmelCase__ ( A_ ): """simple docstring""" @add_start_docstrings(A_ ) def __call__( self , A_ , A_ , A_ , **A_ ) -> jnp.ndarray: for processor in self: __UpperCamelCase =inspect.signature(processor.__call__ ).parameters if len(A_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'Make sure that all the required parameters: {list(function_args.keys() )} for ' f'{processor.__class__} are passed to the logits processor.' ) __UpperCamelCase =processor(A_ , A_ , A_ , **A_ ) else: __UpperCamelCase =processor(A_ , A_ , A_ ) return scores class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ ) -> List[str]: if not isinstance(A_ , A_ ) or not (temperature > 0): raise ValueError(f'`temperature` has to be a strictly positive float, but is {temperature}' ) __UpperCamelCase =temperature def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: __UpperCamelCase =scores / self.temperature return scores class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ = -float('Inf' ) , A_ = 1 ) -> Dict: if not isinstance(A_ , A_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(A_ , A_ ) or (min_tokens_to_keep < 1): raise ValueError(f'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) __UpperCamelCase =top_p __UpperCamelCase =filter_value __UpperCamelCase =min_tokens_to_keep def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: __UpperCamelCase , __UpperCamelCase =lax.top_k(A_ , scores.shape[-1] ) __UpperCamelCase =jnp.full_like(A_ , self.filter_value ) __UpperCamelCase =jax.nn.softmax(A_ , axis=-1 ).cumsum(axis=-1 ) __UpperCamelCase =cumulative_probs < self.top_p # include the token that is higher than top_p as well __UpperCamelCase =jnp.roll(A_ , 1 ) score_mask |= score_mask.at[:, 0].set(A_ ) # min tokens to keep __UpperCamelCase =score_mask.at[:, : self.min_tokens_to_keep].set(A_ ) __UpperCamelCase =jnp.where(A_ , A_ , A_ ) __UpperCamelCase =jax.lax.sort_key_val(A_ , A_ )[-1] return next_scores class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ = -float('Inf' ) , A_ = 1 ) -> Dict: if not isinstance(A_ , A_ ) or top_k <= 0: raise ValueError(f'`top_k` has to be a strictly positive integer, but is {top_k}' ) __UpperCamelCase =max(A_ , A_ ) __UpperCamelCase =filter_value def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: __UpperCamelCase , __UpperCamelCase =scores.shape __UpperCamelCase =jnp.full(batch_size * vocab_size , self.filter_value ) __UpperCamelCase =min(self.top_k , scores.shape[-1] ) # Safety check __UpperCamelCase , __UpperCamelCase =lax.top_k(A_ , A_ ) __UpperCamelCase =jnp.broadcast_to((jnp.arange(A_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() __UpperCamelCase =topk_scores.flatten() __UpperCamelCase =topk_indices.flatten() + shift __UpperCamelCase =next_scores_flat.at[topk_indices_flat].set(A_ ) __UpperCamelCase =next_scores_flat.reshape(A_ , A_ ) return next_scores class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ ) -> int: __UpperCamelCase =bos_token_id def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: __UpperCamelCase =jnp.full(scores.shape , -float('inf' ) ) __UpperCamelCase =1 - jnp.bool_(cur_len - 1 ) __UpperCamelCase =jnp.where(A_ , new_scores.at[:, self.bos_token_id].set(0 ) , A_ ) return scores class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ ) -> Optional[int]: __UpperCamelCase =max_length __UpperCamelCase =eos_token_id def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: __UpperCamelCase =jnp.full(scores.shape , -float('inf' ) ) __UpperCamelCase =1 - jnp.bool_(cur_len - self.max_length + 1 ) __UpperCamelCase =jnp.where(A_ , new_scores.at[:, self.eos_token_id].set(0 ) , A_ ) return scores class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ ) -> Union[str, Any]: if not isinstance(A_ , A_ ) or min_length < 0: raise ValueError(f'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(A_ , A_ ) or eos_token_id < 0: raise ValueError(f'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) __UpperCamelCase =min_length __UpperCamelCase =eos_token_id def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied __UpperCamelCase =1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) __UpperCamelCase =jnp.where(A_ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , A_ ) return scores class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ ) -> Tuple: __UpperCamelCase =list(A_ ) __UpperCamelCase =begin_index def __call__( self , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =1 - jnp.bool_(cur_len - self.begin_index ) __UpperCamelCase =jnp.where(A_ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , A_ ) return scores class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ ) -> Optional[Any]: __UpperCamelCase =list(A_ ) def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: __UpperCamelCase =scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ ) -> str: __UpperCamelCase =dict(A_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __UpperCamelCase =jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: __UpperCamelCase =force_token_array.at[index].set(A_ ) __UpperCamelCase =jnp.intaa(A_ ) def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: def _force_token(A_ ): __UpperCamelCase =scores.shape[0] __UpperCamelCase =self.force_token_array[generation_idx] __UpperCamelCase =jnp.ones_like(A_ , dtype=scores.dtype ) * -float('inf' ) __UpperCamelCase =jnp.zeros((batch_size, 1) , dtype=scores.dtype ) __UpperCamelCase =lax.dynamic_update_slice(A_ , A_ , (0, current_token) ) return new_scores __UpperCamelCase =lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(A_ ) , lambda: scores , ) , ) return scores class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> int: __UpperCamelCase =generate_config.eos_token_id __UpperCamelCase =generate_config.no_timestamps_token_id __UpperCamelCase =generate_config.no_timestamps_token_id + 1 __UpperCamelCase =decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(A_ , 'max_initial_timestamp_index' ): __UpperCamelCase =generate_config.max_initial_timestamp_index else: __UpperCamelCase =model_config.vocab_size if self.max_initial_timestamp_index is None: __UpperCamelCase =model_config.vocab_size def __call__( self , A_ , A_ , A_ ) -> int: # suppress <|notimestamps|> which is handled by without_timestamps __UpperCamelCase =scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(A_ , A_ ): __UpperCamelCase =jnp.where((cur_len - self.begin_index) >= 1 , A_ , A_ ) __UpperCamelCase =jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , A_ , ) __UpperCamelCase =jnp.where((cur_len - self.begin_index) < 2 , A_ , A_ ) __UpperCamelCase =jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , A_ , A_ , ) return jnp.where( A_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , A_ , ) __UpperCamelCase =jax.vmap(A_ )(A_ , A_ ) __UpperCamelCase =jnp.where(cur_len == self.begin_index , A_ , A_ ) __UpperCamelCase =jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , A_ , ) __UpperCamelCase =self.timestamp_begin + self.max_initial_timestamp_index __UpperCamelCase =jnp.where( A_ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , A_ , ) # if sum of probability over timestamps is above any other token, sample timestamp __UpperCamelCase =jax.nn.log_softmax(A_ , axis=-1 ) def handle_cumulative_probs(A_ , A_ ): __UpperCamelCase =jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) __UpperCamelCase =jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , A_ , ) __UpperCamelCase =jax.vmap(A_ )(A_ , A_ ) return scores
351
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): __UpperCamelCase =SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) __UpperCamelCase =DetaConfig( backbone_config=SCREAMING_SNAKE_CASE__ , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=SCREAMING_SNAKE_CASE__ , with_box_refine=SCREAMING_SNAKE_CASE__ , two_stage=SCREAMING_SNAKE_CASE__ , ) # set labels __UpperCamelCase ='huggingface/label-files' if "o365" in model_name: __UpperCamelCase =3_66 __UpperCamelCase ='object365-id2label.json' else: __UpperCamelCase =91 __UpperCamelCase ='coco-detection-id2label.json' __UpperCamelCase =num_labels __UpperCamelCase =json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): __UpperCamelCase =[] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.0.body.layers.{i}.downsample.reduction.weight', F'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.downsample.norm.weight', F'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.downsample.norm.bias', F'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', F'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', F'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', F'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', F'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.value_proj.weight', F'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.value_proj.bias', F'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.output_proj.weight', F'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.output_proj.bias', F'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.weight', F'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', F'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', F'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', F'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', F'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', F'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', F'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', F'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', F'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.weight', F'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm2.weight', F'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm2.bias', F'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =dct.pop(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =val def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =[int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __UpperCamelCase =num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __UpperCamelCase =state_dict.pop(F'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) __UpperCamelCase =state_dict.pop(F'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase =in_proj_weight[:dim, :] __UpperCamelCase =in_proj_bias[: dim] __UpperCamelCase =in_proj_weight[ dim : dim * 2, : ] __UpperCamelCase =in_proj_bias[ dim : dim * 2 ] __UpperCamelCase =in_proj_weight[ -dim :, : ] __UpperCamelCase =in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ): # transformer decoder self-attention layers __UpperCamelCase =config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __UpperCamelCase =state_dict.pop(F'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) __UpperCamelCase =state_dict.pop(F'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase =in_proj_weight[:hidden_size, :] __UpperCamelCase =in_proj_bias[:hidden_size] __UpperCamelCase =in_proj_weight[ hidden_size : hidden_size * 2, : ] __UpperCamelCase =in_proj_bias[hidden_size : hidden_size * 2] __UpperCamelCase =in_proj_weight[-hidden_size:, :] __UpperCamelCase =in_proj_bias[-hidden_size:] def _UpperCAmelCase ( ): __UpperCamelCase ='http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase =Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =get_deta_config(SCREAMING_SNAKE_CASE__ ) # load original state dict if model_name == "deta-swin-large": __UpperCamelCase =hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": __UpperCamelCase =hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(F'Model name {model_name} not supported' ) __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(SCREAMING_SNAKE_CASE__ , param.shape ) # rename keys __UpperCamelCase =create_rename_keys(SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) read_in_swin_q_k_v(SCREAMING_SNAKE_CASE__ , config.backbone_config ) read_in_decoder_q_k_v(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __UpperCamelCase =state_dict.pop(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =val if "input_proj" in key: __UpperCamelCase =state_dict.pop(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __UpperCamelCase =state_dict.pop(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =val # finally, create HuggingFace model and load state dict __UpperCamelCase =DetaForObjectDetection(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() __UpperCamelCase ='cuda' if torch.cuda.is_available() else 'cpu' model.to(SCREAMING_SNAKE_CASE__ ) # load image processor __UpperCamelCase =DetaImageProcessor(format='coco_detection' ) # verify our conversion on image __UpperCamelCase =prepare_img() __UpperCamelCase =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) __UpperCamelCase =encoding['pixel_values'] __UpperCamelCase =model(pixel_values.to(SCREAMING_SNAKE_CASE__ ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __UpperCamelCase =torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) __UpperCamelCase =torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": __UpperCamelCase =torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) __UpperCamelCase =torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(SCREAMING_SNAKE_CASE__ ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(SCREAMING_SNAKE_CASE__ ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(F'jozhang97/{model_name}' ) processor.push_to_hub(F'jozhang97/{model_name}' ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _A = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
117
0
import math import sys def a__ ( _UpperCamelCase : str ): __lowerCamelCase = '''''' try: with open(_UpperCamelCase ,'''rb''' ) as binary_file: __lowerCamelCase = binary_file.read() for dat in data: __lowerCamelCase = F"""{dat:08b}""" result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def a__ ( _UpperCamelCase : str ): __lowerCamelCase = {'''0''': '''0''', '''1''': '''1'''} __lowerCamelCase ,__lowerCamelCase = '''''', '''''' __lowerCamelCase = len(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __lowerCamelCase = lexicon[curr_string] result += last_match_id __lowerCamelCase = last_match_id + '''0''' if math.loga(_UpperCamelCase ).is_integer(): __lowerCamelCase = {} for curr_key in list(_UpperCamelCase ): __lowerCamelCase = lexicon.pop(_UpperCamelCase ) __lowerCamelCase = new_lex __lowerCamelCase = last_match_id + '''1''' index += 1 __lowerCamelCase = '''''' return result def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): __lowerCamelCase = 8 try: with open(_UpperCamelCase ,'''wb''' ) as opened_file: __lowerCamelCase = [ to_write[i : i + byte_length] for i in range(0 ,len(_UpperCamelCase ) ,_UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_UpperCamelCase ,2 ).to_bytes(1 ,byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def a__ ( _UpperCamelCase : str ): __lowerCamelCase = 0 for letter in data_bits: if letter == "1": break counter += 1 __lowerCamelCase = data_bits[counter:] __lowerCamelCase = data_bits[counter + 1 :] return data_bits def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): __lowerCamelCase = read_file_binary(_UpperCamelCase ) __lowerCamelCase = remove_prefix(_UpperCamelCase ) __lowerCamelCase = decompress_data(_UpperCamelCase ) write_file_binary(_UpperCamelCase ,_UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
330
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def a__ ( _UpperCamelCase : int ): for pegasus_name, hf_name in PATTERNS: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = DEFAULTS.copy() cfg_kwargs.update(_UpperCamelCase ) __lowerCamelCase = PegasusConfig(**_UpperCamelCase ) __lowerCamelCase = PegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.model.state_dict() __lowerCamelCase = {} for k, v in tf_weights.items(): __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __lowerCamelCase = v.T __lowerCamelCase = torch.tensor(_UpperCamelCase ,dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __lowerCamelCase = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = {k: torch.zeros_like(_UpperCamelCase ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = torch_model.model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : str="./ckpt/aeslc/model.ckpt-32000" ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): # save tokenizer first __lowerCamelCase = Path(_UpperCamelCase ).parent.name __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] __lowerCamelCase = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' ,model_max_length=_UpperCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_UpperCamelCase ) # convert model __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": __lowerCamelCase = task_specific_params __lowerCamelCase = convert_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(_UpperCamelCase ,Path(_UpperCamelCase ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() if args.save_dir is None: a_ = Path(args.tf_ckpt_path).parent.name a_ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
330
1
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = generate_pascal_triangle(_lowerCamelCase ) for row_idx in range(_lowerCamelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def A ( _lowerCamelCase ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) _lowerCAmelCase : list[list[int]] = [] for current_row_idx in range(_lowerCamelCase ): _lowerCAmelCase : Dict = populate_current_row(_lowerCamelCase , _lowerCamelCase ) triangle.append(_lowerCamelCase ) return triangle def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 _lowerCAmelCase : Tuple = 1, 1 for current_col_idx in range(1 , _lowerCamelCase ): calculate_current_element( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return current_row def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase : Tuple = triangle[current_row_idx - 1][current_col_idx - 1] _lowerCAmelCase : str = triangle[current_row_idx - 1][current_col_idx] _lowerCAmelCase : List[Any] = above_to_left_elt + above_to_right_elt def A ( _lowerCamelCase ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) _lowerCAmelCase : list[list[int]] = [[1]] for row_index in range(1 , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = [0] + result[-1] + [0] _lowerCAmelCase : Optional[Any] = row_index + 1 # Calculate the number of distinct elements in a row _lowerCAmelCase : int = sum(divmod(_lowerCamelCase , 2 ) ) _lowerCAmelCase : List[Any] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] _lowerCAmelCase : List[str] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() _lowerCAmelCase : Optional[int] = row_first_half + row_second_half result.append(_lowerCamelCase ) return result def A ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_lowerCamelCase , _lowerCamelCase ) -> None: _lowerCAmelCase : List[Any] = F"{func.__name__}({value})" _lowerCAmelCase : Tuple = timeit(F"__main__.{call}" , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(_lowerCamelCase , _lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
366
from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self, __a, __a, __a = 0): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = row, column _lowerCAmelCase : str = [[default_value for c in range(__a)] for r in range(__a)] def __str__( self): '''simple docstring''' _lowerCAmelCase : Tuple = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _lowerCAmelCase : str = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase : List[str] = max(__a, len(str(__a))) _lowerCAmelCase : Union[str, Any] = f"%{max_element_length}s" # Make string and return def single_line(__a) -> str: nonlocal string_format_identifier _lowerCAmelCase : Dict = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(__a) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def snake_case__ ( self, __a): '''simple docstring''' if not (isinstance(__a, (list, tuple)) and len(__a) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, __a): '''simple docstring''' assert self.validate_indicies(__a) return self.array[loc[0]][loc[1]] def __setitem__( self, __a, __a): '''simple docstring''' assert self.validate_indicies(__a) _lowerCAmelCase : Union[str, Any] = value def __add__( self, __a): '''simple docstring''' assert isinstance(__a, __a) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase : Any = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' _lowerCAmelCase : List[str] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : str = -self[r, c] return result def __sub__( self, __a): '''simple docstring''' return self + (-another) def __mul__( self, __a): '''simple docstring''' if isinstance(__a, (int, float)): # Scalar multiplication _lowerCAmelCase : Dict = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] * another return result elif isinstance(__a, __a): # Matrix multiplication assert self.column == another.row _lowerCAmelCase : List[str] = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase : Optional[Any] = f"Unsupported type given for another ({type(__a)})" raise TypeError(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] return result def snake_case__ ( self, __a, __a): '''simple docstring''' assert isinstance(__a, __a) and isinstance(__a, __a) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase : int = v.transpose() _lowerCAmelCase : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase : Union[str, Any] = 1 print(F"a^(-1) is {ainv}" ) # u, v _lowerCAmelCase : Any = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 1, 2, -3 _lowerCAmelCase : List[Any] = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}" ) def A ( ): '''simple docstring''' import doctest doctest.testmod() testa()
300
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[int] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Tuple =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Dict =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : int =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : int =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) def _lowerCamelCase ( *_UpperCamelCase , **_UpperCamelCase ): '''simple docstring''' requires_backends(_UpperCamelCase , ["torch"] ) def _lowerCamelCase ( *_UpperCamelCase , **_UpperCamelCase ): '''simple docstring''' requires_backends(_UpperCamelCase , ["torch"] ) def _lowerCamelCase ( *_UpperCamelCase , **_UpperCamelCase ): '''simple docstring''' requires_backends(_UpperCamelCase , ["torch"] ) def _lowerCamelCase ( *_UpperCamelCase , **_UpperCamelCase ): '''simple docstring''' requires_backends(_UpperCamelCase , ["torch"] ) def _lowerCamelCase ( *_UpperCamelCase , **_UpperCamelCase ): '''simple docstring''' requires_backends(_UpperCamelCase , ["torch"] ) def _lowerCamelCase ( *_UpperCamelCase , **_UpperCamelCase ): '''simple docstring''' requires_backends(_UpperCamelCase , ["torch"] ) def _lowerCamelCase ( *_UpperCamelCase , **_UpperCamelCase ): '''simple docstring''' requires_backends(_UpperCamelCase , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Tuple =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : int =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : str =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Tuple =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : str =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : str =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Tuple =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : int =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : str =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Dict =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : str =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : str =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Dict =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : int =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Tuple =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Tuple =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any =["""torch"""] def __init__( self , *__a , **__a ): requires_backends(self , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["torch"] )
57
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __lowerCAmelCase = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
57
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
348
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''sew-d''' def __init__( self , lowerCamelCase__=32 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__=2 , lowerCamelCase__=512 , lowerCamelCase__=256 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=("p2c", "c2p") , lowerCamelCase__="layer_norm" , lowerCamelCase__="gelu_python" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-7 , lowerCamelCase__=1e-5 , lowerCamelCase__="group" , lowerCamelCase__="gelu" , lowerCamelCase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase__=False , lowerCamelCase__=128 , lowerCamelCase__=16 , lowerCamelCase__=True , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__="mean" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ) -> Any: '''simple docstring''' super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = hidden_size __lowerCamelCase = feat_extract_norm __lowerCamelCase = feat_extract_activation __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = conv_bias __lowerCamelCase = num_conv_pos_embeddings __lowerCamelCase = num_conv_pos_embedding_groups __lowerCamelCase = len(self.conv_dim ) __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = squeeze_factor __lowerCamelCase = max_position_embeddings __lowerCamelCase = position_buckets __lowerCamelCase = share_att_key __lowerCamelCase = relative_attention __lowerCamelCase = norm_rel_ebd __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = hidden_act __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = feat_proj_dropout __lowerCamelCase = final_dropout __lowerCamelCase = layer_norm_eps __lowerCamelCase = feature_layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks # ctc loss __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # sequence classification __lowerCamelCase = use_weighted_layer_sum __lowerCamelCase = classifier_proj_size @property def lowercase_ ( self ) -> Any: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
348
1
import heapq as hq import math from collections.abc import Iterator class _UpperCamelCase : """simple docstring""" def __init__( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' __lowercase = str(id_ ) __lowercase = None __lowercase = None __lowercase = [] __lowercase = {} # {vertex:distance} def __lt__( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' return self.key < other.key def __repr__( self ) -> Tuple: '''simple docstring''' return self.id def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' self.neighbors.append(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' __lowercase = weight def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowercase ) graph[b - 1].add_edge(graph[a - 1] , lowercase ) def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = [] for u in graph: __lowercase = math.inf __lowercase = None __lowercase = 0 __lowercase = graph[:] while q: __lowercase = min(lowercase ) q.remove(lowercase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __lowercase = u __lowercase = u.edges[v.id] for i in range(1 , len(lowercase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" for u in graph: __lowercase = math.inf __lowercase = None __lowercase = 0 __lowercase = list(lowercase ) hq.heapify(lowercase ) while h: __lowercase = hq.heappop(lowercase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __lowercase = u __lowercase = u.edges[v.id] hq.heapify(lowercase ) for i in range(1 , len(lowercase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
210
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''num_attention_heads''' ) ) class _UpperCamelCase : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=64 , lowerCAmelCase__=3 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=16 , lowerCAmelCase__=[1_28, 2_56, 3_84] , lowerCAmelCase__=[4, 6, 8] , lowerCAmelCase__=[2, 3, 4] , lowerCAmelCase__=[16, 16, 16] , lowerCAmelCase__=0 , lowerCAmelCase__=[2, 2, 2] , lowerCAmelCase__=[2, 2, 2] , lowerCAmelCase__=0.02 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=2 , ) -> Tuple: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = kernel_size __lowercase = stride __lowercase = padding __lowercase = hidden_sizes __lowercase = num_attention_heads __lowercase = depths __lowercase = key_dim __lowercase = drop_path_rate __lowercase = patch_size __lowercase = attention_ratio __lowercase = mlp_ratio __lowercase = initializer_range __lowercase = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] __lowercase = is_training __lowercase = use_labels __lowercase = num_labels __lowercase = initializer_range def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' __lowercase = LevitModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __lowercase = model(lowerCAmelCase__ ) __lowercase = (self.image_size, self.image_size) __lowercase , __lowercase = image_size[0], image_size[1] for _ in range(4 ): __lowercase = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) __lowercase = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' __lowercase = self.num_labels __lowercase = LevitForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __lowercase = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( _UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : int = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) __a : List[str] = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) __a : int = False __a : Dict = False __a : Optional[Any] = False __a : Optional[int] = False __a : Dict = False def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = LevitModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' return @unittest.skip(reason='''Levit does not use inputs_embeds''' ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''Levit does not support input and output embeddings''' ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='''Levit does not output attentions''' ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCAmelCase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __lowercase = outputs.hidden_states __lowercase = len(self.model_tester.depths ) + 1 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __lowercase = (self.model_tester.image_size, self.model_tester.image_size) __lowercase , __lowercase = image_size[0], image_size[1] for _ in range(4 ): __lowercase = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) __lowercase = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> str: '''simple docstring''' __lowercase = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' if not self.model_tester.is_training: return __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCAmelCase__ ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue __lowercase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() __lowercase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) __lowercase = model(**lowerCAmelCase__ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __lowercase = False __lowercase = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase__ ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue __lowercase = model_class(lowerCAmelCase__ ) model.gradient_checkpointing_enable() model.to(lowerCAmelCase__ ) model.train() __lowercase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) __lowercase = model(**lowerCAmelCase__ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCAmelCase__ ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): __lowercase = problem_type['''title'''] __lowercase = problem_type['''num_labels'''] __lowercase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() __lowercase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if problem_type["num_labels"] > 1: __lowercase = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) __lowercase = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCAmelCase__ ) as warning_list: __lowercase = model(**lowerCAmelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = LevitModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def UpperCAmelCase ( ): """simple docstring""" __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCAmelCase__ ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCAmelCase__ ) # verify the logits __lowercase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __lowercase = torch.tensor([1.0448, -0.3745, -1.8317] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
210
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _a ): '''simple docstring''' def __init__( self : Dict , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
368
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class A_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any , lowercase_ : str , lowercase_ : Union[str, Any]=7 , lowercase_ : Union[str, Any]=3 , lowercase_ : int=30 , lowercase_ : Tuple=400 , lowercase_ : Tuple=True , lowercase_ : Optional[int]=None , lowercase_ : List[str]=0.9 , lowercase_ : Tuple=None , lowercase_ : Union[str, Any]=True , lowercase_ : int=[0.5, 0.5, 0.5] , lowercase_ : List[str]=[0.5, 0.5, 0.5] , ) -> Tuple: UpperCAmelCase : Optional[int] = size if size is not None else {'shortest_edge': 30} UpperCAmelCase : int = crop_size if crop_size is not None else {'height': 30, 'width': 30} UpperCAmelCase : Tuple = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : int = num_channels UpperCAmelCase : int = min_resolution UpperCAmelCase : Optional[int] = max_resolution UpperCAmelCase : str = do_resize_and_center_crop UpperCAmelCase : int = size UpperCAmelCase : Dict = crop_pct UpperCAmelCase : Union[str, Any] = crop_size UpperCAmelCase : Optional[int] = do_normalize UpperCAmelCase : Optional[Any] = image_mean UpperCAmelCase : Optional[Any] = image_std def UpperCAmelCase_ ( self : str ) -> int: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = PoolFormerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : Dict ) -> str: UpperCAmelCase : Any = PoolFormerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Tuple ) -> str: UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(lowercase_ , 'size' ) ) self.assertTrue(hasattr(lowercase_ , 'crop_pct' ) ) self.assertTrue(hasattr(lowercase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowercase_ , 'image_std' ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} ) UpperCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: pass def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: # Initialize image_processing UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input UpperCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase : str = image_processing(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase_ ( self : List[Any] ) -> Dict: # Initialize image_processing UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input UpperCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase : Optional[Any] = image_processing(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase_ ( self : str ) -> Dict: # Initialize image_processing UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input UpperCAmelCase : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
280
0
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( a , a ) -> List[str]: print(F"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(a ): print(F"""{i}\t\t{d}""" ) def _SCREAMING_SNAKE_CASE ( a , a , a ) -> Union[str, Any]: for j in range(a ): __A , __A , __A : Tuple = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: return True return False def _SCREAMING_SNAKE_CASE ( a , a , a , a ) -> list[float]: __A : Any = [float('inf' )] * vertex_count __A : str = 0.0 for _ in range(vertex_count - 1 ): for j in range(a ): __A , __A , __A : List[Any] = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: __A : Optional[int] = distance[u] + w __A : str = check_negative_cycle(a , a , a ) if negative_cycle_exists: raise Exception('Negative cycle found' ) return distance if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : Dict = int(input('''Enter number of vertices: ''').strip()) UpperCAmelCase : Optional[int] = int(input('''Enter number of edges: ''').strip()) UpperCAmelCase : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) UpperCAmelCase : Dict = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) UpperCAmelCase : List[Any] = {'src': src, 'dst': dest, 'weight': weight} UpperCAmelCase : Union[str, Any] = int(input('''\nEnter shortest path source:''').strip()) UpperCAmelCase : List[Any] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
280
from itertools import permutations def _a ( lowerCamelCase: tuple ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __A = [7, 11, 13, 17] for i, test in enumerate(lowerCamelCase ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def _a ( lowerCamelCase: int = 10 ) -> int: '''simple docstring''' return sum( int(''''''.join(map(lowerCamelCase , lowerCamelCase ) ) ) for num in permutations(range(lowerCamelCase ) ) if is_substring_divisible(lowerCamelCase ) ) if __name__ == "__main__": print(f'{solution() = }')
117
0
"""simple docstring""" _UpperCamelCase: int = 'Tobias Carryer' from time import time class a__ : def __init__( self : Tuple, lowerCAmelCase : List[str], lowerCAmelCase : List[Any], lowerCAmelCase : Optional[int], lowerCAmelCase : Dict=int(time() ) ) -> Union[str, Any]: # noqa: B008 lowercase : Tuple = multiplier lowercase : Union[str, Any] = increment lowercase : Any = modulo lowercase : Optional[int] = seed def lowercase ( self : Optional[int] ) -> Any: lowercase : Any = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. _UpperCamelCase: Tuple = LinearCongruentialGenerator(1_6_6_4_5_2_5, 1_0_1_3_9_0_4_2_2_3, 2 << 3_1) while True: print(lcg.next_number())
53
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _UpperCamelCase: Optional[int] = logging.get_logger(__name__) _UpperCamelCase: Union[str, Any] = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = 'gpt_neo' _lowerCamelCase = ['past_key_values'] _lowerCamelCase = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Optional[Any], lowerCAmelCase : int=50257, lowerCAmelCase : Tuple=2048, lowerCAmelCase : int=2048, lowerCAmelCase : Tuple=24, lowerCAmelCase : Optional[Any]=[[["global", "local"], 12]], lowerCAmelCase : Optional[int]=16, lowerCAmelCase : Optional[Any]=None, lowerCAmelCase : Dict=256, lowerCAmelCase : Optional[int]="gelu_new", lowerCAmelCase : Any=0.0, lowerCAmelCase : Dict=0.0, lowerCAmelCase : Optional[Any]=0.0, lowerCAmelCase : Dict=0.1, lowerCAmelCase : List[Any]=1e-5, lowerCAmelCase : Optional[Any]=0.02, lowerCAmelCase : Dict=True, lowerCAmelCase : int=50256, lowerCAmelCase : Optional[Any]=50256, **lowerCAmelCase : Any, ) -> Optional[Any]: lowercase : List[Any] = vocab_size lowercase : Optional[Any] = max_position_embeddings lowercase : Dict = hidden_size lowercase : Optional[Any] = num_layers lowercase : str = num_heads lowercase : Optional[int] = intermediate_size lowercase : List[str] = window_size lowercase : Dict = activation_function lowercase : Dict = resid_dropout lowercase : int = embed_dropout lowercase : Optional[Any] = attention_dropout lowercase : Tuple = classifier_dropout lowercase : Optional[int] = layer_norm_epsilon lowercase : Dict = initializer_range lowercase : Optional[Any] = use_cache lowercase : Union[str, Any] = bos_token_id lowercase : int = eos_token_id lowercase : str = attention_types lowercase : int = self.expand_attention_types_params(lowerCAmelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' f'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' f'''`config.num_layers = {self.num_layers}`. ''' '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=lowerCAmelCase, eos_token_id=lowerCAmelCase, **lowerCAmelCase ) @staticmethod def lowercase ( lowerCAmelCase : str ) -> Optional[Any]: lowercase : Dict = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int: '''simple docstring''' import torch lowercase : Dict = input.size() lowercase : Optional[int] = len(_UpperCAmelCase ) lowercase : str = shape[dimension] lowercase : Optional[Any] = torch.arange(0 , _UpperCAmelCase , _UpperCAmelCase ) lowercase : List[str] = torch.div(sizedim - size , _UpperCAmelCase , rounding_mode='floor' ) + 1 lowercase : Any = torch.arange(_UpperCAmelCase ) + low_indices[:min_length][:, None] lowercase : List[Any] = [slice(_UpperCAmelCase )] * rank lowercase : int = indices lowercase : Optional[Any] = input[s] lowercase : str = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(_UpperCAmelCase ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> Any: '''simple docstring''' import torch lowercase : int = torch.arange(1 , _UpperCAmelCase ) lowercase : List[str] = torch.remainder(_UpperCAmelCase , _UpperCAmelCase ) lowercase : Optional[int] = remainders == 0 lowercase : Tuple = candidates[divisor_indices] lowercase : Any = torch.max(_UpperCAmelCase ) return largest_divisor, torch.div(_UpperCAmelCase , _UpperCAmelCase , rounding_mode='floor' ) class a__ ( SCREAMING_SNAKE_CASE__ ): @property def lowercase ( self : int ) -> Mapping[str, Mapping[int, str]]: lowercase : str = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase, direction='inputs' ) lowercase : Dict = {0: 'batch', 1: 'past_sequence + sequence'} else: lowercase : List[str] = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowercase ( self : int ) -> int: return self._config.num_heads def lowercase ( self : Tuple, lowerCAmelCase : PreTrainedTokenizer, lowerCAmelCase : int = -1, lowerCAmelCase : int = -1, lowerCAmelCase : bool = False, lowerCAmelCase : Optional[TensorType] = None, ) -> Mapping[str, Any]: lowercase : Union[str, Any] = super(lowerCAmelCase, self ).generate_dummy_inputs( lowerCAmelCase, batch_size=lowerCAmelCase, seq_length=lowerCAmelCase, is_pair=lowerCAmelCase, framework=lowerCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase : int = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowercase , lowercase : str = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowercase : Tuple = seqlen + 2 lowercase : Tuple = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase : Any = [ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(self.num_layers ) ] lowercase : Optional[int] = common_inputs['attention_mask'] if self.use_past: lowercase : Optional[int] = ordered_inputs['attention_mask'].dtype lowercase : Dict = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCAmelCase, lowerCAmelCase, dtype=lowerCAmelCase )], dim=1 ) return ordered_inputs @property def lowercase ( self : int ) -> int: return 13
53
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowerCAmelCase ( lowerCamelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = """visual_bert""" def __init__( self , lowerCAmelCase__=30_522 , lowerCAmelCase__=768 , lowerCAmelCase__=512 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=3_072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1e-12 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , **lowerCAmelCase__ , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = visual_embedding_dim SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = bypass_transformer SCREAMING_SNAKE_CASE = special_visual_initialize
113
def __snake_case ( _lowerCAmelCase : list ) -> list: if len(_lowerCAmelCase ) <= 1: return [tuple(_lowerCAmelCase )] A_ : Tuple = [] def generate(_lowerCAmelCase : int , _lowerCAmelCase : list ): A_ : List[str] = [0] * n res.append(tuple(_lowerCAmelCase ) ) A_ : int = 0 while i < n: if c[i] < i: if i % 2 == 0: A_ , A_ : str = arr[i], arr[0] else: A_ , A_ : List[str] = arr[i], arr[c[i]] res.append(tuple(_lowerCAmelCase ) ) c[i] += 1 A_ : Tuple = 0 else: A_ : Dict = 0 i += 1 generate(len(_lowerCAmelCase ) , _lowerCAmelCase ) return res if __name__ == "__main__": _lowerCAmelCase : str = input('''Enter numbers separated by a comma:\n''').strip() _lowerCAmelCase : str = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
300
0
"""simple docstring""" from __future__ import annotations def lowercase__(A ) ->float: """simple docstring""" if not nums: raise ValueError("List is empty" ) return sum(A ) / len(A ) if __name__ == "__main__": import doctest doctest.testmod()
150
"""simple docstring""" from __future__ import annotations class __UpperCAmelCase: """simple docstring""" def __init__( self , snake_case__=None ): '''simple docstring''' lowercase__ : Union[str, Any]= data lowercase__ : Optional[Any]= None def __repr__( self ): '''simple docstring''' lowercase__ : str= [] lowercase__ : Tuple= self while temp: string_rep.append(F'''{temp.data}''' ) lowercase__ : Optional[int]= temp.next return "->".join(snake_case__ ) def lowercase__(A ) ->Dict: """simple docstring""" if not elements_list: raise Exception("The Elements List is empty" ) lowercase__ : Optional[int]= Node(elements_list[0] ) for i in range(1 , len(A ) ): lowercase__ : Optional[Any]= Node(elements_list[i] ) lowercase__ : str= current.next return head def lowercase__(A ) ->None: """simple docstring""" if head_node is not None and isinstance(A , A ): print_reverse(head_node.next ) print(head_node.data ) def lowercase__() ->str: """simple docstring""" from doctest import testmod testmod() lowercase__ : Optional[int]= make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(A ) print("Elements in Reverse:" ) print_reverse(A ) if __name__ == "__main__": main()
150
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
348
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' def is_in_circle(__lowerCAmelCase , __lowerCAmelCase ) -> bool: UpperCAmelCase : List[Any] =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCAmelCase : List[Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__lowerCAmelCase ) ) # The ratio of the area for circle to square is pi/4. UpperCAmelCase : Dict =proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 , )-> float: '''simple docstring''' return mean( function_to_integrate(uniform(__lowerCAmelCase , __lowerCAmelCase ) ) for _ in range(__lowerCAmelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 )-> None: '''simple docstring''' def identity_function(__lowerCAmelCase ) -> float: return x UpperCAmelCase : List[Any] =area_under_curve_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Dict =(max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print('''******************''' ) def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' def function_to_integrate(__lowerCAmelCase ) -> float: return sqrt(4.0 - x * x ) UpperCAmelCase : Dict =area_under_curve_estimator( __lowerCAmelCase , __lowerCAmelCase , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
348
1
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : List[str] = logging.get_logger(__name__) UpperCamelCase : str = { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json""" ), } class UpperCamelCase ( a_ ): """simple docstring""" A : Dict = "xlm-prophetnet" A : Optional[int] = ["past_key_values"] A : Optional[int] = { "num_attention_heads": "num_encoder_attention_heads", } def __init__( self : List[Any] , UpperCAmelCase_ : Optional[float] = 0.1 , UpperCAmelCase_ : Optional[Union[str, Callable]] = "gelu" , UpperCAmelCase_ : Optional[int] = 3_0_5_2_2 , UpperCAmelCase_ : Optional[int] = 1_0_2_4 , UpperCAmelCase_ : Optional[int] = 4_0_9_6 , UpperCAmelCase_ : Optional[int] = 1_2 , UpperCAmelCase_ : Optional[int] = 1_6 , UpperCAmelCase_ : Optional[int] = 4_0_9_6 , UpperCAmelCase_ : Optional[int] = 1_2 , UpperCAmelCase_ : Optional[int] = 1_6 , UpperCAmelCase_ : Optional[float] = 0.1 , UpperCAmelCase_ : Optional[float] = 0.1 , UpperCAmelCase_ : Optional[int] = 5_1_2 , UpperCAmelCase_ : Optional[float] = 0.02 , UpperCAmelCase_ : Optional[bool] = True , UpperCAmelCase_ : Optional[bool] = True , UpperCAmelCase_ : Optional[int] = 0 , UpperCAmelCase_ : Optional[int] = 2 , UpperCAmelCase_ : Optional[int] = 3_2 , UpperCAmelCase_ : Optional[int] = 1_2_8 , UpperCAmelCase_ : Optional[bool] = False , UpperCAmelCase_ : Optional[float] = 0.0 , UpperCAmelCase_ : Optional[bool] = True , UpperCAmelCase_ : Optional[int] = 0 , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : Optional[int] = 2 , **UpperCAmelCase_ : Dict , ): """simple docstring""" a : Dict = vocab_size a : List[Any] = hidden_size a : Union[str, Any] = encoder_ffn_dim a : List[str] = num_encoder_layers a : List[Any] = num_encoder_attention_heads a : str = decoder_ffn_dim a : Tuple = num_decoder_layers a : Tuple = num_decoder_attention_heads a : Union[str, Any] = max_position_embeddings a : Any = init_std # Normal(0, this parameter) a : List[str] = activation_function # parameters for xlmprophetnet a : str = ngram a : Dict = num_buckets a : Dict = relative_max_distance a : Dict = disable_ngram_loss a : Tuple = eps # 3 Types of Dropout a : Union[str, Any] = attention_dropout a : Optional[int] = activation_dropout a : Dict = dropout a : Union[str, Any] = use_cache super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , add_cross_attention=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Optional[int]): """simple docstring""" raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and' ' `num_decoder_layers`.')
