code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from queue import PriorityQueue from typing import Any import numpy as np def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , )-> float | int: """simple docstring""" for nxt, d in graph[v]: if nxt in visited_forward: continue _UpperCAmelCase = cst_fwd.get(__lowerCAmelCase , np.inf ) _UpperCAmelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _UpperCAmelCase = new_cost_f _UpperCAmelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _UpperCAmelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> int: """simple docstring""" _UpperCAmelCase = -1 _UpperCAmelCase = set() _UpperCAmelCase = set() _UpperCAmelCase = {source: 0} _UpperCAmelCase = {destination: 0} _UpperCAmelCase = {source: None} _UpperCAmelCase = {destination: None} _UpperCAmelCase = PriorityQueue() _UpperCAmelCase = PriorityQueue() _UpperCAmelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _UpperCAmelCase , _UpperCAmelCase = queue_forward.get() visited_forward.add(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = queue_backward.get() visited_backward.add(__lowerCAmelCase ) _UpperCAmelCase = pass_and_relaxation( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) _UpperCAmelCase = pass_and_relaxation( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _UpperCAmelCase = shortest_distance return shortest_path_distance _a = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } _a = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
39
"""simple docstring""" import os def __UpperCAmelCase ( ) -> int: with open(os.path.dirname(__lowerCamelCase ) + '''/p022_names.txt''' ) as file: lowercase__ : List[Any] = str(file.readlines()[0] ) lowercase__ : Dict = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() lowercase__ : int = 0 lowercase__ : Optional[Any] = 0 for i, name in enumerate(__lowerCamelCase ): for letter in name: name_score += ord(__lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowercase__ : List[str] = 0 return total_score if __name__ == "__main__": print(solution())
16
0
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = IFPipeline snake_case_ = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} snake_case_ = TEXT_TO_IMAGE_BATCH_PARAMS snake_case_ = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCamelCase_ ( self : Union[str, Any] ): return self._get_dummy_components() def UpperCamelCase_ ( self : int ,A : Any ,A : Optional[Any]=0 ): if str(A ).startswith("mps" ): __A = torch.manual_seed(A ) else: __A = torch.Generator(device=A ).manual_seed(A ) __A = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def UpperCamelCase_ ( self : Optional[Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" ,reason="float16 requires CUDA" ) def UpperCamelCase_ ( self : List[str] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase_ ( self : Tuple ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase_ ( self : int ): self._test_save_load_local() def UpperCamelCase_ ( self : Dict ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 ,) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() ,reason="XFormers attention is only available with CUDA and `xformers` installed" ,) def UpperCamelCase_ ( self : List[str] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Any ): # if __A = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" ,variant="fp16" ,torch_dtype=torch.floataa ) __A = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" ,variant="fp16" ,torch_dtype=torch.floataa ,text_encoder=A ,tokenizer=A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) __A , __A = pipe_a.encode_prompt("anime turtle" ,device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() __A = None __A = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(A ,A ,A ,A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img __A = IFImgaImgPipeline(**pipe_a.components ) __A = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(A ,A ,A ,A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting __A = IFInpaintingPipeline(**pipe_a.components ) __A = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(A ,A ,A ,A ) def UpperCamelCase_ ( self : List[Any] ,A : Any ,A : Any ,A : Dict ,A : List[Any] ): # pipeline 1 _start_torch_memory_measurement() __A = torch.Generator(device="cpu" ).manual_seed(0 ) __A = pipe_a( prompt_embeds=A ,negative_prompt_embeds=A ,num_inference_steps=2 ,generator=A ,output_type="np" ,) __A = output.images[0] assert image.shape == (64, 64, 3) __A = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 __A = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(A ,A ) # pipeline 2 _start_torch_memory_measurement() __A = torch.Generator(device="cpu" ).manual_seed(0 ) __A = floats_tensor((1, 3, 64, 64) ,rng=random.Random(0 ) ).to(A ) __A = pipe_a( prompt_embeds=A ,negative_prompt_embeds=A ,image=A ,generator=A ,num_inference_steps=2 ,output_type="np" ,) __A = output.images[0] assert image.shape == (2_56, 2_56, 3) __A = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __A = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(A ,A ) def UpperCamelCase_ ( self : Optional[Any] ,A : List[str] ,A : List[Any] ,A : Any ,A : int ): # pipeline 1 _start_torch_memory_measurement() __A = floats_tensor((1, 3, 64, 64) ,rng=random.Random(0 ) ).to(A ) __A = torch.Generator(device="cpu" ).manual_seed(0 ) __A = pipe_a( prompt_embeds=A ,negative_prompt_embeds=A ,image=A ,num_inference_steps=2 ,generator=A ,output_type="np" ,) __A = output.images[0] assert image.shape == (64, 64, 3) __A = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 __A = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(A ,A ) # pipeline 2 _start_torch_memory_measurement() __A = torch.Generator(device="cpu" ).manual_seed(0 ) __A = floats_tensor((1, 3, 2_56, 2_56) ,rng=random.Random(0 ) ).to(A ) __A = floats_tensor((1, 3, 64, 64) ,rng=random.Random(0 ) ).to(A ) __A = pipe_a( prompt_embeds=A ,negative_prompt_embeds=A ,image=A ,original_image=A ,generator=A ,num_inference_steps=2 ,output_type="np" ,) __A = output.images[0] assert image.shape == (2_56, 2_56, 3) __A = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __A = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(A ,A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,A : str ,A : Dict ,A : Tuple ): # pipeline 1 _start_torch_memory_measurement() __A = floats_tensor((1, 3, 64, 64) ,rng=random.Random(0 ) ).to(A ) __A = floats_tensor((1, 3, 64, 64) ,rng=random.Random(1 ) ).to(A ) __A = torch.Generator(device="cpu" ).manual_seed(0 ) __A = pipe_a( prompt_embeds=A ,negative_prompt_embeds=A ,image=A ,mask_image=A ,num_inference_steps=2 ,generator=A ,output_type="np" ,) __A = output.images[0] assert image.shape == (64, 64, 3) __A = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 __A = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(A ,A ) # pipeline 2 _start_torch_memory_measurement() __A = torch.Generator(device="cpu" ).manual_seed(0 ) __A = floats_tensor((1, 3, 64, 64) ,rng=random.Random(0 ) ).to(A ) __A = floats_tensor((1, 3, 2_56, 2_56) ,rng=random.Random(0 ) ).to(A ) __A = floats_tensor((1, 3, 2_56, 2_56) ,rng=random.Random(1 ) ).to(A ) __A = pipe_a( prompt_embeds=A ,negative_prompt_embeds=A ,image=A ,mask_image=A ,original_image=A ,generator=A ,num_inference_steps=2 ,output_type="np" ,) __A = output.images[0] assert image.shape == (2_56, 2_56, 3) __A = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __A = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(A ,A ) def UpperCAmelCase ( ) -> Any: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
124
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE :int = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Dict = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :int = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[int] = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys SCREAMING_SNAKE_CASE :int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
124
1
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class a ( __SCREAMING_SNAKE_CASE ): def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : pyspark.sql.DataFrame , __SCREAMING_SNAKE_CASE : Optional[NamedSplit] = None , __SCREAMING_SNAKE_CASE : Optional[Features] = None , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : str = "arrow" , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> str: super().__init__( split=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE , streaming=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) lowerCamelCase_ = load_from_cache_file lowerCamelCase_ = file_format lowerCamelCase_ = Spark( df=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , working_dir=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) def UpperCamelCase ( self : Optional[Any] ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowerCamelCase_ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__SCREAMING_SNAKE_CASE , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
183
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :List[Any] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "yolos" def __init__( self : Any ,A : Optional[Any]=7_68 ,A : Dict=12 ,A : Any=12 ,A : str=30_72 ,A : Any="gelu" ,A : str=0.0 ,A : List[str]=0.0 ,A : Dict=0.02 ,A : int=1E-12 ,A : Tuple=[5_12, 8_64] ,A : List[Any]=16 ,A : str=3 ,A : str=True ,A : Any=1_00 ,A : Dict=True ,A : Dict=False ,A : Tuple=1 ,A : Union[str, Any]=5 ,A : Optional[Any]=2 ,A : Union[str, Any]=5 ,A : int=2 ,A : int=0.1 ,**A : List[str] ,): super().__init__(**A ) __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = initializer_range __A = layer_norm_eps __A = image_size __A = patch_size __A = num_channels __A = qkv_bias __A = num_detection_tokens __A = use_mid_position_embeddings __A = auxiliary_loss # Hungarian matcher __A = class_cost __A = bbox_cost __A = giou_cost # Loss coefficients __A = bbox_loss_coefficient __A = giou_loss_coefficient __A = eos_coefficient class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = version.parse("1.11" ) @property def UpperCamelCase_ ( self : str ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCamelCase_ ( self : List[Any] ): return 1E-4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 12
15
0
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = tempfile.mkdtemp() lowerCamelCase = SamImageProcessor() lowerCamelCase = SamProcessor(A ) processor.save_pretrained(self.tmpdirname ) def __A ( self , **A ) -> str: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **A ).image_processor def __A ( self ) -> List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowerCamelCase = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase = self.get_image_processor(do_normalize=A , padding_value=1.0 ) lowerCamelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = SamProcessor(image_processor=A ) lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = image_processor(A , return_tensors="""np""" ) lowerCamelCase = processor(images=A , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = SamProcessor(image_processor=A ) lowerCamelCase = [torch.ones((1, 3, 5, 5) )] lowerCamelCase = [[17_64, 26_46]] lowerCamelCase = [[6_83, 10_24]] lowerCamelCase = processor.post_process_masks(A , A , A ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) lowerCamelCase = processor.post_process_masks( A , torch.tensor(A ) , torch.tensor(A ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np lowerCamelCase = [np.ones((1, 3, 5, 5) )] lowerCamelCase = processor.post_process_masks(A , np.array(A ) , np.array(A ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) lowerCamelCase = [[1, 0], [0, 1]] with self.assertRaises(A ): lowerCamelCase = processor.post_process_masks(A , np.array(A ) , np.array(A ) ) @require_vision @require_tf class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = tempfile.mkdtemp() lowerCamelCase = SamImageProcessor() lowerCamelCase = SamProcessor(A ) processor.save_pretrained(self.tmpdirname ) def __A ( self , **A ) -> List[str]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **A ).image_processor def __A ( self ) -> Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowerCamelCase = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase = self.get_image_processor(do_normalize=A , padding_value=1.0 ) lowerCamelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = SamProcessor(image_processor=A ) lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = image_processor(A , return_tensors="""np""" ) lowerCamelCase = processor(images=A , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = SamProcessor(image_processor=A ) lowerCamelCase = [tf.ones((1, 3, 5, 5) )] lowerCamelCase = [[17_64, 26_46]] lowerCamelCase = [[6_83, 10_24]] lowerCamelCase = processor.post_process_masks(A , A , A , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) lowerCamelCase = processor.post_process_masks( A , tf.convert_to_tensor(A ) , tf.convert_to_tensor(A ) , return_tensors="""tf""" , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np lowerCamelCase = [np.ones((1, 3, 5, 5) )] lowerCamelCase = processor.post_process_masks( A , np.array(A ) , np.array(A ) , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) lowerCamelCase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): lowerCamelCase = processor.post_process_masks( A , np.array(A ) , np.array(A ) , return_tensors="""tf""" ) @require_vision @require_torchvision class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = tempfile.mkdtemp() lowerCamelCase = SamImageProcessor() lowerCamelCase = SamProcessor(A ) processor.save_pretrained(self.tmpdirname ) def __A ( self , **A ) -> Any: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **A ).image_processor def __A ( self ) -> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowerCamelCase = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = SamProcessor(image_processor=A ) lowerCamelCase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) lowerCamelCase = [tf.convert_to_tensor(A )] lowerCamelCase = [torch.tensor(A )] lowerCamelCase = [[17_64, 26_46]] lowerCamelCase = [[6_83, 10_24]] lowerCamelCase = processor.post_process_masks( A , A , A , return_tensors="""tf""" ) lowerCamelCase = processor.post_process_masks( A , A , A , return_tensors="""pt""" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = SamProcessor(image_processor=A ) lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = image_processor(A , return_tensors="""pt""" )["""pixel_values"""].numpy() lowerCamelCase = processor(images=A , return_tensors="""pt""" )["""pixel_values"""].numpy() lowerCamelCase = image_processor(A , return_tensors="""tf""" )["""pixel_values"""].numpy() lowerCamelCase = processor(images=A , return_tensors="""tf""" )["""pixel_values"""].numpy() self.assertTrue(np.allclose(A , A ) ) self.assertTrue(np.allclose(A , A ) ) self.assertTrue(np.allclose(A , A ) )
355
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def __lowerCamelCase ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict ): '''simple docstring''' lowerCamelCase = Mock() lowerCamelCase = conn, Mock() lowerCamelCase = iter([1, None] ) lowerCamelCase = lambda lowerCamelCase__ : next(lowerCamelCase__ ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=lowerCamelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
66
0
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase (unittest.TestCase ): def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : List[Any] = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() __lowerCAmelCase : int = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) __lowerCAmelCase : List[Any] = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } __lowerCAmelCase : Optional[int] = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_6000, '''return_attention_mask''': False, '''do_normalize''': True, } __lowerCAmelCase : List[str] = tempfile.mkdtemp() __lowerCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , _lowercase ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowercase ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowercase ) + '''\n''' ) # load decoder from hub __lowerCAmelCase : Any = '''hf-internal-testing/ngram-beam-search-decoder''' def UpperCamelCase__ ( self , **A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[int] = self.add_kwargs_tokens_map.copy() kwargs.update(_lowercase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCamelCase__ ( self , **A_ ) ->Optional[int]: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCamelCase__ ( self , **A_ ) ->Optional[Any]: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowercase ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : int = self.get_tokenizer() __lowerCAmelCase : Tuple = self.get_feature_extractor() __lowerCAmelCase : Union[str, Any] = self.get_decoder() __lowerCAmelCase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowercase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _lowercase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _lowercase ) def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : List[str] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowerCAmelCase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Dict = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_lowercase , '''include''' ): WavaVecaProcessorWithLM( tokenizer=_lowercase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : str = self.get_feature_extractor() __lowerCAmelCase : Optional[int] = self.get_tokenizer() __lowerCAmelCase : Optional[Any] = self.get_decoder() __lowerCAmelCase : List[Any] = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase ) __lowerCAmelCase : List[str] = floats_list((3, 1000) ) __lowerCAmelCase : Any = feature_extractor(_lowercase , return_tensors='''np''' ) __lowerCAmelCase : str = processor(_lowercase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : int = self.get_feature_extractor() __lowerCAmelCase : Optional[Any] = self.get_tokenizer() __lowerCAmelCase : Optional[int] = self.get_decoder() __lowerCAmelCase : Any = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase ) __lowerCAmelCase : Optional[Any] = '''This is a test string''' __lowerCAmelCase : Optional[int] = processor(text=_lowercase ) __lowerCAmelCase : Optional[Any] = tokenizer(_lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase__ ( self , A_=(2, 10, 16) , A_=77 ) ->int: '''simple docstring''' np.random.seed(_lowercase ) return np.random.rand(*_lowercase ) def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self.get_feature_extractor() __lowerCAmelCase : str = self.get_tokenizer() __lowerCAmelCase : int = self.get_decoder() __lowerCAmelCase : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase ) __lowerCAmelCase : List[Any] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowerCAmelCase : Optional[int] = processor.decode(_lowercase ) __lowerCAmelCase : Dict = decoder.decode_beams(_lowercase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def UpperCamelCase__ ( self , A_ ) ->Dict: '''simple docstring''' __lowerCAmelCase : int = self.get_feature_extractor() __lowerCAmelCase : Union[str, Any] = self.get_tokenizer() __lowerCAmelCase : List[Any] = self.get_decoder() __lowerCAmelCase : Dict = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase ) __lowerCAmelCase : Any = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowerCAmelCase : Optional[Any] = processor.batch_decode(_lowercase ) else: with get_context(_lowercase ).Pool() as pool: __lowerCAmelCase : int = processor.batch_decode(_lowercase , _lowercase ) __lowerCAmelCase : int = list(_lowercase ) with get_context('''fork''' ).Pool() as p: __lowerCAmelCase : Tuple = decoder.decode_beams_batch(_lowercase , _lowercase ) __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : str = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowercase , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(_lowercase , decoded_processor.logit_score ) self.assertListEqual(_lowercase , decoded_processor.lm_score ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[int] = self.get_feature_extractor() __lowerCAmelCase : Tuple = self.get_tokenizer() __lowerCAmelCase : int = self.get_decoder() __lowerCAmelCase : List[Any] = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase ) __lowerCAmelCase : int = self._get_dummy_logits() __lowerCAmelCase : Tuple = 15 __lowerCAmelCase : int = -20.0 __lowerCAmelCase : Tuple = -4.0 __lowerCAmelCase : List[str] = processor.batch_decode( _lowercase , beam_width=_lowercase , beam_prune_logp=_lowercase , token_min_logp=_lowercase , ) __lowerCAmelCase : Dict = decoded_processor_out.text __lowerCAmelCase : Optional[int] = list(_lowercase ) with get_context('''fork''' ).Pool() as pool: __lowerCAmelCase : Optional[int] = decoder.decode_beams_batch( _lowercase , _lowercase , beam_width=_lowercase , beam_prune_logp=_lowercase , token_min_logp=_lowercase , ) __lowerCAmelCase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] __lowerCAmelCase : Any = [d[0][2] for d in decoded_decoder_out] __lowerCAmelCase : int = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowercase , _lowercase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , _lowercase ) self.assertTrue(np.array_equal(_lowercase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _lowercase , atol=1e-3 ) ) self.assertTrue(np.array_equal(_lowercase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474] , _lowercase , atol=1e-3 ) ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : List[Any] = self.get_feature_extractor() __lowerCAmelCase : List[Any] = self.get_tokenizer() __lowerCAmelCase : Optional[int] = self.get_decoder() __lowerCAmelCase : List[Any] = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase ) __lowerCAmelCase : Dict = self._get_dummy_logits() __lowerCAmelCase : List[str] = 2.0 __lowerCAmelCase : Dict = 5.0 __lowerCAmelCase : int = -20.0 __lowerCAmelCase : Dict = True __lowerCAmelCase : List[Any] = processor.batch_decode( _lowercase , alpha=_lowercase , beta=_lowercase , unk_score_offset=_lowercase , lm_score_boundary=_lowercase , ) __lowerCAmelCase : Optional[int] = decoded_processor_out.text __lowerCAmelCase : Optional[Any] = list(_lowercase ) decoder.reset_params( alpha=_lowercase , beta=_lowercase , unk_score_offset=_lowercase , lm_score_boundary=_lowercase , ) with get_context('''fork''' ).Pool() as pool: __lowerCAmelCase : str = decoder.decode_beams_batch( _lowercase , _lowercase , ) __lowerCAmelCase : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowercase , _lowercase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , _lowercase ) __lowerCAmelCase : List[str] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _lowercase ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : str = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowerCAmelCase : Dict = processor.decoder.model_container[processor.decoder._model_key] __lowerCAmelCase : str = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowerCAmelCase : Any = os.listdir(_lowercase ) __lowerCAmelCase : Optional[int] = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowercase , _lowercase ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : int = snapshot_download('''hf-internal-testing/processor_with_lm''' ) __lowerCAmelCase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained(_lowercase ) __lowerCAmelCase : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] __lowerCAmelCase : Union[str, Any] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowerCAmelCase : List[str] = os.listdir(_lowercase ) __lowerCAmelCase : Tuple = os.listdir(_lowercase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowercase , _lowercase ) def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : Optional[int] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowerCAmelCase : int = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowerCAmelCase : List[Any] = floats_list((3, 1000) ) __lowerCAmelCase : Union[str, Any] = processor_wavaveca(_lowercase , return_tensors='''np''' ) __lowerCAmelCase : int = processor_auto(_lowercase , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __lowerCAmelCase : str = self._get_dummy_logits() __lowerCAmelCase : Optional[Any] = processor_wavaveca.batch_decode(_lowercase ) __lowerCAmelCase : Tuple = processor_auto.batch_decode(_lowercase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : List[str] = self.get_feature_extractor() __lowerCAmelCase : Optional[Any] = self.get_tokenizer() __lowerCAmelCase : Optional[int] = self.get_decoder() __lowerCAmelCase : List[str] = WavaVecaProcessorWithLM(tokenizer=_lowercase , feature_extractor=_lowercase , decoder=_lowercase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def UpperCamelCase__ ( A_ , A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = [d[key] for d in offsets] return retrieved_list def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : str = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowerCAmelCase : List[Any] = self._get_dummy_logits()[0] __lowerCAmelCase : str = processor.decode(_lowercase , output_word_offsets=_lowercase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowercase , _lowercase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowerCAmelCase : Dict = self._get_dummy_logits() __lowerCAmelCase : Optional[Any] = processor.batch_decode(_lowercase , output_word_offsets=_lowercase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowercase , _lowercase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_lowercase , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' import torch __lowerCAmelCase : Optional[Any] = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=_lowercase ) __lowerCAmelCase : Optional[int] = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_6000 ) ) __lowerCAmelCase : int = iter(_lowercase ) __lowerCAmelCase : int = next(_lowercase ) __lowerCAmelCase : Union[str, Any] = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) __lowerCAmelCase : Union[str, Any] = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowerCAmelCase : List[Any] = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): __lowerCAmelCase : Optional[int] = model(_lowercase ).logits.cpu().numpy() __lowerCAmelCase : Optional[Any] = processor.decode(logits[0] , output_word_offsets=_lowercase ) __lowerCAmelCase : List[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowerCAmelCase : List[str] = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] __lowerCAmelCase : List[Any] = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_lowercase , '''word''' ) ) , _lowercase ) self.assertEqual(''' '''.join(self.get_from_offsets(_lowercase , '''word''' ) ) , output.text ) # output times __lowerCAmelCase : Optional[int] = torch.tensor(self.get_from_offsets(_lowercase , '''start_time''' ) ) __lowerCAmelCase : Optional[int] = torch.tensor(self.get_from_offsets(_lowercase , '''end_time''' ) ) # fmt: off __lowerCAmelCase : Any = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] ) __lowerCAmelCase : int = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=0.01 ) ) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=0.01 ) )