345
'''simple docstring''' import torch def SCREAMING_SNAKE_CASE__ ( ) -> str: """simple docstring""" if torch.cuda.is_available(): a : int = torch.cuda.device_count() else: a : Any = 0 print(F"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
345
1
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def __snake_case ( UpperCAmelCase_ : np.ndarray ): lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def __snake_case ( UpperCAmelCase_ : np.ndarray ): return (gray > 127) & (gray <= 255) def __snake_case ( UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : np.ndarray ): lowerCamelCase_ = np.zeros_like(UpperCAmelCase_ ) lowerCamelCase_ = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image lowerCamelCase_ = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): lowerCamelCase_ = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() lowerCamelCase_ = int(summation > 0 ) return output if __name__ == "__main__": # read original image a_ : Optional[Any] = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" a_ : str = np.array(Image.open(lena_path)) # kernel to be applied a_ : Tuple = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) a_ : Optional[Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image a_ : Any = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
55
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): __A : List[Any] = tempfile.mkdtemp() # fmt: off __A : List[str] = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __A : Union[str, Any] = dict(zip(_A , range(len(_A ) ) ) ) __A : Optional[int] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] __A : int = {'unk_token': '<unk>'} __A : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __A : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_A ) ) __A : List[Any] = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __A : Optional[int] = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_A , _A ) def UpperCAmelCase_ ( self , **_A ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **_A ) def UpperCAmelCase_ ( self , **_A ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **_A ) def UpperCAmelCase_ ( self , **_A ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self ): __A : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __A : Optional[int] = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase_ ( self ): __A : List[Any] = self.get_tokenizer() __A : str = self.get_rust_tokenizer() __A : List[str] = self.get_image_processor() __A : Optional[int] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) processor_slow.save_pretrained(self.tmpdirname ) __A : int = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_A ) __A : Optional[Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) processor_fast.save_pretrained(self.tmpdirname ) __A : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _A ) self.assertIsInstance(processor_fast.tokenizer , _A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _A ) self.assertIsInstance(processor_fast.image_processor , _A ) def UpperCAmelCase_ ( self ): __A : List[str] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A : Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __A : Optional[int] = self.get_image_processor(do_normalize=_A ) __A : Any = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : Union[str, Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Union[str, Any] = self.prepare_image_inputs() __A : int = image_processor(_A , return_tensors='np' ) __A : str = processor(images=_A , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase_ ( self ): __A : str = self.get_image_processor() __A : str = self.get_tokenizer() __A : Tuple = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : str = 'lower newer' __A : str = processor(text=_A , return_tensors='np' ) __A : List[str] = tokenizer(_A , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCAmelCase_ ( self ): __A : int = self.get_image_processor() __A : Optional[int] = self.get_tokenizer() __A : List[str] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Any = 'lower newer' __A : Optional[Any] = self.prepare_image_inputs() __A : List[Any] = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : Any = 'google/owlvit-base-patch32' __A : int = OwlViTProcessor.from_pretrained(_A ) __A : Dict = ['cat', 'nasa badge'] __A : Optional[Any] = processor(text=_A ) __A : Optional[int] = 16 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : Tuple = 'google/owlvit-base-patch32' __A : Any = OwlViTProcessor.from_pretrained(_A ) __A : Dict = [['cat', 'nasa badge'], ['person']] __A : Dict = processor(text=_A ) __A : Optional[int] = 16 __A : Any = len(_A ) __A : Union[str, Any] = max([len(_A ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : List[Any] = 'google/owlvit-base-patch32' __A : str = OwlViTProcessor.from_pretrained(_A ) __A : Union[str, Any] = ['cat', 'nasa badge'] __A : Tuple = processor(text=_A ) __A : str = 16 __A : int = inputs['input_ids'] __A : List[Any] = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.get_image_processor() __A : List[str] = self.get_tokenizer() __A : Optional[Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Optional[int] = self.prepare_image_inputs() __A : Optional[int] = self.prepare_image_inputs() __A : Optional[int] = processor(images=_A , query_images=_A ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.get_image_processor() __A : Union[str, Any] = self.get_tokenizer() __A : str = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A : Any = processor.batch_decode(_A ) __A : Tuple = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A )
280
0
from __future__ import annotations def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = set(_lowercase ), [start] while stack: SCREAMING_SNAKE_CASE : Optional[int] = stack.pop() explored.add(_lowercase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_lowercase ) return explored __UpperCamelCase : List[Any] = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
355
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A ( _lowercase , _lowercase ): # Load checkpoint SCREAMING_SNAKE_CASE : Union[str, Any] = torch.load(_lowercase , map_location='''cpu''' ) SCREAMING_SNAKE_CASE : List[str] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository SCREAMING_SNAKE_CASE : int = {} for k, v in state_dict.items(): if "pred_layer" in k: SCREAMING_SNAKE_CASE : Optional[Any] = v else: SCREAMING_SNAKE_CASE : List[Any] = v SCREAMING_SNAKE_CASE : Dict = chkpt['''params'''] SCREAMING_SNAKE_CASE : Optional[Any] = {n: v for n, v in config.items() if not isinstance(_lowercase , (torch.FloatTensor, numpy.ndarray) )} SCREAMING_SNAKE_CASE : Any = chkpt['''dico_word2id'''] SCREAMING_SNAKE_CASE : str = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model SCREAMING_SNAKE_CASE : Dict = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME SCREAMING_SNAKE_CASE : List[str] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME SCREAMING_SNAKE_CASE : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(_lowercase , _lowercase ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_lowercase , indent=2 ) + '''\n''' ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : List[Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
258
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a__ : Optional[Any] =logging.get_logger(__name__) if is_vision_available(): import PIL class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =["pixel_values"] def __init__( self : List[Any] , __A : bool = True , __A : Dict[str, int] = None , __A : PILImageResampling = PILImageResampling.BICUBIC , __A : bool = True , __A : Dict[str, int] = None , __A : bool = True , __A : Union[int, float] = 1 / 2_5_5 , __A : bool = True , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , __A : bool = True , **__A : str , ): super().__init__(**__A ) __UpperCamelCase = size if size is not None else {'shortest_edge': 2_2_4} __UpperCamelCase = get_size_dict(__A , default_to_square=__A ) __UpperCamelCase = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __UpperCamelCase = get_size_dict(__A , default_to_square=__A , param_name='crop_size' ) __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = resample __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD __UpperCamelCase = do_convert_rgb def _lowerCamelCase ( self : Optional[Any] , __A : np.ndarray , __A : Dict[str, int] , __A : PILImageResampling = PILImageResampling.BICUBIC , __A : Optional[Union[str, ChannelDimension]] = None , **__A : List[str] , ): __UpperCamelCase = get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __UpperCamelCase = get_resize_output_image_size(__A , size=size['shortest_edge'] , default_to_square=__A ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def _lowerCamelCase ( self : str , __A : np.ndarray , __A : Dict[str, int] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Optional[int] , ): __UpperCamelCase = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__A , size=(size['height'], size['width']) , data_format=__A , **__A ) def _lowerCamelCase ( self : str , __A : np.ndarray , __A : Union[int, float] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Union[str, Any] , ): return rescale(__A , scale=__A , data_format=__A , **__A ) def _lowerCamelCase ( self : Tuple , __A : np.ndarray , __A : Union[float, List[float]] , __A : Union[float, List[float]] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Dict , ): return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def _lowerCamelCase ( self : Union[str, Any] , __A : ImageInput , __A : bool = None , __A : Dict[str, int] = None , __A : PILImageResampling = None , __A : bool = None , __A : int = None , __A : bool = None , __A : float = None , __A : bool = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , __A : bool = None , __A : Optional[Union[str, TensorType]] = None , __A : Optional[ChannelDimension] = ChannelDimension.FIRST , **__A : Dict , ): __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(__A , param_name='size' , default_to_square=__A ) __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase = crop_size if crop_size is not None else self.crop_size __UpperCamelCase = get_size_dict(__A , param_name='crop_size' , default_to_square=__A ) __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = image_mean if image_mean is not None else self.image_mean __UpperCamelCase = image_std if image_std is not None else self.image_std __UpperCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCamelCase = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCamelCase = [convert_to_rgb(__A ) for image in images] # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(__A ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: __UpperCamelCase = [self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] __UpperCamelCase = [to_channel_dimension_format(__A , __A ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=__A , tensor_type=__A )
53
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a__ : str =logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str =["input_features", "attention_mask"] def __init__( self : Union[str, Any] , __A : Optional[int]=8_0 , __A : Tuple=1_6_0_0_0 , __A : Optional[Any]=8_0 , __A : Any=0.0 , __A : Any=True , __A : List[str]=True , __A : str=True , **__A : List[Any] , ): super().__init__(feature_size=__A , sampling_rate=__A , padding_value=__A , **__A ) __UpperCamelCase = num_mel_bins __UpperCamelCase = do_ceptral_normalize __UpperCamelCase = normalize_means __UpperCamelCase = normalize_vars __UpperCamelCase = True def _lowerCamelCase ( self : Union[str, Any] , __A : np.ndarray , ): __UpperCamelCase = waveform * (2**1_5) # Kaldi compliance: 16-bit signed integers __UpperCamelCase = torch.from_numpy(__A ).unsqueeze(0 ) __UpperCamelCase = ta_kaldi.fbank(__A , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _lowerCamelCase ( __A : np.ndarray , __A : int , __A : Optional[bool] = True , __A : Optional[bool] = True , __A : float = 0.0 , ): # make sure we normalize float32 arrays if normalize_means: __UpperCamelCase = x[:input_length].mean(axis=0 ) __UpperCamelCase = np.subtract(__A , __A ) if normalize_vars: __UpperCamelCase = x[:input_length].std(axis=0 ) __UpperCamelCase = np.divide(__A , __A ) if input_length < x.shape[0]: __UpperCamelCase = padding_value # make sure array is in float32 __UpperCamelCase = x.astype(np.floataa ) return x def _lowerCamelCase ( self : int , __A : List[np.ndarray] , __A : Optional[np.ndarray] = None ): __UpperCamelCase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(__A , __A , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(__A , __A ) ] def __call__( self : List[Any] , __A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __A : Union[bool, str, PaddingStrategy] = False , __A : Optional[int] = None , __A : bool = False , __A : Optional[int] = None , __A : Optional[Union[str, TensorType]] = None , __A : Optional[int] = None , __A : Optional[bool] = None , **__A : Dict , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __UpperCamelCase = isinstance(__A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __UpperCamelCase = is_batched_numpy or ( isinstance(__A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCamelCase = [np.asarray(__A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A , np.ndarray ): __UpperCamelCase = np.asarray(__A , dtype=np.floataa ) elif isinstance(__A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCamelCase = [raw_speech] # extract fbank features __UpperCamelCase = [self._extract_fbank_features(__A ) for waveform in raw_speech] # convert into correct format for padding __UpperCamelCase = BatchFeature({'input_features': features} ) __UpperCamelCase = self.pad( __A , padding=__A , max_length=__A , truncation=__A , pad_to_multiple_of=__A , return_attention_mask=__A , **__A , ) # make sure list is in array format __UpperCamelCase = padded_inputs.get('input_features' ) if isinstance(input_features[0] , __A ): __UpperCamelCase = [np.asarray(__A , dtype=np.floataa ) for feature in input_features] __UpperCamelCase = padded_inputs.get('attention_mask' ) if attention_mask is not None: __UpperCamelCase = [np.asarray(__A , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: __UpperCamelCase = ( np.array(__A , dtype=np.intaa ) if self._get_padding_strategies(__A , max_length=__A ) is not PaddingStrategy.DO_NOT_PAD else None ) __UpperCamelCase = self.normalize( padded_inputs['input_features'] , attention_mask=__A ) if return_tensors is not None: __UpperCamelCase = padded_inputs.convert_to_tensors(__A ) return padded_inputs
53
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer _A = logging.get_logger(__name__) _A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _A = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } _A = {"mobilebert-uncased": 5_12} _A = {} class lowerCamelCase ( A_ ): UpperCAmelCase__ : Tuple = VOCAB_FILES_NAMES UpperCAmelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Tuple = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Optional[Any] = MobileBertTokenizer def __init__(self : Any , _A : str=None , _A : str=None , _A : Union[str, Any]=True , _A : Optional[Any]="[UNK]" , _A : int="[SEP]" , _A : Dict="[PAD]" , _A : int="[CLS]" , _A : Union[str, Any]="[MASK]" , _A : Any=True , _A : Dict=None , **_A : List[str] , ) -> List[str]: super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _A ) != do_lower_case or normalizer_state.get("strip_accents" , _A ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _A ) != tokenize_chinese_chars ): snake_case = getattr(_A , normalizer_state.pop("type" ) ) snake_case = do_lower_case snake_case = strip_accents snake_case = tokenize_chinese_chars snake_case = normalizer_class(**_A ) snake_case = do_lower_case def UpperCAmelCase(self : List[str] , _A : Union[str, Any] , _A : Dict=None ) -> Optional[Any]: snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase(self : Union[str, Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase(self : int , _A : str , _A : Optional[str] = None ) -> Tuple[str]: snake_case = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
137
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase_ ( A__ ) -> bool: """simple docstring""" snake_case = int(number**0.5 ) return number == sq * sq def lowercase_ ( A__ , A__ , A__ , A__ , A__ , A__ ) -> tuple[int, int]: """simple docstring""" snake_case = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den snake_case = x_den * y_den * z_den snake_case = gcd(A__ , A__ ) top //= hcf bottom //= hcf return top, bottom def lowercase_ ( A__ = 35 ) -> int: """simple docstring""" snake_case = set() snake_case = 42 snake_case = Fraction(0 ) snake_case = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 snake_case = x_num * y_den + x_den * y_num snake_case = x_den * y_den snake_case = gcd(A__ , A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: snake_case = add_three( A__ , A__ , A__ , A__ , A__ , A__ ) unique_s.add(A__ ) # n=2 snake_case = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) snake_case = x_den * x_den * y_den * y_den if is_sq(A__ ) and is_sq(A__ ): snake_case = int(sqrt(A__ ) ) snake_case = int(sqrt(A__ ) ) snake_case = gcd(A__ , A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: snake_case = add_three( A__ , A__ , A__ , A__ , A__ , A__ ) unique_s.add(A__ ) # n=-1 snake_case = x_num * y_num snake_case = x_den * y_num + x_num * y_den snake_case = gcd(A__ , A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: snake_case = add_three( A__ , A__ , A__ , A__ , A__ , A__ ) unique_s.add(A__ ) # n=2 snake_case = x_num * x_num * y_num * y_num snake_case = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(A__ ) and is_sq(A__ ): snake_case = int(sqrt(A__ ) ) snake_case = int(sqrt(A__ ) ) snake_case = gcd(A__ , A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: snake_case = add_three( A__ , A__ , A__ , A__ , A__ , A__ ) unique_s.add(A__ ) for num, den in unique_s: total += Fraction(A__ , A__ ) return total.denominator + total.numerator if __name__ == "__main__": print(f"{solution() = }")
137
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right SCREAMING_SNAKE_CASE__ = 250_004 SCREAMING_SNAKE_CASE__ = 250_020 @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( lowerCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = MBartaaTokenizer _lowerCAmelCase : Optional[int] = MBartaaTokenizerFast _lowerCAmelCase : Tuple = True _lowerCAmelCase : Dict = True def snake_case ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing snake_case = MBartaaTokenizer(lowerCAmelCase , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self ): """simple docstring""" snake_case = '<s>' snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ) , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(lowerCAmelCase ) , 10_54 ) def snake_case ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def snake_case ( self ): """simple docstring""" snake_case = MBartaaTokenizer(lowerCAmelCase , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=lowerCAmelCase ) snake_case = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) snake_case = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) snake_case = tokenizer.convert_tokens_to_ids(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) snake_case = tokenizer.convert_ids_to_tokens(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def snake_case ( self ): """simple docstring""" snake_case = {'input_ids': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def snake_case ( self ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) snake_case = tempfile.mkdtemp() snake_case = tokenizer_r.save_pretrained(lowerCAmelCase ) snake_case = tokenizer_p.save_pretrained(lowerCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) snake_case = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(lowerCAmelCase , lowerCAmelCase ) # Checks everything loads correctly in the same way snake_case = tokenizer_r.from_pretrained(lowerCAmelCase ) snake_case = tokenizer_p.from_pretrained(lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase , lowerCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase ) # Save tokenizer rust, legacy_format=True snake_case = tempfile.mkdtemp() snake_case = tokenizer_r.save_pretrained(lowerCAmelCase , legacy_format=lowerCAmelCase ) snake_case = tokenizer_p.save_pretrained(lowerCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase , lowerCAmelCase ) # Checks everything loads correctly in the same way snake_case = tokenizer_r.from_pretrained(lowerCAmelCase ) snake_case = tokenizer_p.from_pretrained(lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase , lowerCAmelCase ) ) shutil.rmtree(lowerCAmelCase ) # Save tokenizer rust, legacy_format=False snake_case = tempfile.mkdtemp() snake_case = tokenizer_r.save_pretrained(lowerCAmelCase , legacy_format=lowerCAmelCase ) snake_case = tokenizer_p.save_pretrained(lowerCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case = tokenizer_r.from_pretrained(lowerCAmelCase ) snake_case = tokenizer_p.from_pretrained(lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase , lowerCAmelCase ) ) shutil.rmtree(lowerCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Dict = """facebook/mbart-large-50-one-to-many-mmt""" _lowerCAmelCase : List[str] = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] _lowerCAmelCase : Tuple = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] _lowerCAmelCase : Any = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2] @classmethod def snake_case ( cls ): """simple docstring""" snake_case = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) snake_case = 1 return cls def snake_case ( self ): """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_00_38 ) def snake_case ( self ): """simple docstring""" snake_case = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" self.assertIn(lowerCAmelCase , self.tokenizer.all_special_ids ) snake_case = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] snake_case = self.tokenizer.decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) snake_case = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , lowerCAmelCase ) snake_case = 10 snake_case = self.tokenizer(lowerCAmelCase , max_length=lowerCAmelCase , truncation=lowerCAmelCase ).input_ids[0] self.assertEqual(ids[0] , lowerCAmelCase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_00_53, 25_00_01] ) def snake_case ( self ): """simple docstring""" snake_case = tempfile.mkdtemp() snake_case = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase ) snake_case = MBartaaTokenizer.from_pretrained(lowerCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase ) @require_torch def snake_case ( self ): """simple docstring""" snake_case = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase , return_tensors='pt' ) snake_case = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def snake_case ( self ): """simple docstring""" snake_case = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) snake_case = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) snake_case = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def snake_case ( self ): """simple docstring""" snake_case = self.tokenizer(self.src_text , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=3 , return_tensors='pt' ) snake_case = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=10 , return_tensors='pt' ) snake_case = targets['input_ids'] snake_case = shift_tokens_right(lowerCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def snake_case ( self ): """simple docstring""" snake_case = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(lowerCAmelCase ) , { # en_XX, A, test, EOS 'input_ids': [[25_00_04, 62, 30_34, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_00_01, } , )
150
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : Any ) -> Dict: """simple docstring""" snake_case = XCLIPTextConfig() # derive patch size from model name snake_case = model_name.find('patch' ) snake_case = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) snake_case = XCLIPVisionConfig(patch_size=_UpperCamelCase , num_frames=_UpperCamelCase ) if "large" in model_name: snake_case = 7_6_8 snake_case = 3_0_7_2 snake_case = 1_2 snake_case = 1_0_2_4 snake_case = 4_0_9_6 snake_case = 1_6 snake_case = 2_4 snake_case = 7_6_8 snake_case = 3_0_7_2 if model_name == "xclip-large-patch14-16-frames": snake_case = 3_3_6 snake_case = XCLIPConfig.from_text_vision_configs(_UpperCamelCase , _UpperCamelCase ) if "large" in model_name: snake_case = 7_6_8 return config def lowerCAmelCase__ ( _UpperCamelCase : Dict ) -> List[Any]: """simple docstring""" if name == "token_embedding.weight": snake_case = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": snake_case = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: snake_case = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: snake_case = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: snake_case = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: snake_case = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): snake_case = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: snake_case = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: snake_case = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": snake_case = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": snake_case = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): snake_case = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: snake_case = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: snake_case = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: snake_case = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: snake_case = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: snake_case = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: snake_case = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: snake_case = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": snake_case = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): snake_case = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): snake_case = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): snake_case = orig_state_dict.pop(_UpperCamelCase ) if "attn.in_proj" in key: snake_case = key.split('.' ) if key.startswith('visual' ): snake_case = key_split[3] snake_case = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: snake_case = val[ :dim, : ] snake_case = val[ dim : dim * 2, : ] snake_case = val[ -dim:, : ] else: snake_case = val[ :dim ] snake_case = val[ dim : dim * 2 ] snake_case = val[ -dim: ] else: if "weight" in key: snake_case = val[ :dim, : ] snake_case = val[ dim : dim * 2, : ] snake_case = val[ -dim:, : ] else: snake_case = val[:dim] snake_case = val[ dim : dim * 2 ] snake_case = val[-dim:] elif key.startswith('mit' ): snake_case = key_split[2] snake_case = config.vision_config.mit_hidden_size if "weight" in key: snake_case = val[:dim, :] snake_case = val[dim : dim * 2, :] snake_case = val[-dim:, :] else: snake_case = val[:dim] snake_case = val[dim : dim * 2] snake_case = val[-dim:] else: snake_case = key_split[2] snake_case = config.text_config.hidden_size if "weight" in key: snake_case = val[:dim, :] snake_case = val[ dim : dim * 2, : ] snake_case = val[-dim:, :] else: snake_case = val[:dim] snake_case = val[ dim : dim * 2 ] snake_case = val[-dim:] else: snake_case = rename_key(_UpperCamelCase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: snake_case = val.T snake_case = val return orig_state_dict def lowerCAmelCase__ ( _UpperCamelCase : List[str] ) -> Optional[Any]: """simple docstring""" if num_frames == 8: snake_case = 'eating_spaghetti_8_frames.npy' elif num_frames == 1_6: snake_case = 'eating_spaghetti.npy' elif num_frames == 3_2: snake_case = 'eating_spaghetti_32_frames.npy' snake_case = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=_UpperCamelCase , repo_type='dataset' , ) snake_case = np.load(_UpperCamelCase ) return list(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : Tuple=None , _UpperCamelCase : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" snake_case = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } snake_case = model_to_url[model_name] snake_case = 8 if "16-frames" in model_name: snake_case = 1_6 elif "shot" in model_name: snake_case = 3_2 snake_case = get_xclip_config(_UpperCamelCase , _UpperCamelCase ) snake_case = XCLIPModel(_UpperCamelCase ) model.eval() if "drive" in checkpoint_url: snake_case = 'pytorch_model.bin' gdown.cached_download(_UpperCamelCase , _UpperCamelCase , quiet=_UpperCamelCase ) snake_case = torch.load(_UpperCamelCase , map_location='cpu' )['model'] else: snake_case = torch.hub.load_state_dict_from_url(_UpperCamelCase )['model'] snake_case = convert_state_dict(_UpperCamelCase , _UpperCamelCase ) snake_case = XCLIPModel(_UpperCamelCase ) snake_case ,snake_case = model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() snake_case = 3_3_6 if model_name == 'xclip-large-patch14-16-frames' else 2_2_4 snake_case = VideoMAEImageProcessor(size=_UpperCamelCase ) snake_case = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) snake_case = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) snake_case = XCLIPProcessor(image_processor=_UpperCamelCase , tokenizer=_UpperCamelCase ) snake_case = prepare_video(_UpperCamelCase ) snake_case = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=_UpperCamelCase , return_tensors='pt' , padding=_UpperCamelCase ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): snake_case = model(**_UpperCamelCase ) # Verify outputs snake_case = outputs.logits_per_video snake_case = logits_per_video.softmax(dim=1 ) print('Probs:' , _UpperCamelCase ) # kinetics-400 if model_name == "xclip-base-patch32": snake_case = torch.tensor([[0.00_19, 0.99_51, 0.00_30]] ) elif model_name == "xclip-base-patch32-16-frames": snake_case = torch.tensor([[7.0_9_9_9e-0_4, 9.9_8_8_3e-0_1, 4.5_5_8_0e-0_4]] ) elif model_name == "xclip-base-patch16": snake_case = torch.tensor([[0.00_83, 0.96_81, 0.02_36]] ) elif model_name == "xclip-base-patch16-16-frames": snake_case = torch.tensor([[7.6_9_3_7e-0_4, 9.9_7_2_8e-0_1, 1.9_4_7_3e-0_3]] ) elif model_name == "xclip-large-patch14": snake_case = torch.tensor([[0.00_62, 0.98_64, 0.00_75]] ) elif model_name == "xclip-large-patch14-16-frames": snake_case = torch.tensor([[3.3_8_7_7e-0_4, 9.9_9_3_7e-0_1, 2.8_8_8_8e-0_4]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": snake_case = torch.tensor([[0.05_55, 0.89_14, 0.05_31]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": snake_case = torch.tensor([[3.8_5_5_4e-0_4, 9.9_9_2_9e-0_1, 3.2_7_5_4e-0_4]] ) elif model_name == "xclip-large-patch14-kinetics-600": snake_case = torch.tensor([[0.00_36, 0.99_20, 0.00_45]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": snake_case = torch.tensor([[7.1_8_9_0e-0_6, 9.9_9_9_4e-0_1, 5.6_5_5_9e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": snake_case = torch.tensor([[1.0_3_2_0e-0_5, 9.9_9_9_3e-0_1, 6.2_4_3_5e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": snake_case = torch.tensor([[4.1_3_7_7e-0_6, 9.9_9_9_0e-0_1, 9.8_3_8_6e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": snake_case = torch.tensor([[4.1_3_4_7e-0_5, 9.9_9_6_2e-0_1, 3.3_4_1_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": snake_case = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": snake_case = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": snake_case = torch.tensor([[0.00_27, 0.99_04, 0.00_70]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": snake_case = torch.tensor([[9.8_2_1_9e-0_4, 9.9_5_9_3e-0_1, 3.0_8_6_3e-0_3]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": snake_case = torch.tensor([[3.5_0_8_2e-0_4, 9.9_7_8_5e-0_1, 1.7_9_6_6e-0_3]] ) else: raise ValueError(f"""Model name {model_name} not supported""" ) assert torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCamelCase ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(_UpperCamelCase , organization='nielsr' ) processor.push_to_hub(_UpperCamelCase , organization='nielsr' ) slow_tokenizer.push_to_hub(_UpperCamelCase , organization='nielsr' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
150
1
from __future__ import annotations def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
105
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __lowercase = logging.getLogger(__name__) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : str = """token-classification""" def __init__( self , __lowercase) -> str: if type(__lowercase) == dict: __UpperCamelCase :List[Any] = Namespace(**__lowercase) __UpperCamelCase :Dict = import_module('''tasks''') try: __UpperCamelCase :str = getattr(__lowercase , hparams.task_type) __UpperCamelCase :TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""") __UpperCamelCase :Tuple = self.token_classification_task.get_labels(hparams.labels) __UpperCamelCase :Tuple = CrossEntropyLoss().ignore_index super().__init__(__lowercase , len(self.labels) , self.mode) def UpperCamelCase__ ( self , **__lowercase) -> List[Any]: return self.model(**__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Any: __UpperCamelCase :str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": __UpperCamelCase :Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids __UpperCamelCase :Dict = self(**__lowercase) __UpperCamelCase :str = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :List[Any] = self.hparams for mode in ["train", "dev", "test"]: __UpperCamelCase :int = self._feature_file(__lowercase) if os.path.exists(__lowercase) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __lowercase) __UpperCamelCase :Any = torch.load(__lowercase) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir) __UpperCamelCase :Any = self.token_classification_task.read_examples_from_file(args.data_dir , __lowercase) __UpperCamelCase :Union[str, Any] = self.token_classification_task.convert_examples_to_features( __lowercase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet''']) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__lowercase , pad_on_left=bool(self.config.model_type in ['''xlnet''']) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __lowercase) torch.save(__lowercase , __lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = False) -> DataLoader: __UpperCamelCase :Tuple = self._feature_file(__lowercase) logger.info('''Loading features from cached file %s''' , __lowercase) __UpperCamelCase :str = torch.load(__lowercase) __UpperCamelCase :int = torch.tensor([f.input_ids for f in features] , dtype=torch.long) __UpperCamelCase :Optional[Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long) if features[0].token_type_ids is not None: __UpperCamelCase :str = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long) else: __UpperCamelCase :Union[str, Any] = torch.tensor([0 for f in features] , dtype=torch.long) # HACK(we will not use this anymore soon) __UpperCamelCase :int = torch.tensor([f.label_ids for f in features] , dtype=torch.long) return DataLoader( TensorDataset(__lowercase , __lowercase , __lowercase , __lowercase) , batch_size=__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Dict: """Compute validation""" "" __UpperCamelCase :int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": __UpperCamelCase :Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids __UpperCamelCase :Any = self(**__lowercase) __UpperCamelCase , __UpperCamelCase :Tuple = outputs[:2] __UpperCamelCase :List[str] = logits.detach().cpu().numpy() __UpperCamelCase :List[str] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __lowercase) -> List[str]: __UpperCamelCase :Tuple = torch.stack([x['''val_loss'''] for x in outputs]).mean() __UpperCamelCase :str = np.concatenate([x['''pred'''] for x in outputs] , axis=0) __UpperCamelCase :Any = np.argmax(__lowercase , axis=2) __UpperCamelCase :str = np.concatenate([x['''target'''] for x in outputs] , axis=0) __UpperCamelCase :List[str] = dict(enumerate(self.labels)) __UpperCamelCase :Tuple = [[] for _ in range(out_label_ids.shape[0])] __UpperCamelCase :Any = [[] for _ in range(out_label_ids.shape[0])] for i in range(out_label_ids.shape[0]): for j in range(out_label_ids.shape[1]): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) __UpperCamelCase :Any = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__lowercase , __lowercase), '''precision''': precision_score(__lowercase , __lowercase), '''recall''': recall_score(__lowercase , __lowercase), '''f1''': fa_score(__lowercase , __lowercase), } __UpperCamelCase :Dict = dict(results.items()) __UpperCamelCase :List[str] = results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __lowercase) -> int: # when stable __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :List[Any] = self._eval_end(__lowercase) __UpperCamelCase :Tuple = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __lowercase) -> int: # updating to test_epoch_end instead of deprecated test_end __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Optional[int] = self._eval_end(__lowercase) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 __UpperCamelCase :Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __lowercase , __lowercase) -> Union[str, Any]: # Add NER specific options BaseTransformer.add_model_specific_args(__lowercase , __lowercase) parser.add_argument( '''--task_type''' , default='''NER''' , type=__lowercase , help='''Task type to fine tune in training (e.g. NER, POS, etc)''') parser.add_argument( '''--max_seq_length''' , default=128 , type=__lowercase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__lowercase , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__lowercase , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''') return parser if __name__ == "__main__": __lowercase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __lowercase = NERTransformer.add_model_specific_args(parser, os.getcwd()) __lowercase = parser.parse_args() __lowercase = NERTransformer(args) __lowercase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __lowercase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) __lowercase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
105
1
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json''' ), } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Tuple = "xlm-prophetnet" A__ : Optional[int] = ["past_key_values"] A__ : List[Any] = { "num_attention_heads": "num_encoder_attention_heads", } def __init__( self: Union[str, Any] ,lowerCamelCase_: Optional[float] = 0.1 ,lowerCamelCase_: Optional[Union[str, Callable]] = "gelu" ,lowerCamelCase_: Optional[int] = 30522 ,lowerCamelCase_: Optional[int] = 1024 ,lowerCamelCase_: Optional[int] = 4096 ,lowerCamelCase_: Optional[int] = 12 ,lowerCamelCase_: Optional[int] = 16 ,lowerCamelCase_: Optional[int] = 4096 ,lowerCamelCase_: Optional[int] = 12 ,lowerCamelCase_: Optional[int] = 16 ,lowerCamelCase_: Optional[float] = 0.1 ,lowerCamelCase_: Optional[float] = 0.1 ,lowerCamelCase_: Optional[int] = 512 ,lowerCamelCase_: Optional[float] = 0.0_2 ,lowerCamelCase_: Optional[bool] = True ,lowerCamelCase_: Optional[bool] = True ,lowerCamelCase_: Optional[int] = 0 ,lowerCamelCase_: Optional[int] = 2 ,lowerCamelCase_: Optional[int] = 32 ,lowerCamelCase_: Optional[int] = 128 ,lowerCamelCase_: Optional[bool] = False ,lowerCamelCase_: Optional[float] = 0.0 ,lowerCamelCase_: Optional[bool] = True ,lowerCamelCase_: Optional[int] = 0 ,lowerCamelCase_: Optional[int] = 1 ,lowerCamelCase_: Optional[int] = 2 ,**lowerCamelCase_: Optional[int] ,) -> Dict: UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : Optional[int] = hidden_size UpperCAmelCase_ : Tuple = encoder_ffn_dim UpperCAmelCase_ : Dict = num_encoder_layers UpperCAmelCase_ : List[str] = num_encoder_attention_heads UpperCAmelCase_ : Tuple = decoder_ffn_dim UpperCAmelCase_ : Optional[Any] = num_decoder_layers UpperCAmelCase_ : int = num_decoder_attention_heads UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = init_std # Normal(0, this parameter) UpperCAmelCase_ : Any = activation_function # parameters for xlmprophetnet UpperCAmelCase_ : str = ngram UpperCAmelCase_ : str = num_buckets UpperCAmelCase_ : Dict = relative_max_distance UpperCAmelCase_ : List[Any] = disable_ngram_loss UpperCAmelCase_ : int = eps # 3 Types of Dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Dict = activation_dropout UpperCAmelCase_ : int = dropout UpperCAmelCase_ : List[str] = use_cache super().__init__( pad_token_id=lowerCamelCase_ ,bos_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,is_encoder_decoder=lowerCamelCase_ ,add_cross_attention=lowerCamelCase_ ,decoder_start_token_id=lowerCamelCase_ ,**lowerCamelCase_ ,) @property def A__ ( self: Optional[Any] ) -> int: return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def A__ ( self: Dict ,lowerCamelCase_: Optional[int] ) -> int: raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and""" """ `num_decoder_layers`.""" )
345
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : '''simple docstring''' def __init__( self: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any]=13 ,lowerCamelCase_: Optional[int]=32 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: int=16 ,lowerCamelCase_: Optional[Any]=[32, 64, 128] ,lowerCamelCase_: Optional[int]=[1, 2, 1] ,lowerCamelCase_: Union[str, Any]=[2, 2, 4] ,lowerCamelCase_: int=2 ,lowerCamelCase_: List[str]=2.0 ,lowerCamelCase_: List[Any]=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.1 ,lowerCamelCase_: Optional[int]="gelu" ,lowerCamelCase_: Any=False ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=0.0_2 ,lowerCamelCase_: int=1e-5 ,lowerCamelCase_: int=True ,lowerCamelCase_: Tuple=None ,lowerCamelCase_: str=True ,lowerCamelCase_: Dict=10 ,lowerCamelCase_: str=8 ,lowerCamelCase_: Union[str, Any]=["stage1", "stage2"] ,lowerCamelCase_: Optional[Any]=[1, 2] ,) -> str: UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : str = patch_size UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : Dict = embed_dim UpperCAmelCase_ : Dict = hidden_sizes UpperCAmelCase_ : str = depths UpperCAmelCase_ : int = num_heads UpperCAmelCase_ : List[Any] = window_size UpperCAmelCase_ : Union[str, Any] = mlp_ratio UpperCAmelCase_ : int = qkv_bias UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = drop_path_rate UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : List[Any] = use_absolute_embeddings UpperCAmelCase_ : List[Any] = patch_norm UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Optional[Any] = scope UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Optional[int] = encoder_stride UpperCAmelCase_ : Optional[int] = out_features UpperCAmelCase_ : Optional[int] = out_indices def A__ ( self: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : int = None if self.use_labels: UpperCAmelCase_ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Any = self.get_config() return config, pixel_values, labels def A__ ( self: List[Any] ) -> Tuple: return FocalNetConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> List[str]: UpperCAmelCase_ : Optional[int] = FocalNetModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ) UpperCAmelCase_ : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase_ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[int] ) -> List[str]: UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def A__ ( self: Optional[int] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : Any = FocalNetForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : int = 1 UpperCAmelCase_ : List[str] = FocalNetForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ) -> int: UpperCAmelCase_ : List[Any] = self.type_sequence_label_size UpperCAmelCase_ : int = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = config_and_inputs UpperCAmelCase_ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : List[Any] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) A__ : Union[str, Any] = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) A__ : Optional[Any] = False A__ : Any = False A__ : List[str] = False A__ : Any = False A__ : Any = False def A__ ( self: List[str] ) -> Tuple: UpperCAmelCase_ : Dict = FocalNetModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self ,config_class=lowerCamelCase_ ,embed_dim=37 ,has_text_modality=lowerCamelCase_ ) def A__ ( self: List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self: List[str] ) -> Union[str, Any]: return def A__ ( self: str ) -> List[str]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def A__ ( self: Tuple ) -> int: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def A__ ( self: int ) -> int: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def A__ ( self: int ) -> Dict: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def A__ ( self: Optional[Any] ) -> Optional[Any]: pass def A__ ( self: Optional[Any] ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Optional[Any] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase_ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) ) def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : str = model_class(lowerCamelCase_ ) UpperCAmelCase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Any = [*signature.parameters.keys()] UpperCAmelCase_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase_ ) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> List[str]: UpperCAmelCase_ : Tuple = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : Any = outputs.hidden_states UpperCAmelCase_ : List[Any] = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # FocalNet has a different seq_length UpperCAmelCase_ : int = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) UpperCAmelCase_ : Union[str, Any] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = reshaped_hidden_states[0].shape UpperCAmelCase_ : List[Any] = ( reshaped_hidden_states[0].view(lowerCamelCase_ ,lowerCamelCase_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def A__ ( self: Any ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : str = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Union[str, Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[str] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase_ : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase_ : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Optional[int] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) @slow def A__ ( self: Optional[int] ) -> Optional[Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = FocalNetModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @require_vision @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self: Optional[int] ) -> str: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = self.default_image_processor UpperCAmelCase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCAmelCase_ : Dict = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Dict = model(**lowerCamelCase_ ) # verify the logits UpperCAmelCase_ : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() ,281 ) @require_torch class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : List[Any] = (FocalNetBackbone,) if is_torch_available() else () A__ : int = FocalNetConfig A__ : List[str] = False def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : str = FocalNetModelTester(self )
345
1
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
366
def snake_case ( snake_case__ :int , snake_case__ :int) -> str: return "\n".join( F'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1)) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
81
0
from __future__ import annotations from math import pi def snake_case ( snake_case__ :Union[str, Any] , snake_case__ :int , snake_case__ :Union[str, Any]) -> dict[str, float]: if (inductance, frequency, reactance).count(0) != 1: raise ValueError("""One and only one argument must be 0""") if inductance < 0: raise ValueError("""Inductance cannot be negative""") if frequency < 0: raise ValueError("""Frequency cannot be negative""") if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""") if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""") if __name__ == "__main__": import doctest doctest.testmod()
180
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCamelCase : str = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = 42 class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : str , _lowerCAmelCase : PriorTransformer , _lowerCAmelCase : CLIPVisionModel , _lowerCAmelCase : CLIPImageProcessor , _lowerCAmelCase : HeunDiscreteScheduler , _lowerCAmelCase : ShapERenderer , ): super().__init__() self.register_modules( prior=_lowerCAmelCase , image_encoder=_lowerCAmelCase , image_processor=_lowerCAmelCase , scheduler=_lowerCAmelCase , renderer=_lowerCAmelCase , ) def A (self : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): if latents is None: A = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase , dtype=_lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) A = latents.to(_lowerCAmelCase ) A = latents * scheduler.init_noise_sigma return latents def A (self : Union[str, Any] , _lowerCAmelCase : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) A = torch.device(F"""cuda:{gpu_id}""" ) A = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCAmelCase , _lowerCAmelCase ) @property def A (self : Optional[Any] ): if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_lowerCAmelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def A (self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(image[0] , torch.Tensor ): A = torch.cat(_lowerCAmelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_lowerCAmelCase , axis=0 ) if not isinstance(_lowerCAmelCase , torch.Tensor ): A = self.image_processor(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) A = image.to(dtype=self.image_encoder.dtype , device=_lowerCAmelCase ) A = self.image_encoder(_lowerCAmelCase )["""last_hidden_state"""] A = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 A = image_embeds.repeat_interleave(_lowerCAmelCase , dim=0 ) if do_classifier_free_guidance: A = torch.zeros_like(_lowerCAmelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_lowerCAmelCase ) def __call__(self : List[Any] , _lowerCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 25 , _lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCAmelCase : Optional[torch.FloatTensor] = None , _lowerCAmelCase : float = 4.0 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : Optional[str] = "pil" , _lowerCAmelCase : bool = True , ): if isinstance(_lowerCAmelCase , PIL.Image.Image ): A = 1 elif isinstance(_lowerCAmelCase , torch.Tensor ): A = image.shape[0] elif isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): A = len(_lowerCAmelCase ) else: raise ValueError( F"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_lowerCAmelCase )}""" ) A = self._execution_device A = batch_size * num_images_per_prompt A = guidance_scale > 1.0 A = self._encode_image(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # prior self.scheduler.set_timesteps(_lowerCAmelCase , device=_lowerCAmelCase ) A = self.scheduler.timesteps A = self.prior.config.num_embeddings A = self.prior.config.embedding_dim A = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim A = latents.reshape(latents.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) for i, t in enumerate(self.progress_bar(_lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A = self.scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) A = self.prior( _lowerCAmelCase , timestep=_lowerCAmelCase , proj_embedding=_lowerCAmelCase , ).predicted_image_embedding # remove the variance A , A = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: A , A = noise_pred.chunk(2 ) A = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) A = self.scheduler.step( _lowerCAmelCase , timestep=_lowerCAmelCase , sample=_lowerCAmelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_lowerCAmelCase ) A = [] for i, latent in enumerate(_lowerCAmelCase ): print() A = self.renderer.decode( latent[None, :] , _lowerCAmelCase , size=_lowerCAmelCase , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(_lowerCAmelCase ) A = torch.stack(_lowerCAmelCase ) if output_type not in ["np", "pil"]: raise ValueError(F"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) A = images.cpu().numpy() if output_type == "pil": A = [self.numpy_to_pil(_lowerCAmelCase ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_lowerCAmelCase )
258
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device A = False class __lowercase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ): __a : Dict = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : List[Any] = '''A painting of a squirrel eating a burger ''' __a : Union[str, Any] = torch.manual_seed(0 ) __a : List[Any] = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_UpperCAmelCase ) __a : Any = VersatileDiffusionTextToImagePipeline.from_pretrained(_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Union[str, Any] = generator.manual_seed(0 ) __a : Any = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _lowerCamelCase ( self ): __a : Union[str, Any] = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Optional[int] = '''A painting of a squirrel eating a burger ''' __a : Tuple = torch.manual_seed(0 ) __a : int = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images __a : List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __a : Optional[int] = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
356
"""simple docstring""" import os import string import sys A = 1 << 8 A = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 27, '''up''': 65 + ARROW_KEY_FLAG, '''down''': 66 + ARROW_KEY_FLAG, '''right''': 67 + ARROW_KEY_FLAG, '''left''': 68 + ARROW_KEY_FLAG, '''mod_int''': 91, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 50, '''delete''': 51, '''pg_up''': 53, '''pg_down''': 54, } A = KEYMAP['''up'''] A = KEYMAP['''left'''] if sys.platform == "win32": A = [] A = { B'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, B'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(10): A = ord(str(i)) def __A ( ) -> Dict: if os.name == "nt": import msvcrt __a : Optional[Any] = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(a_) == 0: # Read the keystroke __a : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __a : Optional[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __a : Union[str, Any] = chr(WIN_KEYMAP[cha]) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''])) WIN_CH_BUFFER.append(a_) if ord(a_) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26)) __a : str = chr(KEYMAP['''esc''']) except KeyError: __a : str = cha[1] else: __a : Optional[Any] = ch.decode(a_) else: __a : Union[str, Any] = WIN_CH_BUFFER.pop(0) elif os.name == "posix": import termios import tty __a : Any = sys.stdin.fileno() __a : List[str] = termios.tcgetattr(a_) try: tty.setraw(a_) __a : int = sys.stdin.read(1) finally: termios.tcsetattr(a_ , termios.TCSADRAIN , a_) return ch def __A ( ) -> str: __a : Any = get_raw_chars() if ord(a_) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(a_) == KEYMAP["esc"]: __a : str = get_raw_chars() if ord(a_) == KEYMAP["mod_int"]: __a : List[str] = get_raw_chars() if ord(a_) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(a_) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(a_) + ARROW_KEY_FLAG) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
188
0
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _snake_case ( A__ ): _lowercase : int = CustomTokenizer pass
137
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _snake_case : def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> List[str]: return None class _snake_case : def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a) -> Tuple: return None class _snake_case ( unittest.TestCase ): _lowercase : Optional[int] = [ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(a , 'tf' , 12 , **a) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(a , 'pt' , 12 , **a) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self) -> int: from transformers import BertModel SCREAMING_SNAKE_CASE = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t') as vocab_file: vocab_file.write('\n'.join(a)) vocab_file.flush() SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name) with TemporaryDirectory() as bert_save_dir: SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(a))) model.save_pretrained(a) self._test_export(a , 'pt' , 12 , a) @require_tf @slow def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(a , 'tf' , 12 , **a) SCREAMING_SNAKE_CASE = quantize(Path(a)) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(a).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model') @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(a , 'pt' , 12 , **a) SCREAMING_SNAKE_CASE = quantize(a) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(a).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model') def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a=None , **a) -> Union[str, Any]: try: # Compute path with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE = Path(a).joinpath('model.onnx') # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(a , a , a , a , a , **a) return path except Exception as e: self.fail(a) @require_torch @require_tokenizers @slow def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: from transformers import BertModel SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random')) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random') self._test_infer_dynamic_axis(a , a , 'pt') @require_tf @require_tokenizers @slow def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: from transformers import TFBertModel SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random')) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random') self._test_infer_dynamic_axis(a , a , 'tf') def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Union[str, Any]: SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(a , a) SCREAMING_SNAKE_CASE = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(a , a) # Assert all variables are present self.assertEqual(len(a) , len(a)) self.assertTrue(all(var_name in shapes for var_name in variable_names)) self.assertSequenceEqual(variable_names[:3] , a) self.assertSequenceEqual(variable_names[3:] , a) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'}) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'}) self.assertDictEqual(shapes['output_1'] , {0: 'batch'}) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask', 'token_type_ids'] SCREAMING_SNAKE_CASE = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , a , a) # Should have exactly the same number of args (all are valid) self.assertEqual(len(a) , 3) # Should have exactly the same input names self.assertEqual(set(a) , set(a)) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(a , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask'])) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , a , a) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(a) , 1) self.assertEqual(len(a) , 1) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids']) self.assertEqual(ordered_input_names[0] , 'input_ids') def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = generate_identified_filename(Path('/home/something/my_fake_model.onnx') , '-test') self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix())
137
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : Tuple = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowerCamelCase__ ( A ): """simple docstring""" __a = """roformer""" def __init__( self : Tuple , UpperCamelCase : Any=50_000 , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=768 , UpperCamelCase : Tuple=12 , UpperCamelCase : int=12 , UpperCamelCase : Dict=3_072 , UpperCamelCase : str="gelu" , UpperCamelCase : Tuple=0.1 , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[int]=1_536 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Dict=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : Optional[int]=0 , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Any=True , **UpperCamelCase : Dict , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : List[str] = hidden_size if embedding_size is None else embedding_size __UpperCAmelCase : str = hidden_size __UpperCAmelCase : List[str] = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Tuple = layer_norm_eps __UpperCAmelCase : int = rotary_value __UpperCAmelCase : Optional[Any] = use_cache class lowerCamelCase__ ( A ): """simple docstring""" @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCAmelCase : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """sequence"""} __UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
320
"""simple docstring""" from collections.abc import Sequence def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCamelCase ) ) def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float: '''simple docstring''' __UpperCAmelCase : Dict = 0.0 for coeff in reversed(_UpperCamelCase ): __UpperCAmelCase : Any = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase : str = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
320
1
"""simple docstring""" from __future__ import annotations a : List[str] = 10 def _SCREAMING_SNAKE_CASE ( _lowercase : list[int] ) ->list[int]: '''simple docstring''' a : Any = 1 a : List[Any] = max(_lowercase ) while placement <= max_digit: # declare and initialize empty buckets a : list[list] = [[] for _ in range(_lowercase )] # split list_of_ints between the buckets for i in list_of_ints: a : Dict = int((i / placement) % RADIX ) buckets[tmp].append(_lowercase ) # put each buckets' contents into list_of_ints a : Tuple = 0 for b in range(_lowercase ): for i in buckets[b]: a : List[Any] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
105
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __UpperCamelCase : @staticmethod def __a ( *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: pass def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple ) ->Dict: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. a : Optional[Any] = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): lowerCamelCase : Union[str, Any] =MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: a : Tuple = pipeline( "document-question-answering" , model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a : Optional[int] = INVOICE_URL a : str = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , "" ) ) ) a : Union[str, Any] = "What is the placebo?" a : Dict = [ { "image": load_image(lowerCAmelCase__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: a : Tuple = dqa_pipeline(lowerCAmelCase__ , top_k=2 ) self.assertEqual( lowerCAmelCase__ , [ [ {"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ ), "start": ANY(lowerCAmelCase__ ), "end": ANY(lowerCAmelCase__ )}, {"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ ), "start": ANY(lowerCAmelCase__ ), "end": ANY(lowerCAmelCase__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __a ( self ) -> List[Any]: a : List[Any] = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) a : Dict = INVOICE_URL a : List[str] = "How many cats are there?" a : Tuple = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] a : Optional[int] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) a : Optional[int] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably a : List[Any] = "./tests/fixtures/tests_samples/COCO/000000039769.png" a : Any = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) # We can optionnally pass directly the words and bounding boxes a : Optional[int] = "./tests/fixtures/tests_samples/COCO/000000039769.png" a : Tuple = [] a : Optional[int] = [] a : List[str] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , words=lowerCAmelCase__ , boxes=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __a ( self ) -> Tuple: a : int = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) a : List[str] = INVOICE_URL a : List[Any] = "What is the invoice number?" a : int = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : str = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : Any = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __a ( self ) -> Optional[int]: a : List[str] = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) a : Optional[Any] = INVOICE_URL a : Tuple = "What is the invoice number?" a : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : str = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : Tuple = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __a ( self ) -> str: a : Optional[int] = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase__ ) a : int = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase__ , revision="3dc6de3" , ) a : List[Any] = INVOICE_URL a : Tuple = "What is the invoice number?" a : List[str] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) a : Dict = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) a : List[Any] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) a : Dict = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , "" ) ) ) # This model should also work if `image` is set to None a : Optional[Any] = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __a ( self ) -> Tuple: a : int = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase__ ) a : Tuple = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase__ , revision="3dc6de3" , max_seq_len=50 , ) a : List[str] = INVOICE_URL a : Union[str, Any] = "What is the invoice number?" a : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : List[str] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) a : List[Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , "" ) ) ) # This model should also work if `image` is set to None a : Any = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def __a ( self ) -> int: a : Tuple = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) a : Optional[Any] = INVOICE_URL a : Tuple = "What is the invoice number?" a : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def __a ( self ) -> int: pass
105
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case ( self : Dict )-> Optional[Any]: lowerCamelCase__ : int =tempfile.mkdtemp() # fmt: off lowerCamelCase__ : Optional[Any] =["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on lowerCamelCase__ : str =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase__ : str ={ "do_resize": True, "size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } lowerCamelCase__ : Tuple =os.path.join(self.tmpdirname, _a ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(_a, _a ) def snake_case ( self : int, **lowerCamelCase : List[str] )-> Tuple: return BertTokenizer.from_pretrained(self.tmpdirname, **_a ) def snake_case ( self : Tuple, **lowerCamelCase : str )-> int: return ViTImageProcessor.from_pretrained(self.tmpdirname, **_a ) def snake_case ( self : Optional[int] )-> Any: shutil.rmtree(self.tmpdirname ) def snake_case ( self : Tuple )-> int: lowerCamelCase__ : int =[np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] lowerCamelCase__ : Tuple =[Image.fromarray(np.moveaxis(_a, 0, -1 ) ) for x in image_inputs] return image_inputs def snake_case ( self : int )-> List[Any]: lowerCamelCase__ : int =self.get_tokenizer() lowerCamelCase__ : List[Any] =self.get_image_processor() lowerCamelCase__ : List[Any] =VisionTextDualEncoderProcessor(tokenizer=_a, image_processor=_a ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ : Tuple =VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer, (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor, _a ) def snake_case ( self : int )-> List[str]: lowerCamelCase__ : Union[str, Any] =VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ : str =self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowerCamelCase__ : Any =self.get_image_processor(do_normalize=_a, padding_value=1.0 ) lowerCamelCase__ : List[str] =VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=_a, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, _a ) def snake_case ( self : Dict )-> List[str]: lowerCamelCase__ : int =self.get_image_processor() lowerCamelCase__ : Union[str, Any] =self.get_tokenizer() lowerCamelCase__ : List[Any] =VisionTextDualEncoderProcessor(tokenizer=_a, image_processor=_a ) lowerCamelCase__ : Dict =self.prepare_image_inputs() lowerCamelCase__ : int =image_processor(_a, return_tensors='''np''' ) lowerCamelCase__ : Any =processor(images=_a, return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 ) def snake_case ( self : Any )-> Any: lowerCamelCase__ : Any =self.get_image_processor() lowerCamelCase__ : Optional[Any] =self.get_tokenizer() lowerCamelCase__ : Union[str, Any] =VisionTextDualEncoderProcessor(tokenizer=_a, image_processor=_a ) lowerCamelCase__ : int ="lower newer" lowerCamelCase__ : Any =processor(text=_a ) lowerCamelCase__ : List[str] =tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def snake_case ( self : Any )-> Dict: lowerCamelCase__ : Optional[Any] =self.get_image_processor() lowerCamelCase__ : int =self.get_tokenizer() lowerCamelCase__ : Optional[Any] =VisionTextDualEncoderProcessor(tokenizer=_a, image_processor=_a ) lowerCamelCase__ : Any ="lower newer" lowerCamelCase__ : Any =self.prepare_image_inputs() lowerCamelCase__ : List[Any] =processor(text=_a, images=_a ) self.assertListEqual(list(inputs.keys() ), ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(_a ): processor() def snake_case ( self : Optional[int] )-> Optional[Any]: lowerCamelCase__ : Tuple =self.get_image_processor() lowerCamelCase__ : Optional[Any] =self.get_tokenizer() lowerCamelCase__ : Union[str, Any] =VisionTextDualEncoderProcessor(tokenizer=_a, image_processor=_a ) lowerCamelCase__ : List[str] =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ : Tuple =processor.batch_decode(_a ) lowerCamelCase__ : int =tokenizer.batch_decode(_a ) self.assertListEqual(_a, _a ) def snake_case ( self : Union[str, Any] )-> List[Any]: lowerCamelCase__ : Any =self.get_image_processor() lowerCamelCase__ : Tuple =self.get_tokenizer() lowerCamelCase__ : Any =VisionTextDualEncoderProcessor(tokenizer=_a, image_processor=_a ) lowerCamelCase__ : Dict ="lower newer" lowerCamelCase__ : Union[str, Any] =self.prepare_image_inputs() lowerCamelCase__ : Any =processor(text=_a, images=_a ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
369
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case ( self : Union[str, Any] )-> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case ( self : str )-> Any: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''', from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ , lowerCamelCase__ : Optional[int] =FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''', controlnet=lowerCamelCase, from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ : Optional[int] =controlnet_params lowerCamelCase__ : Dict ='''bird''' lowerCamelCase__ : List[str] =jax.device_count() lowerCamelCase__ : Optional[Any] =pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase__ : Dict =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) lowerCamelCase__ : List[Any] =pipe.prepare_image_inputs([canny_image] * num_samples ) lowerCamelCase__ : Optional[int] =jax.random.PRNGKey(0 ) lowerCamelCase__ : Dict =jax.random.split(lowerCamelCase, jax.device_count() ) lowerCamelCase__ : Tuple =replicate(lowerCamelCase ) lowerCamelCase__ : Tuple =shard(lowerCamelCase ) lowerCamelCase__ : Optional[int] =shard(lowerCamelCase ) lowerCamelCase__ : Tuple =pipe( prompt_ids=lowerCamelCase, image=lowerCamelCase, params=lowerCamelCase, prng_seed=lowerCamelCase, num_inference_steps=50, jit=lowerCamelCase, ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCamelCase__ : Dict =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ : Any =images[0, 253:256, 253:256, -1] lowerCamelCase__ : Optional[Any] =jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ : Dict =jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def snake_case ( self : Optional[int] )-> Optional[int]: lowerCamelCase__ , lowerCamelCase__ : Dict =FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''', from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ , lowerCamelCase__ : List[Any] =FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''', controlnet=lowerCamelCase, from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ : Optional[Any] =controlnet_params lowerCamelCase__ : int ='''Chef in the kitchen''' lowerCamelCase__ : Optional[Any] =jax.device_count() lowerCamelCase__ : Any =pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase__ : Any =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) lowerCamelCase__ : List[Any] =pipe.prepare_image_inputs([pose_image] * num_samples ) lowerCamelCase__ : Tuple =jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[Any] =jax.random.split(lowerCamelCase, jax.device_count() ) lowerCamelCase__ : int =replicate(lowerCamelCase ) lowerCamelCase__ : List[Any] =shard(lowerCamelCase ) lowerCamelCase__ : int =shard(lowerCamelCase ) lowerCamelCase__ : Tuple =pipe( prompt_ids=lowerCamelCase, image=lowerCamelCase, params=lowerCamelCase, prng_seed=lowerCamelCase, num_inference_steps=50, jit=lowerCamelCase, ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCamelCase__ : Dict =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ : List[str] =images[0, 253:256, 253:256, -1] lowerCamelCase__ : int =jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ : Any =jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
272
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : str = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys A__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
103
"""simple docstring""" from scipy.stats import pearsonr import datasets lowerCamelCase_ : Optional[int] = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ lowerCamelCase_ : Optional[Any] = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ lowerCamelCase_ : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A=False ) -> Optional[Any]: if return_pvalue: a =pearsonr(__A , __A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__A , __A )[0] )}
81
0