275
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class _UpperCAmelCase : def __init__( self : Union[str, Any] , _lowercase : Optional[Any] ): __UpperCAmelCase = str(id_ ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = [] __UpperCAmelCase = {} # {vertex:distance} def __lt__( self : str , _lowercase : List[Any] ): return self.key < other.key def __repr__( self : int ): return self.id def a ( self : Union[str, Any] , _lowercase : int ): self.neighbors.append(_lowercase ) def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : int ): __UpperCAmelCase = weight def lowercase__ ( snake_case_ :int , snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , snake_case_ ) graph[b - 1].add_edge(graph[a - 1] , snake_case_ ) def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ): __UpperCAmelCase = [] for u in graph: __UpperCAmelCase = math.inf __UpperCAmelCase = None __UpperCAmelCase = 0 __UpperCAmelCase = graph[:] while q: __UpperCAmelCase = min(snake_case_ ) q.remove(snake_case_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __UpperCAmelCase = u __UpperCAmelCase = u.edges[v.id] for i in range(1 , len(snake_case_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowercase__ ( snake_case_ :list , snake_case_ :Vertex ): for u in graph: __UpperCAmelCase = math.inf __UpperCAmelCase = None __UpperCAmelCase = 0 __UpperCAmelCase = list(snake_case_ ) hq.heapify(snake_case_ ) while h: __UpperCAmelCase = hq.heappop(snake_case_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __UpperCAmelCase = u __UpperCAmelCase = u.edges[v.id] hq.heapify(snake_case_ ) for i in range(1 , len(snake_case_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowercase__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
332
0
"""simple docstring""" from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> np.ndarray: """simple docstring""" _UpperCamelCase = cva.getAffineTransform(__snake_case, __snake_case ) return cva.warpAffine(__snake_case, __snake_case, (rows, cols) ) if __name__ == "__main__": # read original image _a = cva.imread( str(Path(__file__).resolve().parent.parent / """image_data""" / """lena.jpg""") ) # turn image in gray scale value _a = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape _a , _a = gray_img.shape # set different points to rotate image _a = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) _a = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) _a = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) _a = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list _a = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations _a = plt.figure(1) _a = ["""Original""", """Rotation 1""", """Rotation 2""", """Rotation 3"""] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, """gray""") plt.title(titles[i]) plt.axis("""off""") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
368
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a , __a , __a = None , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules(transformer=__a , vae=__a , scheduler=__a) # create a imagenet -> id dictionary for easier use _UpperCamelCase = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): _UpperCamelCase = int(__a) _UpperCamelCase = dict(sorted(self.labels.items())) def UpperCAmelCase ( self , __a) -> List[int]: '''simple docstring''' if not isinstance(__a , __a): _UpperCamelCase = list(__a) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''') return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , __a , __a = 4.0 , __a = None , __a = 50 , __a = "pil" , __a = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' _UpperCamelCase = len(__a) _UpperCamelCase = self.transformer.config.sample_size _UpperCamelCase = self.transformer.config.in_channels _UpperCamelCase = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=__a , device=self.device , dtype=self.transformer.dtype , ) _UpperCamelCase = torch.cat([latents] * 2) if guidance_scale > 1 else latents _UpperCamelCase = torch.tensor(__a , device=self.device).reshape(-1) _UpperCamelCase = torch.tensor([10_00] * batch_size , device=self.device) _UpperCamelCase = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__a) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: _UpperCamelCase = latent_model_input[: len(__a) // 2] _UpperCamelCase = torch.cat([half, half] , dim=0) _UpperCamelCase = self.scheduler.scale_model_input(__a , __a) _UpperCamelCase = t if not torch.is_tensor(__a): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) _UpperCamelCase = latent_model_input.device.type == '''mps''' if isinstance(__a , __a): _UpperCamelCase = torch.floataa if is_mps else torch.floataa else: _UpperCamelCase = torch.intaa if is_mps else torch.intaa _UpperCamelCase = torch.tensor([timesteps] , dtype=__a , device=latent_model_input.device) elif len(timesteps.shape) == 0: _UpperCamelCase = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _UpperCamelCase = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output _UpperCamelCase = self.transformer( __a , timestep=__a , class_labels=__a).sample # perform guidance if guidance_scale > 1: _UpperCamelCase , _UpperCamelCase = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] _UpperCamelCase , _UpperCamelCase = torch.split(__a , len(__a) // 2 , dim=0) _UpperCamelCase = uncond_eps + guidance_scale * (cond_eps - uncond_eps) _UpperCamelCase = torch.cat([half_eps, half_eps] , dim=0) _UpperCamelCase = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: _UpperCamelCase , _UpperCamelCase = torch.split(__a , __a , dim=1) else: _UpperCamelCase = noise_pred # compute previous image: x_t -> x_t-1 _UpperCamelCase = self.scheduler.step(__a , __a , __a).prev_sample if guidance_scale > 1: _UpperCamelCase , _UpperCamelCase = latent_model_input.chunk(2 , dim=0) else: _UpperCamelCase = latent_model_input _UpperCamelCase = 1 / self.vae.config.scaling_factor * latents _UpperCamelCase = self.vae.decode(__a).sample _UpperCamelCase = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _UpperCamelCase = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(__a) if not return_dict: return (samples,) return ImagePipelineOutput(images=__a)
100
0
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
48
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class snake_case__ ( snake_case_ ): _snake_case : "DiagonalGaussianDistribution" class snake_case__ ( snake_case_, snake_case_ ): _snake_case : Optional[Any] = True @register_to_config def __init__( self , lowerCamelCase = 3 , lowerCamelCase = 3 , lowerCamelCase = ("DownEncoderBlock2D",) , lowerCamelCase = ("UpDecoderBlock2D",) , lowerCamelCase = (64,) , lowerCamelCase = 1 , lowerCamelCase = "silu" , lowerCamelCase = 4 , lowerCamelCase = 32 , lowerCamelCase = 32 , lowerCamelCase = 0.1_8215 , ): super().__init__() # pass init params to Encoder __a = Encoder( in_channels=lowerCamelCase , out_channels=lowerCamelCase , down_block_types=lowerCamelCase , block_out_channels=lowerCamelCase , layers_per_block=lowerCamelCase , act_fn=lowerCamelCase , norm_num_groups=lowerCamelCase , double_z=lowerCamelCase , ) # pass init params to Decoder __a = Decoder( in_channels=lowerCamelCase , out_channels=lowerCamelCase , up_block_types=lowerCamelCase , block_out_channels=lowerCamelCase , layers_per_block=lowerCamelCase , norm_num_groups=lowerCamelCase , act_fn=lowerCamelCase , ) __a = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __a = nn.Convad(lowerCamelCase , lowerCamelCase , 1 ) __a = False __a = False # only relevant if vae tiling is enabled __a = self.config.sample_size __a = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __a = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __a = 0.25 def a__ ( self , lowerCamelCase , lowerCamelCase=False ): if isinstance(lowerCamelCase , (Encoder, Decoder) ): __a = value def a__ ( self , lowerCamelCase = True ): __a = use_tiling def a__ ( self ): self.enable_tiling(lowerCamelCase ) def a__ ( self ): __a = True def a__ ( self ): __a = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a__ ( self ): __a = {} def fn_recursive_add_processors(lowerCamelCase , lowerCamelCase , lowerCamelCase ): if hasattr(lowerCamelCase , "set_processor" ): __a = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , lowerCamelCase , lowerCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return processors def a__ ( self , lowerCamelCase ): __a = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase , lowerCamelCase ) and len(lowerCamelCase ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(lowerCamelCase )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(lowerCamelCase , lowerCamelCase , lowerCamelCase ): if hasattr(lowerCamelCase , "set_processor" ): if not isinstance(lowerCamelCase , lowerCamelCase ): module.set_processor(lowerCamelCase ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , lowerCamelCase , lowerCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def a__ ( self ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def a__ ( self , lowerCamelCase , lowerCamelCase = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(lowerCamelCase , return_dict=lowerCamelCase ) if self.use_slicing and x.shape[0] > 1: __a = [self.encoder(lowerCamelCase ) for x_slice in x.split(1 )] __a = torch.cat(lowerCamelCase ) else: __a = self.encoder(lowerCamelCase ) __a = self.quant_conv(lowerCamelCase ) __a = DiagonalGaussianDistribution(lowerCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(lowerCamelCase , return_dict=lowerCamelCase ) __a = self.post_quant_conv(lowerCamelCase ) __a = self.decoder(lowerCamelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase ) @apply_forward_hook def a__ ( self , lowerCamelCase , lowerCamelCase = True ): if self.use_slicing and z.shape[0] > 1: __a = [self._decode(lowerCamelCase ).sample for z_slice in z.split(1 )] __a = torch.cat(lowerCamelCase ) else: __a = self._decode(lowerCamelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = min(a.shape[2] , b.shape[2] , lowerCamelCase ) for y in range(lowerCamelCase ): __a = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = min(a.shape[3] , b.shape[3] , lowerCamelCase ) for x in range(lowerCamelCase ): __a = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def a__ ( self , lowerCamelCase , lowerCamelCase = True ): __a = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __a = int(self.tile_latent_min_size * self.tile_overlap_factor ) __a = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __a = [] for i in range(0 , x.shape[2] , lowerCamelCase ): __a = [] for j in range(0 , x.shape[3] , lowerCamelCase ): __a = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __a = self.encoder(lowerCamelCase ) __a = self.quant_conv(lowerCamelCase ) row.append(lowerCamelCase ) rows.append(lowerCamelCase ) __a = [] for i, row in enumerate(lowerCamelCase ): __a = [] for j, tile in enumerate(lowerCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __a = self.blend_v(rows[i - 1][j] , lowerCamelCase , lowerCamelCase ) if j > 0: __a = self.blend_h(row[j - 1] , lowerCamelCase , lowerCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowerCamelCase , dim=3 ) ) __a = torch.cat(lowerCamelCase , dim=2 ) __a = DiagonalGaussianDistribution(lowerCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase = True ): __a = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __a = int(self.tile_sample_min_size * self.tile_overlap_factor ) __a = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __a = [] for i in range(0 , z.shape[2] , lowerCamelCase ): __a = [] for j in range(0 , z.shape[3] , lowerCamelCase ): __a = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __a = self.post_quant_conv(lowerCamelCase ) __a = self.decoder(lowerCamelCase ) row.append(lowerCamelCase ) rows.append(lowerCamelCase ) __a = [] for i, row in enumerate(lowerCamelCase ): __a = [] for j, tile in enumerate(lowerCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __a = self.blend_v(rows[i - 1][j] , lowerCamelCase , lowerCamelCase ) if j > 0: __a = self.blend_h(row[j - 1] , lowerCamelCase , lowerCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowerCamelCase , dim=3 ) ) __a = torch.cat(lowerCamelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = True , lowerCamelCase = None , ): __a = sample __a = self.encode(lowerCamelCase ).latent_dist if sample_posterior: __a = posterior.sample(generator=lowerCamelCase ) else: __a = posterior.mode() __a = self.decode(lowerCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase )
261
0
def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if num < 0: return False UpperCamelCase : int = num UpperCamelCase : int = 0 while num > 0: UpperCamelCase : str = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
315
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __UpperCAmelCase : str = logging.get_logger(__name__) def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" UpperCamelCase : Union[str, Any] = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) return torch.mm(SCREAMING_SNAKE_CASE_ , normalized_text_embeds.t() ) class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = CLIPConfig __UpperCamelCase : Optional[int] = ["CLIPEncoderLayer"] def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = CLIPVisionModel(config.vision_config ) UpperCamelCase : List[str] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = nn.Parameter(torch.ones(17 ) , requires_grad=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = nn.Parameter(torch.ones(3 ) , requires_grad=__SCREAMING_SNAKE_CASE ) @torch.no_grad() def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = self.vision_model(__SCREAMING_SNAKE_CASE )[1] # pooled_output UpperCamelCase : Union[str, Any] = self.visual_projection(__SCREAMING_SNAKE_CASE ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase : Optional[int] = cosine_distance(__SCREAMING_SNAKE_CASE , self.special_care_embeds ).cpu().float().numpy() UpperCamelCase : List[Any] = cosine_distance(__SCREAMING_SNAKE_CASE , self.concept_embeds ).cpu().float().numpy() UpperCamelCase : Dict = [] UpperCamelCase : List[str] = image_embeds.shape[0] for i in range(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[Any] = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images UpperCamelCase : Optional[int] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): UpperCamelCase : List[str] = special_cos_dist[i][concept_idx] UpperCamelCase : Optional[Any] = self.special_care_embeds_weights[concept_idx].item() UpperCamelCase : Any = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) UpperCamelCase : Optional[int] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): UpperCamelCase : Optional[int] = cos_dist[i][concept_idx] UpperCamelCase : List[str] = self.concept_embeds_weights[concept_idx].item() UpperCamelCase : Any = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__SCREAMING_SNAKE_CASE ) result.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = self.vision_model(__SCREAMING_SNAKE_CASE )[1] # pooled_output UpperCamelCase : int = self.visual_projection(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = cosine_distance(__SCREAMING_SNAKE_CASE , self.special_care_embeds ) UpperCamelCase : str = cosine_distance(__SCREAMING_SNAKE_CASE , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images UpperCamelCase : Union[str, Any] = 0.0 UpperCamelCase : Optional[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) UpperCamelCase : Optional[Any] = torch.any(special_scores > 0 , dim=1 ) UpperCamelCase : int = special_care * 0.01 UpperCamelCase : Tuple = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) UpperCamelCase : Optional[int] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) UpperCamelCase : List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
315
1
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Dict: snake_case : Optional[Any] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> List[Any]: snake_case : List[str] = 0 while b > 0: if b & 1: snake_case : int = ((res % c) + (a % c)) % c a += a b >>= 1 return res
124
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if len(lowercase ) != 2 or len(a[0] ) != 2 or len(lowercase ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) snake_case : int = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase ) ) ] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase ) ) ] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[list, list, list, list]: if len(lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) snake_case : Optional[int] = len(lowercase ) snake_case : str = matrix_length // 2 snake_case : int = [[a[i][j] for j in range(lowercase ,lowercase )] for i in range(lowercase )] snake_case : str = [ [a[i][j] for j in range(lowercase ,lowercase )] for i in range(lowercase ,lowercase ) ] snake_case : Optional[Any] = [[a[i][j] for j in range(lowercase )] for i in range(lowercase )] snake_case : str = [[a[i][j] for j in range(lowercase )] for i in range(lowercase ,lowercase )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[int, int]: return len(lowercase ), len(matrix[0] ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: print("""\n""".join(str(lowercase ) for line in matrix ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if matrix_dimensions(lowercase ) == (2, 2): return default_matrix_multiplication(lowercase ,lowercase ) snake_case , snake_case , snake_case , snake_case : Optional[Any] = split_matrix(lowercase ) snake_case , snake_case , snake_case , snake_case : Any = split_matrix(lowercase ) snake_case : List[Any] = actual_strassen(lowercase ,matrix_subtraction(lowercase ,lowercase ) ) snake_case : List[str] = actual_strassen(matrix_addition(lowercase ,lowercase ) ,lowercase ) snake_case : Tuple = actual_strassen(matrix_addition(lowercase ,lowercase ) ,lowercase ) snake_case : str = actual_strassen(lowercase ,matrix_subtraction(lowercase ,lowercase ) ) snake_case : Union[str, Any] = actual_strassen(matrix_addition(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : int = actual_strassen(matrix_subtraction(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : List[Any] = actual_strassen(matrix_subtraction(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : str = matrix_addition(matrix_subtraction(matrix_addition(lowercase ,lowercase ) ,lowercase ) ,lowercase ) snake_case : List[str] = matrix_addition(lowercase ,lowercase ) snake_case : Any = matrix_addition(lowercase ,lowercase ) snake_case : List[str] = matrix_subtraction(matrix_subtraction(matrix_addition(lowercase ,lowercase ) ,lowercase ) ,lowercase ) # construct the new matrix from our 4 quadrants snake_case : Optional[Any] = [] for i in range(len(lowercase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowercase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if matrix_dimensions(lowercase )[1] != matrix_dimensions(lowercase )[0]: snake_case : Optional[Any] = ( """Unable to multiply these matrices, please check the dimensions.\n""" f"""Matrix A: {matrixa}\n""" f"""Matrix B: {matrixa}""" ) raise Exception(lowercase ) snake_case : str = matrix_dimensions(lowercase ) snake_case : Optional[Any] = matrix_dimensions(lowercase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] snake_case : Dict = max(*lowercase ,*lowercase ) snake_case : Optional[Any] = int(math.pow(2 ,math.ceil(math.loga(lowercase ) ) ) ) snake_case : Any = matrixa snake_case : Optional[Any] = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 ,lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) snake_case : Optional[int] = actual_strassen(lowercase ,lowercase ) # Removing the additional zeros for i in range(0 ,lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": lowerCamelCase : Any = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] lowerCamelCase : int = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
124
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GraphormerForGraphClassification''', '''GraphormerModel''', '''GraphormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
370
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __snake_case = 16 __snake_case = 32 def a ( __a , __a = 16 , __a = "bert-base-cased" ) -> Any: '''simple docstring''' UpperCamelCase__ :List[str] = AutoTokenizer.from_pretrained(__a ) UpperCamelCase__ :List[Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__a ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ :Tuple = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase__ :Optional[int] = datasets.map( __a , batched=__a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=__a ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase__ :Optional[int] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__a ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__a , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(__a , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCamelCase__ :Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) UpperCamelCase__ :str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader def a ( __a , __a , __a , __a ) -> str: '''simple docstring''' model.eval() UpperCamelCase__ :List[str] = 0 for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase__ :int = model(**__a ) UpperCamelCase__ :Tuple = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCamelCase__ , UpperCamelCase__ :int = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__a ) - 1: UpperCamelCase__ :Union[str, Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCamelCase__ :List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__a , references=__a , ) UpperCamelCase__ :Union[str, Any] = metric.compute() return eval_metric["accuracy"] def a ( __a , __a ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase__ :Any = config['''lr'''] UpperCamelCase__ :Optional[int] = int(config['''num_epochs'''] ) UpperCamelCase__ :List[Any] = int(config['''seed'''] ) UpperCamelCase__ :List[Any] = int(config['''batch_size'''] ) UpperCamelCase__ :List[Any] = args.model_name_or_path set_seed(__a ) UpperCamelCase__ , UpperCamelCase__ :Any = get_dataloaders(__a , __a , __a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase__ :Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(__a , return_dict=__a ) # Instantiate optimizer UpperCamelCase__ :Any = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase__ :Optional[Any] = optimizer_cls(params=model.parameters() , lr=__a ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase__ :Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: UpperCamelCase__ :Dict = 1 UpperCamelCase__ :Tuple = (len(__a ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase__ :Any = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=0 , num_training_steps=__a , ) else: UpperCamelCase__ :Any = DummyScheduler(__a , total_num_steps=__a , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Dict = accelerator.prepare( __a , __a , __a , __a , __a ) # We need to keep track of how many total steps we have iterated over UpperCamelCase__ :Tuple = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Optional[int] = evaluate.load('''glue''' , '''mrpc''' ) UpperCamelCase__ :List[Any] = num_epochs if args.partial_train_epoch is not None: UpperCamelCase__ :Optional[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCamelCase__ :Dict = args.resume_from_checkpoint.split('''epoch_''' )[1] UpperCamelCase__ :Tuple = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCamelCase__ :Any = int(__a ) + 1 UpperCamelCase__ :Dict = evaluation_loop(__a , __a , __a , __a ) accelerator.print('''resumed checkpoint performance:''' , __a ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , f'''state_{starting_epoch-1}.json''' ) , '''r''' ) as f: UpperCamelCase__ :Optional[int] = json.load(__a ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCamelCase__ :Optional[Any] = {} for epoch in range(__a , __a ): model.train() for step, batch in enumerate(__a ): UpperCamelCase__ :Optional[int] = model(**__a ) UpperCamelCase__ :Optional[int] = outputs.loss UpperCamelCase__ :str = loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCamelCase__ :Union[str, Any] = f'''epoch_{epoch}''' UpperCamelCase__ :List[Any] = os.path.join(args.output_dir , __a ) accelerator.save_state(__a ) UpperCamelCase__ :List[Any] = evaluation_loop(__a , __a , __a , __a ) UpperCamelCase__ :int = accuracy UpperCamelCase__ :List[Any] = lr_scheduler.get_lr()[0] UpperCamelCase__ :Any = optimizer.param_groups[0]['''lr'''] UpperCamelCase__ :int = epoch UpperCamelCase__ :Tuple = overall_step accelerator.print(f'''epoch {epoch}:''' , __a ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'''state_{epoch}.json''' ) , '''w''' ) as f: json.dump(__a , __a ) def a ( ) -> Tuple: '''simple docstring''' UpperCamelCase__ :List[Any] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=__a , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__a , ) parser.add_argument( '''--output_dir''' , type=__a , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=__a , default=__a , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=__a , default=__a , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=__a , default=2 , help='''Number of train epochs.''' , ) UpperCamelCase__ :Optional[int] = parser.parse_args() UpperCamelCase__ :List[str] = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(__a , __a ) if __name__ == "__main__": main()
219
0