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case_ (lowerCamelCase_ ): def __init__( self :Union[str, Any] ,__snake_case :TransformeraDModel ,__snake_case :AutoencoderKL ,__snake_case :KarrasDiffusionSchedulers ,__snake_case :Optional[Dict[int, str]] = None ,) -> Optional[Any]: super().__init__() self.register_modules(transformer=__snake_case ,vae=__snake_case ,scheduler=__snake_case ) # create a imagenet -> id dictionary for easier use a__ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(',' ): a__ = int(__snake_case ) a__ = dict(sorted(self.labels.items() ) ) def lowerCamelCase__( self :Tuple ,__snake_case :Union[str, List[str]] ) -> List[int]: if not isinstance(__snake_case ,__snake_case ): a__ = list(__snake_case ) for l in label: if l not in self.labels: raise ValueError( F'{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self :Union[str, Any] ,__snake_case :List[int] ,__snake_case :float = 4.0 ,__snake_case :Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__snake_case :int = 50 ,__snake_case :Optional[str] = "pil" ,__snake_case :bool = True ,) -> Union[ImagePipelineOutput, Tuple]: a__ = len(__snake_case ) a__ = self.transformer.config.sample_size a__ = self.transformer.config.in_channels a__ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) ,generator=__snake_case ,device=self.device ,dtype=self.transformer.dtype ,) a__ = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents a__ = torch.tensor(__snake_case ,device=self.device ).reshape(-1 ) a__ = torch.tensor([10_00] * batch_size ,device=self.device ) a__ = torch.cat([class_labels, class_null] ,0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: a__ = latent_model_input[: len(__snake_case ) // 2] a__ = torch.cat([half, half] ,dim=0 ) a__ = self.scheduler.scale_model_input(__snake_case ,__snake_case ) a__ = t if not torch.is_tensor(__snake_case ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) a__ = latent_model_input.device.type == 'mps' if isinstance(__snake_case ,__snake_case ): a__ = torch.floataa if is_mps else torch.floataa else: a__ = torch.intaa if is_mps else torch.intaa a__ = torch.tensor([timesteps] ,dtype=__snake_case ,device=latent_model_input.device ) elif len(timesteps.shape ) == 0: a__ = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML a__ = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output a__ = self.transformer( __snake_case ,timestep=__snake_case ,class_labels=__snake_case ).sample # perform guidance if guidance_scale > 1: a__ , a__ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] a__ , a__ = torch.split(__snake_case ,len(__snake_case ) // 2 ,dim=0 ) a__ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) a__ = torch.cat([half_eps, half_eps] ,dim=0 ) a__ = torch.cat([eps, rest] ,dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: a__ , a__ = torch.split(__snake_case ,__snake_case ,dim=1 ) else: a__ = noise_pred # compute previous image: x_t -> x_t-1 a__ = self.scheduler.step(__snake_case ,__snake_case ,__snake_case ).prev_sample if guidance_scale > 1: a__ , a__ = latent_model_input.chunk(2 ,dim=0 ) else: a__ = latent_model_input a__ = 1 / self.vae.config.scaling_factor * latents a__ = self.vae.decode(__snake_case ).sample a__ = (samples / 2 + 0.5).clamp(0 ,1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 a__ = samples.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": a__ = self.numpy_to_pil(__snake_case ) if not return_dict: return (samples,) return ImagePipelineOutput(images=__snake_case )
109
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Optional[int] = logging.get_logger(__name__) snake_case : Union[str, Any] = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Dict = '''visual_bert''' def __init__( self :Optional[int] ,__snake_case :Any=3_05_22 ,__snake_case :str=7_68 ,__snake_case :Any=5_12 ,__snake_case :Any=12 ,__snake_case :int=12 ,__snake_case :str=30_72 ,__snake_case :int="gelu" ,__snake_case :Optional[int]=0.1 ,__snake_case :str=0.1 ,__snake_case :Union[str, Any]=5_12 ,__snake_case :Tuple=2 ,__snake_case :Union[str, Any]=0.02 ,__snake_case :Optional[Any]=1E-12 ,__snake_case :Optional[Any]=False ,__snake_case :int=True ,__snake_case :Any=1 ,__snake_case :Optional[int]=0 ,__snake_case :Tuple=2 ,**__snake_case :Any ,) -> Union[str, Any]: super().__init__(pad_token_id=__snake_case ,bos_token_id=__snake_case ,eos_token_id=__snake_case ,**__snake_case ) a__ = vocab_size a__ = max_position_embeddings a__ = hidden_size a__ = visual_embedding_dim a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = initializer_range a__ = type_vocab_size a__ = layer_norm_eps a__ = bypass_transformer a__ = special_visual_initialize
109
1
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = int(number**0.5 ) return number == sq * sq def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCAmelCase : int = x_den * y_den * z_den UpperCAmelCase : Dict = gcd(_A , _A ) top //= hcf bottom //= hcf return top, bottom def lowercase ( __magic_name__ = 35 ): '''simple docstring''' UpperCAmelCase : int = set() UpperCAmelCase : Optional[Any] = 42 UpperCAmelCase : str = Fraction(0 ) UpperCAmelCase : str = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 UpperCAmelCase : List[str] = x_num * y_den + x_den * y_num UpperCAmelCase : Optional[int] = x_den * y_den UpperCAmelCase : Union[str, Any] = gcd(_A , _A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase : Optional[int] = add_three( _A , _A , _A , _A , _A , _A ) unique_s.add(_A ) # n=2 UpperCAmelCase : List[Any] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCAmelCase : str = x_den * x_den * y_den * y_den if is_sq(_A ) and is_sq(_A ): UpperCAmelCase : int = int(sqrt(_A ) ) UpperCAmelCase : List[str] = int(sqrt(_A ) ) UpperCAmelCase : str = gcd(_A , _A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase : Any = add_three( _A , _A , _A , _A , _A , _A ) unique_s.add(_A ) # n=-1 UpperCAmelCase : int = x_num * y_num UpperCAmelCase : Any = x_den * y_num + x_num * y_den UpperCAmelCase : int = gcd(_A , _A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase : List[Any] = add_three( _A , _A , _A , _A , _A , _A ) unique_s.add(_A ) # n=2 UpperCAmelCase : List[str] = x_num * x_num * y_num * y_num UpperCAmelCase : Optional[int] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_A ) and is_sq(_A ): UpperCAmelCase : Union[str, Any] = int(sqrt(_A ) ) UpperCAmelCase : Optional[Any] = int(sqrt(_A ) ) UpperCAmelCase : Any = gcd(_A , _A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase : Tuple = add_three( _A , _A , _A , _A , _A , _A ) unique_s.add(_A ) for num, den in unique_s: total += Fraction(_A , _A ) return total.denominator + total.numerator if __name__ == "__main__": print(F'{solution() = }')
311
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self, lowercase_, lowercase_=13, lowercase_=7, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=False, lowercase_=False, lowercase_=False, lowercase_=2, lowercase_=99, lowercase_=0, lowercase_=32, lowercase_=5, lowercase_=4, lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=12, lowercase_=2, lowercase_=0.02, lowercase_=3, lowercase_=4, lowercase_="last", lowercase_=None, lowercase_=None, ) -> List[Any]: """simple docstring""" a__ =parent a__ =batch_size a__ =seq_length a__ =is_training a__ =use_input_lengths a__ =use_token_type_ids a__ =use_labels a__ =gelu_activation a__ =sinusoidal_embeddings a__ =causal a__ =asm a__ =n_langs a__ =vocab_size a__ =n_special a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =max_position_embeddings a__ =type_vocab_size a__ =type_sequence_label_size a__ =initializer_range a__ =num_labels a__ =num_choices a__ =summary_type a__ =use_proj a__ =scope def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) a__ =random_attention_mask([self.batch_size, self.seq_length] ) a__ =None if self.use_input_lengths: a__ =( ids_tensor([self.batch_size], vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length a__ =None if self.use_token_type_ids: a__ =ids_tensor([self.batch_size, self.seq_length], self.n_langs ) a__ =None a__ =None a__ =None if self.use_labels: a__ =ids_tensor([self.batch_size], self.type_sequence_label_size ) a__ =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) a__ =ids_tensor([self.batch_size], 2 ).float() a__ =ids_tensor([self.batch_size], self.num_choices ) a__ =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Dict: """simple docstring""" a__ =FlaubertModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, lengths=lowercase_, langs=lowercase_ ) a__ =model(lowercase_, langs=lowercase_ ) a__ =model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> str: """simple docstring""" a__ =FlaubertWithLMHeadModel(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, token_type_ids=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Dict: """simple docstring""" a__ =FlaubertForQuestionAnsweringSimple(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_ ) a__ =model(lowercase_, start_positions=lowercase_, end_positions=lowercase_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Optional[Any]: """simple docstring""" a__ =FlaubertForQuestionAnswering(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_ ) a__ =model( lowercase_, start_positions=lowercase_, end_positions=lowercase_, cls_index=lowercase_, is_impossible=lowercase_, p_mask=lowercase_, ) a__ =model( lowercase_, start_positions=lowercase_, end_positions=lowercase_, cls_index=lowercase_, is_impossible=lowercase_, ) ((a__), ) =result_with_labels.to_tuple() a__ =model(lowercase_, start_positions=lowercase_, end_positions=lowercase_ ) ((a__), ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape, () ) self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Optional[Any]: """simple docstring""" a__ =FlaubertForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_ ) a__ =model(lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Optional[int]: """simple docstring""" a__ =self.num_labels a__ =FlaubertForTokenClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Dict: """simple docstring""" a__ =self.num_choices a__ =FlaubertForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() a__ =input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() a__ =token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() a__ =input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() a__ =model( lowercase_, attention_mask=lowercase_, token_type_ids=lowercase_, labels=lowercase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" a__ =self.prepare_config_and_inputs() ( ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ) =config_and_inputs a__ ={ '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase__ : Dict = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_=False ) -> str: """simple docstring""" a__ =super()._prepare_for_class(lowercase_, lowercase_, return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": a__ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowercase_ ) a__ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowercase_ ) return inputs_dict def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" a__ =FlaubertModelTester(self ) a__ =ConfigTester(self, config_class=lowercase_, emb_dim=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowercase_ ) def _UpperCAmelCase ( self ) -> str: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowercase_ ) def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowercase_ ) def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowercase_ ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowercase_ ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowercase_ ) def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowercase_ ) @slow def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ =FlaubertModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> int: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return a__ =True a__ =model_class(config=lowercase_ ) a__ =self._prepare_for_class(lowercase_, lowercase_ ) a__ =torch.jit.trace( lowercase_, (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase_, os.path.join(lowercase_, '''traced_model.pt''' ) ) a__ =torch.jit.load(os.path.join(lowercase_, '''traced_model.pt''' ), map_location=lowercase_ ) loaded(inputs_dict['''input_ids'''].to(lowercase_ ), inputs_dict['''attention_mask'''].to(lowercase_ ) ) @require_torch class __magic_name__ ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" a__ =FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) a__ =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): a__ =model(lowercase_ )[0] a__ =torch.Size((1, 11, 768) ) self.assertEqual(output.shape, lowercase_ ) a__ =torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], lowercase_, atol=1E-4 ) )
188
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : str = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Dict = "decision_transformer" __lowercase : Union[str, Any] = ["past_key_values"] __lowercase : Union[str, Any] = { "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , A_=17 , A_=4 , A_=128 , A_=4_096 , A_=True , A_=1 , A_=1_024 , A_=3 , A_=1 , A_=None , A_="relu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=1e-5 , A_=0.02 , A_=True , A_=True , A_=50_256 , A_=50_256 , A_=False , A_=False , **A_ , ) -> Dict: """simple docstring""" UpperCamelCase = state_dim UpperCamelCase = act_dim UpperCamelCase = hidden_size UpperCamelCase = max_ep_len UpperCamelCase = action_tanh UpperCamelCase = vocab_size UpperCamelCase = n_positions UpperCamelCase = n_layer UpperCamelCase = n_head UpperCamelCase = n_inner UpperCamelCase = activation_function UpperCamelCase = resid_pdrop UpperCamelCase = embd_pdrop UpperCamelCase = attn_pdrop UpperCamelCase = layer_norm_epsilon UpperCamelCase = initializer_range UpperCamelCase = scale_attn_weights UpperCamelCase = use_cache UpperCamelCase = scale_attn_by_inverse_layer_idx UpperCamelCase = reorder_and_upcast_attn UpperCamelCase = bos_token_id UpperCamelCase = eos_token_id super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ )
110
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = tempfile.mkdtemp() # fmt: off UpperCamelCase = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) UpperCamelCase = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase = {'unk_token': '<unk>'} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) UpperCamelCase = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } UpperCamelCase = os.path.join(self.tmpdirname , A_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(A_ , A_ ) def __UpperCamelCase ( self , **A_ ) -> Union[str, Any]: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **A_ ) def __UpperCamelCase ( self , **A_ ) -> Tuple: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **A_ ) def __UpperCamelCase ( self , **A_ ) -> Union[str, Any]: """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **A_ ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = self.get_image_processor() UpperCamelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=A_ ) UpperCamelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A_ ) self.assertIsInstance(processor_fast.tokenizer , A_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A_ ) self.assertIsInstance(processor_fast.image_processor , A_ ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCamelCase = self.get_image_processor(do_normalize=A_ ) UpperCamelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = image_processor(A_ , return_tensors='np' ) UpperCamelCase = processor(images=A_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase = 'lower newer' UpperCamelCase = processor(text=A_ , return_tensors='np' ) UpperCamelCase = tokenizer(A_ , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase = 'lower newer' UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = 'google/owlvit-base-patch32' UpperCamelCase = OwlViTProcessor.from_pretrained(A_ ) UpperCamelCase = ['cat', 'nasa badge'] UpperCamelCase = processor(text=A_ ) UpperCamelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = 'google/owlvit-base-patch32' UpperCamelCase = OwlViTProcessor.from_pretrained(A_ ) UpperCamelCase = [['cat', 'nasa badge'], ['person']] UpperCamelCase = processor(text=A_ ) UpperCamelCase = 16 UpperCamelCase = len(A_ ) UpperCamelCase = max([len(A_ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = 'google/owlvit-base-patch32' UpperCamelCase = OwlViTProcessor.from_pretrained(A_ ) UpperCamelCase = ['cat', 'nasa badge'] UpperCamelCase = processor(text=A_ ) UpperCamelCase = 16 UpperCamelCase = inputs['input_ids'] UpperCamelCase = [ [49_406, 2_368, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49_406, 6_841, 11_301, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(images=A_ , query_images=A_ ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase = processor.batch_decode(A_ ) UpperCamelCase = tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ )
110
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Optional[int] = 'roformer' def __init__( self , __UpperCAmelCase=50000 , __UpperCAmelCase=None , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1536 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-1_2 , __UpperCAmelCase=0 , __UpperCAmelCase=False , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> Dict: super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) _a = vocab_size _a = hidden_size if embedding_size is None else embedding_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = rotary_value _a = use_cache class __lowerCamelCase ( a__ ): '''simple docstring''' @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} _a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
320
"""simple docstring""" from __future__ import annotations def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ): """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
320
1
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger __UpperCamelCase = get_logger(__name__) __UpperCamelCase = R''' Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. ''' class lowerCAmelCase : '''simple docstring''' @add_start_docstrings(_lowerCamelCase ) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class lowerCAmelCase : '''simple docstring''' @add_start_docstrings(_lowerCamelCase ) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class lowerCAmelCase ( a__ ): '''simple docstring''' @add_start_docstrings(_lowerCamelCase ) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: for processor in self: SCREAMING_SNAKE_CASE = inspect.signature(processor.__call__ ).parameters if len(_lowerCamelCase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'Make sure that all the required parameters: {list(function_args.keys() )} for ' F'{processor.__class__} are passed to the logits processor.' ) SCREAMING_SNAKE_CASE = processor(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) else: SCREAMING_SNAKE_CASE = processor(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return scores class lowerCAmelCase ( a__ ): '''simple docstring''' def __init__( self , lowerCAmelCase__ ) -> Any: if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not (temperature > 0): raise ValueError(F'`temperature` has to be a strictly positive float, but is {temperature}' ) SCREAMING_SNAKE_CASE = temperature def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: SCREAMING_SNAKE_CASE = scores / self.temperature return scores class lowerCAmelCase ( a__ ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = -float('Inf' ) , lowerCAmelCase__ = 1 ) -> List[Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(_lowerCamelCase , _lowerCamelCase ) or (min_tokens_to_keep < 1): raise ValueError(F'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) SCREAMING_SNAKE_CASE = top_p SCREAMING_SNAKE_CASE = filter_value SCREAMING_SNAKE_CASE = min_tokens_to_keep def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = lax.top_k(_lowerCamelCase , scores.shape[-1] ) SCREAMING_SNAKE_CASE = jnp.full_like(_lowerCamelCase , self.filter_value ) SCREAMING_SNAKE_CASE = jax.nn.softmax(_lowerCamelCase , axis=-1 ).cumsum(axis=-1 ) SCREAMING_SNAKE_CASE = cumulative_probs < self.top_p # include the token that is higher than top_p as well SCREAMING_SNAKE_CASE = jnp.roll(_lowerCamelCase , 1 ) score_mask |= score_mask.at[:, 0].set(_lowerCamelCase ) # min tokens to keep SCREAMING_SNAKE_CASE = score_mask.at[:, : self.min_tokens_to_keep].set(_lowerCamelCase ) SCREAMING_SNAKE_CASE = jnp.where(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE = jax.lax.sort_key_val(_lowerCamelCase , _lowerCamelCase )[-1] return next_scores class lowerCAmelCase ( a__ ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = -float('Inf' ) , lowerCAmelCase__ = 1 ) -> Union[str, Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ) or top_k <= 0: raise ValueError(F'`top_k` has to be a strictly positive integer, but is {top_k}' ) SCREAMING_SNAKE_CASE = max(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE = filter_value def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: SCREAMING_SNAKE_CASE = scores.shape SCREAMING_SNAKE_CASE = jnp.full(batch_size * vocab_size , self.filter_value ) SCREAMING_SNAKE_CASE = min(self.top_k , scores.shape[-1] ) # Safety check SCREAMING_SNAKE_CASE = lax.top_k(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE = jnp.broadcast_to((jnp.arange(_lowerCamelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() SCREAMING_SNAKE_CASE = topk_scores.flatten() SCREAMING_SNAKE_CASE = topk_indices.flatten() + shift SCREAMING_SNAKE_CASE = next_scores_flat.at[topk_indices_flat].set(_lowerCamelCase ) SCREAMING_SNAKE_CASE = next_scores_flat.reshape(_lowerCamelCase , _lowerCamelCase ) return next_scores class lowerCAmelCase ( a__ ): '''simple docstring''' def __init__( self , lowerCAmelCase__ ) -> Any: SCREAMING_SNAKE_CASE = bos_token_id def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: SCREAMING_SNAKE_CASE = jnp.full(scores.shape , -float('inf' ) ) SCREAMING_SNAKE_CASE = 1 - jnp.bool_(cur_len - 1 ) SCREAMING_SNAKE_CASE = jnp.where(_lowerCamelCase , new_scores.at[:, self.bos_token_id].set(0 ) , _lowerCamelCase ) return scores class lowerCAmelCase ( a__ ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: SCREAMING_SNAKE_CASE = max_length SCREAMING_SNAKE_CASE = eos_token_id def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: SCREAMING_SNAKE_CASE = jnp.full(scores.shape , -float('inf' ) ) SCREAMING_SNAKE_CASE = 1 - jnp.bool_(cur_len - self.max_length + 1 ) SCREAMING_SNAKE_CASE = jnp.where(_lowerCamelCase , new_scores.at[:, self.eos_token_id].set(0 ) , _lowerCamelCase ) return scores class lowerCAmelCase ( a__ ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: if not isinstance(_lowerCamelCase , _lowerCamelCase ) or min_length < 0: raise ValueError(F'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(_lowerCamelCase , _lowerCamelCase ) or eos_token_id < 0: raise ValueError(F'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) SCREAMING_SNAKE_CASE = min_length SCREAMING_SNAKE_CASE = eos_token_id def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: SCREAMING_SNAKE_CASE = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) SCREAMING_SNAKE_CASE = jnp.where(_lowerCamelCase , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , _lowerCamelCase ) return scores class lowerCAmelCase ( a__ ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: SCREAMING_SNAKE_CASE = list(_lowerCamelCase ) SCREAMING_SNAKE_CASE = begin_index def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: SCREAMING_SNAKE_CASE = 1 - jnp.bool_(cur_len - self.begin_index ) SCREAMING_SNAKE_CASE = jnp.where(_lowerCamelCase , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , _lowerCamelCase ) return scores class lowerCAmelCase ( a__ ): '''simple docstring''' def __init__( self , lowerCAmelCase__ ) -> List[str]: SCREAMING_SNAKE_CASE = list(_lowerCamelCase ) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: SCREAMING_SNAKE_CASE = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class lowerCAmelCase ( a__ ): '''simple docstring''' def __init__( self , lowerCAmelCase__ ) -> int: SCREAMING_SNAKE_CASE = dict(_lowerCamelCase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. SCREAMING_SNAKE_CASE = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: SCREAMING_SNAKE_CASE = force_token_array.at[index].set(_lowerCamelCase ) SCREAMING_SNAKE_CASE = jnp.intaa(_lowerCamelCase ) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: def _force_token(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = scores.shape[0] SCREAMING_SNAKE_CASE = self.force_token_array[generation_idx] SCREAMING_SNAKE_CASE = jnp.ones_like(_lowerCamelCase , dtype=scores.dtype ) * -float('inf' ) SCREAMING_SNAKE_CASE = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) SCREAMING_SNAKE_CASE = lax.dynamic_update_slice(_lowerCamelCase , _lowerCamelCase , (0, current_token) ) return new_scores SCREAMING_SNAKE_CASE = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(_lowerCamelCase ) , lambda: scores , ) , ) return scores class lowerCAmelCase ( a__ ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: SCREAMING_SNAKE_CASE = generate_config.eos_token_id SCREAMING_SNAKE_CASE = generate_config.no_timestamps_token_id SCREAMING_SNAKE_CASE = generate_config.no_timestamps_token_id + 1 SCREAMING_SNAKE_CASE = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_lowerCamelCase , 'max_initial_timestamp_index' ): SCREAMING_SNAKE_CASE = generate_config.max_initial_timestamp_index else: SCREAMING_SNAKE_CASE = model_config.vocab_size if self.max_initial_timestamp_index is None: SCREAMING_SNAKE_CASE = model_config.vocab_size def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: SCREAMING_SNAKE_CASE = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = jnp.where((cur_len - self.begin_index) >= 1 , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _lowerCamelCase , ) SCREAMING_SNAKE_CASE = jnp.where((cur_len - self.begin_index) < 2 , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , _lowerCamelCase , _lowerCamelCase , ) return jnp.where( _lowerCamelCase , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , _lowerCamelCase , ) SCREAMING_SNAKE_CASE = jax.vmap(_lowerCamelCase )(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE = jnp.where(cur_len == self.begin_index , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _lowerCamelCase , ) SCREAMING_SNAKE_CASE = self.timestamp_begin + self.max_initial_timestamp_index SCREAMING_SNAKE_CASE = jnp.where( _lowerCamelCase , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , _lowerCamelCase , ) # if sum of probability over timestamps is above any other token, sample timestamp SCREAMING_SNAKE_CASE = jax.nn.log_softmax(_lowerCamelCase , axis=-1 ) def handle_cumulative_probs(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) SCREAMING_SNAKE_CASE = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , _lowerCamelCase , ) SCREAMING_SNAKE_CASE = jax.vmap(_lowerCamelCase )(_lowerCamelCase , _lowerCamelCase ) return scores
354
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def lowercase (SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) if "model" in sd.keys(): SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' )['model'] # pop unnecessary weights SCREAMING_SNAKE_CASE = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: SCREAMING_SNAKE_CASE = sd.pop(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: SCREAMING_SNAKE_CASE = sd[key] # We split QKV in separate Q,K,V SCREAMING_SNAKE_CASE = key.replace('.qkv_proj.' , '.q_proj.' ) SCREAMING_SNAKE_CASE = key.replace('.qkv_proj.' , '.k_proj.' ) SCREAMING_SNAKE_CASE = key.replace('.qkv_proj.' , '.v_proj.' ) SCREAMING_SNAKE_CASE = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torch.split(SCREAMING_SNAKE_CASE_ , depth // 3 , dim=0 ) SCREAMING_SNAKE_CASE = q SCREAMING_SNAKE_CASE = k SCREAMING_SNAKE_CASE = v del sd[key] return sd @torch.no_grad() def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int]=None ) -> List[Any]: SCREAMING_SNAKE_CASE = load_checkpoint(SCREAMING_SNAKE_CASE_ ) if config is not None: SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: SCREAMING_SNAKE_CASE = OPTConfig() SCREAMING_SNAKE_CASE = OPTModel(SCREAMING_SNAKE_CASE_ ).half().eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check results Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') __UpperCamelCase = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
38
0
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def snake_case_ (_a : str ): def decorator(_a : str ): UpperCAmelCase = getattr(_a , '''handle_key''' , [] ) handle += [key] setattr(_a , '''handle_key''' , _a ) return func return decorator def snake_case_ (*_a : List[str] ): def decorator(_a : Optional[int] ): UpperCAmelCase = getattr(_a , '''handle_key''' , [] ) handle += keys setattr(_a , '''handle_key''' , _a ) return func return decorator class _a ( __a ): def __new__( cls : Tuple , lowercase : Tuple , lowercase : Optional[int] , lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = super().__new__(cls , lowercase , lowercase , lowercase ) if not hasattr(lowercase , '''key_handler''' ): setattr(lowercase , '''key_handler''' , {} ) setattr(lowercase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): UpperCAmelCase = getattr(lowercase , '''handle_key''' , [] ) for key in handled_keys: UpperCAmelCase = value return new_cls @staticmethod def A ( cls : List[str] ): '''simple docstring''' UpperCAmelCase = get_character() if char != KEYMAP["undefined"]: UpperCAmelCase = ord(lowercase ) UpperCAmelCase = cls.key_handler.get(lowercase ) if handler: UpperCAmelCase = char return handler(cls ) else: return None def snake_case_ (cls : int ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
34
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowercase = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
272
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : List[Any] = """data2vec-text""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase : List[str] =vocab_size UpperCAmelCase : Optional[int] =hidden_size UpperCAmelCase : List[Any] =num_hidden_layers UpperCAmelCase : Dict =num_attention_heads UpperCAmelCase : Union[str, Any] =hidden_act UpperCAmelCase : Optional[Any] =intermediate_size UpperCAmelCase : Tuple =hidden_dropout_prob UpperCAmelCase : Optional[int] =attention_probs_dropout_prob UpperCAmelCase : Dict =max_position_embeddings UpperCAmelCase : str =type_vocab_size UpperCAmelCase : Optional[Any] =initializer_range UpperCAmelCase : Any =layer_norm_eps UpperCAmelCase : str =position_embedding_type UpperCAmelCase : List[str] =use_cache UpperCAmelCase : int =classifier_dropout class __snake_case ( lowerCamelCase__ ): @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase : Optional[Any] ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase : Tuple ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
78
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { '''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Swinv2ForImageClassification''', '''Swinv2ForMaskedImageModeling''', '''Swinv2Model''', '''Swinv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
78
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : Optional[int] = seq_length UpperCAmelCase : int = is_training UpperCAmelCase : str = use_token_type_ids UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : List[Any] = intermediate_size UpperCAmelCase : int = hidden_act UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : int = type_vocab_size UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Union[str, Any] = num_labels UpperCAmelCase : Any = num_choices UpperCAmelCase : str = scope UpperCAmelCase : str = self.vocab_size - 1 def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Any = None if self.use_token_type_ids: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Tuple = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) UpperCAmelCase : str = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' UpperCAmelCase : Tuple = OpenAIGPTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : List[str] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = OpenAIGPTLMHeadModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple = OpenAIGPTDoubleHeadsModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' UpperCAmelCase : str = self.num_labels UpperCAmelCase : Optional[int] = OpenAIGPTForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Any = config_and_inputs UpperCAmelCase : Dict = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __lowerCAmelCase : Union[str, Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __lowerCAmelCase : int = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> int: '''simple docstring''' UpperCAmelCase : List[str] = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": UpperCAmelCase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : str = inputs_dict["""labels"""] UpperCAmelCase : List[Any] = inputs_dict["""labels"""] UpperCAmelCase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : str = OpenAIGPTModelTester(self ) UpperCAmelCase : Any = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , n_embd=37 ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] = OpenAIGPTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) # the president is UpperCAmelCase : Optional[int] = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the UpperCAmelCase : List[Any] = model.generate(_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE ) self.assertListEqual(output_ids[0].tolist() , _SCREAMING_SNAKE_CASE )
109
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: Optional[int] = logging.get_logger(__name__) A: Optional[int] = torch.device("cpu") def _snake_case ( ): UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) return im def _snake_case ( UpperCamelCase : int ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0, 8.8_6_8_5e-0_1, 2.4_3_6_0e-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6e-0_1, 2.3_4_7_8e-0_1, -1.6_9_6_3e0_0, -1.7_3_8_1e0_0, -8.6_3_3_7e-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8e-0_1, -4.7_4_2_9e-0_1, -1.0_8_9_7e0_0, -1.0_2_4_8e0_0, 3.5_5_2_3e-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0e-0_1, 2.4_2_1_1e-0_1, -6.0_1_8_5e-0_1, -8.2_7_8_9e-0_1, -6.0_4_4_6e-0_2] ) def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : str ): UpperCAmelCase : int = dct.pop(UpperCamelCase ) UpperCAmelCase : Any = val def _snake_case ( UpperCamelCase : Union[str, Any] ): UpperCAmelCase : Optional[int] = [] for k in state_dict.keys(): UpperCAmelCase : Optional[Any] = k if ".pwconv" in k: UpperCAmelCase : int = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: UpperCAmelCase : Tuple = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: UpperCAmelCase : List[Any] = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: UpperCAmelCase : Any = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: UpperCAmelCase : int = k_new.split(""".""" ) if ls[2].isdigit(): UpperCAmelCase : List[Any] = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: UpperCAmelCase : Any = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _snake_case ( UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : Optional[int] ): UpperCAmelCase : List[Any] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase : Optional[Any] = 1000 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[str] = """imagenet-1k-id2label.json""" UpperCAmelCase : Dict = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(UpperCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase : str = idalabel UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCAmelCase : Any = [3, 3, 6, 4] UpperCAmelCase : List[str] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": UpperCAmelCase : Dict = [3, 3, 9, 6] UpperCAmelCase : Union[str, Any] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": UpperCAmelCase : int = [4, 3, 10, 5] UpperCAmelCase : Optional[int] = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": UpperCAmelCase : Union[str, Any] = [4, 4, 12, 6] UpperCAmelCase : List[Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): UpperCAmelCase : List[str] = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="""cpu""" , check_hash=UpperCamelCase ) else: UpperCAmelCase : Any = torch.load(UpperCamelCase , map_location="""cpu""" ) UpperCAmelCase : Optional[Any] = checkpoint UpperCAmelCase : Dict = create_rename_keys(UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # load HuggingFace model UpperCAmelCase : List[Any] = SwiftFormerForImageClassification(UpperCamelCase ).eval() hf_model.load_state_dict(UpperCamelCase ) # prepare test inputs UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : Tuple = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) UpperCAmelCase : Optional[int] = processor(images=UpperCamelCase , return_tensors="""pt""" ) # compare outputs from both models UpperCAmelCase : Optional[int] = get_expected_output(UpperCamelCase ) UpperCAmelCase : List[str] = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , UpperCamelCase , atol=1e-3 ) Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) print(F"Saving model {swiftformer_name} to {pytorch_dump_folder_path}" ) hf_model.save_pretrained(UpperCamelCase ) if __name__ == "__main__": A: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") A: str = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
109
1