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin lowerCamelCase_ = logging.get_logger(__name__) enable_full_determinism() class __A( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = UNetaDModel SCREAMING_SNAKE_CASE__ = """sample""" @property def UpperCAmelCase_ (self ): UpperCamelCase__ = 4 UpperCamelCase__ = 3 UpperCamelCase__ = (32, 32) UpperCamelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor([10] ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": noise, "timestep": time_step} @property def UpperCAmelCase_ (self ): return (3, 32, 32) @property def UpperCAmelCase_ (self ): return (3, 32, 32) def UpperCAmelCase_ (self ): UpperCamelCase__ = { """block_out_channels""": (32, 64), """down_block_types""": ("""DownBlock2D""", """AttnDownBlock2D"""), """up_block_types""": ("""AttnUpBlock2D""", """UpBlock2D"""), """attention_head_dim""": 3, """out_channels""": 3, """in_channels""": 3, """layers_per_block""": 2, """sample_size""": 32, } UpperCamelCase__ = self.dummy_input return init_dict, inputs_dict class __A( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = UNetaDModel SCREAMING_SNAKE_CASE__ = """sample""" @property def UpperCAmelCase_ (self ): UpperCamelCase__ = 4 UpperCamelCase__ = 4 UpperCamelCase__ = (32, 32) UpperCamelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor([10] ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": noise, "timestep": time_step} @property def UpperCAmelCase_ (self ): return (4, 32, 32) @property def UpperCAmelCase_ (self ): return (4, 32, 32) def UpperCAmelCase_ (self ): UpperCamelCase__ = { """sample_size""": 32, """in_channels""": 4, """out_channels""": 4, """layers_per_block""": 2, """block_out_channels""": (32, 64), """attention_head_dim""": 32, """down_block_types""": ("""DownBlock2D""", """DownBlock2D"""), """up_block_types""": ("""UpBlock2D""", """UpBlock2D"""), } UpperCamelCase__ = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ (self ): UpperCamelCase__ = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def UpperCAmelCase_ (self ): UpperCamelCase__ = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def UpperCAmelCase_ (self ): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` UpperCamelCase__ = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=SCREAMING_SNAKE_CASE_ ) model_accelerate.to(SCREAMING_SNAKE_CASE_ ) model_accelerate.eval() UpperCamelCase__ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCamelCase__ = noise.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor([10] * noise.shape[0] ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model_accelerate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )["""sample"""] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCamelCase__ = UNetaDModel.from_pretrained( """fusing/unet-ldm-dummy-update""" , output_loading_info=SCREAMING_SNAKE_CASE_ , low_cpu_mem_usage=SCREAMING_SNAKE_CASE_ ) model_normal_load.to(SCREAMING_SNAKE_CASE_ ) model_normal_load.eval() UpperCamelCase__ = model_normal_load(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )["""sample"""] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1E-3 ) def UpperCAmelCase_ (self ): UpperCamelCase__ = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ) model.eval() model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCamelCase__ = noise.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor([10] * noise.shape[0] ).to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase__ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCamelCase__ = torch.tensor([-13.32_58, -20.11_00, -15.98_73, -17.66_17, -23.05_96, -17.94_19, -13.36_75, -16.18_89, -12.38_00] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1E-3 ) ) class __A( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = UNetaDModel SCREAMING_SNAKE_CASE__ = """sample""" @property def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=(32, 32) ): UpperCamelCase__ = 4 UpperCamelCase__ = 3 UpperCamelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=SCREAMING_SNAKE_CASE_ ) return {"sample": noise, "timestep": time_step} @property def UpperCAmelCase_ (self ): return (3, 32, 32) @property def UpperCAmelCase_ (self ): return (3, 32, 32) def UpperCAmelCase_ (self ): UpperCamelCase__ = { """block_out_channels""": [32, 64, 64, 64], """in_channels""": 3, """layers_per_block""": 1, """out_channels""": 3, """time_embedding_type""": """fourier""", """norm_eps""": 1E-6, """mid_block_scale_factor""": math.sqrt(2.0 ), """norm_num_groups""": None, """down_block_types""": [ """SkipDownBlock2D""", """AttnSkipDownBlock2D""", """SkipDownBlock2D""", """SkipDownBlock2D""", ], """up_block_types""": [ """SkipUpBlock2D""", """SkipUpBlock2D""", """AttnSkipUpBlock2D""", """SkipUpBlock2D""", ], } UpperCamelCase__ = self.dummy_input return init_dict, inputs_dict @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.dummy_input UpperCamelCase__ = floats_tensor((4, 3) + (2_56, 2_56) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = noise UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ ) assert image is not None, "Make sure output is not None" @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" ) model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = 4 UpperCamelCase__ = 3 UpperCamelCase__ = (2_56, 2_56) UpperCamelCase__ = torch.ones((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor(batch_size * [1E-4] ).to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCamelCase__ = torch.tensor([-48_42.86_91, -64_99.66_31, -38_00.19_53, -79_78.26_86, -1_09_80.71_29, -2_00_28.85_35, 81_48.28_22, 23_42.29_05, 5_67.76_08] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1E-2 ) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = UNetaDModel.from_pretrained("""fusing/ncsnpp-ffhq-ve-dummy-update""" ) model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = 4 UpperCamelCase__ = 3 UpperCamelCase__ = (32, 32) UpperCamelCase__ = torch.ones((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor(batch_size * [1E-4] ).to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCamelCase__ = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1E-2 ) ) def UpperCAmelCase_ (self ): # not required for this model pass
244
"""simple docstring""" import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self: List[Any] , snake_case: List[str] , snake_case: Optional[Any]=13 , snake_case: List[str]=7 , snake_case: Dict=True , snake_case: List[str]=True , snake_case: Optional[int]=True , snake_case: Any=True , snake_case: Optional[Any]=99 , snake_case: Tuple=32 , snake_case: Tuple=5 , snake_case: Dict=4 , snake_case: Optional[Any]=37 , snake_case: Union[str, Any]="gelu" , snake_case: Tuple=0.1 , snake_case: List[Any]=0.1 , snake_case: List[str]=512 , snake_case: Optional[int]=16 , snake_case: int=2 , snake_case: List[Any]=0.0_2 , snake_case: Union[str, Any]=4 , ) -> List[str]: snake_case_ :Dict = parent snake_case_ :Any = batch_size snake_case_ :Any = seq_length snake_case_ :List[str] = is_training snake_case_ :Optional[Any] = use_attention_mask snake_case_ :Dict = use_token_type_ids snake_case_ :Union[str, Any] = use_labels snake_case_ :str = vocab_size snake_case_ :int = hidden_size snake_case_ :List[str] = num_hidden_layers snake_case_ :Dict = num_attention_heads snake_case_ :Any = intermediate_size snake_case_ :Tuple = hidden_act snake_case_ :int = hidden_dropout_prob snake_case_ :Optional[Any] = attention_probs_dropout_prob snake_case_ :Any = max_position_embeddings snake_case_ :Union[str, Any] = type_vocab_size snake_case_ :Optional[int] = type_sequence_label_size snake_case_ :Union[str, Any] = initializer_range snake_case_ :Tuple = num_choices def lowerCAmelCase_ ( self: Tuple ) -> str: snake_case_ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ :Union[str, Any] = None if self.use_attention_mask: snake_case_ :str = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ :Any = None if self.use_token_type_ids: snake_case_ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ :int = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase_ ( self: Optional[int] ) -> int: snake_case_ :str = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_, snake_case_ :Optional[int] = config_and_inputs snake_case_ :Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCAmelCase_ ( self: Optional[Any] ) -> Any: snake_case_ :int = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_, snake_case_ :Dict = config_and_inputs snake_case_ :Union[str, Any] = True snake_case_ :Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ :Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCamelCase ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _A : List[str] = True _A : Dict = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase_ ( self: int ) -> List[str]: snake_case_ :Any = FlaxBertModelTester(self ) @slow def lowerCAmelCase_ ( self: List[str] ) -> Dict: # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. snake_case_ :Dict = FlaxBertModel.from_pretrained("""bert-base-cased""" ) snake_case_ :Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case )
66
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A (_lowerCAmelCase , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = KandinskyVaaInpaintPipeline __lowerCamelCase : Tuple = ["image_embeds", "negative_image_embeds", "image", "mask_image"] __lowerCamelCase : Optional[Any] = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] __lowerCamelCase : List[str] = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __lowerCamelCase : Optional[int] = False @property def a_ ( self : str ) -> int: """simple docstring""" return 32 @property def a_ ( self : Any ) -> List[str]: """simple docstring""" return 32 @property def a_ ( self : str ) -> Dict: """simple docstring""" return self.time_input_dim @property def a_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.time_input_dim * 4 @property def a_ ( self : Union[str, Any] ) -> str: """simple docstring""" return 1_00 @property def a_ ( self : Dict ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) A__ = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A__ = UNetaDConditionModel(**_lowercase ) return model @property def a_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a_ ( self : List[str] ) -> Dict: """simple docstring""" torch.manual_seed(0 ) A__ = VQModel(**self.dummy_movq_kwargs ) return model def a_ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" A__ = self.dummy_unet A__ = self.dummy_movq A__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=_lowercase , ) A__ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a_ ( self : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any]=0 ) -> Tuple: """simple docstring""" A__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowercase ) ).to(_lowercase ) A__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowercase ) # create init_image A__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) A__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask A__ = np.ones((64, 64) , dtype=np.floataa ) A__ = 0 if str(_lowercase ).startswith("""mps""" ): A__ = torch.manual_seed(_lowercase ) else: A__ = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A__ = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def a_ ( self : int ) -> Union[str, Any]: """simple docstring""" A__ = """cpu""" A__ = self.get_dummy_components() A__ = self.pipeline_class(**_lowercase ) A__ = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A__ = pipe(**self.get_dummy_inputs(_lowercase ) ) A__ = output.images A__ = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) A__ = np.array( [0.5_0_7_7_5_9_0_3, 0.4_9_5_2_7_1_9_5, 0.4_8_8_2_4_5_4_3, 0.5_0_1_9_2_2_3_7, 0.4_8_6_4_4_9_0_6, 0.4_9_3_7_3_8_1_4, 0.4_7_8_0_5_9_8, 0.4_7_2_3_4_8_2_7, 0.4_8_3_2_7_8_4_8] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def a_ ( self : Union[str, Any] ) -> str: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self : Any ) -> int: """simple docstring""" A__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) A__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) A__ = np.ones((7_68, 7_68) , dtype=np.floataa ) A__ = 0 A__ = """a hat""" A__ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) A__ = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""" , torch_dtype=torch.floataa ) A__ = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) A__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) A__ , A__ = pipe_prior( _lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() A__ = pipeline( image=_lowercase , mask_image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) A__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
370
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A : Optional[Any] = logging.get_logger(__name__) A : List[str] = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Any = '''time_series_transformer''' __lowerCamelCase : Dict = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Union[str, Any] , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : str = "student_t" , __lowerCAmelCase : str = "nll" , __lowerCAmelCase : int = 1 , __lowerCAmelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowerCAmelCase : Optional[Union[str, bool]] = "mean" , __lowerCAmelCase : int = 0 , __lowerCAmelCase : int = 0 , __lowerCAmelCase : int = 0 , __lowerCAmelCase : int = 0 , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : int = 32 , __lowerCAmelCase : int = 32 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : bool = True , __lowerCAmelCase : str = "gelu" , __lowerCAmelCase : int = 64 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : int = 1_00 , __lowerCAmelCase : float = 0.0_2 , __lowerCAmelCase : Optional[Any]=True , **__lowerCAmelCase : Union[str, Any] , ) -> Optional[int]: """simple docstring""" A__ = prediction_length A__ = context_length or prediction_length A__ = distribution_output A__ = loss A__ = input_size A__ = num_time_features A__ = lags_sequence A__ = scaling A__ = num_dynamic_real_features A__ = num_static_real_features A__ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__lowerCAmelCase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) A__ = cardinality else: A__ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__lowerCAmelCase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) A__ = embedding_dimension else: A__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] A__ = num_parallel_samples # Transformer architecture configuration A__ = input_size * len(__lowerCAmelCase ) + self._number_of_features A__ = d_model A__ = encoder_attention_heads A__ = decoder_attention_heads A__ = encoder_ffn_dim A__ = decoder_ffn_dim A__ = encoder_layers A__ = decoder_layers A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = activation_function A__ = init_std A__ = use_cache super().__init__(is_encoder_decoder=__lowerCAmelCase , **__lowerCAmelCase ) @property def a_ ( self : List[Any] ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
276
0
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
304
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : Optional[Any] = XLNetTokenizer __lowercase : List[str] = XLNetTokenizerFast __lowercase : List[Any] = True __lowercase : int = True def snake_case_ ( self): super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = XLNetTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """<s>""" __SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<unk>""") self.assertEqual(vocab_keys[1] , """<s>""") self.assertEqual(vocab_keys[-1] , """<eod>""") self.assertEqual(len(lowerCAmelCase__) , 1_0_0_6) def snake_case_ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = XLNetTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""This is a test""") self.assertListEqual(lowerCAmelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4]) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = XLNetTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""▁he""", """ll""", """o"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = XLNetTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = XLNetTokenizer.from_pretrained("""xlnet-base-cased""") __SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def snake_case_ ( self): # fmt: off __SCREAMING_SNAKE_CASE = {"""input_ids""": [[1_7, 2_1_4_4_2, 2_7_0, 1_7, 1_0, 1_4_6_4_5, 3_1_8, 3_4, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 7_7_5_2, 2_2_0_1_8, 2_3, 2_1, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 3_3_5_2, 1_4_4_3_1, 1_3, 5_5_0_0, 1_1, 1_1_7_6, 5_8_0, 1_3, 1_6_8_1_9, 4_7_9_7, 2_3, 1_7, 1_0, 1_7_1_3_5, 6_5_8, 1_9, 4_5_7, 7_9_3_2, 1_3, 1_8_4, 1_9, 3_1_5_4, 1_7_1_3_5, 6_4_6_8, 1_9, 1_4_0_4, 1_2_2_6_9, 1_9, 4_2_2_9, 5_3_5_6, 1_6_2_6_4, 4_6, 1_9, 1_7, 2_0_5_4_5, 1_0_3_9_5, 9, 9, 9, 1_1, 2_8, 6_4_2_1, 9_5_3_1, 2_0_7_2_9, 1_7, 1_0, 3_5_3, 1_7_0_2_2, 1_1, 2_1, 6_4_2_1, 9_5_3_1, 1_6_9_4_9, 1_7, 1_0, 1_1_5_0_9, 7_5_3, 1_1, 3_3, 9_5, 2_4_2_1, 7_3_8_5, 9_5_6, 1_4_4_3_1, 2_6_2_6, 2_5, 8_4_2, 7_3_8_5, 4_8_3_6, 2_1, 1_4_2_9, 2_2_7_2, 9_8_5_5, 3_1_2_0, 1_6_1, 2_4_7_3_8, 1_9, 1_3_2_0_3, 6_5_8, 2_1_8, 7_8_7, 2_1, 4_3_0, 1_8_4_8_2, 8_4_7, 2_6_3_7, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2_2, 2_2_1_7_8, 2_7, 1_0_6_4, 2_2, 9_5_6, 1_3, 1_1_1_0_1, 1_4_2_9, 5_8_5_4, 2_4_3_1_3, 1_8_9_5_3, 4_0, 4_2_2, 2_4_3_6_6, 6_8, 1_7_5_8, 3_7, 1_0_4_8_3, 1_4_2_5_7, 3_1, 2_0_7, 2_6_3, 2_1, 2_0_3, 3_7_7_3, 2_5, 7_1, 9_7_3_5, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2, 2_0_4_9, 3_4_4_2, 1_7, 1_3_8_9_4, 3_3_8_0, 2_3, 9_5, 1_8, 1_7_6_3_4, 2_2_8_8, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
100
0
from math import sqrt def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> bool: assert isinstance(lowerCAmelCase , lowerCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" _UpperCAmelCase : str = True # 0 and 1 are none primes. if number <= 1: _UpperCAmelCase : int = False for divisor in range(2 , int(round(sqrt(lowerCAmelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: _UpperCAmelCase : Optional[int] = False break # precondition assert isinstance(lowerCAmelCase , lowerCAmelCase ), "'status' must been from type bool" return status def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple ) -> Optional[int]: assert isinstance(lowerCAmelCase , lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N _UpperCAmelCase : Optional[int] = list(range(2 , n + 1 ) ) _UpperCAmelCase : Any = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCAmelCase ) ): for j in range(i + 1 , len(lowerCAmelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): _UpperCAmelCase : Optional[Any] = 0 # filters actual prime numbers. _UpperCAmelCase : Tuple = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCAmelCase , lowerCAmelCase ), "'ans' must been from type list" return ans def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] ) -> Optional[int]: assert isinstance(lowerCAmelCase , lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2" _UpperCAmelCase : Any = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCAmelCase ): ans.append(lowerCAmelCase ) # precondition assert isinstance(lowerCAmelCase , lowerCAmelCase ), "'ans' must been from type list" return ans def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> int: assert isinstance(lowerCAmelCase , lowerCAmelCase ) and number >= 0, "'number' must been an int and >= 0" _UpperCAmelCase : Union[str, Any] = [] # this list will be returns of the function. # potential prime number factors. _UpperCAmelCase : str = 2 _UpperCAmelCase : Optional[int] = number if number == 0 or number == 1: ans.append(lowerCAmelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCAmelCase ): while quotient != 1: if is_prime(lowerCAmelCase ) and (quotient % factor == 0): ans.append(lowerCAmelCase ) quotient /= factor else: factor += 1 else: ans.append(lowerCAmelCase ) # precondition assert isinstance(lowerCAmelCase , lowerCAmelCase ), "'ans' must been from type list" return ans def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> str: assert isinstance(lowerCAmelCase , lowerCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" _UpperCAmelCase : str = 0 # prime factorization of 'number' _UpperCAmelCase : Any = prime_factorization(lowerCAmelCase ) _UpperCAmelCase : Any = max(lowerCAmelCase ) # precondition assert isinstance(lowerCAmelCase , lowerCAmelCase ), "'ans' must been from type int" return ans def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] ) -> List[str]: assert isinstance(lowerCAmelCase , lowerCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" _UpperCAmelCase : Optional[Any] = 0 # prime factorization of 'number' _UpperCAmelCase : Dict = prime_factorization(lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = min(lowerCAmelCase ) # precondition assert isinstance(lowerCAmelCase , lowerCAmelCase ), "'ans' must been from type int" return ans def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] ) -> Any: assert isinstance(lowerCAmelCase , lowerCAmelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCAmelCase ), "compare bust been from type bool" return number % 2 == 0 def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple ) -> List[str]: assert isinstance(lowerCAmelCase , lowerCAmelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCAmelCase ), "compare bust been from type bool" return number % 2 != 0 def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict ) -> Optional[Any]: assert ( isinstance(lowerCAmelCase , lowerCAmelCase ) and (number > 2) and is_even(lowerCAmelCase ) ), "'number' must been an int, even and > 2" _UpperCAmelCase : int = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' _UpperCAmelCase : Union[str, Any] = get_prime_numbers(lowerCAmelCase ) _UpperCAmelCase : str = len(lowerCAmelCase ) # run variable for while-loops. _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Dict = None # exit variable. for break up the loops _UpperCAmelCase : List[Any] = True while i < len_pn and loop: _UpperCAmelCase : Optional[Any] = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: _UpperCAmelCase : Optional[Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCAmelCase , lowerCAmelCase ) and (len(lowerCAmelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: Optional[Any] ) -> Optional[Any]: assert ( isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." _UpperCAmelCase : List[str] = 0 while numbera != 0: _UpperCAmelCase : Optional[Any] = numbera % numbera _UpperCAmelCase : List[Any] = numbera _UpperCAmelCase : Dict = rest # precondition assert isinstance(lowerCAmelCase , lowerCAmelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] , lowerCAmelCase: Any ) -> Dict: assert ( isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." _UpperCAmelCase : Any = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' _UpperCAmelCase : List[Any] = prime_factorization(lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = prime_factorization(lowerCAmelCase ) elif numbera == 1 or numbera == 1: _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Dict = max(lowerCAmelCase , lowerCAmelCase ) _UpperCAmelCase : int = 0 _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: _UpperCAmelCase : Union[str, Any] = prime_fac_a.count(lowerCAmelCase ) _UpperCAmelCase : int = prime_fac_a.count(lowerCAmelCase ) for _ in range(max(lowerCAmelCase , lowerCAmelCase ) ): ans *= n else: _UpperCAmelCase : Dict = prime_fac_a.count(lowerCAmelCase ) for _ in range(lowerCAmelCase ): ans *= n done.append(lowerCAmelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: _UpperCAmelCase : Any = prime_fac_a.count(lowerCAmelCase ) for _ in range(lowerCAmelCase ): ans *= n done.append(lowerCAmelCase ) # precondition assert isinstance(lowerCAmelCase , lowerCAmelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> Optional[Any]: assert isinstance(lowerCAmelCase , lowerCAmelCase ) and (n >= 0), "'number' must been a positive int" _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : Union[str, Any] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCAmelCase ): ans += 1 # precondition assert isinstance(lowerCAmelCase , lowerCAmelCase ) and is_prime( lowerCAmelCase ), "'ans' must been a prime number and from type int" return ans def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[int] ) -> str: assert ( is_prime(lowerCAmelCase ) and is_prime(lowerCAmelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" _UpperCAmelCase : List[str] = p_number_a + 1 # jump to the next number _UpperCAmelCase : List[str] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCAmelCase ): number += 1 while number < p_number_a: ans.append(lowerCAmelCase ) number += 1 # fetch the next prime number. while not is_prime(lowerCAmelCase ): number += 1 # precondition assert ( isinstance(lowerCAmelCase , lowerCAmelCase ) and ans[0] != p_number_a and ans[len(lowerCAmelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> List[Any]: assert isinstance(lowerCAmelCase , lowerCAmelCase ) and (n >= 1), "'n' must been int and >= 1" _UpperCAmelCase : List[str] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCAmelCase ) # precondition assert ans[0] == 1 and ans[len(lowerCAmelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[int] ) -> List[Any]: assert isinstance(lowerCAmelCase , lowerCAmelCase ) and ( number > 1 ), "'number' must been an int and >= 1" _UpperCAmelCase : Any = get_divisors(lowerCAmelCase ) # precondition assert ( isinstance(lowerCAmelCase , lowerCAmelCase ) and (divisors[0] == 1) and (divisors[len(lowerCAmelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] ) -> str: assert ( isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. _UpperCAmelCase : Tuple = gcd(abs(lowerCAmelCase ) , abs(lowerCAmelCase ) ) # precondition assert ( isinstance(lowerCAmelCase , lowerCAmelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> List[str]: assert isinstance(lowerCAmelCase , lowerCAmelCase ) and (n >= 0), "'n' must been a int and >= 0" _UpperCAmelCase : int = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] ) -> List[Any]: assert isinstance(lowerCAmelCase , lowerCAmelCase ) and (n >= 0), "'n' must been an int and >= 0" _UpperCAmelCase : List[Any] = 0 _UpperCAmelCase : Union[str, Any] = 1 _UpperCAmelCase : Dict = 1 # this will be return for _ in range(n - 1 ): _UpperCAmelCase : Optional[int] = ans ans += fiba _UpperCAmelCase : Optional[Any] = tmp return ans
189