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : Dict ) -> Optional[int]: lowerCamelCase__ : Any = inspect.getfile(accelerate.test_utils ) lowerCamelCase__ : List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) lowerCamelCase__ : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) lowerCamelCase__ : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def A_ ( self : Dict ) -> Union[str, Any]: print(F"""Found {torch.cuda.device_count()} devices.""" ) lowerCamelCase__ : Dict = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def A_ ( self : Union[str, Any] ) -> Dict: print(F"""Found {torch.cuda.device_count()} devices.""" ) lowerCamelCase__ : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def A_ ( self : List[str] ) -> Union[str, Any]: lowerCamelCase__ : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def A_ ( self : str ) -> List[Any]: print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) lowerCamelCase__ : Union[str, Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = Accelerator() _UpperCAmelCase : int = (accelerator.state.process_index + 2, 10) _UpperCAmelCase : List[str] = torch.randint(0, 10, shape).to(accelerator.device) _UpperCAmelCase : int = """""" _UpperCAmelCase : Dict = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _UpperCAmelCase : Any = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _UpperCAmelCase : Union[str, Any] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
45
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", } _UpperCAmelCase : Optional[Any] = { """vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""}, """merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""}, } _UpperCAmelCase : Dict = { """ctrl""": 2_56, } _UpperCAmelCase : str = { """Pregnancy""": 16_86_29, """Christianity""": 76_75, """Explain""": 10_64_23, """Fitness""": 6_34_40, """Saving""": 6_31_63, """Ask""": 2_71_71, """Ass""": 9_59_85, """Joke""": 16_35_09, """Questions""": 4_56_22, """Thoughts""": 4_96_05, """Retail""": 5_23_42, """Feminism""": 16_43_38, """Writing""": 1_19_92, """Atheism""": 19_22_63, """Netflix""": 4_86_16, """Computing""": 3_96_39, """Opinion""": 4_32_13, """Alone""": 4_49_67, """Funny""": 5_89_17, """Gaming""": 4_03_58, """Human""": 40_88, """India""": 13_31, """Joker""": 7_71_38, """Diet""": 3_62_06, """Legal""": 1_18_59, """Norman""": 49_39, """Tip""": 7_26_89, """Weight""": 5_23_43, """Movies""": 4_62_73, """Running""": 2_34_25, """Science""": 20_90, """Horror""": 3_77_93, """Confession""": 6_05_72, """Finance""": 1_22_50, """Politics""": 1_63_60, """Scary""": 19_19_85, """Support""": 1_26_54, """Technologies""": 3_25_16, """Teenage""": 6_61_60, """Event""": 3_27_69, """Learned""": 6_74_60, """Notion""": 18_27_70, """Wikipedia""": 3_75_83, """Books""": 66_65, """Extract""": 7_60_50, """Confessions""": 10_27_01, """Conspiracy""": 7_59_32, """Links""": 6_36_74, """Narcissus""": 15_04_25, """Relationship""": 5_47_66, """Relationships""": 13_47_96, """Reviews""": 4_16_71, """News""": 42_56, """Translation""": 2_68_20, """multilingual""": 12_84_06, } def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : Tuple = set() lowerCamelCase__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase__ : Optional[Any] = char lowerCamelCase__ : Any = set(_UpperCAmelCase ) return pairs class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = CONTROL_CODES def __init__( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str]="<unk>" , **UpperCAmelCase : List[Any] ) -> Union[str, Any]: super().__init__(unk_token=UpperCAmelCase , **UpperCAmelCase ) with open(UpperCAmelCase , encoding='utf-8' ) as vocab_handle: lowerCamelCase__ : List[Any] = json.load(UpperCAmelCase ) lowerCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} with open(UpperCAmelCase , encoding='utf-8' ) as merges_handle: lowerCamelCase__ : Any = merges_handle.read().split('\n' )[1:-1] lowerCamelCase__ : Any = [tuple(merge.split() ) for merge in merges] lowerCamelCase__ : List[str] = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowerCamelCase__ : Any = {} @property def A_ ( self : int ) -> Dict: return len(self.encoder ) def A_ ( self : List[str] ) -> str: return dict(self.encoder , **self.added_tokens_encoder ) def A_ ( self : Any , UpperCAmelCase : Any ) -> Union[str, Any]: if token in self.cache: return self.cache[token] lowerCamelCase__ : List[str] = tuple(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) lowerCamelCase__ : Optional[Any] = get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowerCamelCase__ : Optional[Any] = min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase__ , lowerCamelCase__ : str = bigram lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : Dict = 0 while i < len(UpperCAmelCase ): try: lowerCamelCase__ : Any = word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase__ : int = j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase__ : Dict = tuple(UpperCAmelCase ) lowerCamelCase__ : str = new_word if len(UpperCAmelCase ) == 1: break else: lowerCamelCase__ : Any = get_pairs(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = '@@ '.join(UpperCAmelCase ) lowerCamelCase__ : int = word[:-4] lowerCamelCase__ : str = word return word def A_ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Optional[int]: lowerCamelCase__ : Tuple = [] lowerCamelCase__ : Tuple = re.findall(R'\S+\n?' , UpperCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(UpperCAmelCase ).split(' ' ) ) ) return split_tokens def A_ ( self : str , UpperCAmelCase : Union[str, Any] ) -> Dict: return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A_ ( self : List[Any] , UpperCAmelCase : Union[str, Any] ) -> List[Any]: return self.decoder.get(UpperCAmelCase , self.unk_token ) def A_ ( self : str , UpperCAmelCase : Tuple ) -> Optional[int]: lowerCamelCase__ : Tuple = ' '.join(UpperCAmelCase ).replace('@@ ' , '' ).strip() return out_string def A_ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase__ : List[Any] = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ : str = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '\n' ) lowerCamelCase__ : str = 0 with open(UpperCAmelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase__ : str = token_index writer.write(' '.join(UpperCAmelCase ) + '\n' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
45
1
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" print('''Loading config file...''' ) def flatten_yaml_as_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="" , SCREAMING_SNAKE_CASE="." ): lowercase__ = [] for k, v in d.items(): lowercase__ = parent_key + sep + k if parent_key else k if isinstance(SCREAMING_SNAKE_CASE , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , sep=SCREAMING_SNAKE_CASE ).items() ) else: items.append((new_key, v) ) return dict(SCREAMING_SNAKE_CASE ) lowercase__ = argparse.Namespace() with open(SCREAMING_SNAKE_CASE , '''r''' ) as yaml_file: try: lowercase__ = yaml.load(SCREAMING_SNAKE_CASE , Loader=yaml.FullLoader ) lowercase__ = flatten_yaml_as_dict(SCREAMING_SNAKE_CASE ) for k, v in flat_cfg.items(): setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(SCREAMING_SNAKE_CASE , str(SCREAMING_SNAKE_CASE ) ) ) return config def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = MobileViTVaConfig() lowercase__ = False # dataset if task_name.startswith('''imagenet1k_''' ): lowercase__ = 10_00 if int(task_name.strip().split('''_''' )[-1] ) == 3_84: lowercase__ = 3_84 else: lowercase__ = 2_56 lowercase__ = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): lowercase__ = 2_10_00 if int(task_name.strip().split('''_''' )[-1] ) == 3_84: lowercase__ = 3_84 else: lowercase__ = 2_56 lowercase__ = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): lowercase__ = 1_51 lowercase__ = 5_12 lowercase__ = '''ade20k-id2label.json''' lowercase__ = True elif task_name.startswith('''voc_''' ): lowercase__ = 21 lowercase__ = 5_12 lowercase__ = '''pascal-voc-id2label.json''' lowercase__ = True # orig_config lowercase__ = load_orig_config_file(SCREAMING_SNAKE_CASE ) assert getattr(SCREAMING_SNAKE_CASE , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" lowercase__ = getattr(SCREAMING_SNAKE_CASE , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(SCREAMING_SNAKE_CASE , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" lowercase__ = getattr(SCREAMING_SNAKE_CASE , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: lowercase__ = getattr(SCREAMING_SNAKE_CASE , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: lowercase__ = getattr(SCREAMING_SNAKE_CASE , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) lowercase__ = getattr(SCREAMING_SNAKE_CASE , '''model.segmentation.deeplabv3.aspp_out_channels''' , 5_12 ) lowercase__ = getattr(SCREAMING_SNAKE_CASE , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label lowercase__ = '''huggingface/label-files''' lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} return config def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = dct.pop(SCREAMING_SNAKE_CASE ) lowercase__ = val def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" if base_model: lowercase__ = '''''' else: lowercase__ = '''mobilevitv2.''' lowercase__ = [] for k in state_dict.keys(): if k[:8] == "encoder.": lowercase__ = k[8:] else: lowercase__ = k if ".block." in k: lowercase__ = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: lowercase__ = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: lowercase__ = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: lowercase__ = k_new.replace('''conv_1.''' , f'{model_prefix}conv_stem.' ) for i in [1, 2]: if f'layer_{i}.' in k: lowercase__ = k_new.replace(f'layer_{i}.' , f'{model_prefix}encoder.layer.{i-1}.layer.' ) if ".exp_1x1." in k: lowercase__ = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: lowercase__ = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f'layer_{i}.0.' in k: lowercase__ = k_new.replace(f'layer_{i}.0.' , f'{model_prefix}encoder.layer.{i-1}.downsampling_layer.' ) if f'layer_{i}.1.local_rep.0.' in k: lowercase__ = k_new.replace(f'layer_{i}.1.local_rep.0.' , f'{model_prefix}encoder.layer.{i-1}.conv_kxk.' ) if f'layer_{i}.1.local_rep.1.' in k: lowercase__ = k_new.replace(f'layer_{i}.1.local_rep.1.' , f'{model_prefix}encoder.layer.{i-1}.conv_1x1.' ) for i in [3, 4, 5]: if i == 3: lowercase__ = [0, 1] elif i == 4: lowercase__ = [0, 1, 2, 3] elif i == 5: lowercase__ = [0, 1, 2] for j in j_in: if f'layer_{i}.1.global_rep.{j}.' in k: lowercase__ = k_new.replace( f'layer_{i}.1.global_rep.{j}.' , f'{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.' ) if f'layer_{i}.1.global_rep.{j+1}.' in k: lowercase__ = k_new.replace( f'layer_{i}.1.global_rep.{j+1}.' , f'{model_prefix}encoder.layer.{i-1}.layernorm.' ) if f'layer_{i}.1.conv_proj.' in k: lowercase__ = k_new.replace(f'layer_{i}.1.conv_proj.' , f'{model_prefix}encoder.layer.{i-1}.conv_projection.' ) if "pre_norm_attn.0." in k: lowercase__ = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: lowercase__ = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: lowercase__ = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: lowercase__ = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: lowercase__ = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: lowercase__ = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: lowercase__ = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: lowercase__ = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: lowercase__ = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(SCREAMING_SNAKE_CASE ) for k in keys_to_ignore: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = get_mobilevitva_config(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load original state_dict lowercase__ = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): lowercase__ = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE ).eval() lowercase__ = False else: lowercase__ = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE ).eval() lowercase__ = False # remove and rename some keys of load the original model lowercase__ = checkpoint remove_unused_keys(SCREAMING_SNAKE_CASE ) lowercase__ = create_rename_keys(SCREAMING_SNAKE_CASE , base_model=SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load modified state_dict model.load_state_dict(SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase__ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowercase__ = model(**SCREAMING_SNAKE_CASE ) # verify classification model if task_name.startswith('''imagenet''' ): lowercase__ = outputs.logits lowercase__ = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant lowercase__ = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ) assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(f'Saving model {task_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
110
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = 0 lowercase__ = len(SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowercase__ = i + 1 else: lowercase__ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
110
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase : Union[str, Any] = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowerCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
114
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCamelCase : List[str] = {"UserAgent": UserAgent().random} def _lowerCAmelCase ( _UpperCamelCase : str ) -> dict: """simple docstring""" _SCREAMING_SNAKE_CASE =script.contents[0] _SCREAMING_SNAKE_CASE =json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A__ : def __init__( self : int , _a : List[Any] ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =f"https://www.instagram.com/{username}/" _SCREAMING_SNAKE_CASE =self.get_json() def A ( self : Optional[int] ) -> dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =requests.get(self.url , headers=_a ).text _SCREAMING_SNAKE_CASE =BeautifulSoup(_a , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : str ) -> str: '''simple docstring''' return f"{self.__class__.__name__}('{self.username}')" def __str__( self : Optional[int] ) -> str: '''simple docstring''' return f"{self.fullname} ({self.username}) is {self.biography}" @property def A ( self : List[Any] ) -> str: '''simple docstring''' return self.user_data["username"] @property def A ( self : str ) -> str: '''simple docstring''' return self.user_data["full_name"] @property def A ( self : Any ) -> str: '''simple docstring''' return self.user_data["biography"] @property def A ( self : Optional[Any] ) -> str: '''simple docstring''' return self.user_data["business_email"] @property def A ( self : Tuple ) -> str: '''simple docstring''' return self.user_data["external_url"] @property def A ( self : Optional[int] ) -> int: '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def A ( self : Union[str, Any] ) -> int: '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def A ( self : List[str] ) -> int: '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def A ( self : Union[str, Any] ) -> str: '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def A ( self : Dict ) -> bool: '''simple docstring''' return self.user_data["is_verified"] @property def A ( self : Tuple ) -> bool: '''simple docstring''' return self.user_data["is_private"] def _lowerCAmelCase ( _UpperCamelCase : str = "github" ) -> None: """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions _SCREAMING_SNAKE_CASE =InstagramUser(_UpperCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _UpperCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Optional[int] = InstagramUser("github") print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
114
1
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed lowercase : Dict = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f'''{bindir}/../../examples/pytorch/translation'''): from run_translation import main # noqa set_seed(42) lowercase : Dict = 'sshleifer/student_marian_en_ro_6_1' lowercase : Optional[int] = 'sshleifer/tiny-mbart' @require_torch class A ( __snake_case ): def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , ) -> str: """simple docstring""" A : str = self.run_trainer( eval_steps=1 , max_len=12 , model_name=SCREAMING_SNAKE_CASE , num_train_epochs=1 , distributed=SCREAMING_SNAKE_CASE , extra_args_str=SCREAMING_SNAKE_CASE , predict_with_generate=SCREAMING_SNAKE_CASE , do_train=SCREAMING_SNAKE_CASE , do_eval=SCREAMING_SNAKE_CASE , do_predict=SCREAMING_SNAKE_CASE , ) A : List[Any] = TrainerState.load_from_json(os.path.join(SCREAMING_SNAKE_CASE , '''trainer_state.json''' ) ).log_history if not do_eval: return A : Dict = [log for log in logs if '''eval_loss''' in log.keys()] A : List[str] = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats A : Tuple = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , SCREAMING_SNAKE_CASE ) assert not math.isnan(float(last_step_stats['''eval_loss'''] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" self.run_seqaseq_quick() @require_torch_multi_gpu def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE ) @require_torch_multi_gpu def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE , extra_args_str='''--sharded_ddp simple''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE , extra_args_str='''--sharded_ddp simple --fp16''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self ) -> int: """simple docstring""" self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=SCREAMING_SNAKE_CASE ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" self.run_seqaseq_quick( distributed=SCREAMING_SNAKE_CASE , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=SCREAMING_SNAKE_CASE ) @require_apex @require_torch_gpu def __lowerCAmelCase ( self ) -> int: """simple docstring""" self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE , extra_args_str='''--fp16 --fp16_backend=apex''' ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE , extra_args_str='''--fp16 --fp16_backend=apex''' ) @parameterized.expand(['''base''', '''low''', '''high''', '''mixed'''] ) @require_torch_multi_gpu def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : Any = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } A : Any = experiments[experiment_id] A : Any = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} A : Union[str, Any] = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**SCREAMING_SNAKE_CASE , extra_args_str=data['''extra_args_str'''] ) A : int = len(re.findall(SCREAMING_SNAKE_CASE , cl.err ) ) self.assertEqual(SCREAMING_SNAKE_CASE , data['''n_matches'''] ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Tuple = self.run_trainer( eval_steps=2 , max_len=128 , model_name=SCREAMING_SNAKE_CASE , learning_rate=3e-4 , num_train_epochs=10 , distributed=SCREAMING_SNAKE_CASE , ) # Check metrics A : Union[str, Any] = TrainerState.load_from_json(os.path.join(SCREAMING_SNAKE_CASE , '''trainer_state.json''' ) ).log_history A : Union[str, Any] = [log for log in logs if '''eval_loss''' in log.keys()] A : List[str] = eval_metrics[0] A : List[Any] = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , SCREAMING_SNAKE_CASE ) # test if do_predict saves generations and metrics A : int = os.listdir(SCREAMING_SNAKE_CASE ) A : Optional[int] = {os.path.basename(SCREAMING_SNAKE_CASE ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" from transformers.training_args import OptimizerNames def train_and_return_metrics(SCREAMING_SNAKE_CASE ) -> Tuple[int, float]: A : Optional[int] = '''--skip_memory_metrics 0''' A : List[Any] = self.run_trainer( max_len=128 , model_name=SCREAMING_SNAKE_CASE , learning_rate=3e-4 , num_train_epochs=1 , optim=SCREAMING_SNAKE_CASE , distributed=SCREAMING_SNAKE_CASE , extra_args_str=SCREAMING_SNAKE_CASE , do_eval=SCREAMING_SNAKE_CASE , do_predict=SCREAMING_SNAKE_CASE , n_gpus_to_use=1 , ) # Check metrics A : str = TrainerState.load_from_json(Path(SCREAMING_SNAKE_CASE , '''trainer_state.json''' ) ).log_history A : Union[str, Any] = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20 ) A : int = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20 ) A : List[Any] = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss A, A, A : List[Any] = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) A, A, A : Optional[Any] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) A : Dict = gpu_alloc_mem_orig - gpu_alloc_mem_bnb A : Union[str, Any] = gpu_peak_mem_orig + gpu_alloc_mem_orig A : Optional[Any] = gpu_peak_mem_bnb + gpu_alloc_mem_bnb A : str = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings A : List[str] = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' F' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and' F' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB' , ) self.assertGreater( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' F' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and' F' gpu_total_mem_bnb={gpu_total_mem_bnb}MB' , ) self.assertEqual( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , F'loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}' ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 3e-3 , SCREAMING_SNAKE_CASE = "adafactor" , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , ) -> Tuple: """simple docstring""" A : Tuple = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' A : Dict = self.get_auto_remove_tmp_dir() A : int = F'\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(SCREAMING_SNAKE_CASE )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(SCREAMING_SNAKE_CASE )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n '.split() A : Any = F'\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(SCREAMING_SNAKE_CASE )}\n '.split() A : Optional[Any] = ''' --do_predict '''.split() A : Union[str, Any] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F'--optim {optim}'.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: A : Dict = get_gpu_count() A : Tuple = get_torch_dist_unique_port() A : str = F'\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n '.split() A : str = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(SCREAMING_SNAKE_CASE , env=self.get_env() ) else: A : List[str] = ['''run_translation.py'''] + args with patch.object(SCREAMING_SNAKE_CASE , '''argv''' , SCREAMING_SNAKE_CASE ): main() return output_dir
3
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[list[int]] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : list[int] ) -> bool: """simple docstring""" if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[list[int]] , __magic_name__ : list[int] , __magic_name__ : int ) -> bool: """simple docstring""" if curr_ind == len(__magic_name__ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(__magic_name__ ) ): if valid_connection(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): # Insert current vertex into path as next transition UpperCamelCase :str = next_ver # Validate created path if util_hamilton_cycle(__magic_name__ , __magic_name__ , curr_ind + 1 ): return True # Backtrack UpperCamelCase :Union[str, Any] = -1 return False def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[list[int]] , __magic_name__ : int = 0 ) -> list[int]: """simple docstring""" UpperCamelCase :Union[str, Any] = [-1] * (len(__magic_name__ ) + 1) # initialize start and end of path with starting index UpperCamelCase :Any = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(__magic_name__ , __magic_name__ , 1 ) else []
38
0
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets __lowerCAmelCase : Tuple =datasets.logging.get_logger(__name__) __lowerCAmelCase : str ="""\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ __lowerCAmelCase : str ="""\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ __lowerCAmelCase : Dict =""" Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any=False , lowerCAmelCase__ :Optional[Any]=False , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :Any="dummy_doc" ) -> int: '''simple docstring''' lowercase = {doc: key_lines} lowercase = {doc: sys_lines} lowercase = {} lowercase = 0 lowercase = 0 lowercase = 0 lowercase = 0 lowercase = 0 lowercase = 0 lowercase , lowercase = reader.get_doc_mentions(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: lowercase = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase , lowercase = reader.get_doc_mentions(lowerCAmelCase__ , sys_doc_lines[doc] , lowerCAmelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: lowercase = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ ) if remove_nested: lowercase , lowercase = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowercase , lowercase = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowercase = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ f'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( """Number of resulting singleton clusters in the key """ f'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( f'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' """files, respectively""" ) return doc_coref_infos def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict ) -> int: '''simple docstring''' lowercase = get_coref_infos(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = {} lowercase = 0 lowercase = 0 for name, metric in metrics: lowercase , lowercase , lowercase = evaluator.evaluate_documents(lowerCAmelCase__ , lowerCAmelCase__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f'{name}/recall': recall, f'{name}/precision': precision, f'{name}/f1': fa} ) logger.info( name.ljust(1_0 ) , f'Recall: {recall * 1_0_0:.2f}' , f' Precision: {precision * 1_0_0:.2f}' , f' F1: {fa * 1_0_0:.2f}' , ) if conll_subparts_num == 3: lowercase = (conll / 3) * 1_0_0 logger.info(f'CoNLL score: {conll:.2f}' ) output_scores.update({"""conll_score""": conll} ) return output_scores def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple ) -> str: '''simple docstring''' lowercase = False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: lowercase = line.split()[5] if not parse_col == "-": lowercase = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def A__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False ): """simple docstring""" lowercase = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: lowercase = util.check_gold_parse_annotation(__lowerCAmelCase ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowercase = evaluate( key_lines=__lowerCAmelCase , sys_lines=__lowerCAmelCase , metrics=__lowerCAmelCase , NP_only=__lowerCAmelCase , remove_nested=__lowerCAmelCase , keep_singletons=__lowerCAmelCase , min_span=__lowerCAmelCase , ) return score
32
"""simple docstring""" class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = None lowercase = None lowercase = graph self._normalize_graph(__lowerCAmelCase , __lowerCAmelCase ) lowercase = len(__lowerCAmelCase ) lowercase = None def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if sources is int: lowercase = [sources] if sinks is int: lowercase = [sinks] if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: return lowercase = sources[0] lowercase = sinks[0] # make fake vertex if there are more # than one source or sink if len(__lowerCAmelCase ) > 1 or len(__lowerCAmelCase ) > 1: lowercase = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowercase = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowercase = max_input_flow lowercase = 0 lowercase = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowercase = max_input_flow lowercase = size - 1 def A__ ( self ): """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = algorithm(self ) class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = flow_network lowercase = flow_network.verticesCount lowercase = flow_network.sourceIndex lowercase = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowercase = flow_network.graph lowercase = False def A__ ( self ): """simple docstring""" if not self.executed: self._algorithm() lowercase = True def A__ ( self ): """simple docstring""" pass class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) # use this to save your result lowercase = -1 def A__ ( self ): """simple docstring""" if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )] lowercase = [0] * self.verticies_count lowercase = [0] * self.verticies_count def A__ ( self ): """simple docstring""" lowercase = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowercase = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowercase = 0 while i < len(__lowerCAmelCase ): lowercase = vertices_list[i] lowercase = self.heights[vertex_index] self.process_vertex(__lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__lowerCAmelCase ) ) lowercase = 0 else: i += 1 lowercase = sum(self.preflow[self.source_index] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__lowerCAmelCase , __lowerCAmelCase ) self.relabel(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowercase = self.heights[to_index] if min_height is not None: lowercase = min_height + 1 if __name__ == "__main__": __lowerCAmelCase : int =[0] __lowerCAmelCase : List[Any] =[3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCAmelCase : Optional[int] =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCAmelCase : Tuple =FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCAmelCase : Optional[int] =flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
32
1
"""simple docstring""" import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa snake_case_ = logging.getLogger(__name__) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = """summarization""" __UpperCamelCase = ["""loss"""] __UpperCamelCase = ROUGE_KEYS __UpperCamelCase = """rouge2""" def __init__( self :Optional[int] , lowercase_ :Optional[int] , **lowercase_ :List[Any] ) -> Dict: if hparams.sortish_sampler and hparams.gpus > 1: UpperCAmelCase = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training' ) if hparams.sortish_sampler: raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously' ) super().__init__(lowercase_ , num_labels=lowercase_ , mode=self.mode , **lowercase_ ) use_task_specific_params(self.model , 'summarization' ) save_git_info(self.hparams.output_dir ) UpperCAmelCase = Path(self.output_dir ) / 'metrics.json' UpperCAmelCase = Path(self.output_dir ) / 'hparams.pkl' pickle_save(self.hparams , self.hparams_save_path ) UpperCAmelCase = 0 UpperCAmelCase = defaultdict(lowercase_ ) UpperCAmelCase = self.config.model_type UpperCAmelCase = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size UpperCAmelCase = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } UpperCAmelCase = { 'train': self.hparams.n_train, 'val': self.hparams.n_val, 'test': self.hparams.n_test, } UpperCAmelCase = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} UpperCAmelCase = { 'train': self.hparams.max_target_length, 'val': self.hparams.val_max_target_length, 'test': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f"""target_lens: {self.target_lens}""" assert self.target_lens["train"] <= self.target_lens["test"], f"""target_lens: {self.target_lens}""" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) UpperCAmelCase = get_git_info()['repo_sha'] UpperCAmelCase = hparams.num_workers UpperCAmelCase = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , lowercase_ ): UpperCAmelCase = self.tokenizer.lang_code_to_id[hparams.tgt_lang] UpperCAmelCase = self.decoder_start_token_id UpperCAmelCase = ( SeqaSeqDataset if hasattr(self.tokenizer , 'prepare_seq2seq_batch' ) else LegacySeqaSeqDataset ) UpperCAmelCase = False UpperCAmelCase = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: UpperCAmelCase = self.hparams.eval_max_gen_length else: UpperCAmelCase = self.model.config.max_length UpperCAmelCase = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCAmelCase__ ( self :str , lowercase_ :Dict[str, torch.Tensor] ) -> Dict[str, List[str]]: UpperCAmelCase = { k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items() } save_json(lowercase_ , Path(self.output_dir ) / 'text_batch.json' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / 'tok_batch.json' ) UpperCAmelCase = True return readable_batch def UpperCAmelCase__ ( self :Tuple , lowercase_ :List[Any] , **lowercase_ :int ) -> Optional[int]: return self.model(lowercase_ , **lowercase_ ) def UpperCAmelCase__ ( self :Any , lowercase_ :List[int] ) -> Optional[int]: UpperCAmelCase = self.tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) return lmap(str.strip , lowercase_ ) def UpperCAmelCase__ ( self :List[str] , lowercase_ :dict ) -> Tuple: UpperCAmelCase = self.tokenizer.pad_token_id UpperCAmelCase , UpperCAmelCase = batch['input_ids'], batch['attention_mask'] UpperCAmelCase = batch['labels'] if isinstance(self.model , lowercase_ ): UpperCAmelCase = self.model._shift_right(lowercase_ ) else: UpperCAmelCase = shift_tokens_right(lowercase_ , lowercase_ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero UpperCAmelCase = decoder_input_ids self.save_readable_batch(lowercase_ ) UpperCAmelCase = self(lowercase_ , attention_mask=lowercase_ , decoder_input_ids=lowercase_ , use_cache=lowercase_ ) UpperCAmelCase = outputs['logits'] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id UpperCAmelCase = nn.CrossEntropyLoss(ignore_index=lowercase_ ) assert lm_logits.shape[-1] == self.vocab_size UpperCAmelCase = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: UpperCAmelCase = nn.functional.log_softmax(lowercase_ , dim=-1 ) UpperCAmelCase , UpperCAmelCase = label_smoothed_nll_loss( lowercase_ , lowercase_ , self.hparams.label_smoothing , ignore_index=lowercase_ ) return (loss,) @property def UpperCAmelCase__ ( self :Union[str, Any] ) -> int: return self.tokenizer.pad_token_id def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Tuple , lowercase_ :List[Any] ) -> Dict: UpperCAmelCase = self._step(lowercase_ ) UpperCAmelCase = dict(zip(self.loss_names , lowercase_ ) ) # tokens per batch UpperCAmelCase = batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum() UpperCAmelCase = batch['input_ids'].shape[0] UpperCAmelCase = batch['input_ids'].eq(self.pad ).sum() UpperCAmelCase = batch['input_ids'].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCAmelCase__ ( self :Any , lowercase_ :int , lowercase_ :List[str] ) -> Dict: return self._generative_step(lowercase_ ) def UpperCAmelCase__ ( self :Tuple , lowercase_ :int , lowercase_ :str="val" ) -> Dict: self.step_count += 1 UpperCAmelCase = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} UpperCAmelCase = losses['loss'] UpperCAmelCase = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len'] } UpperCAmelCase = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) UpperCAmelCase = torch.tensor(lowercase_ ).type_as(lowercase_ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowercase_ ) UpperCAmelCase = {f"""{prefix}_avg_{k}""": x for k, x in losses.items()} UpperCAmelCase = self.step_count self.metrics[prefix].append(lowercase_ ) # callback writes this to self.metrics_save_path UpperCAmelCase = flatten_list([x['preds'] for x in outputs] ) return { "log": all_metrics, "preds": preds, f"""{prefix}_loss""": loss, f"""{prefix}_{self.val_metric}""": metric_tensor, } def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :Tuple , lowercase_ :List[str] ) -> Dict: return calculate_rouge(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :dict ) -> dict: UpperCAmelCase = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') UpperCAmelCase = self.model.generate( batch['input_ids'] , attention_mask=batch['attention_mask'] , use_cache=lowercase_ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) UpperCAmelCase = (time.time() - ta) / batch['input_ids'].shape[0] UpperCAmelCase = self.ids_to_clean_text(lowercase_ ) UpperCAmelCase = self.ids_to_clean_text(batch['labels'] ) UpperCAmelCase = self._step(lowercase_ ) UpperCAmelCase = dict(zip(self.loss_names , lowercase_ ) ) UpperCAmelCase = self.calc_generative_metrics(lowercase_ , lowercase_ ) UpperCAmelCase = np.mean(lmap(lowercase_ , lowercase_ ) ) base_metrics.update(gen_time=lowercase_ , gen_len=lowercase_ , preds=lowercase_ , target=lowercase_ , **lowercase_ ) return base_metrics def UpperCAmelCase__ ( self :Dict , lowercase_ :Optional[Any] , lowercase_ :Dict ) -> List[Any]: return self._generative_step(lowercase_ ) def UpperCAmelCase__ ( self :Any , lowercase_ :List[Any] ) -> int: return self.validation_epoch_end(lowercase_ , prefix='test' ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Any ) -> SeqaSeqDataset: UpperCAmelCase = self.n_obs[type_path] UpperCAmelCase = self.target_lens[type_path] UpperCAmelCase = self.dataset_class( self.tokenizer , type_path=lowercase_ , n_obs=lowercase_ , max_target_length=lowercase_ , **self.dataset_kwargs , ) return dataset def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :str , lowercase_ :int , lowercase_ :bool = False ) -> DataLoader: UpperCAmelCase = self.get_dataset(lowercase_ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": UpperCAmelCase = dataset.make_sortish_sampler(lowercase_ , distributed=self.hparams.gpus > 1 ) return DataLoader( lowercase_ , batch_size=lowercase_ , collate_fn=dataset.collate_fn , shuffle=lowercase_ , num_workers=self.num_workers , sampler=lowercase_ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": UpperCAmelCase = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( lowercase_ , batch_sampler=lowercase_ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( lowercase_ , batch_size=lowercase_ , collate_fn=dataset.collate_fn , shuffle=lowercase_ , num_workers=self.num_workers , sampler=lowercase_ , ) def UpperCAmelCase__ ( self :Optional[int] ) -> DataLoader: UpperCAmelCase = self.get_dataloader('train' , batch_size=self.hparams.train_batch_size , shuffle=lowercase_ ) return dataloader def UpperCAmelCase__ ( self :Optional[int] ) -> DataLoader: return self.get_dataloader('val' , batch_size=self.hparams.eval_batch_size ) def UpperCAmelCase__ ( self :List[Any] ) -> DataLoader: return self.get_dataloader('test' , batch_size=self.hparams.eval_batch_size ) @staticmethod def UpperCAmelCase__ ( lowercase_ :List[Any] , lowercase_ :Tuple ) -> List[Any]: BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ ) add_generic_args(lowercase_ , lowercase_ ) parser.add_argument( '--max_source_length' , default=10_24 , type=lowercase_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--max_target_length' , default=56 , type=lowercase_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--val_max_target_length' , default=1_42 , type=lowercase_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--test_max_target_length' , default=1_42 , type=lowercase_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument('--freeze_encoder' , action='store_true' ) parser.add_argument('--freeze_embeds' , action='store_true' ) parser.add_argument('--sortish_sampler' , action='store_true' , default=lowercase_ ) parser.add_argument('--overwrite_output_dir' , action='store_true' , default=lowercase_ ) parser.add_argument('--max_tokens_per_batch' , type=lowercase_ , default=lowercase_ ) parser.add_argument('--logger_name' , type=lowercase_ , choices=['default', 'wandb', 'wandb_shared'] , default='default' ) parser.add_argument('--n_train' , type=lowercase_ , default=-1 , required=lowercase_ , help='# examples. -1 means use all.' ) parser.add_argument('--n_val' , type=lowercase_ , default=5_00 , required=lowercase_ , help='# examples. -1 means use all.' ) parser.add_argument('--n_test' , type=lowercase_ , default=-1 , required=lowercase_ , help='# examples. -1 means use all.' ) parser.add_argument( '--task' , type=lowercase_ , default='summarization' , required=lowercase_ , help='# examples. -1 means use all.' ) parser.add_argument('--label_smoothing' , type=lowercase_ , default=0.0 , required=lowercase_ ) parser.add_argument('--src_lang' , type=lowercase_ , default='' , required=lowercase_ ) parser.add_argument('--tgt_lang' , type=lowercase_ , default='' , required=lowercase_ ) parser.add_argument('--eval_beams' , type=lowercase_ , default=lowercase_ , required=lowercase_ ) parser.add_argument( '--val_metric' , type=lowercase_ , default=lowercase_ , required=lowercase_ , choices=['bleu', 'rouge2', 'loss', None] ) parser.add_argument('--eval_max_gen_length' , type=lowercase_ , default=lowercase_ , help='never generate more than n tokens' ) parser.add_argument('--save_top_k' , type=lowercase_ , default=1 , required=lowercase_ , help='How many checkpoints to save' ) parser.add_argument( '--early_stopping_patience' , type=lowercase_ , default=-1 , required=lowercase_ , help=( '-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So' ' val_check_interval will effect it.' ) , ) return parser class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = """translation""" __UpperCamelCase = ["""loss"""] __UpperCamelCase = ["""bleu"""] __UpperCamelCase = """bleu""" def __init__( self :List[str] , lowercase_ :Tuple , **lowercase_ :List[Any] ) -> Optional[int]: super().__init__(lowercase_ , **lowercase_ ) UpperCAmelCase = hparams.src_lang UpperCAmelCase = hparams.tgt_lang def UpperCAmelCase__ ( self :List[str] , lowercase_ :Dict , lowercase_ :Optional[Any] ) -> dict: return calculate_bleu(lowercase_ , lowercase_ ) def _lowerCAmelCase ( lowercase_ , lowercase_=None ): Path(args.output_dir ).mkdir(exist_ok=lowercase_ ) check_output_dir(lowercase_ , expected_items=3 ) if model is None: if "summarization" in args.task: UpperCAmelCase = SummarizationModule(lowercase_ ) else: UpperCAmelCase = TranslationModule(lowercase_ ) UpperCAmelCase = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('/tmp' ) or str(args.output_dir ).startswith('/var' ) ): UpperCAmelCase = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase = os.environ.get('WANDB_PROJECT' , lowercase_ ) UpperCAmelCase = WandbLogger(name=model.output_dir.name , project=lowercase_ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase = WandbLogger(name=model.output_dir.name , project=F"""hf_{dataset}""" ) if args.early_stopping_patience >= 0: UpperCAmelCase = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: UpperCAmelCase = False UpperCAmelCase = args.val_metric == 'loss' UpperCAmelCase = generic_train( lowercase_ , lowercase_ , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , lowercase_ ) , early_stopping_callback=lowercase_ , logger=lowercase_ , ) pickle_save(model.hparams , model.output_dir / 'hparams.pkl' ) if not args.do_predict: return model UpperCAmelCase = '' UpperCAmelCase = sorted(glob.glob(os.path.join(args.output_dir , '*.ckpt' ) , recursive=lowercase_ ) ) if checkpoints: UpperCAmelCase = checkpoints[-1] UpperCAmelCase = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() snake_case_ = pl.Trainer.add_argparse_args(parser) snake_case_ = SummarizationModule.add_model_specific_args(parser, os.getcwd()) snake_case_ = parser.parse_args() main(args)
78
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = fname.split(os.path.sep )[-1] return re.search(R'^(.*)_\d+\.jpg$' , lowercase_ ).groups()[0] class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :List[str] , lowercase_ :Dict , lowercase_ :List[str]=None , lowercase_ :Optional[Any]=None ) -> Optional[int]: UpperCAmelCase = file_names UpperCAmelCase = image_transform UpperCAmelCase = label_to_id def __len__( self :Optional[int] ) -> Optional[Any]: return len(self.file_names ) def __getitem__( self :int , lowercase_ :str ) -> List[str]: UpperCAmelCase = self.file_names[idx] UpperCAmelCase = PIL.Image.open(lowercase_ ) UpperCAmelCase = raw_image.convert('RGB' ) if self.image_transform is not None: UpperCAmelCase = self.image_transform(lowercase_ ) UpperCAmelCase = extract_label(lowercase_ ) if self.label_to_id is not None: UpperCAmelCase = self.label_to_id[label] return {"image": image, "label": label} def _lowerCAmelCase ( lowercase_ , lowercase_ ): # Initialize accelerator if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['lr'] UpperCAmelCase = int(config['num_epochs'] ) UpperCAmelCase = int(config['seed'] ) UpperCAmelCase = int(config['batch_size'] ) UpperCAmelCase = config['image_size'] if not isinstance(lowercase_ , (list, tuple) ): UpperCAmelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": UpperCAmelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): UpperCAmelCase = int(args.checkpointing_steps ) else: raise ValueError( F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: UpperCAmelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: UpperCAmelCase = os.path.split(lowercase_ )[-1].split('.' )[0] accelerator.init_trackers(lowercase_ , lowercase_ ) # Grab all the image filenames UpperCAmelCase = [os.path.join(args.data_dir , lowercase_ ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences UpperCAmelCase = [extract_label(lowercase_ ) for fname in file_names] UpperCAmelCase = list(set(lowercase_ ) ) id_to_label.sort() UpperCAmelCase = {lbl: i for i, lbl in enumerate(lowercase_ )} # Set the seed before splitting the data. np.random.seed(lowercase_ ) torch.manual_seed(lowercase_ ) torch.cuda.manual_seed_all(lowercase_ ) # Split our filenames between train and validation UpperCAmelCase = np.random.permutation(len(lowercase_ ) ) UpperCAmelCase = int(0.8 * len(lowercase_ ) ) UpperCAmelCase = random_perm[:cut] UpperCAmelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop UpperCAmelCase = Compose([RandomResizedCrop(lowercase_ , scale=(0.5, 1.0) ), ToTensor()] ) UpperCAmelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=lowercase_ , label_to_id=lowercase_ ) # For evaluation, we use a deterministic Resize UpperCAmelCase = Compose([Resize(lowercase_ ), ToTensor()] ) UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=lowercase_ , label_to_id=lowercase_ ) # Instantiate dataloaders. UpperCAmelCase = DataLoader(lowercase_ , shuffle=lowercase_ , batch_size=lowercase_ , num_workers=4 ) UpperCAmelCase = DataLoader(lowercase_ , shuffle=lowercase_ , batch_size=lowercase_ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = create_model('resnet50d' , pretrained=lowercase_ , num_classes=len(lowercase_ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): UpperCAmelCase = False for param in model.get_classifier().parameters(): UpperCAmelCase = True # We normalize the batches of images to be a bit faster. UpperCAmelCase = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) UpperCAmelCase = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler UpperCAmelCase = OneCycleLR(optimizer=lowercase_ , max_lr=lowercase_ , epochs=lowercase_ , steps_per_epoch=len(lowercase_ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase = 0 # We also need to keep track of the starting epoch so files are named properly UpperCAmelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` UpperCAmelCase = os.path.splitext(lowercase_ )[0] if "epoch" in training_difference: UpperCAmelCase = int(training_difference.replace('epoch_' , '' ) ) + 1 UpperCAmelCase = None else: UpperCAmelCase = int(training_difference.replace('step_' , '' ) ) UpperCAmelCase = resume_step // len(lowercase_ ) resume_step -= starting_epoch * len(lowercase_ ) # Now we train the model for epoch in range(lowercase_ , lowercase_ ): model.train() if args.with_tracking: UpperCAmelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step UpperCAmelCase = accelerator.skip_first_batches(lowercase_ , lowercase_ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader UpperCAmelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch['image'] - mean) / std UpperCAmelCase = model(lowercase_ ) UpperCAmelCase = torch.nn.functional.cross_entropy(lowercase_ , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(lowercase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = F"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , lowercase_ ) accelerator.save_state(lowercase_ ) model.eval() UpperCAmelCase = 0 UpperCAmelCase = 0 for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch['image'] - mean) / std with torch.no_grad(): UpperCAmelCase = model(lowercase_ ) UpperCAmelCase = outputs.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['label']) ) UpperCAmelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() UpperCAmelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { 'accuracy': 100 * eval_metric, 'train_loss': total_loss.item() / len(lowercase_ ), 'epoch': epoch, } , step=lowercase_ , ) if checkpointing_steps == "epoch": UpperCAmelCase = F"""epoch_{epoch}""" if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , lowercase_ ) accelerator.save_state(lowercase_ ) if args.with_tracking: accelerator.end_training() def _lowerCAmelCase ( ): UpperCAmelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=lowercase_ , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=lowercase_ , default=lowercase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=lowercase_ , default=lowercase_ , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=lowercase_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=lowercase_ , default=lowercase_ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=lowercase_ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 224} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
78
1
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : str ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" UpperCAmelCase_ : Optional[Any] = '' UpperCAmelCase_ : List[str] = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__UpperCamelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = 0, 0 # length[i] shows the length of palindromic substring with center i UpperCAmelCase_ : List[str] = [1 for i in range(len(__UpperCamelCase ) )] # for each character in new_string find corresponding palindromic string UpperCAmelCase_ : Tuple = 0 for j in range(len(__UpperCamelCase ) ): UpperCAmelCase_ : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__UpperCamelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 UpperCAmelCase_ : Dict = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: UpperCAmelCase_ : List[str] = j - k + 1 # noqa: E741 UpperCAmelCase_ : List[str] = j + k - 1 # update max_length and start position if max_length < length[j]: UpperCAmelCase_ : Optional[int] = length[j] UpperCAmelCase_ : int = j # create that string UpperCAmelCase_ : Dict = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
369
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : int = ['a', 'b', 'c'] # Defaults to last layer if both are None UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_aligned_output_features_output_indices(snake_case_ , snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , ['c'] ) self.assertEqual(snake_case_ , [2] ) # Out indices set to match out features UpperCAmelCase_ , UpperCAmelCase_ : int = get_aligned_output_features_output_indices(['a', 'c'] , snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , ['a', 'c'] ) self.assertEqual(snake_case_ , [0, 2] ) # Out features set to match out indices UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = get_aligned_output_features_output_indices(snake_case_ , [0, 2] , snake_case_ ) self.assertEqual(snake_case_ , ['a', 'c'] ) self.assertEqual(snake_case_ , [0, 2] ) # Out features selected from negative indices UpperCAmelCase_ , UpperCAmelCase_ : int = get_aligned_output_features_output_indices(snake_case_ , [-3, -1] , snake_case_ ) self.assertEqual(snake_case_ , ['a', 'c'] ) self.assertEqual(snake_case_ , [-3, -1] ) def _UpperCamelCase ( self ): '''simple docstring''' with self.assertRaises(snake_case_ ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , snake_case_ ) # Out features must be a list with self.assertRaises(snake_case_ ): verify_out_features_out_indices(('a', 'b') , (0, 1) , ['a', 'b'] ) # Out features must be a subset of stage names with self.assertRaises(snake_case_ ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , ['a'] ) # Out indices must be a list or tuple with self.assertRaises(snake_case_ ): verify_out_features_out_indices(snake_case_ , 0 , ['a', 'b'] ) # Out indices must be a subset of stage names with self.assertRaises(snake_case_ ): verify_out_features_out_indices(snake_case_ , (0, 1) , ['a'] ) # Out features and out indices must be the same length with self.assertRaises(snake_case_ ): verify_out_features_out_indices(['a', 'b'] , (0,) , ['a', 'b', 'c'] ) # Out features should match out indices with self.assertRaises(snake_case_ ): verify_out_features_out_indices(['a', 'b'] , (0, 2) , ['a', 'b', 'c'] ) # Out features and out indices should be in order with self.assertRaises(snake_case_ ): verify_out_features_out_indices(['b', 'a'] , (0, 1) , ['a', 'b'] ) # Check passes with valid inputs verify_out_features_out_indices(['a', 'b', 'd'] , (0, 1, -1) , ['a', 'b', 'c', 'd'] ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : List[str] = BackboneMixin() UpperCAmelCase_ : Any = ['a', 'b', 'c'] UpperCAmelCase_ : str = ['a', 'c'] UpperCAmelCase_ : str = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly UpperCAmelCase_ : str = ['a', 'b'] self.assertEqual(backbone.out_features , ['a', 'b'] ) self.assertEqual(backbone.out_indices , [0, 1] ) UpperCAmelCase_ : Optional[int] = [-3, -1] self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [-3, -1] )
274
0
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = 'mask2former' __UpperCAmelCase : Dict = ['swin'] __UpperCAmelCase : Dict = {'hidden_size': 'hidden_dim'} def __init__( self , _a = None , _a = 256 , _a = 256 , _a = 256 , _a = 1_024 , _a = "relu" , _a = 6 , _a = 10 , _a = 8 , _a = 0.0 , _a = 2_048 , _a = False , _a = False , _a = 4 , _a = 255 , _a = 100 , _a = 0.1 , _a = 2.0 , _a = 5.0 , _a = 5.0 , _a = 12_544 , _a = 3.0 , _a = 0.75 , _a = 0.02 , _a = 1.0 , _a = True , _a = [4, 8, 16, 32] , _a = None , **_a , ): if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''' ) __a = CONFIG_MAPPING['''swin''']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_a , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_a , _a ): __a = backbone_config.pop('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) __a = backbone_config __a = feature_size __a = mask_feature_size __a = hidden_dim __a = encoder_feedforward_dim __a = activation_function __a = encoder_layers __a = decoder_layers __a = num_attention_heads __a = dropout __a = dim_feedforward __a = pre_norm __a = enforce_input_projection __a = common_stride __a = ignore_value __a = num_queries __a = no_object_weight __a = class_weight __a = mask_weight __a = dice_weight __a = train_num_points __a = oversample_ratio __a = importance_sample_ratio __a = init_std __a = init_xavier_std __a = use_auxiliary_loss __a = feature_strides __a = output_auxiliary_logits __a = decoder_layers super().__init__(**_a ) @classmethod def __UpperCAmelCase ( cls , _a , **_a ): return cls( backbone_config=_a , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.backbone_config.to_dict() __a = self.__class__.model_type return output
45
"""simple docstring""" def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : list ) -> List[Any]: _enforce_args(lowerCAmelCase__ , lowerCAmelCase__ ) if n == 0: return 0 __a = float('''-inf''' ) for i in range(1 , n + 1 ): __a = max( lowerCAmelCase__ , prices[i - 1] + naive_cut_rod_recursive(n - i , lowerCAmelCase__ ) ) return max_revue def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : list ) -> List[str]: _enforce_args(lowerCAmelCase__ , lowerCAmelCase__ ) __a = [float('''-inf''' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : list , lowerCAmelCase__ : list ) -> Union[str, Any]: if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: __a = float('''-inf''' ) for i in range(1 , n + 1 ): __a = max( lowerCAmelCase__ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , lowerCAmelCase__ , lowerCAmelCase__ ) , ) __a = max_revenue return max_rev[n] def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : list ) -> Dict: _enforce_args(lowerCAmelCase__ , lowerCAmelCase__ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. __a = [float('''-inf''' ) for _ in range(n + 1 )] __a = 0 for i in range(1 , n + 1 ): __a = max_rev[i] for j in range(1 , i + 1 ): __a = max(lowerCAmelCase__ , prices[j - 1] + max_rev[i - j] ) __a = max_revenue_i return max_rev[n] def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : list ) -> str: if n < 0: __a = f'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(lowerCAmelCase__ ) if n > len(lowerCAmelCase__ ): __a = ( '''Each integral piece of rod must have a corresponding price. ''' f'''Got n = {n} but length of prices = {len(lowerCAmelCase__ )}''' ) raise ValueError(lowerCAmelCase__ ) def lowercase ( ) -> int: __a = [6, 10, 12, 15, 20, 23] __a = len(lowerCAmelCase__ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. __a = 36 __a = top_down_cut_rod(lowerCAmelCase__ , lowerCAmelCase__ ) __a = bottom_up_cut_rod(lowerCAmelCase__ , lowerCAmelCase__ ) __a = naive_cut_rod_recursive(lowerCAmelCase__ , lowerCAmelCase__ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
45
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: _UpperCAmelCase = None _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _UpperCAmelCase = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } _UpperCAmelCase = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } _UpperCAmelCase = '▁' class snake_case_ ( lowerCamelCase__ ): A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = BigBirdTokenizer A_ = ["""input_ids""", """attention_mask"""] A_ = [] def __init__( self : int , _snake_case : int=None , _snake_case : Union[str, Any]=None , _snake_case : Tuple="<unk>" , _snake_case : Any="<s>" , _snake_case : Union[str, Any]="</s>" , _snake_case : Any="<pad>" , _snake_case : Optional[Any]="[SEP]" , _snake_case : Tuple="[MASK]" , _snake_case : Any="[CLS]" , **_snake_case : Optional[int] , )->List[str]: '''simple docstring''' __lowerCAmelCase : List[str] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token __lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token __lowerCAmelCase : List[str] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token __lowerCAmelCase : Optional[int] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token __lowerCAmelCase : List[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token __lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase : List[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) __lowerCAmelCase : Optional[Any] = vocab_file __lowerCAmelCase : List[str] = False if not self.vocab_file else True def UpperCAmelCase__ ( self : Tuple , _snake_case : Any , _snake_case : Union[str, Any] = None )->List[int]: '''simple docstring''' __lowerCAmelCase : List[Any] = [self.sep_token_id] __lowerCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self : str , _snake_case : List[Any] , _snake_case : Optional[Any] = None , _snake_case : Dict = False )->List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCAmelCase__ ( self : Union[str, Any] , _snake_case : Tuple , _snake_case : Any = None )->List[int]: '''simple docstring''' __lowerCAmelCase : List[Any] = [self.sep_token_id] __lowerCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self : Any , _snake_case : List[str] , _snake_case : Tuple = None )->Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(snake_case__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCAmelCase : int = os.path.join( snake_case__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
362
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _UpperCAmelCase = { 'configuration_gpt_bigcode': ['GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTBigCodeConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTBigCodeForSequenceClassification', 'GPTBigCodeForTokenClassification', 'GPTBigCodeForCausalLM', 'GPTBigCodeModel', 'GPTBigCodePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
232
0
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent a : str = {"UserAgent": UserAgent().random} def lowerCamelCase__ ( __lowerCamelCase : Optional[int] ): __UpperCAmelCase : Optional[int] = script.contents[0] __UpperCAmelCase : List[str] = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class a : """simple docstring""" def __init__( self : Tuple , __lowercase : List[Any] ) -> Tuple: __UpperCAmelCase : List[Any] = f"""https://www.instagram.com/{username}/""" __UpperCAmelCase : List[str] = self.get_json() def UpperCAmelCase ( self : Optional[Any] ) -> dict: __UpperCAmelCase : List[str] = requests.get(self.url , headers=__lowercase ).text __UpperCAmelCase : Optional[Any] = BeautifulSoup(__lowercase , """html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Union[str, Any] ) -> str: return f"""{self.__class__.__name__}('{self.username}')""" def __str__( self : Optional[Any] ) -> str: return f"""{self.fullname} ({self.username}) is {self.biography}""" @property def UpperCAmelCase ( self : Any ) -> str: return self.user_data["username"] @property def UpperCAmelCase ( self : List[Any] ) -> str: return self.user_data["full_name"] @property def UpperCAmelCase ( self : Tuple ) -> str: return self.user_data["biography"] @property def UpperCAmelCase ( self : Any ) -> str: return self.user_data["business_email"] @property def UpperCAmelCase ( self : Dict ) -> str: return self.user_data["external_url"] @property def UpperCAmelCase ( self : Dict ) -> int: return self.user_data["edge_followed_by"]["count"] @property def UpperCAmelCase ( self : Optional[int] ) -> int: return self.user_data["edge_follow"]["count"] @property def UpperCAmelCase ( self : List[str] ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def UpperCAmelCase ( self : Optional[Any] ) -> str: return self.user_data["profile_pic_url_hd"] @property def UpperCAmelCase ( self : int ) -> bool: return self.user_data["is_verified"] @property def UpperCAmelCase ( self : Union[str, Any] ) -> bool: return self.user_data["is_private"] def lowerCamelCase__ ( __lowerCamelCase : str = "github" ): import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions __UpperCAmelCase : str = InstagramUser(__lowerCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __lowerCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() a : int = InstagramUser("github") print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
114
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np a : Dict = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 a : Any = typing.Union[np.floataa, int, float] # noqa: UP007 def lowerCamelCase__ ( __lowerCamelCase : Vector , __lowerCamelCase : Vector ): return np.sqrt(np.sum((np.asarray(__lowerCamelCase ) - np.asarray(__lowerCamelCase )) ** 2 ) ) def lowerCamelCase__ ( __lowerCamelCase : Vector , __lowerCamelCase : Vector ): return sum((va - va) ** 2 for va, va in zip(__lowerCamelCase , __lowerCamelCase ) ) ** (1 / 2) if __name__ == "__main__": def lowerCamelCase__ ( ): from timeit import timeit print("""Without Numpy""" ) print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""" , number=10000 , globals=globals() , ) ) print("""With Numpy""" ) print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""" , number=10000 , globals=globals() , ) ) benchmark()
114
1
from itertools import count def _snake_case( SCREAMING_SNAKE_CASE__ : int = 50 ) -> int: '''simple docstring''' A__ = [1] * min_block_length for n in count(SCREAMING_SNAKE_CASE__ ): fill_count_functions.append(1 ) for block_length in range(SCREAMING_SNAKE_CASE__ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1000000: break return n if __name__ == "__main__": print(f"""{solution() = }""")
282
from jiwer import compute_measures import datasets lowercase_ = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" lowercase_ = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" lowercase_ = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): """simple docstring""" def snake_case__ ( self : Any )-> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { 'predictions': datasets.Value('string',id='sequence' ), 'references': datasets.Value('string',id='sequence' ), } ),codebase_urls=['https://github.com/jitsi/jiwer/'],reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ],) def snake_case__ ( self : int,lowercase_ : Any=None,lowercase_ : List[str]=None,lowercase_ : Dict=False )-> Optional[int]: '''simple docstring''' if concatenate_texts: return compute_measures(lowercase_,lowercase_ )["wer"] else: A__ = 0 A__ = 0 for prediction, reference in zip(lowercase_,lowercase_ ): A__ = compute_measures(lowercase_,lowercase_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
282
1
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : Union[str, Any] = { 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : List[str] = '''owlvit_text_model''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple=4_9_4_0_8 , SCREAMING_SNAKE_CASE__ : Optional[int]=5_1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2_0_4_8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1_2 , SCREAMING_SNAKE_CASE__ : List[str]=8 , SCREAMING_SNAKE_CASE__ : str=1_6 , SCREAMING_SNAKE_CASE__ : Any="quick_gelu" , SCREAMING_SNAKE_CASE__ : Any=1E-5 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.02 , SCREAMING_SNAKE_CASE__ : int=1.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4_9_4_0_6 , SCREAMING_SNAKE_CASE__ : Dict=4_9_4_0_7 , **SCREAMING_SNAKE_CASE__ : str , ) -> Union[str, Any]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = vocab_size a_ : List[Any] = hidden_size a_ : Dict = intermediate_size a_ : Dict = num_hidden_layers a_ : List[str] = num_attention_heads a_ : Any = max_position_embeddings a_ : str = hidden_act a_ : Optional[int] = layer_norm_eps a_ : Tuple = attention_dropout a_ : Any = initializer_range a_ : Optional[Any] = initializer_factor @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) a_ , a_ : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": a_ : Union[str, Any] = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Optional[Any] = '''owlvit_vision_model''' def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str]=7_6_8 , SCREAMING_SNAKE_CASE__ : Dict=3_0_7_2 , SCREAMING_SNAKE_CASE__ : int=1_2 , SCREAMING_SNAKE_CASE__ : Optional[int]=1_2 , SCREAMING_SNAKE_CASE__ : Optional[int]=3 , SCREAMING_SNAKE_CASE__ : str=7_6_8 , SCREAMING_SNAKE_CASE__ : List[str]=3_2 , SCREAMING_SNAKE_CASE__ : Any="quick_gelu" , SCREAMING_SNAKE_CASE__ : Tuple=1E-5 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : int=0.02 , SCREAMING_SNAKE_CASE__ : Tuple=1.0 , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> Optional[Any]: super().__init__(**SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = hidden_size a_ : Optional[Any] = intermediate_size a_ : Optional[Any] = num_hidden_layers a_ : Optional[Any] = num_attention_heads a_ : List[str] = num_channels a_ : Tuple = image_size a_ : str = patch_size a_ : str = hidden_act a_ : Dict = layer_norm_eps a_ : List[str] = attention_dropout a_ : List[str] = initializer_range a_ : List[str] = initializer_factor @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) a_ , a_ : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": a_ : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Optional[Any] = '''owlvit''' snake_case__ : Dict = True def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Dict=5_1_2 , SCREAMING_SNAKE_CASE__ : Dict=2.6592 , SCREAMING_SNAKE_CASE__ : List[str]=True , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Any: super().__init__(**SCREAMING_SNAKE_CASE__ ) if text_config is None: a_ : Optional[int] = {} logger.info('text_config is None. Initializing the OwlViTTextConfig with default values.' ) if vision_config is None: a_ : int = {} logger.info('vision_config is None. initializing the OwlViTVisionConfig with default values.' ) a_ : Union[str, Any] = OwlViTTextConfig(**SCREAMING_SNAKE_CASE__ ) a_ : Any = OwlViTVisionConfig(**SCREAMING_SNAKE_CASE__ ) a_ : str = projection_dim a_ : Any = logit_scale_init_value a_ : List[Any] = return_dict a_ : Optional[int] = 1.0 @classmethod def SCREAMING_SNAKE_CASE ( cls : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) a_ , a_ : Any = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: a_ : List[Any] = {} a_ : List[str] = text_config a_ : Any = vision_config return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: a_ : Optional[int] = copy.deepcopy(self.__dict__ ) a_ : Tuple = self.text_config.to_dict() a_ : Optional[Any] = self.vision_config.to_dict() a_ : Optional[Any] = self.__class__.model_type return output class SCREAMING_SNAKE_CASE__ ( lowercase__ ): @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ] ) @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('logits_per_image', {0: 'batch'}), ('logits_per_text', {0: 'batch'}), ('text_embeds', {0: 'batch'}), ('image_embeds', {0: 'batch'}), ] ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> float: return 1E-4 def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : "ProcessorMixin" , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , ) -> Mapping[str, Any]: a_ : int = super().generate_dummy_inputs( processor.tokenizer , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = super().generate_dummy_inputs( processor.image_processor , batch_size=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) return {**text_input_dict, **image_input_dict} @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return 1_4
32
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) UpperCAmelCase_ : str = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) UpperCAmelCase_ : Dict = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) UpperCAmelCase_ : Optional[Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) UpperCAmelCase_ : List[str] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) UpperCAmelCase_ : int = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) UpperCAmelCase_ : List[str] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) UpperCAmelCase_ : List[str] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) UpperCAmelCase_ : List[str] = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) UpperCAmelCase_ : Union[str, Any] = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) UpperCAmelCase_ : Dict = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) UpperCAmelCase_ : List[str] = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) UpperCAmelCase_ : Dict = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) UpperCAmelCase_ : Union[str, Any] = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) UpperCAmelCase_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase_ : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase_ : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : List[Any] = FLAX_MODEL_MAPPING UpperCAmelCase_ : Tuple = auto_class_update(FlaxAutoModel) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Any = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase_ : Optional[Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase_ : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Optional[Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase_ : Union[str, Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Tuple = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase_ : Optional[int] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Tuple = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase_ : Optional[Any] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Tuple = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ : str = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : List[str] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase_ : Tuple = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Dict = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase_ : int = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Optional[int] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase_ : Dict = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ : str = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Optional[Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Optional[int] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase_ : Union[str, Any] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
32
1
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax snake_case_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : str , **a__ : Union[str, Any] ): """simple docstring""" super().__init__(**a__ ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__(self : Optional[int] , a__ : Union[str, List[str], "Image", List["Image"]] , **a__ : Union[str, Any] ): """simple docstring""" return super().__call__(a__ , **a__ ) def a (self : Dict , **a__ : Any ): """simple docstring""" __snake_case = {} if "candidate_labels" in kwargs: __snake_case = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __snake_case = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def a (self : Tuple , a__ : List[str] , a__ : Union[str, Any]=None , a__ : Optional[Any]="This is a photo of {}." ): """simple docstring""" __snake_case = load_image(a__ ) __snake_case = self.image_processor(images=[image] , return_tensors=self.framework ) __snake_case = candidate_labels __snake_case = [hypothesis_template.format(a__ ) for x in candidate_labels] __snake_case = self.tokenizer(a__ , return_tensors=self.framework , padding=a__ ) __snake_case = [text_inputs] return inputs def a (self : int , a__ : Any ): """simple docstring""" __snake_case = model_inputs.pop('''candidate_labels''' ) __snake_case = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , a__ ): __snake_case = text_inputs[0] else: # Batching case. __snake_case = text_inputs[0][0] __snake_case = self.model(**a__ , **a__ ) __snake_case = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def a (self : List[str] , a__ : Tuple ): """simple docstring""" __snake_case = model_outputs.pop('''candidate_labels''' ) __snake_case = model_outputs['''logits'''][0] if self.framework == "pt": __snake_case = logits.softmax(dim=-1 ).squeeze(-1 ) __snake_case = probs.tolist() if not isinstance(a__ , a__ ): __snake_case = [scores] elif self.framework == "tf": __snake_case = stable_softmax(a__ , axis=-1 ) __snake_case = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __snake_case = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(a__ , a__ ) , key=lambda a__ : -x[0] ) ] return result
238
from __future__ import annotations snake_case_ = [True] * 1000001 snake_case_ = 2 while i * i <= 1000000: if seive[i]: for j in range(i * i, 1000001, i): snake_case_ = False i += 1 def lowerCamelCase__ ( snake_case_ : int ) -> bool: return seive[n] def lowerCamelCase__ ( snake_case_ : int ) -> bool: return any(digit in '''02468''' for digit in str(snake_case_ ) ) def lowerCamelCase__ ( snake_case_ : int = 100_0000 ) -> list[int]: __snake_case = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(snake_case_ ) and not contains_an_even_digit(snake_case_ ): __snake_case = str(snake_case_ ) __snake_case = [int(str_num[j:] + str_num[:j] ) for j in range(len(snake_case_ ) )] if all(is_prime(snake_case_ ) for i in list_nums ): result.append(snake_case_ ) return result def lowerCamelCase__ ( ) -> int: return len(find_circular_primes() ) if __name__ == "__main__": print(F'{len(find_circular_primes()) = }')
238
1
"""simple docstring""" from collections.abc import Callable import numpy as np def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase = np.zeros((n + 1,) ) UpperCAmelCase = ya UpperCAmelCase = xa for k in range(lowercase_ ): UpperCAmelCase = y[k] + step_size * ode_func(lowercase_ , y[k] ) UpperCAmelCase = y[k] + ( (step_size / 2) * (ode_func(lowercase_ , y[k] ) + ode_func(x + step_size , lowercase_ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