from __future__ import annotations class a : def __init__( self , A_ ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = order # a_{0} ... a_{k} _UpperCAmelCase : Tuple = [1.0] + [0.0] * order # b_{0} ... b_{k} _UpperCAmelCase : int = [1.0] + [0.0] * order # x[n-1] ... x[n-k] _UpperCAmelCase : Optional[Any] = [0.0] * self.order # y[n-1] ... y[n-k] _UpperCAmelCase : Dict = [0.0] * self.order def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' if len(A_ ) < self.order: _UpperCAmelCase : List[str] = [1.0, *a_coeffs] if len(A_ ) != self.order + 1: _UpperCAmelCase : List[Any] = ( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(A_ )}' ) raise ValueError(A_ ) if len(A_ ) != self.order + 1: _UpperCAmelCase : int = ( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(A_ )}' ) raise ValueError(A_ ) _UpperCAmelCase : Optional[Any] = a_coeffs _UpperCAmelCase : Union[str, Any] = b_coeffs def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _UpperCAmelCase : Dict = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _UpperCAmelCase : Optional[Any] = self.input_history[:-1] _UpperCAmelCase : Optional[int] = self.output_history[:-1] _UpperCAmelCase : Optional[Any] = sample _UpperCAmelCase : str = result return result
189
1
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ) -> int: '''simple docstring''' while b: _A , _A = b, a % b return a def _snake_case ( _snake_case : int , _snake_case : int ) -> int: '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(_snake_case , a % b ) def _snake_case ( ) -> Dict: '''simple docstring''' print(F'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(F'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(F'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(F'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(F'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(F'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(F'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(F'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
315
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor a = logging.getLogger(__name__) a = 50 # max width of layer names a = 70 # max width of quantizer names def _snake_case ( _snake_case : int ) -> List[Any]: '''simple docstring''' _A = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=_snake_case , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=_snake_case , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=_snake_case , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=_snake_case , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=_snake_case , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=_snake_case , type=_snake_case , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=_snake_case , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def _snake_case ( _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' if args.calibrator == "max": _A = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) _A = 'histogram' elif args.calibrator == "mse": _A = 'histogram' else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) _A = QuantDescriptor(num_bits=args.aprec , calib_method=_snake_case ) _A = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_snake_case ) quant_nn.QuantLinear.set_default_quant_desc_weight(_snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Any=False , _snake_case : Union[str, Any]=False ) -> Optional[int]: '''simple docstring''' logger.info('Configuring Model for Quantization' ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_snake_case , ['embeddings'] , which='weight' , _disabled=_snake_case ) if args.quant_disable: set_quantizer_by_name(_snake_case , [''] , _disabled=_snake_case ) if args.quant_disable_keyword: set_quantizer_by_name(_snake_case , args.quant_disable_keyword , _disabled=_snake_case ) if args.quant_disable_layer_module: set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_snake_case ) if args.quant_enable_layer_module: set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_snake_case ) if args.recalibrate_weights: recalibrate_weights(_snake_case ) if args.fuse_qkv: fuse_qkv(_snake_case , _snake_case ) if args.clip_gelu: clip_gelu(_snake_case , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_snake_case ) def _snake_case ( _snake_case : str ) -> Any: '''simple docstring''' logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def _snake_case ( _snake_case : List[Any] , _snake_case : List[Any] ) -> str: '''simple docstring''' logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_snake_case ) def _snake_case ( _snake_case : str , _snake_case : int ) -> str: '''simple docstring''' def fusea(_snake_case : int , _snake_case : str , _snake_case : Optional[Any] ): for mod in [qq, qk, qv]: if not hasattr(_snake_case , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return _A = qq._amax.detach().item() _A = qk._amax.detach().item() _A = qv._amax.detach().item() _A = max(_snake_case , _snake_case , _snake_case ) qq._amax.fill_(_snake_case ) qk._amax.fill_(_snake_case ) qv._amax.fill_(_snake_case ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _snake_case ( _snake_case : int , _snake_case : str ) -> Union[str, Any]: '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): _A = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_snake_case ) _A = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _snake_case ( _snake_case : List[str] ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: _A = mod.weight.shape[0] _A = mod._weight_quantizer._amax.detach() _A = torch.ones(_snake_case , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _snake_case ( _snake_case : Dict ) -> Tuple: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _A = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _A = set(range(len(mod.weight.size() ) ) ) - axis_set _A = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_snake_case , keepdims=_snake_case ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _A = amax def _snake_case ( _snake_case : Tuple , _snake_case : List[str]=25 , _snake_case : str=1_80 , _snake_case : int=None ) -> List[Any]: '''simple docstring''' if ignore is None: _A = [] elif not isinstance(_snake_case , _snake_case ): _A = [ignore] _A = 0 for name, mod in model.named_modules(): if not hasattr(_snake_case , 'weight' ): continue _A = max(_snake_case , len(_snake_case ) ) for name, mod in model.named_modules(): _A = getattr(_snake_case , '_input_quantizer' , _snake_case ) _A = getattr(_snake_case , '_weight_quantizer' , _snake_case ) if not hasattr(_snake_case , 'weight' ): continue if type(_snake_case ) in ignore: continue if [True for s in ignore if type(_snake_case ) is str and s in name]: continue _A = F'''Act:{input_q.extra_repr()}''' _A = F'''Wgt:{weight_q.extra_repr()}''' _A = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(_snake_case ) <= line_width: logger.info(_snake_case ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{" ":{name_width}} {wgt_str}''' ) def _snake_case ( _snake_case : Dict ) -> int: '''simple docstring''' _A = 0 for name, mod in model.named_modules(): if isinstance(_snake_case , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def _snake_case ( _snake_case : str , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Any ) -> int: '''simple docstring''' _A = getattr(_snake_case , _snake_case , _snake_case ) if quantizer_mod is not None: assert hasattr(_snake_case , _snake_case ) setattr(_snake_case , _snake_case , _snake_case ) else: logger.warning(F'''{name} has no {quantizer}''' ) def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] , _snake_case : str="both" , **_snake_case : List[Any] ) -> str: '''simple docstring''' _A = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(_snake_case , _snake_case , '_input_quantizer' , _snake_case , _snake_case ) if which in ["weight", "both"]: set_quantizer(_snake_case , _snake_case , '_weight_quantizer' , _snake_case , _snake_case ) logger.info(_snake_case ) def _snake_case ( _snake_case : Any , _snake_case : int , **_snake_case : Dict ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_input_quantizer' ) or hasattr(_snake_case , '_weight_quantizer' ): for n in names: if re.search(_snake_case , _snake_case ): set_quantizers(_snake_case , _snake_case , **_snake_case ) elif name.endswith('_quantizer' ): for n in names: if re.search(_snake_case , _snake_case ): _A = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(_snake_case , _snake_case , _snake_case ) logger.info(_snake_case )
315
1
"""simple docstring""" def _snake_case ( _snake_case : int = 1_00 ) -> int: '''simple docstring''' _A = n * (n + 1) * (2 * n + 1) / 6 _A = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'''{solution() = }''')
271
"""simple docstring""" from __future__ import annotations import time import numpy as np a = [8, 5, 9, 7] a = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] a = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowercase_ : '''simple docstring''' def __init__( self : str , _UpperCAmelCase : list[int] , _UpperCAmelCase : list[list[int]] , _UpperCAmelCase : list[list[int]] , ): _A = claim_vector _A = allocated_resources_table _A = maximum_claim_table def lowerCAmelCase_ ( self : Tuple ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowerCAmelCase_ ( self : Tuple ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowerCAmelCase_ ( self : List[Any] ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_UpperCAmelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowerCAmelCase_ ( self : List[Any] ): return {self.__need().index(_UpperCAmelCase ): i for i in self.__need()} def lowerCAmelCase_ ( self : List[str] , **_UpperCAmelCase : int ): _A = self.__need() _A = self.__allocated_resources_table _A = self.__available_resources() _A = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: _A = False for each_need in need_list: _A = True for index, need in enumerate(_UpperCAmelCase ): if need > available_resources[index]: _A = False break if execution: _A = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: _A = original_need_index print(F'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(_UpperCAmelCase ) # update available/freed resources stack _A = np.array(_UpperCAmelCase ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(_UpperCAmelCase ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def lowerCAmelCase_ ( self : Union[str, Any] ): print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(_UpperCAmelCase ) + 1}''' + ' '.join(F'''{it:>8}''' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(_UpperCAmelCase ) + 1}''' + ' '.join(F'''{it:>8}''' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(_UpperCAmelCase ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(_UpperCAmelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
271
1
from __future__ import annotations def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ = len(__UpperCamelCase) # We need to create solution object to save path. UpperCamelCase_ = [[0 for _ in range(__UpperCamelCase)] for _ in range(__UpperCamelCase)] UpperCamelCase_ = run_maze(__UpperCamelCase , 0 , 0 , __UpperCamelCase) if solved: print("\n".join(str(__UpperCamelCase) for row in solutions)) else: print("No solution exists!") return solved def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = len(__UpperCamelCase) # Final check point. if i == j == (size - 1): UpperCamelCase_ = 1 return True UpperCamelCase_ = (not i < 0) and (not j < 0) # Check lower bounds UpperCamelCase_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. UpperCamelCase_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited UpperCamelCase_ = 1 # check for directions if ( run_maze(__UpperCamelCase , i + 1 , __UpperCamelCase , __UpperCamelCase) or run_maze(__UpperCamelCase , __UpperCamelCase , j + 1 , __UpperCamelCase) or run_maze(__UpperCamelCase , i - 1 , __UpperCamelCase , __UpperCamelCase) or run_maze(__UpperCamelCase , __UpperCamelCase , j - 1 , __UpperCamelCase) ): return True UpperCamelCase_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
128
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __lowerCamelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name class __snake_case ( lowerCamelCase_ ): def __init__( self : Dict , _lowercase : CLIPSegForImageSegmentation , _lowercase : CLIPSegProcessor , _lowercase : AutoencoderKL , _lowercase : CLIPTextModel , _lowercase : CLIPTokenizer , _lowercase : UNetaDConditionModel , _lowercase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _lowercase : StableDiffusionSafetyChecker , _lowercase : CLIPImageProcessor , ): """simple docstring""" super().__init__() if hasattr(scheduler.config , """steps_offset""" ) and scheduler.config.steps_offset != 1: SCREAMING_SNAKE_CASE__ = ( f"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" f""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ """to update the config accordingly as leaving `steps_offset` might led to incorrect results""" """ in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,""" """ it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`""" """ file""" ) deprecate("""steps_offset!=1""" , """1.0.0""" , _lowercase , standard_warn=_lowercase ) SCREAMING_SNAKE_CASE__ = dict(scheduler.config ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = FrozenDict(_lowercase ) if hasattr(scheduler.config , """skip_prk_steps""" ) and scheduler.config.skip_prk_steps is False: SCREAMING_SNAKE_CASE__ = ( f"""The configuration file of this scheduler: {scheduler} has not set the configuration""" """ `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make""" """ sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to""" """ incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face""" """ Hub, it would be very nice if you could open a Pull request for the""" """ `scheduler/scheduler_config.json` file""" ) deprecate("""skip_prk_steps not set""" , """1.0.0""" , _lowercase , standard_warn=_lowercase ) SCREAMING_SNAKE_CASE__ = dict(scheduler.config ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = FrozenDict(_lowercase ) if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( segmentation_model=_lowercase , segmentation_processor=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , unet=_lowercase , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , ) def __a ( self : List[Any] , _lowercase : Optional[Union[str, int]] = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowercase ) def __a ( self : Any ): """simple docstring""" self.enable_attention_slicing(_lowercase ) def __a ( self : Optional[int] ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) SCREAMING_SNAKE_CASE__ = torch.device("""cuda""" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __a ( self : Optional[int] ): """simple docstring""" if self.device != torch.device("""meta""" ) or not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Optional[Any] , _lowercase : Union[str, List[str]] , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] , _lowercase : str , _lowercase : int = 5_12 , _lowercase : int = 5_12 , _lowercase : int = 50 , _lowercase : float = 7.5 , _lowercase : Optional[Union[str, List[str]]] = None , _lowercase : Optional[int] = 1 , _lowercase : float = 0.0 , _lowercase : Optional[torch.Generator] = None , _lowercase : Optional[torch.FloatTensor] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , _lowercase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _lowercase : int = 1 , **_lowercase : str , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.segmentation_processor( text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""" ).to(self.device ) SCREAMING_SNAKE_CASE__ = self.segmentation_model(**_lowercase ) SCREAMING_SNAKE_CASE__ = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(_lowercase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask SCREAMING_SNAKE_CASE__ = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , height=_lowercase , width=_lowercase , num_inference_steps=_lowercase , guidance_scale=_lowercase , negative_prompt=_lowercase , num_images_per_prompt=_lowercase , eta=_lowercase , generator=_lowercase , latents=_lowercase , output_type=_lowercase , return_dict=_lowercase , callback=_lowercase , callback_steps=_lowercase , )
219
0
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase = '''src/diffusers''' UpperCamelCase = '''.''' # This is to make sure the diffusers module imported is the one in the repo. UpperCamelCase = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCamelCase = spec.loader.load_module() def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any]): return line.startswith(_lowerCamelCase) or len(_lowerCamelCase) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$" , _lowerCamelCase) is not None def lowercase_ ( _lowerCamelCase : Union[str, Any]): lowercase__ : Tuple = object_name.split(".") lowercase__ : int = 0 # First let's find the module where our object lives. lowercase__ : List[Any] = parts[i] while i < len(_lowerCamelCase) and not os.path.isfile(os.path.join(_lowerCamelCase , f'''{module}.py''')): i += 1 if i < len(_lowerCamelCase): lowercase__ : Optional[int] = os.path.join(_lowerCamelCase , parts[i]) if i >= len(_lowerCamelCase): raise ValueError(f'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''') with open(os.path.join(_lowerCamelCase , f'''{module}.py''') , "r" , encoding="utf-8" , newline="\n") as f: lowercase__ : str = f.readlines() # Now let's find the class / func in the code! lowercase__ : Dict = "" lowercase__ : Optional[int] = 0 for name in parts[i + 1 :]: while ( line_index < len(_lowerCamelCase) and re.search(Rf'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index]) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_lowerCamelCase): raise ValueError(f''' {object_name} does not match any function or class in {module}.''') # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowercase__ : int = line_index while line_index < len(_lowerCamelCase) and _should_continue(lines[line_index] , _lowerCamelCase): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1]) <= 1: line_index -= 1 lowercase__ : str = lines[start_index:line_index] return "".join(_lowerCamelCase) UpperCamelCase = re.compile(R'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') UpperCamelCase = re.compile(R'''^\s*(\S+)->(\S+)(\s+.*|$)''') UpperCamelCase = re.compile(R'''<FILL\s+[^>]*>''') def lowercase_ ( _lowerCamelCase : Tuple): lowercase__ : List[str] = code.split("\n") lowercase__ : Any = 0 while idx < len(_lowerCamelCase) and len(lines[idx]) == 0: idx += 1 if idx < len(_lowerCamelCase): return re.search(R"^(\s*)\S" , lines[idx]).groups()[0] return "" def lowercase_ ( _lowerCamelCase : Tuple): lowercase__ : Union[str, Any] = len(get_indent(_lowerCamelCase)) > 0 if has_indent: lowercase__ : List[str] = f'''class Bla:\n{code}''' lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=_lowerCamelCase) lowercase__ : Tuple = black.format_str(_lowerCamelCase , mode=_lowerCamelCase) lowercase__ , lowercase__ : Dict = style_docstrings_in_code(_lowerCamelCase) return result[len("class Bla:\n") :] if has_indent else result def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any]=False): with open(_lowerCamelCase , "r" , encoding="utf-8" , newline="\n") as f: lowercase__ : Optional[int] = f.readlines() lowercase__ : Optional[Any] = [] lowercase__ : int = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_lowerCamelCase): lowercase__ : Dict = _re_copy_warning.search(lines[line_index]) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowercase__ , lowercase__ , lowercase__ : Any = search.groups() lowercase__ : Dict = find_code_in_diffusers(_lowerCamelCase) lowercase__ : Optional[Any] = get_indent(_lowerCamelCase) lowercase__ : List[Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 lowercase__ : List[str] = theoretical_indent lowercase__ : Union[str, Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowercase__ : str = True while line_index < len(_lowerCamelCase) and should_continue: line_index += 1 if line_index >= len(_lowerCamelCase): break lowercase__ : Dict = lines[line_index] lowercase__ : List[str] = _should_continue(_lowerCamelCase , _lowerCamelCase) and re.search(f'''^{indent}# End copy''' , _lowerCamelCase) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1]) <= 1: line_index -= 1 lowercase__ : Any = lines[start_index:line_index] lowercase__ : List[Any] = "".join(_lowerCamelCase) # Remove any nested `Copied from` comments to avoid circular copies lowercase__ : List[Any] = [line for line in theoretical_code.split("\n") if _re_copy_warning.search(_lowerCamelCase) is None] lowercase__ : Optional[Any] = "\n".join(_lowerCamelCase) # Before comparing, use the `replace_pattern` on the original code. if len(_lowerCamelCase) > 0: lowercase__ : Dict = replace_pattern.replace("with" , "").split(",") lowercase__ : Any = [_re_replace_pattern.search(_lowerCamelCase) for p in patterns] for pattern in patterns: if pattern is None: continue lowercase__ , lowercase__ , lowercase__ : int = pattern.groups() lowercase__ : List[str] = re.sub(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if option.strip() == "all-casing": lowercase__ : Optional[Any] = re.sub(obja.lower() , obja.lower() , _lowerCamelCase) lowercase__ : int = re.sub(obja.upper() , obja.upper() , _lowerCamelCase) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowercase__ : Dict = blackify(lines[start_index - 1] + theoretical_code) lowercase__ : Tuple = theoretical_code[len(lines[start_index - 1]) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index]) if overwrite: lowercase__ : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:] lowercase__ : Optional[int] = start_index + 1 if overwrite and len(_lowerCamelCase) > 0: # Warn the user a file has been modified. print(f'''Detected changes, rewriting {filename}.''') with open(_lowerCamelCase , "w" , encoding="utf-8" , newline="\n") as f: f.writelines(_lowerCamelCase) return diffs def lowercase_ ( _lowerCamelCase : bool = False): lowercase__ : Optional[Any] = glob.glob(os.path.join(_lowerCamelCase , "**/*.py") , recursive=_lowerCamelCase) lowercase__ : str = [] for filename in all_files: lowercase__ : List[str] = is_copy_consistent(_lowerCamelCase , _lowerCamelCase) diffs += [f'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(_lowerCamelCase) > 0: lowercase__ : Tuple = "\n".join(_lowerCamelCase) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.") if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') UpperCamelCase = parser.parse_args() check_copies(args.fix_and_overwrite)
333
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ): __A : int = StableUnCLIPPipeline __A : int = TEXT_TO_IMAGE_PARAMS __A : Any = TEXT_TO_IMAGE_BATCH_PARAMS __A : int = TEXT_TO_IMAGE_IMAGE_PARAMS __A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __A : int = False def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : str = 32 lowercase__ : Any = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : List[str] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : Any = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , ) torch.manual_seed(0 ) lowercase__ : Union[str, Any] = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ ) lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , ) torch.manual_seed(0 ) lowercase__ : Any = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL() lowercase__ : List[Any] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any: if str(lowercase_ ).startswith("mps" ): lowercase__ : Any = torch.manual_seed(lowercase_ ) else: lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase__ : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: lowercase__ : Union[str, Any] = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: lowercase__ : str = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowercase_ ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : int ) -> int: lowercase__ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" ) lowercase__ : Optional[int] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowercase__ : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : str = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowercase__ : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
1
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCamelCase_ = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) lowerCamelCase_ = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def __lowercase ( __lowercase , __lowercase , __lowercase ) -> List[Any]: '''simple docstring''' _A = SavedModel() _A = [] with open(os.path.join(__lowercase , "utils" , "tf_ops" , "onnx.json" ) ) as f: _A = json.load(__lowercase )["opsets"] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(__lowercase )] ) with open(__lowercase , "rb" ) as f: saved_model.ParseFromString(f.read() ) _A = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _A = sorted(__lowercase ) _A = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__lowercase ) if strict and len(__lowercase ) > 0: raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(__lowercase ) > 0: print(F'''Found the following incompatible ops for the opset {opset}:''' ) print(*__lowercase , sep="\n" ) else: print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) lowerCamelCase_ = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
79