78
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging A : Optional[Any] = logging.get_logger(__name__) A : str = '''▁''' A : Any = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } A : List[Any] = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } A : Tuple = { '''facebook/m2m100_418M''': 1_0_2_4, } # fmt: off A : Optional[int] = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = ['''input_ids''', '''attention_mask'''] __lowerCamelCase : List[int] = [] __lowerCamelCase : List[int] = [] def __init__( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : str=None , __lowerCAmelCase : List[Any]="<s>" , __lowerCAmelCase : List[Any]="</s>" , __lowerCAmelCase : Optional[int]="</s>" , __lowerCAmelCase : Optional[Any]="<pad>" , __lowerCAmelCase : Any="<unk>" , __lowerCAmelCase : Any="m2m100" , __lowerCAmelCase : Optional[Dict[str, Any]] = None , __lowerCAmelCase : Dict=8 , **__lowerCAmelCase : Tuple , ) -> None: """simple docstring""" A__ = {} if sp_model_kwargs is None else sp_model_kwargs A__ = language_codes A__ = FAIRSEQ_LANGUAGE_CODES[language_codes] A__ = {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} A__ = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__lowerCAmelCase ) for lang_code in fairseq_language_code if self.get_lang_token(__lowerCAmelCase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__lowerCAmelCase , tgt_lang=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , language_codes=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__lowerCAmelCase , **__lowerCAmelCase , ) A__ = vocab_file A__ = load_json(__lowerCAmelCase ) A__ = {v: k for k, v in self.encoder.items()} A__ = spm_file A__ = load_spm(__lowerCAmelCase , self.sp_model_kwargs ) A__ = len(self.encoder ) A__ = { self.get_lang_token(__lowerCAmelCase ): self.encoder_size + i for i, lang_code in enumerate(__lowerCAmelCase ) } A__ = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__lowerCAmelCase )} A__ = {v: k for k, v in self.lang_token_to_id.items()} A__ = src_lang if src_lang is not None else """en""" A__ = tgt_lang A__ = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) A__ = num_madeup_words @property def a_ ( self : Optional[int] ) -> int: """simple docstring""" return len(self.encoder ) + len(self.lang_token_to_id ) @property def a_ ( self : Optional[Any] ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def a_ ( self : List[Any] , __lowerCAmelCase : str ) -> None: """simple docstring""" A__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a_ ( self : Optional[int] , __lowerCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def a_ ( self : Optional[Any] , __lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__lowerCAmelCase , self.encoder[self.unk_token] ) def a_ ( self : Optional[int] , __lowerCAmelCase : int ) -> str: """simple docstring""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__lowerCAmelCase , self.unk_token ) def a_ ( self : Optional[int] , __lowerCAmelCase : Dict ) -> str: """simple docstring""" A__ = [] A__ = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCAmelCase ) + token A__ = [] else: current_sub_tokens.append(__lowerCAmelCase ) out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def a_ ( self : List[str] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) A__ = [1] * len(self.prefix_tokens ) A__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__lowerCAmelCase )) + ([0] * len(__lowerCAmelCase )) + suffix_ones def a_ ( self : Tuple , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a_ ( self : int ) -> Dict: """simple docstring""" A__ = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) -> Dict: """simple docstring""" A__ = self.__dict__.copy() A__ = None return state def __setstate__( self : str , __lowerCAmelCase : Dict ) -> None: """simple docstring""" A__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A__ = {} A__ = load_spm(self.spm_file , self.sp_model_kwargs ) def a_ ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" A__ = Path(__lowerCAmelCase ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) A__ = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) A__ = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , __lowerCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __lowerCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(__lowerCAmelCase , """wb""" ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (str(__lowerCAmelCase ), str(__lowerCAmelCase )) def a_ ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : str = "en" , __lowerCAmelCase : Optional[List[str]] = None , __lowerCAmelCase : str = "ro" , **__lowerCAmelCase : List[Any] , ) -> BatchEncoding: """simple docstring""" A__ = src_lang A__ = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def a_ ( self : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[str] , __lowerCAmelCase : Optional[str] , **__lowerCAmelCase : Tuple ) -> Tuple: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) A__ = src_lang A__ = self(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , **__lowerCAmelCase ) A__ = self.get_lang_id(__lowerCAmelCase ) A__ = tgt_lang_id return inputs def a_ ( self : Dict ) -> int: """simple docstring""" self.set_src_lang_special_tokens(self.src_lang ) def a_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" self.set_tgt_lang_special_tokens(self.tgt_lang ) def a_ ( self : str , __lowerCAmelCase : str ) -> None: """simple docstring""" A__ = self.get_lang_token(__lowerCAmelCase ) A__ = self.lang_token_to_id[lang_token] A__ = [self.cur_lang_id] A__ = [self.eos_token_id] def a_ ( self : Tuple , __lowerCAmelCase : str ) -> None: """simple docstring""" A__ = self.get_lang_token(__lowerCAmelCase ) A__ = self.lang_token_to_id[lang_token] A__ = [self.cur_lang_id] A__ = [self.eos_token_id] def a_ ( self : Union[str, Any] , __lowerCAmelCase : str ) -> str: """simple docstring""" return self.lang_code_to_token[lang] def a_ ( self : Union[str, Any] , __lowerCAmelCase : str ) -> int: """simple docstring""" A__ = self.get_lang_token(__lowerCAmelCase ) return self.lang_token_to_id[lang_token] def __lowerCamelCase ( __a :str , __a :Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" A__ = sentencepiece.SentencePieceProcessor(**__a ) spm.Load(str(__a ) ) return spm def __lowerCamelCase ( __a :str ) -> Union[Dict, List]: """simple docstring""" with open(__a , """r""" ) as f: return json.load(__a ) def __lowerCamelCase ( __a :List[Any] , __a :str ) -> None: """simple docstring""" with open(__a , """w""" ) as f: json.dump(__a , __a , indent=2 )
274
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase = { '''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''], '''configuration_data2vec_text''': [ '''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecTextConfig''', '''Data2VecTextOnnxConfig''', ], '''configuration_data2vec_vision''': [ '''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecVisionConfig''', '''Data2VecVisionOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecAudioForAudioFrameClassification''', '''Data2VecAudioForCTC''', '''Data2VecAudioForSequenceClassification''', '''Data2VecAudioForXVector''', '''Data2VecAudioModel''', '''Data2VecAudioPreTrainedModel''', ] __lowerCAmelCase = [ '''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecTextForCausalLM''', '''Data2VecTextForMaskedLM''', '''Data2VecTextForMultipleChoice''', '''Data2VecTextForQuestionAnswering''', '''Data2VecTextForSequenceClassification''', '''Data2VecTextForTokenClassification''', '''Data2VecTextModel''', '''Data2VecTextPreTrainedModel''', ] __lowerCAmelCase = [ '''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecVisionForImageClassification''', '''Data2VecVisionForMaskedImageModeling''', '''Data2VecVisionForSemanticSegmentation''', '''Data2VecVisionModel''', '''Data2VecVisionPreTrainedModel''', ] if is_tf_available(): __lowerCAmelCase = [ '''TFData2VecVisionForImageClassification''', '''TFData2VecVisionForSemanticSegmentation''', '''TFData2VecVisionModel''', '''TFData2VecVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
107
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __lowerCAmelCase = 3 def __lowerCamelCase ( lowerCAmelCase_ ) -> int: print('Generating primitive root of p' ) while True: _a : List[Any] = random.randrange(3 , lowerCAmelCase_ ) if pow(lowerCAmelCase_ , 2 , lowerCAmelCase_ ) == 1: continue if pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) == 1: continue return g def __lowerCamelCase ( lowerCAmelCase_ ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...' ) _a : int = rabin_miller.generate_large_prime(lowerCAmelCase_ ) # select large prime number. _a : List[str] = primitive_root(lowerCAmelCase_ ) # one primitive root on modulo p. _a : Any = random.randrange(3 , lowerCAmelCase_ ) # private_key -> have to be greater than 2 for safety. _a : List[Any] = cryptomath.find_mod_inverse(pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) _a : Tuple = (key_size, e_a, e_a, p) _a : str = (key_size, d) return public_key, private_key def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() _a , _a : Dict = generate_key(lowerCAmelCase_ ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , 'w' ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , 'w' ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def __lowerCamelCase ( ) -> None: print('Making key files...' ) make_key_files('elgamal' , 2048 ) print('Key files generation successful' ) if __name__ == "__main__": main()
107
1
"""simple docstring""" import pytest import datasets # Import fixture modules as plugins lowerCAmelCase__ = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def snake_case_ ( A_ : Optional[Any], A_ : int ): '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def snake_case_ ( A_ : Tuple ): '''simple docstring''' config.addinivalue_line('''markers''', '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=A_ ) def snake_case_ ( A_ : List[str], A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : Any = tmp_path_factory.getbasetemp() / '''cache''' _lowerCamelCase : Tuple = test_hf_cache_home / '''datasets''' _lowerCamelCase : List[str] = test_hf_cache_home / '''metrics''' _lowerCamelCase : Optional[int] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''', str(A_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''', str(A_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''', str(A_ ) ) _lowerCamelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''', str(A_ ) ) _lowerCamelCase : Optional[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''', str(A_ ) ) @pytest.fixture(autouse=A_, scope='''session''' ) def snake_case_ ( ): '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=A_ ) def snake_case_ ( A_ : Tuple ): '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''', A_ ) @pytest.fixture def snake_case_ ( A_ : str ): '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''', A_ )
72
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = ComputeEnvironment.AMAZON_SAGEMAKER _A = True _A = 'ml.p3.2xlarge' _A = 'accelerate_sagemaker_execution_role' _A = 'hf-sm' _A = 'us-east-1' _A = 1 _A = 'accelerate-sagemaker-1' _A = '1.6' _A = '4.4' _A = 'train.py' _A = [ '--model_name_or_path', 'bert', '--do_train', 'False', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] _A = [ '--model_name_or_path', 'bert', '--do_train', '--do_test', 'False', '--do_predict', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self :Any ) -> Optional[int]: # If no defaults are changed, `to_kwargs` returns an empty dict. __UpperCamelCase : Optional[int] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["model_name_or_path"] , a ) assert isinstance(converted_args["do_train"] , a ) assert isinstance(converted_args["epochs"] , a ) assert isinstance(converted_args["learning_rate"] , a ) assert isinstance(converted_args["max_steps"] , a ) with pytest.raises(a ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
232
0
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __snake_case = object() # For specifying empty leaf dict `{}` __snake_case = object() def a ( __a , __a ) -> Tuple: '''simple docstring''' UpperCamelCase__ :List[str] = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(__a ) - len(__a ) + 1 ): UpperCamelCase__ :Optional[int] = [x.match(__a ) for x, y in zip(__a , ks[i:] )] if matches and all(__a ): return True return False def a ( __a ) -> Dict: '''simple docstring''' def replace(__a , __a ): for rule, replacement in rules: if _match(__a , __a ): return replacement return val return replace def a ( ) -> Tuple: '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , __a )), (("transformer", "wte", "embedding"), P('''mp''' , __a )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__a , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , __a )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__a , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , __a )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def a ( __a ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :Tuple = _get_partition_rules() UpperCamelCase__ :Any = _replacement_rules(__a ) UpperCamelCase__ :List[Any] = {k: _unmatched for k in flatten_dict(__a )} UpperCamelCase__ :Tuple = {k: replace(__a , __a ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__a ) )
219
'''simple docstring''' import socket def a ( ) -> Dict: '''simple docstring''' UpperCamelCase__ :int = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) UpperCamelCase__ :List[Any] = socket.gethostname() UpperCamelCase__ :List[str] = 12312 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: UpperCamelCase__ :str = sock.recv(1024 ) if not data: break out_file.write(__a ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
219
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _lowerCamelCase : Any = '''true''' def a_ ( __lowercase : str , __lowercase : Optional[int]=82 , __lowercase : Optional[int]=16 ) -> Optional[Any]: set_seed(42 ) _snake_case = RegressionModel() _snake_case = deepcopy(__lowercase ) _snake_case = RegressionDataset(length=__lowercase ) _snake_case = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) _snake_case , _snake_case = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def a_ ( __lowercase : Accelerator , __lowercase : Dict=False ) -> int: _snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) _snake_case = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(__lowercase : Any ): _snake_case = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): _snake_case = dataset.map( __lowercase , batched=__lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) _snake_case = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__lowercase : int ): if use_longest: return tokenizer.pad(__lowercase , padding='longest' , return_tensors='pt' ) return tokenizer.pad(__lowercase , padding='max_length' , max_length=128 , return_tensors='pt' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=16 ) def a_ ( __lowercase : Dict , __lowercase : Optional[Any] ) -> Optional[int]: _snake_case = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) _snake_case = get_dataloader(__lowercase , not dispatch_batches ) _snake_case = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=__lowercase ) _snake_case , _snake_case = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def a_ ( __lowercase : int , __lowercase : str , __lowercase : Dict ) -> Tuple: _snake_case = [] for batch in dataloader: _snake_case , _snake_case = batch.values() with torch.no_grad(): _snake_case = model(__lowercase ) _snake_case , _snake_case = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) _snake_case , _snake_case = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) _snake_case , _snake_case = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def a_ ( __lowercase : Accelerator , __lowercase : Tuple=82 , __lowercase : str=False , __lowercase : List[Any]=False , __lowercase : Dict=16 ) -> List[str]: _snake_case , _snake_case , _snake_case = get_basic_setup(__lowercase , __lowercase , __lowercase ) _snake_case , _snake_case = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), f'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}''' def a_ ( __lowercase : bool = False , __lowercase : bool = False ) -> str: _snake_case = evaluate.load('glue' , 'mrpc' ) _snake_case , _snake_case = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline _snake_case , _snake_case , _snake_case = setup['no'] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): _snake_case = model(**__lowercase ) _snake_case = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['labels'] ) _snake_case = metric.compute() # Then do distributed _snake_case , _snake_case , _snake_case = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): _snake_case = model(**__lowercase ) _snake_case = outputs.logits.argmax(dim=-1 ) _snake_case = batch['labels'] _snake_case , _snake_case = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) _snake_case = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def a_ ( ) -> int: _snake_case = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: _snake_case = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowercase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) _snake_case = Accelerator() test_torch_metrics(__lowercase , 512 ) accelerator.state._reset_state() def a_ ( __lowercase : Union[str, Any] ) -> Any: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
282
_lowerCamelCase : int = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _lowerCamelCase : str = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _lowerCamelCase : List[str] = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def a_ ( __lowercase : int , __lowercase : int , __lowercase : int ) -> str: assert len(str(__lowercase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: _snake_case = year // 100 _snake_case = (5 * (century % 4) + 2) % 7 _snake_case = year % 100 _snake_case = centurian % 12 _snake_case = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _snake_case = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) _snake_case = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
282
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {} class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = "llama" SCREAMING_SNAKE_CASE__ :Optional[Any] = ["past_key_values"] def __init__( self : Any , __a : str=3_2000 , __a : List[Any]=4096 , __a : Dict=1_1008 , __a : Optional[int]=32 , __a : Dict=32 , __a : int=None , __a : List[Any]="silu" , __a : Optional[Any]=2048 , __a : Union[str, Any]=0.02 , __a : int=1e-6 , __a : Optional[int]=True , __a : int=0 , __a : Tuple=1 , __a : Dict=2 , __a : Tuple=1 , __a : List[Any]=False , __a : int=None , **__a : List[str] , ) -> Tuple: _UpperCamelCase : str = vocab_size _UpperCamelCase : Dict = max_position_embeddings _UpperCamelCase : int = hidden_size _UpperCamelCase : int = intermediate_size _UpperCamelCase : Tuple = num_hidden_layers _UpperCamelCase : List[str] = num_attention_heads # for backward compatibility if num_key_value_heads is None: _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : Optional[Any] = num_key_value_heads _UpperCamelCase : str = hidden_act _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : Optional[Any] = rms_norm_eps _UpperCamelCase : Dict = pretraining_tp _UpperCamelCase : Optional[int] = use_cache _UpperCamelCase : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __a ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F'''got {self.rope_scaling}''' ) _UpperCamelCase : Dict = self.rope_scaling.get("type" , __a ) _UpperCamelCase : Optional[Any] = self.rope_scaling.get("factor" , __a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__a , __a ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
310
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = "xlm-roberta-xl" def __init__( self : Any , __a : Tuple=25_0880 , __a : Optional[Any]=2560 , __a : List[str]=36 , __a : Any=32 , __a : Dict=1_0240 , __a : Optional[Any]="gelu" , __a : int=0.1 , __a : Tuple=0.1 , __a : str=514 , __a : Any=1 , __a : List[Any]=0.02 , __a : List[str]=1e-0_5 , __a : Optional[Any]=1 , __a : List[Any]=0 , __a : Tuple=2 , __a : int="absolute" , __a : Dict=True , __a : Dict=None , **__a : Tuple , ) -> str: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) _UpperCamelCase : Any = vocab_size _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : Optional[int] = num_attention_heads _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Dict = max_position_embeddings _UpperCamelCase : Optional[Any] = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Union[str, Any] = use_cache _UpperCamelCase : Optional[Any] = classifier_dropout class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCamelCase : Any = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCamelCase : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
310
1
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() _lowercase : str = logging.get_logger(__name__) _lowercase : Any = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn.grep_linear": "encoder.layers.*.attention.gru_rel_pos_linear", "self_attn.relative_attention_bias": "encoder.layers.*.attention.rel_attn_embed", "self_attn.grep_a": "encoder.layers.*.attention.gru_rel_pos_const", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } _lowercase : Dict = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def snake_case__ ( __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ): """simple docstring""" for attribute in key.split('''.''' ): lowerCamelCase__ : Optional[Any] =getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: lowerCamelCase__ : List[Any] =getattr(__lowerCamelCase , __lowerCamelCase ).shape else: lowerCamelCase__ : int =hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCamelCase__ : Optional[int] =value elif weight_type == "weight_g": lowerCamelCase__ : List[Any] =value elif weight_type == "weight_v": lowerCamelCase__ : Optional[Any] =value elif weight_type == "bias": lowerCamelCase__ : str =value else: lowerCamelCase__ : str =value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def snake_case__ ( __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] ): """simple docstring""" lowerCamelCase__ : List[str] =[] lowerCamelCase__ : List[str] =fairseq_model.state_dict() lowerCamelCase__ : Any =hf_model.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__ : List[str] =False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) lowerCamelCase__ : Tuple =True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowerCamelCase__ : Optional[Any] =True if "*" in mapped_key: lowerCamelCase__ : Union[str, Any] =name.split(__lowerCamelCase )[0].split('''.''' )[-2] lowerCamelCase__ : int =mapped_key.replace('''*''' , __lowerCamelCase ) if "weight_g" in name: lowerCamelCase__ : Any ='''weight_g''' elif "weight_v" in name: lowerCamelCase__ : str ='''weight_v''' elif "bias" in name and "relative_attention_bias" not in name: lowerCamelCase__ : Optional[int] ='''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__ : Any ='''weight''' else: lowerCamelCase__ : Optional[int] =None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def snake_case__ ( __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ): """simple docstring""" lowerCamelCase__ : List[str] =full_name.split('''conv_layers.''' )[-1] lowerCamelCase__ : Optional[int] =name.split('''.''' ) lowerCamelCase__ : Dict =int(items[0] ) lowerCamelCase__ : Any =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowerCamelCase__ : List[str] =value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowerCamelCase__ : Union[str, Any] =value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowerCamelCase__ : Optional[Any] =value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowerCamelCase__ : Tuple =value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def snake_case__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Tuple=None ): """simple docstring""" # load the pre-trained checkpoints lowerCamelCase__ : Dict =torch.load(__lowerCamelCase ) lowerCamelCase__ : int =WavLMConfigOrig(checkpoint['''cfg'''] ) lowerCamelCase__ : str =WavLMOrig(__lowerCamelCase ) model.load_state_dict(checkpoint['''model'''] ) model.eval() if config_path is not None: lowerCamelCase__ : Any =WavLMConfig.from_pretrained(__lowerCamelCase ) else: lowerCamelCase__ : Optional[Any] =WavLMConfig() lowerCamelCase__ : str =WavLMModel(__lowerCamelCase ) recursively_load_weights(__lowerCamelCase , __lowerCamelCase ) hf_wavlm.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _lowercase : Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") _lowercase : Union[str, Any] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
238
"""simple docstring""" import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor _lowercase : Any = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Any, *lowerCamelCase : str, **lowerCamelCase : Optional[Any] )-> None: warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''', lowerCamelCase, ) super().__init__(*lowerCamelCase, **lowerCamelCase )
238
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case_ ( __A ): __A : List[str] = "vit_mae" def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]: super().__init__(**lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Any = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Optional[Any] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Any = num_channels lowercase__ : str = qkv_bias lowercase__ : Optional[Any] = decoder_num_attention_heads lowercase__ : Any = decoder_hidden_size lowercase__ : Any = decoder_num_hidden_layers lowercase__ : Union[str, Any] = decoder_intermediate_size lowercase__ : int = mask_ratio lowercase__ : Tuple = norm_pix_loss
352
def lowercase_ ( _lowerCamelCase : list): for i in range(len(_lowerCamelCase) - 1 , 0 , -1): lowercase__ : int = False for j in range(_lowerCamelCase , 0 , -1): if unsorted[j] < unsorted[j - 1]: lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j] lowercase__ : List[str] = True for j in range(_lowerCamelCase): if unsorted[j] > unsorted[j + 1]: lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j] lowercase__ : Dict = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(f"{cocktail_shaker_sort(unsorted) = }")
333
0
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor __lowerCAmelCase : List[Any] = logging.get_logger(__name__) class snake_case__ (_UpperCamelCase ): """simple docstring""" def __init__( self : Union[str, Any] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Dict ) -> None: warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
107
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : str = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class snake_case__ (_UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = XLMRobertaTokenizer SCREAMING_SNAKE_CASE_ : int = XLMRobertaTokenizerFast SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : Optional[Any] = True def __UpperCAmelCase ( self : int ) -> List[str]: super().setUp() # We have a SentencePiece fixture for testing a = XLMRobertaTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self : List[str] ) -> Any: a = "<pad>" a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__lowerCamelCase ) , 10_02 ) def __UpperCAmelCase ( self : List[Any] ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def __UpperCAmelCase ( self : Dict ) -> List[str]: a = XLMRobertaTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) a = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) a = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) a = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return a = (self.rust_tokenizer_class, "hf-internal-testing/tiny-xlm-roberta", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) a = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) a = tempfile.mkdtemp() a = tokenizer_r.save_pretrained(__lowerCamelCase ) a = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) a = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase ) # Checks everything loads correctly in the same way a = tokenizer_r.from_pretrained(__lowerCamelCase ) a = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=True a = tempfile.mkdtemp() a = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase ) a = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase ) # Checks everything loads correctly in the same way a = tokenizer_r.from_pretrained(__lowerCamelCase ) a = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=False a = tempfile.mkdtemp() a = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase ) a = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way a = tokenizer_r.from_pretrained(__lowerCamelCase ) a = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) @cached_property def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: return XLMRobertaTokenizer.from_pretrained("xlm-roberta-base" ) def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__lowerCamelCase , f.name ) a = XLMRobertaTokenizer(f.name , keep_accents=__lowerCamelCase ) a = pickle.dumps(__lowerCamelCase ) pickle.loads(__lowerCamelCase ) def __UpperCAmelCase ( self : int ) -> str: if not self.test_rust_tokenizer: return a = self.get_tokenizer() a = self.get_rust_tokenizer() a = "I was born in 92000, and this is falsé." a = tokenizer.tokenize(__lowerCamelCase ) a = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) a = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) a = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) a = self.get_rust_tokenizer() a = tokenizer.encode(__lowerCamelCase ) a = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def __UpperCAmelCase ( self : Dict ) -> Any: a = "Hello World!" a = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowerCamelCase , self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def __UpperCAmelCase ( self : Tuple ) -> int: a = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) a = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowerCamelCase , self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: # fmt: off a = {"input_ids": [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="xlm-roberta-base" , revision="d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3" , )
107
1
'''simple docstring''' import os def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = os.path.dirname(os.path.realpath(a__ ) ) __SCREAMING_SNAKE_CASE = os.path.join(a__ , """triangle.txt""" ) with open(a__ ) as f: __SCREAMING_SNAKE_CASE = f.readlines() __SCREAMING_SNAKE_CASE = [] for line in triangle: __SCREAMING_SNAKE_CASE = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(a__ ) ) a.append(a__ ) for i in range(1 , len(a__ ) ): for j in range(len(a[i] ) ): __SCREAMING_SNAKE_CASE = a[i - 1][j] if j != len(a[i - 1] ) else 0 __SCREAMING_SNAKE_CASE = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a__ , a__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
365
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast UpperCAmelCase : List[str] = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCAmelCase__ ( datasets.BuilderConfig ): """simple docstring""" lowerCAmelCase__ = 10000 lowerCAmelCase__ = None lowerCAmelCase__ = None class lowerCAmelCase__ ( datasets.ArrowBasedBuilder ): """simple docstring""" lowerCAmelCase__ = ParquetConfig def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) __SCREAMING_SNAKE_CASE = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__SCREAMING_SNAKE_CASE , (str, list, tuple) ): __SCREAMING_SNAKE_CASE = data_files if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __SCREAMING_SNAKE_CASE = [] for split_name, files in data_files.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , """rb""" ) as f: __SCREAMING_SNAKE_CASE = datasets.Features.from_arrow_schema(pq.read_schema(__SCREAMING_SNAKE_CASE ) ) break splits.append(datasets.SplitGenerator(name=__SCREAMING_SNAKE_CASE , gen_kwargs={"""files""": files} ) ) return splits def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : pa.Table ) -> pa.Table: """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __SCREAMING_SNAKE_CASE = table_cast(__SCREAMING_SNAKE_CASE , self.info.features.arrow_schema ) return pa_table def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ) ): with open(__SCREAMING_SNAKE_CASE , """rb""" ) as f: __SCREAMING_SNAKE_CASE = pq.ParquetFile(__SCREAMING_SNAKE_CASE ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __SCREAMING_SNAKE_CASE = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'{file_idx}_{batch_idx}', self._cast_table(__SCREAMING_SNAKE_CASE ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(__SCREAMING_SNAKE_CASE )}: {e}' ) raise
331
0
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __lowerCamelCase : List[Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : Optional[int] , _lowercase : Any , _lowercase : Optional[Any]=7 , _lowercase : Dict=3 , _lowercase : str=18 , _lowercase : Optional[int]=30 , _lowercase : Any=4_00 , _lowercase : Dict=None , _lowercase : str=True , _lowercase : List[Any]=True , _lowercase : List[Any]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = size if size is not None else {"""height""": 20, """width""": 20} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = do_convert_rgb SCREAMING_SNAKE_CASE__ = [5_12, 10_24, 20_48, 40_96] SCREAMING_SNAKE_CASE__ = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} def __a ( self : List[str] ): """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg""" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert("""RGB""" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class __snake_case ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = PixaStructImageProcessor if is_vision_available() else None def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = PixaStructImageProcessingTester(self ) @property def __a ( self : List[str] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowercase , """do_convert_rgb""" ) ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processor_tester.prepare_dummy_image() SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE__ = 20_48 SCREAMING_SNAKE_CASE__ = image_processor(_lowercase , return_tensors="""pt""" , max_patches=_lowercase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06 ) , atol=1E-3 , rtol=1E-3 ) ) def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input SCREAMING_SNAKE_CASE__ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processor( _lowercase , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 SCREAMING_SNAKE_CASE__ = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_lowercase ): SCREAMING_SNAKE_CASE__ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches SCREAMING_SNAKE_CASE__ = """Hello""" SCREAMING_SNAKE_CASE__ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_lowercase , header_text=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processor( _lowercase , return_tensors="""pt""" , max_patches=_lowercase , header_text=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) SCREAMING_SNAKE_CASE__ = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input SCREAMING_SNAKE_CASE__ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processor( _lowercase , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input SCREAMING_SNAKE_CASE__ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processor( _lowercase , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class __snake_case ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = PixaStructImageProcessor if is_vision_available() else None def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = PixaStructImageProcessingTester(self , num_channels=4 ) SCREAMING_SNAKE_CASE__ = 3 @property def __a ( self : Union[str, Any] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowercase , """do_convert_rgb""" ) ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input SCREAMING_SNAKE_CASE__ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processor( _lowercase , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
219
import doctest from collections import deque import numpy as np class __snake_case : def __init__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [2, 1, 2, -1] SCREAMING_SNAKE_CASE__ = [1, 2, 3, 4] def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = len(self.first_signal ) SCREAMING_SNAKE_CASE__ = len(self.second_signal ) SCREAMING_SNAKE_CASE__ = max(_lowercase , _lowercase ) # create a zero matrix of max_length x max_length SCREAMING_SNAKE_CASE__ = [[0] * max_length for i in range(_lowercase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_lowercase ): SCREAMING_SNAKE_CASE__ = deque(self.second_signal ) rotated_signal.rotate(_lowercase ) for j, item in enumerate(_lowercase ): matrix[i][j] += item # multiply the matrix with the first signal SCREAMING_SNAKE_CASE__ = np.matmul(np.transpose(_lowercase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(_lowercase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
219