'''simple docstring''' import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters A__: str = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : int ,_UpperCAmelCase : int=None ,_UpperCAmelCase : Optional[Any]=None ) -> Optional[Any]: # Recurse if needed if "." in tensor_name: _a : Union[str, Any] =tensor_name.split(""".""" ) for split in splits[:-1]: _a : Optional[Any] =getattr(_UpperCAmelCase ,_UpperCAmelCase ) if new_module is None: raise ValueError(F"{module} has no attribute {split}." ) _a : Optional[int] =new_module _a : Optional[int] =splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"{module} does not have a parameter or a buffer named {tensor_name}." ) _a : Optional[Any] =tensor_name in module._buffers _a : str =getattr(_UpperCAmelCase ,_UpperCAmelCase ) if old_value.device == torch.device("""meta""" ) and device not in ["meta", torch.device("""meta""" )] and value is None: raise ValueError(F"{tensor_name} is on the meta device, we need a `value` to put in on {device}." ) _a : int =False _a : Tuple =False if is_buffer or not is_bitsandbytes_available(): _a : str =False _a : Optional[Any] =False else: _a : int =hasattr(bnb.nn ,"""Params4bit""" ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) _a : int =isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: _a : Any =module._parameters[tensor_name] if param.device.type != "cuda": if value is None: _a : int =old_value.to(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase ,torch.Tensor ): _a : str =value.to("""cpu""" ) if value.dtype == torch.inta: _a : int =version.parse(importlib.metadata.version("""bitsandbytes""" ) ) > version.parse( """0.37.2""" ) if not is_abit_serializable: raise ValueError( """Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. """ """Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.""" ) else: _a : Dict =torch.tensor(_UpperCAmelCase ,device="""cpu""" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_UpperCAmelCase ) and fpaa_statistics is None: _a : int =new_value.T _a : Any =old_value.__dict__ if is_abit: _a : Any =bnb.nn.IntaParams(_UpperCAmelCase ,requires_grad=_UpperCAmelCase ,**_UpperCAmelCase ).to(_UpperCAmelCase ) elif is_abit: _a : Union[str, Any] =bnb.nn.Paramsabit(_UpperCAmelCase ,requires_grad=_UpperCAmelCase ,**_UpperCAmelCase ).to(_UpperCAmelCase ) _a : List[Any] =new_value if fpaa_statistics is not None: setattr(module.weight ,"""SCB""" ,fpaa_statistics.to(_UpperCAmelCase ) ) else: if value is None: _a : str =old_value.to(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase ,torch.Tensor ): _a : Any =value.to(_UpperCAmelCase ) else: _a : str =torch.tensor(_UpperCAmelCase ,device=_UpperCAmelCase ) if is_buffer: _a : Optional[int] =new_value else: _a : Optional[Any] =nn.Parameter(_UpperCAmelCase ,requires_grad=old_value.requires_grad ) _a : Tuple =new_value def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Union[str, Any]=None ,_UpperCAmelCase : List[Any]=None ,_UpperCAmelCase : str=None ,_UpperCAmelCase : Union[str, Any]=False ) -> Dict: for name, module in model.named_children(): if current_key_name is None: _a : Optional[int] =[] current_key_name.append(_UpperCAmelCase ) if (isinstance(_UpperCAmelCase ,nn.Linear ) or isinstance(_UpperCAmelCase ,_UpperCAmelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in """.""".join(_UpperCAmelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): _a , _a : int =module.weight.shape else: _a : List[str] =module.in_features _a : Tuple =module.out_features if quantization_config.quantization_method() == "llm_int8": _a : Optional[Any] =bnb.nn.LinearabitLt( _UpperCAmelCase ,_UpperCAmelCase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) _a : Optional[Any] =True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: _a : Dict =bnb.nn.Linearabit( _UpperCAmelCase ,_UpperCAmelCase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) _a : List[Any] =True # Store the module class in case we need to transpose the weight later _a : int =type(_UpperCAmelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_UpperCAmelCase ) if len(list(module.children() ) ) > 0: _a , _a : List[Any] =_replace_with_bnb_linear( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,has_been_replaced=_UpperCAmelCase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : int=None ,_UpperCAmelCase : Union[str, Any]=None ,_UpperCAmelCase : Any=None ) -> Tuple: _a : Dict =["""lm_head"""] if modules_to_not_convert is None else modules_to_not_convert _a , _a : List[Any] =_replace_with_bnb_linear( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def SCREAMING_SNAKE_CASE_ ( *_UpperCAmelCase : Any ,**_UpperCAmelCase : Any ) -> str: warnings.warn( """`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead""" ,_UpperCAmelCase ,) return replace_with_bnb_linear(*_UpperCAmelCase ,**_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( *_UpperCAmelCase : str ,**_UpperCAmelCase : Optional[int] ) -> Optional[int]: warnings.warn( """`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead""" ,_UpperCAmelCase ,) return set_module_quantized_tensor_to_device(*_UpperCAmelCase ,**_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> Union[str, Any]: _a : Any =deepcopy(_UpperCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() _a : List[Any] =find_tied_parameters(_UpperCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): _a : str =sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: _a : Optional[int] =sum(_UpperCAmelCase ,[] ) _a : List[Any] =len(_UpperCAmelCase ) > 0 # Check if it is a base model _a : Tuple =not hasattr(_UpperCAmelCase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _a : List[Any] =list(model.named_children() ) _a : Dict =[list_modules[-1][0]] # add last module together with tied weights _a : List[str] =set(_UpperCAmelCase ) - set(_UpperCAmelCase ) _a : str =list(set(_UpperCAmelCase ) ) + list(_UpperCAmelCase ) # remove ".weight" from the keys _a : List[Any] =[""".weight""", """.bias"""] _a : Any =[] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _a : Any =name.replace(_UpperCAmelCase ,"""""" ) filtered_module_names.append(_UpperCAmelCase ) return filtered_module_names
276
0
"""simple docstring""" def lowercase_ ( __UpperCAmelCase ) -> str: lowerCAmelCase__ : Tuple = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def lowercase_ ( __UpperCAmelCase ) -> dict[str, str]: lowerCAmelCase__ : Optional[int] = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key lowerCAmelCase__ : Dict = remove_duplicates(key.upper() ) lowerCAmelCase__ : Tuple = len(__UpperCAmelCase ) # First fill cipher with key characters lowerCAmelCase__ : Optional[int] = {alphabet[i]: char for i, char in enumerate(__UpperCAmelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__UpperCAmelCase ) , 26 ): lowerCAmelCase__ : Union[str, Any] = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 lowerCAmelCase__ : Optional[Any] = alphabet[i - offset] lowerCAmelCase__ : Optional[int] = char return cipher_alphabet def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: return "".join(cipher_map.get(__UpperCAmelCase , __UpperCAmelCase ) for ch in message.upper() ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: lowerCAmelCase__ : Optional[int] = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__UpperCAmelCase , __UpperCAmelCase ) for ch in message.upper() ) def lowercase_ ( ) -> None: lowerCAmelCase__ : Dict = input("""Enter message to encode or decode: """ ).strip() lowerCAmelCase__ : Dict = input("""Enter keyword: """ ).strip() lowerCAmelCase__ : int = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: lowerCAmelCase__ : Optional[int] = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) lowerCAmelCase__ : str = create_cipher_map(__UpperCAmelCase ) print(func(__UpperCAmelCase , __UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
212
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests _A = open # noqa: we just need to have a builtin inside this module to test it properly
212
1
from statistics import mean import numpy as np def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list: UpperCamelCase__ : List[Any] = 0 # Number of processes finished UpperCamelCase__ : Optional[Any] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. UpperCamelCase__ : str = [0] * no_of_process # List to include calculation results UpperCamelCase__ : str = [0] * no_of_process # Sort by arrival time. UpperCamelCase__ : List[str] = [burst_time[i] for i in np.argsort(__lowerCAmelCase )] UpperCamelCase__ : Optional[Any] = [process_name[i] for i in np.argsort(__lowerCAmelCase )] arrival_time.sort() while no_of_process > finished_process_count: UpperCamelCase__ : Dict = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: UpperCamelCase__ : str = arrival_time[i] UpperCamelCase__ : Tuple = 0 # Index showing the location of the process being performed UpperCamelCase__ : Union[str, Any] = 0 # Saves the current response ratio. UpperCamelCase__ : Optional[Any] = 0 for i in range(0 , __lowerCAmelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: UpperCamelCase__ : Tuple = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: UpperCamelCase__ : Optional[Any] = temp UpperCamelCase__ : List[str] = i # Calculate the turn around time UpperCamelCase__ : Tuple = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. UpperCamelCase__ : Any = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list: UpperCamelCase__ : str = [0] * no_of_process for i in range(0 , __lowerCAmelCase ): UpperCamelCase__ : Union[str, Any] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": lowerCamelCase : Dict =5 lowerCamelCase : Union[str, Any] =['''A''', '''B''', '''C''', '''D''', '''E'''] lowerCamelCase : Tuple =[1, 2, 3, 4, 5] lowerCamelCase : str =[1, 2, 3, 4, 5] lowerCamelCase : int =calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) lowerCamelCase : Optional[int] =calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F"""{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t""" F"""{turn_around_time[i]}\t\t\t{waiting_time[i]}""" ) print(F"""average waiting time : {mean(waiting_time):.5f}""") print(F"""average turn around time : {mean(turn_around_time):.5f}""")
189
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase="shi-labs/oneformer_demo" ) -> Tuple: with open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) , "r" ) as f: UpperCamelCase__ : Optional[Any] = json.load(__lowerCAmelCase ) UpperCamelCase__ : str = {} UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = [] for key, info in class_info.items(): UpperCamelCase__ : List[str] = info["name"] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(__lowerCAmelCase ) ) UpperCamelCase__ : Dict = thing_ids UpperCamelCase__ : Optional[int] = class_names return metadata class __a ( unittest.TestCase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str]=7 , SCREAMING_SNAKE_CASE : Optional[int]=3 , SCREAMING_SNAKE_CASE : Tuple=30 , SCREAMING_SNAKE_CASE : Dict=4_00 , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : Optional[int]=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE : List[str]=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE : Optional[Any]=10 , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : int=2_55 , SCREAMING_SNAKE_CASE : str="shi-labs/oneformer_demo" , SCREAMING_SNAKE_CASE : List[Any]="ade20k_panoptic.json" , SCREAMING_SNAKE_CASE : Tuple=10 , ): '''simple docstring''' UpperCamelCase__ : Tuple = parent UpperCamelCase__ : Optional[int] = batch_size UpperCamelCase__ : Any = num_channels UpperCamelCase__ : Optional[int] = min_resolution UpperCamelCase__ : Union[str, Any] = max_resolution UpperCamelCase__ : Optional[int] = do_resize UpperCamelCase__ : List[Any] = {"shortest_edge": 32, "longest_edge": 13_33} if size is None else size UpperCamelCase__ : Dict = do_normalize UpperCamelCase__ : Optional[int] = image_mean UpperCamelCase__ : Union[str, Any] = image_std UpperCamelCase__ : Union[str, Any] = class_info_file UpperCamelCase__ : Tuple = prepare_metadata(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = num_text UpperCamelCase__ : int = repo_path # for the post_process_functions UpperCamelCase__ : int = 2 UpperCamelCase__ : str = 10 UpperCamelCase__ : Any = 10 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : List[Any] = 4 UpperCamelCase__ : Optional[int] = num_labels UpperCamelCase__ : Tuple = do_reduce_labels UpperCamelCase__ : List[str] = ignore_index def __lowercase ( self : int ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str]=False ): '''simple docstring''' if not batched: UpperCamelCase__ : str = image_inputs[0] if isinstance(SCREAMING_SNAKE_CASE , Image.Image ): UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = image.size else: UpperCamelCase__ , UpperCamelCase__ : int = image.shape[1], image.shape[2] if w < h: UpperCamelCase__ : Any = int(self.size["shortest_edge"] * h / w ) UpperCamelCase__ : Union[str, Any] = self.size["shortest_edge"] elif w > h: UpperCamelCase__ : Union[str, Any] = self.size["shortest_edge"] UpperCamelCase__ : int = int(self.size["shortest_edge"] * w / h ) else: UpperCamelCase__ : Optional[Any] = self.size["shortest_edge"] UpperCamelCase__ : str = self.size["shortest_edge"] else: UpperCamelCase__ : Tuple = [] for image in image_inputs: UpperCamelCase__ , UpperCamelCase__ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase__ : List[str] = max(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : item[0] )[0] UpperCamelCase__ : int = max(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width def __lowercase ( self : Any ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __a ( A__ , unittest.TestCase ): _lowerCAmelCase : Tuple = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _lowerCAmelCase : List[str] = image_processing_class def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = OneFormerImageProcessorTester(self ) @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "image_mean" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "image_std" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_normalize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_resize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "size" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "ignore_index" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "class_info_file" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "num_text" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "repo_path" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "metadata" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_reduce_labels" ) ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input UpperCamelCase__ : Optional[int] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ : Dict = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = image_processor( SCREAMING_SNAKE_CASE , ["semantic"] * len(SCREAMING_SNAKE_CASE ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=SCREAMING_SNAKE_CASE , numpify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input UpperCamelCase__ : Any = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = image_processor( SCREAMING_SNAKE_CASE , ["semantic"] * len(SCREAMING_SNAKE_CASE ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input UpperCamelCase__ : List[Any] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values UpperCamelCase__ , UpperCamelCase__ : Tuple = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ : List[Any] = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = image_processor( SCREAMING_SNAKE_CASE , ["semantic"] * len(SCREAMING_SNAKE_CASE ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase ( self : int , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : Any="np" ): '''simple docstring''' UpperCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCamelCase__ : Any = self.image_processing_tester.num_labels UpperCamelCase__ : Optional[Any] = None UpperCamelCase__ : Optional[Any] = None UpperCamelCase__ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=SCREAMING_SNAKE_CASE ) if with_segmentation_maps: UpperCamelCase__ : Tuple = num_labels if is_instance_map: UpperCamelCase__ : List[str] = list(range(SCREAMING_SNAKE_CASE ) ) * 2 UpperCamelCase__ : Optional[Any] = dict(enumerate(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCamelCase__ : List[str] = [Image.fromarray(SCREAMING_SNAKE_CASE ) for annotation in annotations] UpperCamelCase__ : Optional[int] = image_processor( SCREAMING_SNAKE_CASE , ["semantic"] * len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , return_tensors="pt" , instance_id_to_semantic_id=SCREAMING_SNAKE_CASE , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE , ) return inputs def __lowercase ( self : int ): '''simple docstring''' pass def __lowercase ( self : str ): '''simple docstring''' def common(SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : str=None ): UpperCamelCase__ : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=SCREAMING_SNAKE_CASE , is_instance_map=SCREAMING_SNAKE_CASE , segmentation_type=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = inputs["mask_labels"] UpperCamelCase__ : Optional[Any] = inputs["class_labels"] UpperCamelCase__ : List[str] = inputs["pixel_values"] UpperCamelCase__ : int = inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.image_processing_tester.num_text ) common() common(is_instance_map=SCREAMING_SNAKE_CASE ) common(is_instance_map=SCREAMING_SNAKE_CASE , segmentation_type="pil" ) common(is_instance_map=SCREAMING_SNAKE_CASE , segmentation_type="pil" ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = np.zeros((20, 50) ) UpperCamelCase__ : int = 1 UpperCamelCase__ : Dict = 1 UpperCamelCase__ : Dict = 1 UpperCamelCase__ : int = binary_mask_to_rle(SCREAMING_SNAKE_CASE ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) UpperCamelCase__ : int = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase__ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(SCREAMING_SNAKE_CASE ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCamelCase__ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCamelCase__ : Optional[Any] = fature_extractor.post_process_semantic_segmentation(SCREAMING_SNAKE_CASE , target_sizes=SCREAMING_SNAKE_CASE ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) UpperCamelCase__ : List[str] = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase__ : Optional[int] = image_processor.post_process_instance_segmentation(SCREAMING_SNAKE_CASE , threshold=0 ) self.assertTrue(len(SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) UpperCamelCase__ : Any = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase__ : Tuple = image_processor.post_process_panoptic_segmentation(SCREAMING_SNAKE_CASE , threshold=0 ) self.assertTrue(len(SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
189
1
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _SCREAMING_SNAKE_CASE = ( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) _SCREAMING_SNAKE_CASE = ( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) _SCREAMING_SNAKE_CASE = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) _SCREAMING_SNAKE_CASE = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) _SCREAMING_SNAKE_CASE = ( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 1_4]), ("""2H 5D 3C AS 5S""", False, [1_4, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [1_4, 1_3, 1_2, 1_1, 1_0]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) _SCREAMING_SNAKE_CASE = ( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) _SCREAMING_SNAKE_CASE = ( ("""JH AH TH KH QH""", 2_3), ("""JH 9H TH KH QH""", 2_2), ("""JC KH JS JD JH""", 2_1), ("""KH KC 3S 3H 3D""", 2_0), ("""8C 9C 5C 3C TC""", 1_9), ("""JS QS 9H TS KH""", 1_8), ("""7C 7S KH 2H 7H""", 1_7), ("""3C KH 5D 5S KH""", 1_6), ("""QH 8H KD JH 8S""", 1_5), ("""2D 6D 9D TH 7D""", 1_4), ) def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = randrange(len(__UpperCAmelCase ) ), randrange(len(__UpperCAmelCase ) ) UpperCamelCase = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] UpperCamelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowercase( UpperCamelCase_ = 100 ) -> Dict: '''simple docstring''' return (generate_random_hand() for _ in range(__UpperCAmelCase )) @pytest.mark.parametrize("""hand, expected""" , __UpperCAmelCase ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' assert PokerHand(__UpperCAmelCase )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , __UpperCAmelCase ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' assert PokerHand(__UpperCAmelCase )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , __UpperCAmelCase ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = PokerHand(__UpperCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , __UpperCAmelCase ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' assert PokerHand(__UpperCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , __UpperCAmelCase ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' assert PokerHand(__UpperCAmelCase )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , __UpperCAmelCase ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' assert PokerHand(__UpperCAmelCase ).compare_with(PokerHand(__UpperCAmelCase ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' assert PokerHand(__UpperCAmelCase ).compare_with(PokerHand(__UpperCAmelCase ) ) == expected def lowercase( ) -> Dict: '''simple docstring''' UpperCamelCase = [PokerHand(__UpperCAmelCase ) for hand in SORTED_HANDS] UpperCamelCase = poker_hands.copy() shuffle(__UpperCAmelCase ) UpperCamelCase = chain(sorted(__UpperCAmelCase ) ) for index, hand in enumerate(__UpperCAmelCase ): assert hand == poker_hands[index] def lowercase( ) -> Dict: '''simple docstring''' # Test that five high straights are compared correctly. UpperCamelCase = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=__UpperCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowercase( ) -> Dict: '''simple docstring''' # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. UpperCamelCase = PokerHand("""2C 4S AS 3D 5C""" ) UpperCamelCase = True UpperCamelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowercase( ) -> int: '''simple docstring''' # Problem number 54 from Project Euler # Testing from poker_hands.txt file UpperCamelCase = 0 UpperCamelCase = os.path.abspath(os.path.dirname(__UpperCAmelCase ) ) UpperCamelCase = os.path.join(__UpperCAmelCase , """poker_hands.txt""" ) with open(__UpperCAmelCase ) as file_hand: for line in file_hand: UpperCamelCase = line[:14].strip() UpperCamelCase = line[15:].strip() UpperCamelCase = PokerHand(__UpperCAmelCase ), PokerHand(__UpperCAmelCase ) UpperCamelCase = player.compare_with(__UpperCAmelCase ) if output == "Win": answer += 1 assert answer == 376
352
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } _SCREAMING_SNAKE_CASE = { """openbmb/cpm-ant-10b""": 1_0_2_4, } def lowercase( UpperCamelCase_ ) -> Tuple: '''simple docstring''' UpperCamelCase = collections.OrderedDict() with open(UpperCamelCase_ , """r""" , encoding="""utf-8""" ) as reader: UpperCamelCase = reader.readlines() for index, token in enumerate(UpperCamelCase_ ): UpperCamelCase = token.rstrip("""\n""" ) UpperCamelCase = index return vocab class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): def __init__( self : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any]="<unk>" , lowerCamelCase_ : Any=200 ): """simple docstring""" UpperCamelCase = vocab UpperCamelCase = unk_token UpperCamelCase = max_input_chars_per_word def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] ): """simple docstring""" UpperCamelCase = list(lowerCamelCase_ ) if len(lowerCamelCase_ ) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase = 0 UpperCamelCase = [] while start < len(lowerCamelCase_ ): UpperCamelCase = len(lowerCamelCase_ ) UpperCamelCase = None while start < end: UpperCamelCase = """""".join(chars[start:end] ) if substr in self.vocab: UpperCamelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(lowerCamelCase_ ) UpperCamelCase = end return sub_tokens class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["""input_ids""", """attention_mask"""] __lowerCAmelCase = False def __init__( self : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any]="<d>" , lowerCamelCase_ : List[Any]="</d>" , lowerCamelCase_ : Optional[Any]="<s>" , lowerCamelCase_ : List[str]="</s>" , lowerCamelCase_ : int="<pad>" , lowerCamelCase_ : List[Any]="<unk>" , lowerCamelCase_ : Optional[Any]="</n>" , lowerCamelCase_ : Tuple="</_>" , lowerCamelCase_ : Any="left" , **lowerCamelCase_ : str , ): """simple docstring""" requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=lowerCamelCase_ , eod_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , line_token=lowerCamelCase_ , space_token=lowerCamelCase_ , padding_side=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = bod_token UpperCamelCase = eod_token UpperCamelCase = load_vocab(lowerCamelCase_ ) UpperCamelCase = self.encoder[space_token] UpperCamelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_ : x[1] ) ) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowerCamelCase_ ( self : List[str] ): """simple docstring""" return self.encoder[self.bod_token] @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" return self.encoder[self.eod_token] @property def lowerCamelCase_ ( self : List[str] ): """simple docstring""" return self.encoder["\n"] @property def lowerCamelCase_ ( self : Dict ): """simple docstring""" return len(self.encoder ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = [] for x in jieba.cut(lowerCamelCase_ , cut_all=lowerCamelCase_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase_ ) ) return output_tokens def lowerCamelCase_ ( self : str , lowerCamelCase_ : Tuple , **lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = [i for i in token_ids if i >= 0] UpperCamelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : int ): """simple docstring""" return token in self.encoder def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : List[str] ): """simple docstring""" return "".join(lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : List[Any] ): """simple docstring""" return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Tuple ): """simple docstring""" return self.decoder.get(lowerCamelCase_ , self.unk_token ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): """simple docstring""" if os.path.isdir(lowerCamelCase_ ): UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: UpperCamelCase = (filename_prefix + """-""" if filename_prefix else """""") + save_directory UpperCamelCase = 0 if " " in self.encoder: UpperCamelCase = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase = self.encoder["""\n"""] del self.encoder["\n"] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_ : x[1] ) ) with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" """ Please check that the vocabulary is not corrupted!""" ) UpperCamelCase = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : List[int] , lowerCamelCase_ : List[int] = None ): """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) return [1] + ([0] * len(lowerCamelCase_ ))
165
0
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = '''Speech2TextFeatureExtractor''' __UpperCAmelCase : Any = '''Speech2TextTokenizer''' def __init__( self : Tuple ,_a : List[str] ,_a : Any ): '''simple docstring''' super().__init__(_a ,_a ) _a : str = self.feature_extractor _a : List[str] = False def __call__( self : List[str] ,*_a : str ,**_a : List[Any] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_a ,**_a ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) _a : Optional[int] = kwargs.pop('raw_speech' ) else: _a : Optional[Any] = kwargs.pop('audio' ,_a ) _a : Any = kwargs.pop('sampling_rate' ,_a ) _a : str = kwargs.pop('text' ,_a ) if len(_a ) > 0: _a : str = args[0] _a : Dict = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: _a : Optional[Any] = self.feature_extractor(_a ,*_a ,sampling_rate=_a ,**_a ) if text is not None: _a : Any = self.tokenizer(_a ,**_a ) if text is None: return inputs elif audio is None: return encodings else: _a : int = encodings['input_ids'] return inputs def __lowercase ( self : List[str] ,*_a : Optional[Any] ,**_a : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*_a ,**_a ) def __lowercase ( self : List[Any] ,*_a : Optional[Any] ,**_a : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*_a ,**_a ) @contextmanager def __lowercase ( self : List[str] ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) _a : int = True _a : Dict = self.tokenizer yield _a : Any = self.feature_extractor _a : Any = False
271
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __lowerCAmelCase = TypeVar("""T""") class UpperCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : Tuple ,_a : T ): '''simple docstring''' _a : List[str] = data _a : Node[T] | None = None def __str__( self : Dict ): '''simple docstring''' return F"""{self.data}""" class UpperCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' _a : Node[T] | None = None def __iter__( self : str ): '''simple docstring''' _a : Tuple = self.top while node: yield node.data _a : int = node.next def __str__( self : str ): '''simple docstring''' return "->".join([str(_a ) for item in self] ) def __len__( self : Optional[Any] ): '''simple docstring''' return len(tuple(iter(self ) ) ) def __lowercase ( self : str ): '''simple docstring''' return self.top is None def __lowercase ( self : List[Any] ,_a : T ): '''simple docstring''' _a : int = Node(_a ) if not self.is_empty(): _a : Optional[Any] = self.top _a : List[str] = node def __lowercase ( self : Tuple ): '''simple docstring''' if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top ,_a ) _a : List[Any] = self.top _a : int = self.top.next return pop_node.data def __lowercase ( self : List[str] ): '''simple docstring''' if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
271
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class UpperCamelCase ( snake_case_ ): UpperCamelCase : int = '''lxmert''' UpperCamelCase : Tuple = {} def __init__( self : Dict , UpperCAmelCase__ : Union[str, Any]=30522 , UpperCAmelCase__ : str=768 , UpperCAmelCase__ : Any=12 , UpperCAmelCase__ : Dict=9500 , UpperCAmelCase__ : Tuple=1600 , UpperCAmelCase__ : int=400 , UpperCAmelCase__ : List[str]=3072 , UpperCAmelCase__ : Optional[Any]="gelu" , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : int=512 , UpperCAmelCase__ : str=2 , UpperCAmelCase__ : Union[str, Any]=0.0_2 , UpperCAmelCase__ : Optional[int]=1E-12 , UpperCAmelCase__ : int=9 , UpperCAmelCase__ : Union[str, Any]=5 , UpperCAmelCase__ : Optional[Any]=5 , UpperCAmelCase__ : Tuple=2048 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : Union[str, Any]=6.6_7 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : str=True , **UpperCAmelCase__ : List[Any] , ) -> Optional[int]: _a : Optional[int] = vocab_size _a : List[str] = hidden_size _a : Any = num_attention_heads _a : str = hidden_act _a : Union[str, Any] = intermediate_size _a : int = hidden_dropout_prob _a : List[str] = attention_probs_dropout_prob _a : List[str] = max_position_embeddings _a : Dict = type_vocab_size _a : int = initializer_range _a : Union[str, Any] = layer_norm_eps _a : Optional[int] = num_qa_labels _a : int = num_object_labels _a : List[Any] = num_attr_labels _a : List[Any] = l_layers _a : Tuple = x_layers _a : Union[str, Any] = r_layers _a : Dict = visual_feat_dim _a : Optional[int] = visual_pos_dim _a : Dict = visual_loss_normalizer _a : Any = task_matched _a : int = task_mask_lm _a : Any = task_obj_predict _a : int = task_qa _a : Union[str, Any] = visual_obj_loss _a : str = visual_attr_loss _a : List[Any] = visual_feat_loss _a : Optional[int] = {"""vision""": r_layers, """cross_encoder""": x_layers, """language""": l_layers} super().__init__(**UpperCAmelCase__ )
350
"""simple docstring""" _snake_case = 8.31_44_62 # Unit - J mol-1 K-1 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
324
0
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py A_ : List[str] = 'src/diffusers' A_ : str = '.' # This is to make sure the diffusers module imported is the one in the repo. A_ : Union[str, Any] = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) A_ : int = spec.loader.load_module() def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' return line.startswith(SCREAMING_SNAKE_CASE ) or len(SCREAMING_SNAKE_CASE ) <= 1 or re.search(r'''^\s*\)(\s*->.*:|:)\s*$''' , SCREAMING_SNAKE_CASE ) is not None def __a ( SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' __UpperCAmelCase = object_name.split('''.''' ) __UpperCAmelCase = 0 # First let's find the module where our object lives. __UpperCAmelCase = parts[i] while i < len(SCREAMING_SNAKE_CASE ) and not os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , f'''{module}.py''' ) ): i += 1 if i < len(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE , parts[i] ) if i >= len(SCREAMING_SNAKE_CASE ): raise ValueError(f'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(SCREAMING_SNAKE_CASE , f'''{module}.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Now let's find the class / func in the code! __UpperCAmelCase = '''''' __UpperCAmelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(SCREAMING_SNAKE_CASE ) and re.search(rf'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE ): raise ValueError(f''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). __UpperCAmelCase = line_index while line_index < len(SCREAMING_SNAKE_CASE ) and _should_continue(lines[line_index] , SCREAMING_SNAKE_CASE ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __UpperCAmelCase = lines[start_index:line_index] return "".join(SCREAMING_SNAKE_CASE ) A_ : Any = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') A_ : List[Any] = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') A_ : Optional[int] = re.compile(R'<FILL\s+[^>]*>') def __a ( SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = code.split('''\n''' ) __UpperCAmelCase = 0 while idx < len(SCREAMING_SNAKE_CASE ) and len(lines[idx] ) == 0: idx += 1 if idx < len(SCREAMING_SNAKE_CASE ): return re.search(r'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def __a ( SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = len(get_indent(SCREAMING_SNAKE_CASE ) ) > 0 if has_indent: __UpperCAmelCase = f'''class Bla:\n{code}''' __UpperCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = black.format_str(SCREAMING_SNAKE_CASE , mode=SCREAMING_SNAKE_CASE ) __UpperCAmelCase , __UpperCAmelCase = style_docstrings_in_code(SCREAMING_SNAKE_CASE ) return result[len('''class Bla:\n''' ) :] if has_indent else result def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[str]: '''simple docstring''' with open(SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() __UpperCAmelCase = [] __UpperCAmelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = search.groups() __UpperCAmelCase = find_code_in_diffusers(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = get_indent(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 __UpperCAmelCase = theoretical_indent __UpperCAmelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. __UpperCAmelCase = True while line_index < len(SCREAMING_SNAKE_CASE ) and should_continue: line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE ): break __UpperCAmelCase = lines[line_index] __UpperCAmelCase = _should_continue(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and re.search(f'''^{indent}# End copy''' , SCREAMING_SNAKE_CASE ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __UpperCAmelCase = lines[start_index:line_index] __UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE ) # Remove any nested `Copied from` comments to avoid circular copies __UpperCAmelCase = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(SCREAMING_SNAKE_CASE ) is None] __UpperCAmelCase = '''\n'''.join(SCREAMING_SNAKE_CASE ) # Before comparing, use the `replace_pattern` on the original code. if len(SCREAMING_SNAKE_CASE ) > 0: __UpperCAmelCase = replace_pattern.replace('''with''' , '''''' ).split(''',''' ) __UpperCAmelCase = [_re_replace_pattern.search(SCREAMING_SNAKE_CASE ) for p in patterns] for pattern in patterns: if pattern is None: continue __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = pattern.groups() __UpperCAmelCase = re.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if option.strip() == "all-casing": __UpperCAmelCase = re.sub(obja.lower() , obja.lower() , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = re.sub(obja.upper() , obja.upper() , SCREAMING_SNAKE_CASE ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line __UpperCAmelCase = blackify(lines[start_index - 1] + theoretical_code ) __UpperCAmelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: __UpperCAmelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] __UpperCAmelCase = start_index + 1 if overwrite and len(SCREAMING_SNAKE_CASE ) > 0: # Warn the user a file has been modified. print(f'''Detected changes, rewriting {filename}.''' ) with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(SCREAMING_SNAKE_CASE ) return diffs def __a ( SCREAMING_SNAKE_CASE = False ) -> str: '''simple docstring''' __UpperCAmelCase = glob.glob(os.path.join(SCREAMING_SNAKE_CASE , '''**/*.py''' ) , recursive=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [] for filename in all_files: __UpperCAmelCase = is_copy_consistent(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) diffs += [f'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(SCREAMING_SNAKE_CASE ) > 0: __UpperCAmelCase = '''\n'''.join(SCREAMING_SNAKE_CASE ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": A_ : List[Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') A_ : Dict = parser.parse_args() check_copies(args.fix_and_overwrite)
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : int = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
333
1
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> Union[str, Any]: '''simple docstring''' lowercase = current_set.copy() for row_index, row in enumerate(__SCREAMING_SNAKE_CASE ): lowercase = row[0] for column_index, column in enumerate(__SCREAMING_SNAKE_CASE ): if magnitude == 0: lowercase = column continue lowercase = column / magnitude # Subtract to cancel term lowercase = current_set[0] lowercase = [first_row] lowercase = current_set[1::] for row in current_set: lowercase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(__SCREAMING_SNAKE_CASE ) continue for column_index in range(len(__SCREAMING_SNAKE_CASE ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(__SCREAMING_SNAKE_CASE ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowercase = final_set[0] lowercase = [] lowercase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowercase = simplify(__SCREAMING_SNAKE_CASE ) for i in range(len(__SCREAMING_SNAKE_CASE ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , __SCREAMING_SNAKE_CASE ) lowercase = resultant return final_set def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> Any: '''simple docstring''' if len(__SCREAMING_SNAKE_CASE ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowercase = len(__SCREAMING_SNAKE_CASE ) + 1 if any(len(__SCREAMING_SNAKE_CASE ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(__SCREAMING_SNAKE_CASE ) == 1: return [equations[0][-1] / equations[0][0]] lowercase = equations.copy() if any(0 in row for row in data_set ): lowercase = data_set.copy() lowercase = [] for row_index, row in enumerate(__SCREAMING_SNAKE_CASE ): if 0 not in row: lowercase = data_set.pop(__SCREAMING_SNAKE_CASE ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , __SCREAMING_SNAKE_CASE ) lowercase = data_set.copy() lowercase = simplify(__SCREAMING_SNAKE_CASE ) lowercase = simplified[::-1] lowercase = [] for row in simplified: lowercase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowercase = row.copy()[: len(__SCREAMING_SNAKE_CASE ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(__SCREAMING_SNAKE_CASE ) == 0: solutions.append(0 ) continue lowercase = temp_row[1::] lowercase = temp_row[::-1] for column_index, column in enumerate(__SCREAMING_SNAKE_CASE ): current_solution -= column * solutions[column_index] solutions.append(__SCREAMING_SNAKE_CASE ) lowercase = [] for item in solutions: final.append(float(round(__SCREAMING_SNAKE_CASE , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : str =[ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
370
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list[list]: '''simple docstring''' lowercase = current_set.copy() for row_index, row in enumerate(lowerCAmelCase__ ): lowercase = row[0] for column_index, column in enumerate(lowerCAmelCase__ ): if magnitude == 0: lowercase = column continue lowercase = column / magnitude # Subtract to cancel term lowercase = current_set[0] lowercase = [first_row] lowercase = current_set[1::] for row in current_set: lowercase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCAmelCase__ ) continue for column_index in range(len(lowerCAmelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCAmelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowercase = final_set[0] lowercase = [] lowercase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowercase = simplify(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCAmelCase__ ) lowercase = resultant return final_set def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list: '''simple docstring''' if len(lowerCAmelCase__ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowercase = len(lowerCAmelCase__ ) + 1 if any(len(lowerCAmelCase__ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowerCAmelCase__ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowerCAmelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] lowercase = equations.copy() if any(0 in row for row in data_set ): lowercase = data_set.copy() lowercase = [] for row_index, row in enumerate(lowerCAmelCase__ ): if 0 not in row: lowercase = data_set.pop(lowerCAmelCase__ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , lowerCAmelCase__ ) lowercase = data_set.copy() lowercase = simplify(lowerCAmelCase__ ) lowercase = simplified[::-1] lowercase = [] for row in simplified: lowercase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowercase = row.copy()[: len(lowerCAmelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCAmelCase__ ) == 0: solutions.append(0 ) continue lowercase = temp_row[1::] lowercase = temp_row[::-1] for column_index, column in enumerate(lowerCAmelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCAmelCase__ ) lowercase = [] for item in solutions: final.append(float(round(lowerCAmelCase__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[str] =[ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
32
0
class A__ : def __init__( self : Optional[Any] , a : list ): '''simple docstring''' lowerCAmelCase__ : Dict = set_counts lowerCAmelCase__ : str = max(a ) lowerCAmelCase__ : Any = len(a ) lowerCAmelCase__ : List[str] = [1] * num_sets lowerCAmelCase__ : Dict = list(range(a ) ) def _lowerCamelCase ( self : Dict , a : int , a : int ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.get_parent(a ) lowerCAmelCase__ : Tuple = self.get_parent(a ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : str = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowerCAmelCase__ : List[Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Tuple = src_parent lowerCAmelCase__ : Optional[int] = self.set_counts[src_parent] lowerCAmelCase__ : Optional[Any] = max(self.max_set , a ) return True def _lowerCamelCase ( self : Any , a : int ): '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set lowerCAmelCase__ : Tuple = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
212
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class A__ : @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.get_dummy_input() @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def _lowerCamelCase ( self : Optional[int] , a : List[Any]=True , a : Any=False , a : Dict=False , a : Union[str, Any]=False , ): '''simple docstring''' lowerCAmelCase__ : Tuple = 4 lowerCAmelCase__ : int = 32 lowerCAmelCase__ : Tuple = (32, 32) lowerCAmelCase__ : List[Any] = torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = torch.device(a ) lowerCAmelCase__ : str = (batch_size, num_channels) + sizes lowerCAmelCase__ : Tuple = randn_tensor(a , generator=a , device=a ) lowerCAmelCase__ : Optional[Any] = {'hidden_states': hidden_states} if include_temb: lowerCAmelCase__ : int = 128 lowerCAmelCase__ : List[str] = randn_tensor((batch_size, temb_channels) , generator=a , device=a ) if include_res_hidden_states_tuple: lowerCAmelCase__ : int = torch.manual_seed(1 ) lowerCAmelCase__ : str = (randn_tensor(a , generator=a , device=a ),) if include_encoder_hidden_states: lowerCAmelCase__ : Any = floats_tensor((batch_size, 32, 32) ).to(a ) if include_skip_sample: lowerCAmelCase__ : Union[str, Any] = randn_tensor(((batch_size, 3) + sizes) , generator=a , device=a ) return dummy_input def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": lowerCAmelCase__ : Union[str, Any] = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) lowerCAmelCase__ : Optional[int] = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self : str , a : List[str] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase__ : int = self.block_class(**a ) unet_block.to(a ) unet_block.eval() with torch.no_grad(): lowerCAmelCase__ : int = unet_block(**a ) if isinstance(a , a ): lowerCAmelCase__ : List[str] = output[0] self.assertEqual(output.shape , self.output_shape ) lowerCAmelCase__ : List[str] = output[0, -1, -3:, -3:] lowerCAmelCase__ : Any = torch.tensor(a ).to(a ) assert torch_all_close(output_slice.flatten() , a , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase__ : Any = self.block_class(**a ) model.to(a ) model.train() lowerCAmelCase__ : int = model(**a ) if isinstance(a , a ): lowerCAmelCase__ : Dict = output[0] lowerCAmelCase__ : Optional[int] = torch.device(a ) lowerCAmelCase__ : List[Any] = randn_tensor(output.shape , device=a ) lowerCAmelCase__ : List[Any] = torch.nn.functional.mse_loss(a , a ) loss.backward()
212
1
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Tuple = SwinConfig(image_size=192 ) if "base" in model_name: UpperCAmelCase_ : Dict = 6 UpperCAmelCase_ : Union[str, Any] = 128 UpperCAmelCase_ : List[str] = (2, 2, 18, 2) UpperCAmelCase_ : Dict = (4, 8, 16, 32) elif "large" in model_name: UpperCAmelCase_ : Union[str, Any] = 12 UpperCAmelCase_ : Union[str, Any] = 192 UpperCAmelCase_ : Union[str, Any] = (2, 2, 18, 2) UpperCAmelCase_ : List[str] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) UpperCAmelCase_ : str = window_size UpperCAmelCase_ : List[Any] = embed_dim UpperCAmelCase_ : Tuple = depths UpperCAmelCase_ : Optional[Any] = num_heads return config def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if "encoder.mask_token" in name: UpperCAmelCase_ : Union[str, Any] = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: UpperCAmelCase_ : List[str] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: UpperCAmelCase_ : Tuple = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: UpperCAmelCase_ : int = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase_ : Dict = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase_ : int = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase_ : Any = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase_ : List[str] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase_ : Union[str, Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": UpperCAmelCase_ : Union[str, Any] = "layernorm.weight" if name == "encoder.norm.bias": UpperCAmelCase_ : List[str] = "layernorm.bias" if "decoder" in name: pass else: UpperCAmelCase_ : Tuple = "swin." + name return name def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_ : Optional[int] = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "attn_mask" in key: pass elif "qkv" in key: UpperCAmelCase_ : Optional[int] = key.split('''.''' ) UpperCAmelCase_ : List[Any] = int(key_split[2] ) UpperCAmelCase_ : Optional[Any] = int(key_split[4] ) UpperCAmelCase_ : Any = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCAmelCase_ : Tuple = val[:dim, :] UpperCAmelCase_ : List[str] = val[ dim : dim * 2, : ] UpperCAmelCase_ : Dict = val[-dim:, :] else: UpperCAmelCase_ : List[Any] = val[ :dim ] UpperCAmelCase_ : int = val[ dim : dim * 2 ] UpperCAmelCase_ : Dict = val[ -dim: ] else: UpperCAmelCase_ : Optional[Any] = val return orig_state_dict def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )["model"] UpperCAmelCase_ : List[str] = get_swin_config(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = SwinForMaskedImageModeling(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase_ : Union[str, Any] = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : Any = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) UpperCAmelCase_ : List[str] = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) UpperCAmelCase_ : List[str] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) with torch.no_grad(): UpperCAmelCase_ : Dict = model(**_SCREAMING_SNAKE_CASE ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __a = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
351
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __a( _a ): """simple docstring""" lowerCAmelCase = 42 class __a( _a , _a ): """simple docstring""" lowerCAmelCase = True @register_to_config def __init__( self ,_SCREAMING_SNAKE_CASE = 3 ,_SCREAMING_SNAKE_CASE = 3 ,_SCREAMING_SNAKE_CASE = ("DownEncoderBlock2D",) ,_SCREAMING_SNAKE_CASE = ("UpDecoderBlock2D",) ,_SCREAMING_SNAKE_CASE = (64,) ,_SCREAMING_SNAKE_CASE = 1 ,_SCREAMING_SNAKE_CASE = "silu" ,_SCREAMING_SNAKE_CASE = 4 ,_SCREAMING_SNAKE_CASE = 32 ,_SCREAMING_SNAKE_CASE = 32 ,_SCREAMING_SNAKE_CASE = 0.1_82_15 ,) -> Optional[int]: super().__init__() # pass init params to Encoder UpperCAmelCase_ : List[Any] = Encoder( in_channels=_SCREAMING_SNAKE_CASE ,out_channels=_SCREAMING_SNAKE_CASE ,down_block_types=_SCREAMING_SNAKE_CASE ,block_out_channels=_SCREAMING_SNAKE_CASE ,layers_per_block=_SCREAMING_SNAKE_CASE ,act_fn=_SCREAMING_SNAKE_CASE ,norm_num_groups=_SCREAMING_SNAKE_CASE ,double_z=_SCREAMING_SNAKE_CASE ,) # pass init params to Decoder UpperCAmelCase_ : List[str] = Decoder( in_channels=_SCREAMING_SNAKE_CASE ,out_channels=_SCREAMING_SNAKE_CASE ,up_block_types=_SCREAMING_SNAKE_CASE ,block_out_channels=_SCREAMING_SNAKE_CASE ,layers_per_block=_SCREAMING_SNAKE_CASE ,norm_num_groups=_SCREAMING_SNAKE_CASE ,act_fn=_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : int = nn.Convad(2 * latent_channels ,2 * latent_channels ,1 ) UpperCAmelCase_ : Union[str, Any] = nn.Convad(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,1 ) UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : Dict = False # only relevant if vae tiling is enabled UpperCAmelCase_ : List[Any] = self.config.sample_size UpperCAmelCase_ : List[str] = ( self.config.sample_size[0] if isinstance(self.config.sample_size ,(list, tuple) ) else self.config.sample_size ) UpperCAmelCase_ : List[str] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) UpperCAmelCase_ : int = 0.25 def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=False ) -> int: if isinstance(_SCREAMING_SNAKE_CASE ,(Encoder, Decoder) ): UpperCAmelCase_ : Union[str, Any] = value def a__ ( self ,_SCREAMING_SNAKE_CASE = True ) -> Optional[Any]: UpperCAmelCase_ : Dict = use_tiling def a__ ( self ) -> Optional[Any]: self.enable_tiling(_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : str = True def a__ ( self ) -> Any: UpperCAmelCase_ : Any = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a__ ( self ) -> Dict[str, AttentionProcessor]: UpperCAmelCase_ : int = {} def fn_recursive_add_processors(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): if hasattr(_SCREAMING_SNAKE_CASE ,'''set_processor''' ): UpperCAmelCase_ : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) return processors def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(_SCREAMING_SNAKE_CASE )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): if hasattr(_SCREAMING_SNAKE_CASE ,'''set_processor''' ): if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): module.set_processor(_SCREAMING_SNAKE_CASE ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) for name, module in self.named_children(): fn_recursive_attn_processor(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Tuple: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_SCREAMING_SNAKE_CASE ,return_dict=_SCREAMING_SNAKE_CASE ) if self.use_slicing and x.shape[0] > 1: UpperCAmelCase_ : int = [self.encoder(_SCREAMING_SNAKE_CASE ) for x_slice in x.split(1 )] UpperCAmelCase_ : List[str] = torch.cat(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : Optional[Any] = self.encoder(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = self.quant_conv(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = DiagonalGaussianDistribution(_SCREAMING_SNAKE_CASE ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_SCREAMING_SNAKE_CASE ,return_dict=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = self.post_quant_conv(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = self.decoder(_SCREAMING_SNAKE_CASE ) if not return_dict: return (dec,) return DecoderOutput(sample=_SCREAMING_SNAKE_CASE ) @apply_forward_hook def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: UpperCAmelCase_ : Tuple = [self._decode(_SCREAMING_SNAKE_CASE ).sample for z_slice in z.split(1 )] UpperCAmelCase_ : str = torch.cat(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : str = self._decode(_SCREAMING_SNAKE_CASE ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ : str = min(a.shape[2] ,b.shape[2] ,_SCREAMING_SNAKE_CASE ) for y in range(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : str = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ : Any = min(a.shape[3] ,b.shape[3] ,_SCREAMING_SNAKE_CASE ) for x in range(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : List[str] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = True ) -> AutoencoderKLOutput: UpperCAmelCase_ : Optional[int] = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase_ : Any = int(self.tile_latent_min_size * self.tile_overlap_factor ) UpperCAmelCase_ : str = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCAmelCase_ : Tuple = [] for i in range(0 ,x.shape[2] ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : List[str] = [] for j in range(0 ,x.shape[3] ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : List[str] = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCAmelCase_ : int = self.encoder(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = self.quant_conv(_SCREAMING_SNAKE_CASE ) row.append(_SCREAMING_SNAKE_CASE ) rows.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = [] for i, row in enumerate(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : str = [] for j, tile in enumerate(_SCREAMING_SNAKE_CASE ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase_ : Optional[Any] = self.blend_v(rows[i - 1][j] ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) if j > 0: UpperCAmelCase_ : List[str] = self.blend_h(row[j - 1] ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_SCREAMING_SNAKE_CASE ,dim=3 ) ) UpperCAmelCase_ : Optional[Any] = torch.cat(_SCREAMING_SNAKE_CASE ,dim=2 ) UpperCAmelCase_ : Union[str, Any] = DiagonalGaussianDistribution(_SCREAMING_SNAKE_CASE ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = True ) -> Union[DecoderOutput, torch.FloatTensor]: UpperCAmelCase_ : Optional[Any] = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase_ : str = int(self.tile_sample_min_size * self.tile_overlap_factor ) UpperCAmelCase_ : Any = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCAmelCase_ : Tuple = [] for i in range(0 ,z.shape[2] ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Tuple = [] for j in range(0 ,z.shape[3] ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Optional[int] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCAmelCase_ : List[str] = self.post_quant_conv(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = self.decoder(_SCREAMING_SNAKE_CASE ) row.append(_SCREAMING_SNAKE_CASE ) rows.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = [] for i, row in enumerate(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : int = [] for j, tile in enumerate(_SCREAMING_SNAKE_CASE ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase_ : Optional[int] = self.blend_v(rows[i - 1][j] ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) if j > 0: UpperCAmelCase_ : Optional[int] = self.blend_h(row[j - 1] ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_SCREAMING_SNAKE_CASE ,dim=3 ) ) UpperCAmelCase_ : Dict = torch.cat(_SCREAMING_SNAKE_CASE ,dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,) -> Union[DecoderOutput, torch.FloatTensor]: UpperCAmelCase_ : str = sample UpperCAmelCase_ : Optional[Any] = self.encode(_SCREAMING_SNAKE_CASE ).latent_dist if sample_posterior: UpperCAmelCase_ : List[Any] = posterior.sample(generator=_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : Union[str, Any] = posterior.mode() UpperCAmelCase_ : List[Any] = self.decode(_SCREAMING_SNAKE_CASE ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_SCREAMING_SNAKE_CASE )