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase=7 ,__lowerCamelCase=3 ,__lowerCamelCase=30 ,__lowerCamelCase=4_00 ,__lowerCamelCase=True ,__lowerCamelCase=None ,__lowerCamelCase=True ,__lowerCamelCase=[0.5, 0.5, 0.5] ,__lowerCamelCase=[0.5, 0.5, 0.5] ,__lowerCamelCase=True ,__lowerCamelCase=1 / 2_55 ,__lowerCamelCase=True ,) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} lowerCAmelCase__ : Any = parent lowerCAmelCase__ : str = batch_size lowerCAmelCase__ : Optional[Any] = num_channels lowerCAmelCase__ : Any = min_resolution lowerCAmelCase__ : int = max_resolution lowerCAmelCase__ : List[Any] = do_resize lowerCAmelCase__ : Optional[int] = size lowerCAmelCase__ : List[str] = do_normalize lowerCAmelCase__ : int = image_mean lowerCAmelCase__ : int = image_std lowerCAmelCase__ : Optional[int] = do_rescale lowerCAmelCase__ : List[str] = rescale_factor lowerCAmelCase__ : str = do_pad def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=False ) -> List[Any]: """simple docstring""" if not batched: lowerCAmelCase__ : Tuple = image_inputs[0] if isinstance(__lowerCamelCase ,Image.Image ): lowerCAmelCase__ : str = image.size else: lowerCAmelCase__ : str = image.shape[1], image.shape[2] if w < h: lowerCAmelCase__ : Optional[int] = int(self.size['''shortest_edge'''] * h / w ) lowerCAmelCase__ : List[str] = self.size['''shortest_edge'''] elif w > h: lowerCAmelCase__ : str = self.size['''shortest_edge'''] lowerCAmelCase__ : Tuple = int(self.size['''shortest_edge'''] * w / h ) else: lowerCAmelCase__ : Optional[int] = self.size['''shortest_edge'''] lowerCAmelCase__ : Optional[Any] = self.size['''shortest_edge'''] else: lowerCAmelCase__ : Union[str, Any] = [] for image in image_inputs: lowerCAmelCase__ : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase__ : Any = max(__lowerCamelCase ,key=lambda __lowerCamelCase : item[0] )[0] lowerCAmelCase__ : int = max(__lowerCamelCase ,key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =ConditionalDetrImageProcessor if is_vision_available() else None def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : Optional[Any] = ConditionalDetrImageProcessingTester(self ) @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase ,'''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''image_std''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''size''' ) ) def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad ,__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,max_size=84 ,pad_and_return_pixel_mask=__lowerCamelCase ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad ,__lowerCamelCase ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" pass def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,Image.Image ) # Test not batched input lowerCAmelCase__ : Any = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values lowerCAmelCase__ : str = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowerCAmelCase__ : Any = self.image_processor_tester.get_expected_values(__lowerCamelCase ,batched=__lowerCamelCase ) lowerCAmelCase__ : Tuple = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ,numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,np.ndarray ) # Test not batched input lowerCAmelCase__ : Any = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values lowerCAmelCase__ : Any = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowerCAmelCase__ : Optional[Any] = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values lowerCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(__lowerCamelCase ,batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ,torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,torch.Tensor ) # Test not batched input lowerCAmelCase__ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values lowerCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowerCAmelCase__ : List[str] = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values lowerCAmelCase__ : Any = self.image_processor_tester.get_expected_values(__lowerCamelCase ,batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) @slow def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' ,'''r''' ) as f: lowerCAmelCase__ : List[str] = json.loads(f.read() ) lowerCAmelCase__ : Optional[int] = {'''image_id''': 3_97_69, '''annotations''': target} # encode them lowerCAmelCase__ : str = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) lowerCAmelCase__ : Dict = image_processing(images=__lowerCamelCase ,annotations=__lowerCamelCase ,return_tensors='''pt''' ) # verify pixel values lowerCAmelCase__ : List[str] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape ,__lowerCamelCase ) lowerCAmelCase__ : Dict = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] ,__lowerCamelCase ,atol=1e-4 ) ) # verify area lowerCAmelCase__ : Dict = torch.tensor([5887.9600, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] ,__lowerCamelCase ) ) # verify boxes lowerCAmelCase__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape ,__lowerCamelCase ) lowerCAmelCase__ : int = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] ,__lowerCamelCase ,atol=1e-3 ) ) # verify image_id lowerCAmelCase__ : List[Any] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] ,__lowerCamelCase ) ) # verify is_crowd lowerCAmelCase__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] ,__lowerCamelCase ) ) # verify class_labels lowerCAmelCase__ : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] ,__lowerCamelCase ) ) # verify orig_size lowerCAmelCase__ : List[Any] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] ,__lowerCamelCase ) ) # verify size lowerCAmelCase__ : Optional[int] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] ,__lowerCamelCase ) ) @slow def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' ,'''r''' ) as f: lowerCAmelCase__ : Optional[Any] = json.loads(f.read() ) lowerCAmelCase__ : Union[str, Any] = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} lowerCAmelCase__ : Optional[int] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowerCAmelCase__ : str = ConditionalDetrImageProcessor(format='''coco_panoptic''' ) lowerCAmelCase__ : Any = image_processing(images=__lowerCamelCase ,annotations=__lowerCamelCase ,masks_path=__lowerCamelCase ,return_tensors='''pt''' ) # verify pixel values lowerCAmelCase__ : Union[str, Any] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape ,__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] ,__lowerCamelCase ,atol=1e-4 ) ) # verify area lowerCAmelCase__ : List[Any] = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] ,__lowerCamelCase ) ) # verify boxes lowerCAmelCase__ : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape ,__lowerCamelCase ) lowerCAmelCase__ : Any = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] ,__lowerCamelCase ,atol=1e-3 ) ) # verify image_id lowerCAmelCase__ : str = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] ,__lowerCamelCase ) ) # verify is_crowd lowerCAmelCase__ : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] ,__lowerCamelCase ) ) # verify class_labels lowerCAmelCase__ : List[str] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] ,__lowerCamelCase ) ) # verify masks lowerCAmelCase__ : List[str] = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() ,__lowerCamelCase ) # verify orig_size lowerCAmelCase__ : Optional[Any] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] ,__lowerCamelCase ) ) # verify size lowerCAmelCase__ : List[Any] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] ,__lowerCamelCase ) )
350
def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : int): '''simple docstring''' while b: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = b, a % b return a def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : int): '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(lowerCamelCase_ ,a % b) def lowerCAmelCase__ ( ): '''simple docstring''' print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 ,5)}""") print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 ,3)}""") print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 ,3)}""") print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 ,6)}""") print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 ,3)}""") print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 ,5)}""") print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 ,3)}""") print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 ,3)}""") print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 ,6)}""") print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 ,3)}""") if __name__ == "__main__": main()
94
0
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __snake_case = '''hf-internal-testing/tiny-random-bert''' __snake_case = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') __snake_case = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = cached_file(A_,A_ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(A_ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(A_,A_ ) ) ) with open(os.path.join(A_,'refs','main' ) ) as f: __UpperCamelCase = f.read() self.assertEqual(A_,os.path.join(A_,'snapshots',A_,A_ ) ) self.assertTrue(os.path.isfile(A_ ) ) # File is cached at the same place the second time. __UpperCamelCase = cached_file(A_,A_ ) self.assertEqual(A_,A_ ) # Using a specific revision to test the full commit hash. __UpperCamelCase = cached_file(A_,A_,revision='9b8c223' ) self.assertEqual(A_,os.path.join(A_,'snapshots',A_,A_ ) ) def snake_case_ ( self: List[str] ): '''simple docstring''' with self.assertRaisesRegex(A_,'is not a valid model identifier' ): __UpperCamelCase = cached_file('tiny-random-bert',A_ ) with self.assertRaisesRegex(A_,'is not a valid git identifier' ): __UpperCamelCase = cached_file(A_,A_,revision='aaaa' ) with self.assertRaisesRegex(A_,'does not appear to have a file named' ): __UpperCamelCase = cached_file(A_,'conf' ) def snake_case_ ( self: List[Any] ): '''simple docstring''' with self.assertRaisesRegex(A_,'does not appear to have a file named' ): __UpperCamelCase = cached_file(A_,'conf' ) with open(os.path.join(A_,'refs','main' ) ) as f: __UpperCamelCase = f.read() self.assertTrue(os.path.isfile(os.path.join(A_,'.no_exist',A_,'conf' ) ) ) __UpperCamelCase = cached_file(A_,'conf',_raise_exceptions_for_missing_entries=A_ ) self.assertIsNone(A_ ) __UpperCamelCase = cached_file(A_,'conf',local_files_only=A_,_raise_exceptions_for_missing_entries=A_ ) self.assertIsNone(A_ ) __UpperCamelCase = mock.Mock() __UpperCamelCase = 500 __UpperCamelCase = {} __UpperCamelCase = HTTPError __UpperCamelCase = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request',return_value=A_ ) as mock_head: __UpperCamelCase = cached_file(A_,'conf',_raise_exceptions_for_connection_errors=A_ ) self.assertIsNone(A_ ) # This check we did call the fake head request mock_head.assert_called() def snake_case_ ( self: Optional[Any] ): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only',A_ ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only',A_ ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only',A_ ) ) def snake_case_ ( self: Any ): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased','ahah.txt' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(A_,'is not a valid model identifier' ): get_file_from_repo('bert-base-case',A_ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(A_,'is not a valid git identifier' ): get_file_from_repo('bert-base-cased',A_,revision='ahaha' ) __UpperCamelCase = get_file_from_repo('bert-base-cased',A_ ) # The name is the cached name which is not very easy to test, so instead we load the content. __UpperCamelCase = json.loads(open(A_,'r' ).read() ) self.assertEqual(config['hidden_size'],768 ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase = Path(A_ ) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(A_,'a.txt' ),str(A_ ) ) self.assertIsNone(get_file_from_repo(A_,'b.txt' ) )
310
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {} __UpperCamelCase = padding_side return tokenizer( [line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]: """simple docstring""" __UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase (_a ): def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",): '''simple docstring''' super().__init__() __UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' ) __UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' ) __UpperCamelCase = self.get_char_lens(self.src_file ) __UpperCamelCase = max_source_length __UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' __UpperCamelCase = tokenizer __UpperCamelCase = prefix if n_obs is not None: __UpperCamelCase = self.src_lens[:n_obs] __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang def __len__( self: Optional[Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self: int,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = index + 1 # linecache starts at 1 __UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' ) __UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer,A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer ) __UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer __UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' ) __UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' ) __UpperCamelCase = source_inputs['input_ids'].squeeze() __UpperCamelCase = target_inputs['input_ids'].squeeze() __UpperCamelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( A_: List[Any] ): '''simple docstring''' return [len(A_ ) for x in Path(A_ ).open().readlines()] def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' __UpperCamelCase = torch.stack([x['input_ids'] for x in batch] ) __UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] ) __UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) __UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = trim_batch(A_,A_ ) __UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ ) __UpperCamelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __snake_case = getLogger(__name__) def _A ( _lowercase ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(_lowercase ) ) def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase = get_git_info() save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) ) def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]: """simple docstring""" with open(_lowercase , 'w' ) as f: json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase ) def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" with open(_lowercase ) as f: return json.load(_lowercase ) def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = git.Repo(search_parent_directories=_lowercase ) __UpperCamelCase = { 'repo_id': str(_lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _A ( _lowercase , _lowercase ) -> List: """simple docstring""" return list(map(_lowercase , _lowercase ) ) def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'wb' ) as f: return pickle.dump(_lowercase , _lowercase ) def _A ( _lowercase ) -> List[Any]: """simple docstring""" def remove_articles(_lowercase ): return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): __UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase ) __UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" return normalize_answer(_lowercase ) == normalize_answer(_lowercase ) def _A ( _lowercase , _lowercase ) -> Dict: """simple docstring""" assert len(_lowercase ) == len(_lowercase ) __UpperCamelCase = 0 for hypo, pred in zip(_lowercase , _lowercase ): em += exact_match_score(_lowercase , _lowercase ) if len(_lowercase ) > 0: em /= len(_lowercase ) return {"em": em} def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" return model_prefix.startswith('rag' ) def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCamelCase = 'dropout_rate' for p in extra_params: if getattr(_lowercase , _lowercase , _lowercase ): if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) ) delattr(_lowercase , _lowercase ) continue __UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p] setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) ) delattr(_lowercase , _lowercase ) return hparams, config
310
1
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class _a : def __init__( self : Tuple, lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : int=1_3, lowerCAmelCase__ : Tuple=2, lowerCAmelCase__ : Tuple=2_4, lowerCAmelCase__ : Optional[int]=1_6, lowerCAmelCase__ : Dict=True, lowerCAmelCase__ : Tuple=True, lowerCAmelCase__ : Dict=3_2, lowerCAmelCase__ : List[Any]=5, lowerCAmelCase__ : Optional[Any]=4, lowerCAmelCase__ : Optional[Any]=3_7, lowerCAmelCase__ : Union[str, Any]="gelu", lowerCAmelCase__ : Tuple=0.1, lowerCAmelCase__ : List[str]=0.1, lowerCAmelCase__ : int=1_0, lowerCAmelCase__ : Tuple=0.02, lowerCAmelCase__ : Optional[int]=None, lowerCAmelCase__ : int=2, lowerCAmelCase__ : Optional[Any]=2, ) -> str: '''simple docstring''' _UpperCamelCase : Tuple = parent _UpperCamelCase : Optional[int] = batch_size _UpperCamelCase : List[Any] = patch_size _UpperCamelCase : Tuple = max_length _UpperCamelCase : Any = num_mel_bins _UpperCamelCase : Tuple = is_training _UpperCamelCase : List[Any] = use_labels _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Dict = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Tuple = intermediate_size _UpperCamelCase : Tuple = hidden_act _UpperCamelCase : List[Any] = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : Tuple = type_sequence_label_size _UpperCamelCase : Union[str, Any] = initializer_range _UpperCamelCase : List[Any] = scope _UpperCamelCase : List[str] = frequency_stride _UpperCamelCase : str = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _UpperCamelCase : str = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 _UpperCamelCase : Optional[int] = (self.max_length - self.patch_size) // self.time_stride + 1 _UpperCamelCase : str = frequency_out_dimension * time_out_dimension _UpperCamelCase : Union[str, Any] = num_patches + 2 def snake_case ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) _UpperCamelCase : Optional[int] = None if self.use_labels: _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) _UpperCamelCase : List[Any] = self.get_config() return config, input_values, labels def snake_case ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' return ASTConfig( patch_size=self.patch_size, max_length=self.max_length, num_mel_bins=self.num_mel_bins, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCAmelCase__, initializer_range=self.initializer_range, frequency_stride=self.frequency_stride, time_stride=self.time_stride, ) def snake_case ( self : List[Any], lowerCAmelCase__ : Union[str, Any], lowerCAmelCase__ : List[Any], lowerCAmelCase__ : Union[str, Any] ) -> int: '''simple docstring''' _UpperCamelCase : Optional[int] = ASTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : List[str] ) -> int: '''simple docstring''' _UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Union[str, Any] = config_and_inputs _UpperCamelCase : str = {'''input_values''': input_values} return config, inputs_dict @require_torch class _a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): UpperCamelCase = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) UpperCamelCase = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def snake_case ( self : Optional[Any], lowerCAmelCase__ : List[Any], lowerCAmelCase__ : str, lowerCAmelCase__ : Optional[Any], lowerCAmelCase__ : Optional[Any], lowerCAmelCase__ : str ) -> Union[str, Any]: '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def snake_case ( self : Dict ) -> int: '''simple docstring''' _UpperCamelCase : Dict = ASTModelTester(self ) _UpperCamelCase : Dict = ConfigTester(self, config_class=lowerCAmelCase__, has_text_modality=lowerCAmelCase__, hidden_size=3_7 ) def snake_case ( self : Optional[int] ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def snake_case ( self : Optional[int] ) -> Dict: '''simple docstring''' pass def snake_case ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) _UpperCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__, nn.Linear ) ) def snake_case ( self : Optional[Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Tuple = model_class(lowerCAmelCase__ ) _UpperCamelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Optional[int] = [*signature.parameters.keys()] _UpperCamelCase : Tuple = ['''input_values'''] self.assertListEqual(arg_names[:1], lowerCAmelCase__ ) def snake_case ( self : str ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) @slow def snake_case ( self : Dict ) -> Dict: '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[Any] = ASTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def a_ ( ): _UpperCamelCase : Union[str, Any] = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) _UpperCamelCase , _UpperCamelCase : Union[str, Any] = torchaudio.load(_lowercase ) return audio, sampling_rate @require_torch @require_torchaudio class _a ( unittest.TestCase ): @cached_property def snake_case ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def snake_case ( self : List[str] ) -> int: '''simple docstring''' _UpperCamelCase : int = self.default_feature_extractor _UpperCamelCase : Optional[int] = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(lowerCAmelCase__ ) _UpperCamelCase : Optional[int] = self.default_feature_extractor _UpperCamelCase , _UpperCamelCase : Optional[int] = prepare_audio() _UpperCamelCase : List[str] = audio.squeeze().numpy() _UpperCamelCase : Tuple = feature_extractor(lowerCAmelCase__, sampling_rate=lowerCAmelCase__, return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(**lowerCAmelCase__ ) # verify the logits _UpperCamelCase : Tuple = torch.Size((1, 5_2_7) ) self.assertEqual(outputs.logits.shape, lowerCAmelCase__ ) _UpperCamelCase : Any = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCAmelCase__, atol=1e-4 ) )
128
"""simple docstring""" import argparse import os import re import packaging.version UpperCamelCase_ ="""examples/""" UpperCamelCase_ ={ """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } UpperCamelCase_ ={ """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } UpperCamelCase_ ="""README.md""" def a_ ( _lowercase , _lowercase , _lowercase ): with open(_lowercase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _UpperCamelCase : Tuple = f.read() _UpperCamelCase , _UpperCamelCase : List[Any] = REPLACE_PATTERNS[pattern] _UpperCamelCase : Optional[Any] = replace.replace('''VERSION''' , _lowercase ) _UpperCamelCase : List[Any] = re_pattern.sub(_lowercase , _lowercase ) with open(_lowercase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(_lowercase ) def a_ ( _lowercase ): for folder, directories, fnames in os.walk(_lowercase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(_lowercase , _lowercase ) , _lowercase , pattern='''examples''' ) def a_ ( _lowercase , _lowercase=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowercase , _lowercase , _lowercase ) if not patch: update_version_in_examples(_lowercase ) def a_ ( ): _UpperCamelCase : Any = '''🤗 Transformers currently provides the following architectures''' _UpperCamelCase : List[str] = '''1. Want to contribute a new model?''' with open(_lowercase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _UpperCamelCase : List[Any] = f.readlines() # Find the start of the list. _UpperCamelCase : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _UpperCamelCase : Any = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): _UpperCamelCase : Tuple = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(_lowercase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(_lowercase ) def a_ ( ): with open(REPLACE_FILES['''init'''] , '''r''' ) as f: _UpperCamelCase : List[Any] = f.read() _UpperCamelCase : List[Any] = REPLACE_PATTERNS['''init'''][0].search(_lowercase ).groups()[0] return packaging.version.parse(_lowercase ) def a_ ( _lowercase=False ): _UpperCamelCase : Union[str, Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: _UpperCamelCase : List[str] = default_version.base_version elif patch: _UpperCamelCase : Union[str, Any] = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: _UpperCamelCase : str = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. _UpperCamelCase : Optional[int] = input(F"""Which version are you releasing? [{default_version}]""" ) if len(_lowercase ) == 0: _UpperCamelCase : str = default_version print(F"""Updating version to {version}.""" ) global_version_update(_lowercase , patch=_lowercase ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def a_ ( ): _UpperCamelCase : Any = get_version() _UpperCamelCase : Dict = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" _UpperCamelCase : Union[str, Any] = current_version.base_version # Check with the user we got that right. _UpperCamelCase : int = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(_lowercase ) == 0: _UpperCamelCase : List[str] = dev_version print(F"""Updating version to {version}.""" ) global_version_update(_lowercase ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase_ =argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") UpperCamelCase_ =parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
128
1
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] ): __lowercase : Any = RobertaPreLayerNormConfig.from_pretrained( lowerCAmelCase_ , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict __lowercase : Union[str, Any] = torch.load(hf_hub_download(repo_id=lowerCAmelCase_ , filename="""pytorch_model.bin""" ) ) __lowercase : Optional[int] = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): __lowercase : List[Any] = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue __lowercase : Optional[int] = tensor_value __lowercase : Dict = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCAmelCase_ , config=lowerCAmelCase_ , state_dict=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) # convert tokenizer __lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) tokenizer.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : Optional[int] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
233
import math def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
333
0
"""simple docstring""" def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" if any(not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(lowerCAmelCase_ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(lowerCAmelCase_ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
369
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class UpperCamelCase__( unittest.TestCase ): lowerCAmelCase__ : Dict = StableDiffusionLDMaDPipeline lowerCAmelCase__ : List[Any] = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__ ( self ) -> str: torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) A__ = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=__UpperCAmelCase ,set_alpha_to_one=__UpperCAmelCase ,) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=6 ,out_channels=6 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) A__ = CLIPTextModel(__UpperCAmelCase ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=0 ) -> Dict: if str(__UpperCAmelCase ).startswith('mps' ): A__ = torch.manual_seed(__UpperCAmelCase ) else: A__ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) A__ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def snake_case__ ( self ) -> str: A__ = 'cpu' # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = StableDiffusionLDMaDPipeline(**__UpperCAmelCase ) A__ = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A__ = self.get_dummy_inputs(__UpperCAmelCase ) A__ = ldmad_pipe(**__UpperCAmelCase ) A__ , A__ = output.rgb, output.depth A__ = rgb[0, -3:, -3:, -1] A__ = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) A__ = np.array( [0.3_7_3_3_8_1_7_6, 0.7_0_2_4_7, 0.7_4_2_0_3_1_9_3, 0.5_1_6_4_3_6_0_4, 0.5_8_2_5_6_7_9_3, 0.6_0_9_3_2_1_3_6, 0.4_1_8_1_0_9_5, 0.4_8_3_5_5_8_7_7, 0.4_6_5_3_5_2_6_2] ) A__ = np.array([1_0_3.4_6_7_2_7, 8_5.8_1_2_0_0_4, 8_7.8_4_9_2_3_6] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def snake_case__ ( self ) -> List[str]: A__ = self.get_dummy_components() A__ = StableDiffusionLDMaDPipeline(**__UpperCAmelCase ) A__ = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A__ = self.get_dummy_inputs(__UpperCAmelCase ) A__ = 3 * [inputs['prompt']] # forward A__ = ldmad_pipe(**__UpperCAmelCase ) A__ , A__ = output.rgb, output.depth A__ = rgb_slice_a[0, -3:, -3:, -1] A__ = depth_slice_a[0, -3:, -1] A__ = self.get_dummy_inputs(__UpperCAmelCase ) A__ = 3 * [inputs.pop('prompt' )] A__ = ldmad_pipe.tokenizer( __UpperCAmelCase ,padding='max_length' ,max_length=ldmad_pipe.tokenizer.model_max_length ,truncation=__UpperCAmelCase ,return_tensors='pt' ,) A__ = text_inputs['input_ids'].to(__UpperCAmelCase ) A__ = ldmad_pipe.text_encoder(__UpperCAmelCase )[0] A__ = prompt_embeds # forward A__ = ldmad_pipe(**__UpperCAmelCase ) A__ , A__ = output.rgb, output.depth A__ = rgb_slice_a[0, -3:, -3:, -1] A__ = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def snake_case__ ( self ) -> int: A__ = 'cpu' # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) A__ = StableDiffusionLDMaDPipeline(**__UpperCAmelCase ) A__ = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A__ = self.get_dummy_inputs(__UpperCAmelCase ) A__ = 'french fries' A__ = ldmad_pipe(**__UpperCAmelCase ,negative_prompt=__UpperCAmelCase ) A__ , A__ = output.rgb, output.depth A__ = rgb[0, -3:, -3:, -1] A__ = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) A__ = np.array( [0.3_7_0_4_4, 0.7_1_8_1_1_5_0_3, 0.7_2_2_3_2_5_1, 0.4_8_6_0_3_6_7_5, 0.5_6_3_8_3_9_1, 0.6_3_6_4_9_4_8, 0.4_2_8_3_3_7_0_4, 0.4_9_0_1_3_1_5, 0.4_7_9_2_6_2_1_7] ) A__ = np.array([1_0_7.8_4_7_3_8, 8_4.6_2_8_0_2, 8_9.9_6_2_1_3_5] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase="cpu" ,__UpperCAmelCase=torch.floataa ,__UpperCAmelCase=0 ) -> Optional[int]: A__ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) A__ = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 64, 64) ) A__ = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase ,dtype=__UpperCAmelCase ) A__ = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def snake_case__ ( self ) -> Optional[Any]: A__ = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ) A__ = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A__ = self.get_inputs(__UpperCAmelCase ) A__ = ldmad_pipe(**__UpperCAmelCase ) A__ , A__ = output.rgb, output.depth A__ = rgb[0, -3:, -3:, -1].flatten() A__ = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12) A__ = np.array( [0.5_3_8_0_5_4_6_5, 0.5_6_7_0_7_3_0_5, 0.5_4_8_6_5_1_5, 0.5_7_0_1_2_2_3_6, 0.5_8_1_4_5_1_1, 0.5_6_2_5_3_4_8_7, 0.5_4_8_4_3_0_1_4, 0.5_5_0_9_2_2_6_3, 0.6_4_5_9_7_0_6] ) A__ = np.array( [0.9_2_6_3_7_8_1, 0.6_6_7_8_6_7_2, 0.5_4_8_6_5_1_5, 0.9_2_2_0_2_1_4_5, 0.6_7_8_3_1_1_3_5, 0.5_6_2_5_3_4_8_7, 0.9_2_4_1_6_9_4, 0.7_5_5_1_4_7_8, 0.6_4_5_9_7_0_6] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase="cpu" ,__UpperCAmelCase=torch.floataa ,__UpperCAmelCase=0 ) -> int: A__ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) A__ = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 64, 64) ) A__ = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase ,dtype=__UpperCAmelCase ) A__ = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def snake_case__ ( self ) -> str: A__ = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ).to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A__ = self.get_inputs(__UpperCAmelCase ) A__ = ldmad_pipe(**__UpperCAmelCase ) A__ , A__ = output.rgb, output.depth A__ = 0.4_9_5_5_8_6 A__ = 0.3_3_7_9_5_5_1_5 A__ = 1_1_2.4_8_5_1_8 A__ = 9_8.4_8_9_7_4_6 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def snake_case__ ( self ) -> Optional[int]: A__ = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d-4c' ).to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A__ = self.get_inputs(__UpperCAmelCase ) A__ = ldmad_pipe(**__UpperCAmelCase ) A__ , A__ = output.rgb, output.depth A__ = 0.4_1_9_4_1_2_7 A__ = 0.3_5_3_7_5_5_8_6 A__ = 0.5_6_3_8_5_0_2 A__ = 0.3_4_6_8_6_1_0_3 assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
154
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ : List[str] = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowercase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __magic_name__ : Any = [[1, 2, 4], [1, 2, 3, 4]] __magic_name__ : Dict = DisjunctiveConstraint(_A ) self.assertTrue(isinstance(dc.token_ids , _A ) ) with self.assertRaises(_A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __magic_name__ : Optional[int] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_A ): DisjunctiveConstraint(_A ) # fails here def __lowerCAmelCase ( self : List[Any] ) -> Tuple: __magic_name__ : Dict = [[1, 2, 3], [1, 2, 4]] __magic_name__ : List[Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : Tuple = dc.update(1 ) __magic_name__ : Optional[int] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(2 ) __magic_name__ : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(3 ) __magic_name__ : Any = stepped is True and completed is True and reset is False self.assertTrue(_A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __magic_name__ : Union[str, Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
331
0
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __lowerCAmelCase = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __lowerCAmelCase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __lowerCAmelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_000)) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> tuple[str, float]: _a : List[Any] = len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] ) return (item, float(lowerCAmelCase_ )) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> tuple[str, str]: _a : Dict = random.randint(0 , len(lowerCAmelCase_ ) - 1 ) _a : Optional[int] = parent_a[:random_slice] + parent_a[random_slice:] _a : Optional[int] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str: _a : Optional[Any] = list(lowerCAmelCase_ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: _a : Optional[int] = random.choice(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> list[str]: _a : List[str] = [] # Generate more children proportionally to the fitness score. _a : Tuple = int(parent_a[1] * 100 ) + 1 _a : Tuple = 10 if child_n >= 10 else child_n for _ in range(lowerCAmelCase_ ): _a : Any = population_score[random.randint(0 , lowerCAmelCase_ )][0] _a , _a : Tuple = crossover(parent_a[0] , lowerCAmelCase_ ) # Append new string to the population list. pop.append(mutate(lowerCAmelCase_ , lowerCAmelCase_ ) ) pop.append(mutate(lowerCAmelCase_ , lowerCAmelCase_ ) ) return pop def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: _a : Dict = f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(lowerCAmelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. _a : Optional[int] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _a : List[Any] = f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(lowerCAmelCase_ ) # Generate random starting population. _a : Union[str, Any] = [] for _ in range(lowerCAmelCase_ ): population.append(''.join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. _a , _a : Union[str, Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCAmelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _a : Optional[Any] = [evaluate(lowerCAmelCase_ , lowerCAmelCase_ ) for item in population] # Check if there is a matching evolution. _a : Tuple = sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x[1] , reverse=lowerCAmelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _a : Dict = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCAmelCase_ ) # Normalize population score to be between 0 and 1. _a : Tuple = [ (item, score / len(lowerCAmelCase_ )) for item, score in population_score ] # This is selection for i in range(lowerCAmelCase_ ): population.extend(select(population_score[int(lowerCAmelCase_ )] , lowerCAmelCase_ , lowerCAmelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCAmelCase_ ) > N_POPULATION: break if __name__ == "__main__": __lowerCAmelCase = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __lowerCAmelCase = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
107
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : Optional[int] = 'distilbert' lowerCAmelCase : Optional[int] = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self : str ,_UpperCAmelCase : Optional[Any]=30522 ,_UpperCAmelCase : int=512 ,_UpperCAmelCase : int=False ,_UpperCAmelCase : str=6 ,_UpperCAmelCase : int=12 ,_UpperCAmelCase : Union[str, Any]=768 ,_UpperCAmelCase : Optional[Any]=4 * 768 ,_UpperCAmelCase : int=0.1 ,_UpperCAmelCase : Union[str, Any]=0.1 ,_UpperCAmelCase : Tuple="gelu" ,_UpperCAmelCase : Any=0.02 ,_UpperCAmelCase : List[Any]=0.1 ,_UpperCAmelCase : Dict=0.2 ,_UpperCAmelCase : Union[str, Any]=0 ,**_UpperCAmelCase : List[Any] ,): _a : Optional[Any] = vocab_size _a : Dict = max_position_embeddings _a : Optional[int] = sinusoidal_pos_embds _a : List[Any] = n_layers _a : Any = n_heads _a : int = dim _a : Optional[Any] = hidden_dim _a : str = dropout _a : Optional[Any] = attention_dropout _a : Any = activation _a : Tuple = initializer_range _a : Union[str, Any] = qa_dropout _a : List[Any] = seq_classif_dropout super().__init__(**_UpperCAmelCase ,pad_token_id=_UpperCAmelCase ) class __magic_name__ ( _UpperCamelCase ): @property def __lowercase ( self : Union[str, Any] ): if self.task == "multiple-choice": _a : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _a : List[str] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
107
1