235
0
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer A_ : List[str] = logging.get_logger(__name__) A_ : List[str] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} A_ : List[Any] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } A_ : str = {"allegro/herbert-base-cased": 514} A_ : Dict = {} class lowerCamelCase (A__ ): lowerCamelCase__ : List[str] = VOCAB_FILES_NAMES lowerCamelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : str = HerbertTokenizer def __init__( self : Tuple , __UpperCAmelCase : int=None , __UpperCAmelCase : Any=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Union[str, Any]="<s>" , __UpperCAmelCase : str="<unk>" , __UpperCAmelCase : Union[str, Any]="<pad>" , __UpperCAmelCase : Dict="<mask>" , __UpperCAmelCase : Optional[Any]="</s>" , **__UpperCAmelCase : List[Any] , ) -> Any: super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , **__UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
165
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowerCamelCase (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) SCREAMING_SNAKE_CASE__ = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) model.to(__UpperCAmelCase ) from datasets import load_dataset SCREAMING_SNAKE_CASE__ = load_dataset("""nielsr/rvlcdip-demo""" ) SCREAMING_SNAKE_CASE__ = dataset["""train"""][0]["""image"""].convert("""RGB""" ) SCREAMING_SNAKE_CASE__ = image_processor(__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = outputs.logits SCREAMING_SNAKE_CASE__ = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=__UpperCAmelCase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) )
165
1
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowercase = '''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowercase = concatenate_datasets __lowercase = DownloadConfig __lowercase = DownloadManager __lowercase = DownloadMode __lowercase = DownloadConfig __lowercase = DownloadMode __lowercase = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
354
def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] __UpperCamelCase :Union[str, Any] = grid[0] for row_n in range(1 , len(SCREAMING_SNAKE_CASE ) ): __UpperCamelCase :Optional[int] = grid[row_n] __UpperCamelCase :Dict = fill_row(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = grid[row_n] return grid[-1][-1] def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(SCREAMING_SNAKE_CASE ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
105
0
"""simple docstring""" import numpy as np def a__ ( SCREAMING_SNAKE_CASE : np.array ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def a__ ( SCREAMING_SNAKE_CASE : np.array ): '''simple docstring''' return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
108
'''simple docstring''' import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging lowercase__ : Any = logging.get_logger(__name__) class __lowerCAmelCase : """simple docstring""" _snake_case : List[str] = None @experimental def a__ ( lowercase : Union[str, Any], lowercase : Optional[int], lowercase : Tuple, lowercase : List[Any], lowercase : Dict, lowercase : Union[str, Any], lowercase : Optional[Any] ) -> int: """simple docstring""" if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase ) return _map_with_joblib(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase ) def a__ ( lowercase : Dict, lowercase : str, lowercase : Union[str, Any], lowercase : Optional[Any], lowercase : Optional[int], lowercase : Optional[Any], lowercase : Optional[int] ) -> List[str]: """simple docstring""" _UpperCamelCase = num_proc if num_proc <= len(lowercase ) else len(lowercase ) _UpperCamelCase = [] # We organize the splits ourselve (contiguous splits) for index in range(lowercase ): _UpperCamelCase = len(lowercase ) // num_proc _UpperCamelCase = len(lowercase ) % num_proc _UpperCamelCase = div * index + min(lowercase, lowercase ) _UpperCamelCase = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(lowercase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"""Error dividing inputs iterable among processes. """ F"""Total number of objects {len(lowercase )}, """ F"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( F"""Spawning {num_proc} processes for {len(lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) _UpperCamelCase , _UpperCamelCase = None, None if not disable_tqdm: _UpperCamelCase , _UpperCamelCase = (RLock(),), tqdm.set_lock with Pool(lowercase, initargs=lowercase, initializer=lowercase ) as pool: _UpperCamelCase = pool.map(lowercase, lowercase ) logger.info(F"""Finished {num_proc} processes""" ) _UpperCamelCase = [obj for proc_res in mapped for obj in proc_res] logger.info(F"""Unpacked {len(lowercase )} objects""" ) return mapped def a__ ( lowercase : str, lowercase : Tuple, lowercase : List[str], lowercase : List[str], lowercase : Any, lowercase : int, lowercase : Optional[Any] ) -> Any: """simple docstring""" import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=lowercase ): return joblib.Parallel()( joblib.delayed(lowercase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def a__ ( lowercase : str ) -> Optional[int]: """simple docstring""" _UpperCamelCase = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: _UpperCamelCase = None
324
0
"""simple docstring""" from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def lowercase ( _SCREAMING_SNAKE_CASE : Dict[str, torch.Tensor] ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] for rt in rc.restypes: _UpperCAmelCase = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) _UpperCAmelCase = {name: i for i, name in enumerate(_SCREAMING_SNAKE_CASE )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) _UpperCAmelCase = torch.tensor( _SCREAMING_SNAKE_CASE , dtype=torch.intaa , device=protein['''aatype'''].device , ) _UpperCAmelCase = torch.tensor( _SCREAMING_SNAKE_CASE , dtype=torch.intaa , device=protein['''aatype'''].device , ) _UpperCAmelCase = torch.tensor( _SCREAMING_SNAKE_CASE , dtype=torch.floataa , device=protein['''aatype'''].device , ) _UpperCAmelCase = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein _UpperCAmelCase = restype_atomaa_to_atomaa[protein_aatype] _UpperCAmelCase = restype_atomaa_mask[protein_aatype] _UpperCAmelCase = residx_atomaa_mask _UpperCAmelCase = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back _UpperCAmelCase = restype_atomaa_to_atomaa[protein_aatype] _UpperCAmelCase = residx_atomaa_to_atomaa.long() # create the corresponding mask _UpperCAmelCase = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): _UpperCAmelCase = rc.restype_atoa[restype_letter] _UpperCAmelCase = rc.residue_atoms[restype_name] for atom_name in atom_names: _UpperCAmelCase = rc.atom_order[atom_name] _UpperCAmelCase = 1 _UpperCAmelCase = restype_atomaa_mask[protein_aatype] _UpperCAmelCase = residx_atomaa_mask return protein def lowercase ( _SCREAMING_SNAKE_CASE : Dict[str, torch.Tensor] ): '''simple docstring''' _UpperCAmelCase = tree_map(lambda _SCREAMING_SNAKE_CASE : torch.tensor(_SCREAMING_SNAKE_CASE , device=batch['''aatype'''].device ) , _SCREAMING_SNAKE_CASE , np.ndarray ) _UpperCAmelCase = tensor_tree_map(lambda _SCREAMING_SNAKE_CASE : np.array(_SCREAMING_SNAKE_CASE ) , make_atomaa_masks(_SCREAMING_SNAKE_CASE ) ) return out
326
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = CTRLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Dict )->str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def lowercase__ ( self : str , **__UpperCamelCase : Union[str, Any] )->Any: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Tuple: _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
326
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __A =logging.get_logger(__name__) __A ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __A ={ '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } __A ={'''mobilebert-uncased''': 5_1_2} __A ={} class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = MobileBertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> Union[str, Any]: super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowercase ) != do_lower_case or normalizer_state.get("strip_accents" , lowercase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowercase ) != tokenize_chinese_chars ): lowerCamelCase_ = getattr(lowercase , normalizer_state.pop("type" ) ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = strip_accents lowerCamelCase_ = tokenize_chinese_chars lowerCamelCase_ = normalizer_class(**lowercase ) lowerCamelCase_ = do_lower_case def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=None ) -> str: lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Tuple[str]: lowerCamelCase_ = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
19
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE_ ( ) -> Any: """simple docstring""" a_ : Optional[Any] = HfArgumentParser(__A ) a_ : Optional[int] = parser.parse_args_into_dataclasses()[0] a_ : List[Any] = TensorFlowBenchmark(args=__A ) try: a_ : List[str] = parser.parse_args_into_dataclasses()[0] except ValueError as e: a_ : Dict = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' a_ : Dict = ' '.join(str(__A ).split(' ' )[:-1] ) a_ : int = '' a_ : int = eval(str(__A ).split(' ' )[-1] ) a_ : Any = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__A ) if len(__A ) > 0: a_ : str = full_error_msg + begin_error_msg + str(__A ) raise ValueError(__A ) benchmark.run() if __name__ == "__main__": main()
32
0
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class lowerCAmelCase ( pl.LightningModule ): def __init__( self : List[str] , UpperCAmelCase : Optional[Any] ) -> int: super().__init__() lowerCamelCase__ : List[str] = model lowerCamelCase__ : Dict = 2 lowerCamelCase__ : Dict = nn.Linear(self.model.config.hidden_size , self.num_labels ) def A_ ( self : Optional[Any] ) -> Optional[Any]: pass def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: # load longformer model from model identifier lowerCamelCase__ : List[str] = LongformerModel.from_pretrained(_UpperCAmelCase ) lowerCamelCase__ : Dict = LightningModel(_UpperCAmelCase ) lowerCamelCase__ : List[Any] = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model lowerCamelCase__ : Dict = LongformerForQuestionAnswering.from_pretrained(_UpperCAmelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_UpperCAmelCase ) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": _UpperCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--longformer_model""", default=None, type=str, required=True, help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""", ) parser.add_argument( """--longformer_question_answering_ckpt_path""", default=None, type=str, required=True, help="""Path the official PyTorch Lightning Checkpoint.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _UpperCAmelCase : Any = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
45
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: if number > 0: raise ValueError('input must be a negative integer' ) lowerCamelCase__ : str = len(bin(_UpperCAmelCase )[3:] ) lowerCamelCase__ : Dict = bin(abs(_UpperCAmelCase ) - (1 << binary_number_length) )[3:] lowerCamelCase__ : Optional[int] = ( ( '1' + '0' * (binary_number_length - len(_UpperCAmelCase )) + twos_complement_number ) if number < 0 else '0' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
45
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[str] = field( default="""cifar10""" ,metadata={"""help""": """Name of a dataset from the datasets package"""} ) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={"""help""": """The column name of the images in the files."""} ) SCREAMING_SNAKE_CASE__ : Optional[str] = field(default=lowercase__ ,metadata={"""help""": """A folder containing the training data."""} ) SCREAMING_SNAKE_CASE__ : Optional[str] = field(default=lowercase__ ,metadata={"""help""": """A folder containing the validation data."""} ) SCREAMING_SNAKE_CASE__ : Optional[float] = field( default=0.1_5 ,metadata={"""help""": """Percent to split off of train for validation."""} ) SCREAMING_SNAKE_CASE__ : Optional[int] = field( default=lowercase__ ,metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } ,) SCREAMING_SNAKE_CASE__ : Optional[int] = field( default=lowercase__ ,metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } ,) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = {} if self.train_dir is not None: UpperCAmelCase_ : Optional[int] = self.train_dir if self.validation_dir is not None: UpperCAmelCase_ : List[str] = self.validation_dir UpperCAmelCase_ : List[str] = data_files if data_files else None @dataclass class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = field( default=lowercase__ ,metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } ,) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } ,) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) SCREAMING_SNAKE_CASE__ : str = field( default="""main""" ,metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} ,) SCREAMING_SNAKE_CASE__ : str = field(default=lowercase__ ,metadata={"""help""": """Name or path of preprocessor config."""} ) SCREAMING_SNAKE_CASE__ : bool = field( default=lowercase__ ,metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } ,) SCREAMING_SNAKE_CASE__ : float = field( default=0.7_5 ,metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) SCREAMING_SNAKE_CASE__ : bool = field( default=lowercase__ ,metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : float = field( default=1e-3 ,metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def __a ( __lowerCamelCase ): UpperCAmelCase_ : int = torch.stack([example["pixel_values"] for example in examples] ) return {"pixel_values": pixel_values} def __a ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mae", __lowerCamelCase, __lowerCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase_ : Any = training_args.get_process_log_level() logger.setLevel(__lowerCamelCase ) transformers.utils.logging.set_verbosity(__lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCAmelCase_ : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase_ : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. UpperCAmelCase_ : Tuple = load_dataset( data_args.dataset_name, data_args.dataset_config_name, data_files=data_args.data_files, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # If we don't have a validation split, split off a percentage of train as validation. UpperCAmelCase_ : Optional[Any] = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, __lowerCamelCase ) and data_args.train_val_split > 0.0: UpperCAmelCase_ : List[str] = ds["train"].train_test_split(data_args.train_val_split ) UpperCAmelCase_ : Dict = split["train"] UpperCAmelCase_ : str = split["test"] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ : Dict = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCAmelCase_ : Tuple = ViTMAEConfig.from_pretrained(model_args.config_name, **__lowerCamelCase ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path, **__lowerCamelCase ) else: UpperCAmelCase_ : Tuple = ViTMAEConfig() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { "mask_ratio": model_args.mask_ratio, "norm_pix_loss": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCAmelCase_ : List[Any] = ViTImageProcessor.from_pretrained(model_args.image_processor_name, **__lowerCamelCase ) elif model_args.model_name_or_path: UpperCAmelCase_ : str = ViTImageProcessor.from_pretrained(model_args.model_name_or_path, **__lowerCamelCase ) else: UpperCAmelCase_ : Optional[int] = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCAmelCase_ : int = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=__lowerCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info("Training new model from scratch" ) UpperCAmelCase_ : Dict = ViTMAEForPreTraining(__lowerCamelCase ) if training_args.do_train: UpperCAmelCase_ : Optional[int] = ds["train"].column_names else: UpperCAmelCase_ : Dict = ds["validation"].column_names if data_args.image_column_name is not None: UpperCAmelCase_ : int = data_args.image_column_name elif "image" in column_names: UpperCAmelCase_ : Optional[Any] = "image" elif "img" in column_names: UpperCAmelCase_ : Optional[int] = "img" else: UpperCAmelCase_ : str = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCAmelCase_ : List[str] = image_processor.size["shortest_edge"] else: UpperCAmelCase_ : int = (image_processor.size["height"], image_processor.size["width"]) UpperCAmelCase_ : Tuple = Compose( [ Lambda(lambda __lowerCamelCase : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(__lowerCamelCase, scale=(0.2, 1.0), interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean, std=image_processor.image_std ), ] ) def preprocess_images(__lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = [transforms(__lowerCamelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: UpperCAmelCase_ : List[str] = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__lowerCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: UpperCAmelCase_ : Optional[int] = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__lowerCamelCase ) # Compute absolute learning rate UpperCAmelCase_ : Optional[int] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCAmelCase_ : Union[str, Any] = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer UpperCAmelCase_ : Dict = Trainer( model=__lowerCamelCase, args=__lowerCamelCase, train_dataset=ds["train"] if training_args.do_train else None, eval_dataset=ds["validation"] if training_args.do_eval else None, tokenizer=__lowerCamelCase, data_collator=__lowerCamelCase, ) # Training if training_args.do_train: UpperCAmelCase_ : str = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase_ : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase_ : Union[str, Any] = last_checkpoint UpperCAmelCase_ : List[str] = trainer.train(resume_from_checkpoint=__lowerCamelCase ) trainer.save_model() trainer.log_metrics("train", train_result.metrics ) trainer.save_metrics("train", train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase_ : Optional[Any] = trainer.evaluate() trainer.log_metrics("eval", __lowerCamelCase ) trainer.save_metrics("eval", __lowerCamelCase ) # Write model card and (optionally) push to hub UpperCAmelCase_ : Optional[Any] = { "tasks": "masked-auto-encoding", "dataset": data_args.dataset_name, "tags": ["masked-auto-encoding"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCamelCase ) else: trainer.create_model_card(**__lowerCamelCase ) def __a ( __lowerCamelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
61
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "roformer" def __init__( self , _a=5_0_0_0_0 , _a=None , _a=7_6_8 , _a=1_2 , _a=1_2 , _a=3_0_7_2 , _a="gelu" , _a=0.1 , _a=0.1 , _a=1_5_3_6 , _a=2 , _a=0.02 , _a=1e-1_2 , _a=0 , _a=False , _a=True , **_a , ) -> List[str]: super().__init__(pad_token_id=_a , **_a ) _a : Tuple = vocab_size _a : List[Any] = hidden_size if embedding_size is None else embedding_size _a : Any = hidden_size _a : Any = num_hidden_layers _a : List[Any] = num_attention_heads _a : str = hidden_act _a : Any = intermediate_size _a : Dict = hidden_dropout_prob _a : Optional[Any] = attention_probs_dropout_prob _a : str = max_position_embeddings _a : Dict = type_vocab_size _a : List[Any] = initializer_range _a : Dict = layer_norm_eps _a : Dict = rotary_value _a : Dict = use_cache class UpperCAmelCase_ ( __lowercase ): """simple docstring""" @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _a : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a : List[Any] = {0: '''batch''', 1: '''sequence'''} _a : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
235
0
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class UpperCAmelCase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = BarthezTokenizer __UpperCamelCase : Optional[int] = BarthezTokenizerFast __UpperCamelCase : Any = True __UpperCamelCase : List[Any] = True def __magic_name__ ( self : Optional[Any] ): """simple docstring""" super().setUp() _A: Dict = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase_ ) _A: List[Any] = tokenizer def __magic_name__ ( self : Any ): """simple docstring""" _A: str = """<pad>""" _A: Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" _A: List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCAmelCase_ ) , 1_0_1_1_2_2 ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def __magic_name__ ( self : str ): """simple docstring""" _A: int = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _A: Any = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] _A: Any = self.tokenizer( lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _A: Any = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" if not self.test_rust_tokenizer: return _A: Union[str, Any] = self.get_tokenizer() _A: Union[str, Any] = self.get_rust_tokenizer() _A: Union[str, Any] = """I was born in 92000, and this is falsé.""" _A: Dict = tokenizer.tokenize(lowerCAmelCase_ ) _A: Optional[Any] = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: int = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A: int = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Optional[Any] = self.get_rust_tokenizer() _A: Optional[Any] = tokenizer.encode(lowerCAmelCase_ ) _A: Any = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : Dict ): """simple docstring""" # fmt: off _A: int = {"""input_ids""": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _A: str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=lowerCAmelCase_ , )
351
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ : Optional[int] = 'bart' UpperCAmelCase__ : Dict = True @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Dict: if LOAD_DENSE_INDEX: _A: Optional[Any] = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _A: Any = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _A: Any = qar_model.eval() else: _A , _A: Union[str, Any] = (None, None) if MODEL_TYPE == "bart": _A: Union[str, Any] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _A: Dict = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _A: Union[str, Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _A: int = sas_model.eval() else: _A , _A: Tuple = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> Tuple: if LOAD_DENSE_INDEX: _A: List[Any] = faiss.StandardGpuResources() _A: int = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] _A: Dict = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) _A: str = faiss.IndexFlatIP(1_28 ) _A: Optional[int] = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: _A , _A: str = (None, None) _A: Tuple = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def lowerCamelCase__ ( ) -> str: _A: Dict = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) _A: Dict = elia['''train_eli5'''] _A: List[Any] = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28) ) _A: Any = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : int = load_indexes() UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : Any = load_models() UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = load_train_data() def lowerCamelCase__ ( a , a=10 ) -> str: _A: Optional[int] = embed_questions_for_retrieval([question] , a , a ) _A , _A: List[str] = eli5_train_q_index.search(a , a ) _A: Dict = [elia_train[int(a )] for i in I[0]] return nn_examples def lowerCamelCase__ ( a , a="wiki40b" , a="dense" , a=10 ) -> str: if source == "none": _A , _A: Any = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _A , _A: List[Any] = query_qa_dense_index( a , a , a , a , a , a ) else: _A , _A: Tuple = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) _A: Union[str, Any] = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _A: str = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def lowerCamelCase__ ( a , a , a , a=64 , a=2_56 , a=False , a=2 , a=0.95 , a=0.8 ) -> str: with torch.no_grad(): _A: Optional[int] = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar UpperCAmelCase__ : List[Any] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' UpperCAmelCase__ : Optional[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ : str = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Demo options') if demo_options: UpperCAmelCase__ : Any = st.sidebar.selectbox( '', action_list, index=3, ) UpperCAmelCase__ : List[str] = action_list.index(action_st) UpperCAmelCase__ : Optional[Any] = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) UpperCAmelCase__ : List[Any] = show_type == 'Show full text of passages' else: UpperCAmelCase__ : Dict = 3 UpperCAmelCase__ : str = True UpperCAmelCase__ : Optional[Any] = st.sidebar.checkbox('Retrieval options') if retrieval_options: UpperCAmelCase__ : List[str] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) UpperCAmelCase__ : int = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: UpperCAmelCase__ : Tuple = 'wiki40b' UpperCAmelCase__ : List[Any] = 'dense' UpperCAmelCase__ : Tuple = 'beam' UpperCAmelCase__ : Any = 2 UpperCAmelCase__ : Dict = 64 UpperCAmelCase__ : Any = 256 UpperCAmelCase__ : int = None UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Optional[int] = st.sidebar.checkbox('Generation options') if generate_options: UpperCAmelCase__ : Any = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) UpperCAmelCase__ : int = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ : str = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ : Tuple = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ : Union[str, Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ : Optional[int] = None # start main text UpperCAmelCase__ : Any = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] UpperCAmelCase__ : List[Any] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ : Any = st.text_input('Enter your question here:', '') else: UpperCAmelCase__ : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ ,UpperCAmelCase__ : Tuple = make_support(question, source=wiki_source, method='dense', n_results=10) UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) UpperCAmelCase__ : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ : str = support_list[:10] UpperCAmelCase__ : str = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: UpperCAmelCase__ ,UpperCAmelCase__ : List[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ ,UpperCAmelCase__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): UpperCAmelCase__ : Any = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) UpperCAmelCase__ : Tuple = res[1].strip() if sec_titles == "": UpperCAmelCase__ : Optional[int] = '[{}]({})'.format(res[0], wiki_url) else: UpperCAmelCase__ : int = sec_titles.split(' & ') UpperCAmelCase__ : Union[str, Any] = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ : Union[str, Any] = find_nearest_training(question) UpperCAmelCase__ : int = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) UpperCAmelCase__ : Tuple = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) UpperCAmelCase__ : Any = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
0
'''simple docstring''' import random def snake_case_ ( _lowerCAmelCase : list , _lowerCAmelCase : str ) -> tuple: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = [], [], [] for element in data: if element < pivot: less.append(_lowerCAmelCase ) elif element > pivot: greater.append(_lowerCAmelCase ) else: equal.append(_lowerCAmelCase ) return less, equal, greater def snake_case_ ( _lowerCAmelCase : list , _lowerCAmelCase : int ) -> Dict: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(_lowerCAmelCase ) or index < 0: return None UpperCAmelCase : int = items[random.randint(0 , len(_lowerCAmelCase ) - 1 )] UpperCAmelCase : List[Any] = 0 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = _partition(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : List[str] = len(_lowerCAmelCase ) UpperCAmelCase : str = len(_lowerCAmelCase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_lowerCAmelCase , _lowerCAmelCase ) # must be in larger else: return quick_select(_lowerCAmelCase , index - (m + count) )
23
"""simple docstring""" a : Any = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } a : List[Any] = {value: key for key, value in encode_dict.items()} def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->str: '''simple docstring''' a : int = "" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("encode() accepts only letters of the alphabet and spaces" ) return encoded def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->str: '''simple docstring''' if set(_lowercase ) - {"A", "B", " "} != set(): raise Exception("decode() accepts only 'A', 'B' and spaces" ) a : Optional[Any] = "" for word in coded.split(): while len(_lowercase ) != 0: decoded += decode_dict[word[:5]] a : List[Any] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
105
0
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _A = data_utils.TransfoXLTokenizer _A = data_utils.TransfoXLCorpus _A = data_utils _A = data_utils def UpperCAmelCase ( a_, a_, a_, a_ ): '''simple docstring''' if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(a_, 'rb' ) as fp: lowerCamelCase : Tuple = pickle.load(a_, encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) lowerCamelCase : Any = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F"""Save vocabulary to {pytorch_vocab_dump_path}""" ) lowerCamelCase : str = corpus.vocab.__dict__ torch.save(a_, a_ ) lowerCamelCase : str = corpus.__dict__ corpus_dict_no_vocab.pop('vocab', a_ ) lowerCamelCase : Union[str, Any] = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(a_, a_ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model lowerCamelCase : Union[str, Any] = os.path.abspath(a_ ) lowerCamelCase : Union[str, Any] = os.path.abspath(a_ ) print(F"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": lowerCamelCase : Any = TransfoXLConfig() else: lowerCamelCase : int = TransfoXLConfig.from_json_file(a_ ) print(F"""Building PyTorch model from configuration: {config}""" ) lowerCamelCase : str = TransfoXLLMHeadModel(a_ ) lowerCamelCase : Any = load_tf_weights_in_transfo_xl(a_, a_, a_ ) # Save pytorch-model lowerCamelCase : Dict = os.path.join(a_, a_ ) lowerCamelCase : Tuple = os.path.join(a_, a_ ) print(F"""Save PyTorch model to {os.path.abspath(a_ )}""" ) torch.save(model.state_dict(), a_ ) print(F"""Save configuration file to {os.path.abspath(a_ )}""" ) with open(a_, 'w', encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) _A = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
205
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : int = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCamelCase : Tuple = key.replace('module.encoder', 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCamelCase : str = key.replace('module.decoder', 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCamelCase : Any = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCamelCase : Dict = key.replace(F"""patch_embed{idx}""", F"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: lowerCamelCase : Optional[int] = key.replace('norm', 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCamelCase : List[str] = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCamelCase : List[str] = key.replace(F"""layer_norm{idx}""", F"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: lowerCamelCase : List[Any] = key.replace('layer_norm1', 'layer_norm_1' ) if "layer_norm2" in key: lowerCamelCase : str = key.replace('layer_norm2', 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCamelCase : Union[str, Any] = key[key.find('block' ) + len('block' )] lowerCamelCase : List[str] = key.replace(F"""block{idx}""", F"""block.{int(a_ )-1}""" ) if "attn.q" in key: lowerCamelCase : Union[str, Any] = key.replace('attn.q', 'attention.self.query' ) if "attn.proj" in key: lowerCamelCase : Dict = key.replace('attn.proj', 'attention.output.dense' ) if "attn" in key: lowerCamelCase : int = key.replace('attn', 'attention.self' ) if "fc1" in key: lowerCamelCase : Any = key.replace('fc1', 'dense1' ) if "fc2" in key: lowerCamelCase : List[Any] = key.replace('fc2', 'dense2' ) if "linear_pred" in key: lowerCamelCase : Optional[Any] = key.replace('linear_pred', 'classifier' ) if "linear_fuse" in key: lowerCamelCase : Union[str, Any] = key.replace('linear_fuse.conv', 'linear_fuse' ) lowerCamelCase : Optional[int] = key.replace('linear_fuse.bn', 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCamelCase : str = key[key.find('linear_c' ) + len('linear_c' )] lowerCamelCase : List[Any] = key.replace(F"""linear_c{idx}""", F"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: lowerCamelCase : int = key.replace('bot_conv', '0.convolution' ) if "skip_conv1" in key: lowerCamelCase : Any = key.replace('skip_conv1', '1.convolution' ) if "skip_conv2" in key: lowerCamelCase : Optional[Any] = key.replace('skip_conv2', '2.convolution' ) if "fusion1" in key: lowerCamelCase : str = key.replace('fusion1', '1.fusion' ) if "fusion2" in key: lowerCamelCase : Optional[Any] = key.replace('fusion2', '2.fusion' ) if "fusion3" in key: lowerCamelCase : List[str] = key.replace('fusion3', '3.fusion' ) if "fusion" in key and "conv" in key: lowerCamelCase : Optional[int] = key.replace('conv', 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCamelCase : Tuple = key.replace('module.last_layer_depth', 'head.head' ) lowerCamelCase : List[Any] = value return new_state_dict def UpperCAmelCase ( a_, a_ ): '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCamelCase : Any = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) lowerCamelCase : Optional[Any] = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict lowerCamelCase : Any = kv_weight[ : config.hidden_sizes[i], : ] lowerCamelCase : List[Any] = kv_bias[: config.hidden_sizes[i]] lowerCamelCase : Dict = kv_weight[ config.hidden_sizes[i] :, : ] lowerCamelCase : List[Any] = kv_bias[config.hidden_sizes[i] :] def UpperCAmelCase ( ): '''simple docstring''' lowerCamelCase : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def UpperCAmelCase ( a_, a_, a_=False, a_=None ): '''simple docstring''' lowerCamelCase : int = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCamelCase : Any = GLPNImageProcessor() # prepare image lowerCamelCase : int = prepare_img() lowerCamelCase : Tuple = image_processor(images=a_, return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCamelCase : Optional[Any] = torch.load(a_, map_location=torch.device('cpu' ) ) # rename keys lowerCamelCase : Any = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict lowerCamelCase : Optional[int] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass lowerCamelCase : str = model(a_ ) lowerCamelCase : Any = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCamelCase : Any = torch.tensor( [[4.4_1_4_7, 4.0_8_7_3, 4.0_6_7_3], [3.7_8_9_0, 3.2_8_8_1, 3.1_5_2_5], [3.7_6_7_4, 3.5_4_2_3, 3.4_9_1_3]] ) elif "kitti" in model_name: lowerCamelCase : str = torch.tensor( [[3.4_2_9_1, 2.7_8_6_5, 2.5_1_5_1], [3.2_8_4_1, 2.7_0_2_1, 2.3_5_0_2], [3.1_1_4_7, 2.4_6_2_5, 2.2_4_8_1]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) lowerCamelCase : int = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1E-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization='nielsr', commit_message='Add model', use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization='nielsr', commit_message='Add image processor', use_temp_dir=a_, ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) _A = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
205
1
from __future__ import annotations from collections.abc import Callable _UpperCamelCase = list[list[float | int]] def lowerCAmelCase__( lowercase : Matrix , lowercase : Matrix ) -> Matrix: __snake_case : int = len(lowercase ) __snake_case : Matrix = [[0 for _ in range(size + 1 )] for _ in range(lowercase )] __snake_case : int __snake_case : int __snake_case : int __snake_case : int __snake_case : int __snake_case : float for row in range(lowercase ): for col in range(lowercase ): __snake_case : str = matrix[row][col] __snake_case : Optional[Any] = vector[row][0] __snake_case : List[Any] = 0 __snake_case : Union[str, Any] = 0 while row < size and col < size: # pivoting __snake_case : Dict = max((abs(augmented[rowa][col] ), rowa) for rowa in range(lowercase , lowercase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __snake_case , __snake_case : Union[str, Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , lowercase ): __snake_case : Tuple = augmented[rowa][col] / augmented[row][col] __snake_case : Dict = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , lowercase ): for row in range(lowercase ): __snake_case : Any = augmented[row][col] / augmented[col][col] for cola in range(lowercase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(lowercase ) ] def lowerCAmelCase__( lowercase : list[int] ) -> Callable[[int], int]: __snake_case : int = len(lowercase ) __snake_case : Matrix = [[0 for _ in range(lowercase )] for _ in range(lowercase )] __snake_case : Matrix = [[0] for _ in range(lowercase )] __snake_case : Matrix __snake_case : int __snake_case : int __snake_case : int for x_val, y_val in enumerate(lowercase ): for col in range(lowercase ): __snake_case : Optional[Any] = (x_val + 1) ** (size - col - 1) __snake_case : Dict = y_val __snake_case : Union[str, Any] = solve(lowercase , lowercase ) def interpolated_func(lowercase : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(lowercase ) ) return interpolated_func def lowerCAmelCase__( lowercase : int ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCAmelCase__( lowercase : Callable[[int], int] = question_function , lowercase : int = 10 ) -> int: __snake_case : list[int] = [func(lowercase ) for x_val in range(1 , order + 1 )] __snake_case : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __snake_case : int = 0 __snake_case : Callable[[int], int] __snake_case : int for poly in polynomials: __snake_case : Optional[int] = 1 while func(lowercase ) == poly(lowercase ): x_val += 1 ret += poly(lowercase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
326
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"] UpperCAmelCase_ : Tuple ="FlavaImageProcessor" UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast") def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int: '''simple docstring''' __snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) __snake_case : List[Any] = kwargs.pop("feature_extractor" ) __snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = self.image_processor def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __snake_case : Union[str, Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if images is not None: __snake_case : Union[str, Any] = self.image_processor( UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if text is not None and images is not None: encoding.update(UpperCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : List[Any] = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
326
1
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : list ) -> int: """simple docstring""" if not grid or not grid[0]: raise TypeError('The grid does not contain the appropriate information' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] _SCREAMING_SNAKE_CASE =grid[0] for row_n in range(1 , len(_UpperCamelCase ) ): _SCREAMING_SNAKE_CASE =grid[row_n] _SCREAMING_SNAKE_CASE =fill_row(_UpperCamelCase , _UpperCamelCase ) _SCREAMING_SNAKE_CASE =grid[row_n] return grid[-1][-1] def _lowerCAmelCase ( _UpperCamelCase : list , _UpperCamelCase : list ) -> list: """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(_UpperCamelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
114
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowerCamelCase : List[Any] = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" lowerCamelCase : List[str] = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" lowerCamelCase : Dict = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def _lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return float((preds == labels).mean() ) def _lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Any ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =simple_accuracy(_UpperCamelCase , _UpperCamelCase ) _SCREAMING_SNAKE_CASE =float(fa_score(y_true=_UpperCamelCase , y_pred=_UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =float(pearsonr(_UpperCamelCase , _UpperCamelCase )[0] ) _SCREAMING_SNAKE_CASE =float(spearmanr(_UpperCamelCase , _UpperCamelCase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def A ( self : Optional[int] ) -> Any: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : str , _a : str , _a : List[Any] ) -> str: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_a , _a )} elif self.config_name == "stsb": return pearson_and_spearman(_a , _a ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_a , _a ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
114
1
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() lowercase_ = logging.get_logger("transformers.models.speecht5") lowercase_ = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } lowercase_ = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } lowercase_ = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } lowercase_ = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } lowercase_ = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } lowercase_ = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } lowercase_ = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } lowercase_ = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } lowercase_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } lowercase_ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowercase_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowercase_ = [] lowercase_ = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] lowercase_ = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] lowercase_ = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] lowercase_ = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def lowercase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any ) -> Tuple: for attribute in key.split('''.''' ): __a = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: __a = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: __a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __a = value elif weight_type == "weight_g": __a = value elif weight_type == "weight_v": __a = value elif weight_type == "bias": __a = value elif weight_type == "running_mean": __a = value elif weight_type == "running_var": __a = value elif weight_type == "num_batches_tracked": __a = value else: __a = value logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any ) -> Optional[Any]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __a , __a = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] ) -> int: __a = [] if task == "s2t": __a = hf_model.speechta.encoder.prenet.feature_encoder __a = MAPPING_S2T __a = IGNORE_KEYS_S2T elif task == "t2s": __a = None __a = MAPPING_T2S __a = IGNORE_KEYS_T2S elif task == "s2s": __a = hf_model.speechta.encoder.prenet.feature_encoder __a = MAPPING_S2S __a = IGNORE_KEYS_S2S else: raise ValueError(f'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info(f'''{name} was ignored''' ) continue __a = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) __a = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __a , __a = key.split('''.*.''' ) if prefix in name and suffix in name: __a = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __a = True if "*" in mapped_key: __a = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] __a = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: __a = '''weight_g''' elif "weight_v" in name: __a = '''weight_v''' elif "bias" in name: __a = '''bias''' elif "weight" in name: __a = '''weight''' elif "running_mean" in name: __a = '''running_mean''' elif "running_var" in name: __a = '''running_var''' elif "num_batches_tracked" in name: __a = '''num_batches_tracked''' else: __a = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] ) -> Optional[int]: __a = full_name.split('''conv_layers.''' )[-1] __a = name.split('''.''' ) __a = int(items[0] ) __a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __a = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __a = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) __a = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) __a = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : List[str]=None , ) -> int: if config_path is not None: __a = SpeechTaConfig.from_pretrained(lowerCAmelCase__ ) else: __a = SpeechTaConfig() if task == "s2t": __a = config.max_text_positions __a = SpeechTaForSpeechToText(lowerCAmelCase__ ) elif task == "t2s": __a = 1876 __a = 600 __a = config.max_speech_positions __a = SpeechTaForTextToSpeech(lowerCAmelCase__ ) elif task == "s2s": __a = 1876 __a = config.max_speech_positions __a = SpeechTaForSpeechToSpeech(lowerCAmelCase__ ) else: raise ValueError(f'''Unknown task name: {task}''' ) if vocab_path: __a = SpeechTaTokenizer(lowerCAmelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __a = AddedToken('''<mask>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) __a = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) __a = SpeechTaFeatureExtractor() __a = SpeechTaProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) __a = torch.load(lowerCAmelCase__ ) recursively_load_weights(fairseq_checkpoint['''model'''] , lowerCAmelCase__ , lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) lowercase_ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
45
"""simple docstring""" def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : list[str] ) -> str: __a = '''''' for word_or_phrase in separated: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
45
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Tuple =logging.get_logger(__name__) lowerCamelCase : Tuple ={ '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class __a ( A__ ): _lowerCAmelCase : str = '''roc_bert''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE : List[str]=3_05_22 , SCREAMING_SNAKE_CASE : Tuple=7_68 , SCREAMING_SNAKE_CASE : List[str]=12 , SCREAMING_SNAKE_CASE : Optional[Any]=12 , SCREAMING_SNAKE_CASE : Tuple=30_72 , SCREAMING_SNAKE_CASE : List[Any]="gelu" , SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE : List[str]=0.1 , SCREAMING_SNAKE_CASE : Dict=5_12 , SCREAMING_SNAKE_CASE : List[Any]=2 , SCREAMING_SNAKE_CASE : int=0.0_2 , SCREAMING_SNAKE_CASE : Union[str, Any]=1e-1_2 , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : List[Any]=0 , SCREAMING_SNAKE_CASE : Tuple="absolute" , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : Optional[int]=7_68 , SCREAMING_SNAKE_CASE : Dict=9_10 , SCREAMING_SNAKE_CASE : int=5_12 , SCREAMING_SNAKE_CASE : List[Any]=2_48_58 , SCREAMING_SNAKE_CASE : List[str]=True , **SCREAMING_SNAKE_CASE : str , ): '''simple docstring''' UpperCamelCase__ : Dict = vocab_size UpperCamelCase__ : Any = max_position_embeddings UpperCamelCase__ : List[str] = hidden_size UpperCamelCase__ : str = num_hidden_layers UpperCamelCase__ : Optional[Any] = num_attention_heads UpperCamelCase__ : Dict = intermediate_size UpperCamelCase__ : int = hidden_act UpperCamelCase__ : List[str] = hidden_dropout_prob UpperCamelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Union[str, Any] = type_vocab_size UpperCamelCase__ : int = layer_norm_eps UpperCamelCase__ : Any = use_cache UpperCamelCase__ : List[str] = enable_pronunciation UpperCamelCase__ : Optional[int] = enable_shape UpperCamelCase__ : Union[str, Any] = pronunciation_embed_dim UpperCamelCase__ : Tuple = pronunciation_vocab_size UpperCamelCase__ : str = shape_embed_dim UpperCamelCase__ : Any = shape_vocab_size UpperCamelCase__ : List[Any] = concat_input UpperCamelCase__ : Union[str, Any] = position_embedding_type UpperCamelCase__ : str = classifier_dropout super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
196
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> list: UpperCamelCase__ : Tuple = False while is_sorted is False: # Until all the indices are traversed keep looping UpperCamelCase__ : Tuple = True for i in range(0 , len(__lowerCAmelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: UpperCamelCase__ , UpperCamelCase__ : Dict = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCamelCase__ : List[str] = False for i in range(1 , len(__lowerCAmelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: UpperCamelCase__ , UpperCamelCase__ : Optional[int] = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCamelCase__ : List[Any] = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') lowerCamelCase : Any =[int(x) for x in input().split()] # inputing elements of the list in one line lowerCamelCase : Optional[int] =odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
196
1
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase ( lowerCamelCase__ ): def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_snake_case , """embed_dim""" ) ) self.parent.assertTrue(hasattr(_snake_case , """num_heads""" ) ) class __lowerCAmelCase : def __init__( self , _snake_case , _snake_case=13 , _snake_case=64 , _snake_case=3 , _snake_case=[16, 48, 96] , _snake_case=[1, 3, 6] , _snake_case=[1, 2, 10] , _snake_case=[7, 3, 3] , _snake_case=[4, 2, 2] , _snake_case=[2, 1, 1] , _snake_case=[2, 2, 2] , _snake_case=[False, False, True] , _snake_case=[0.0, 0.0, 0.0] , _snake_case=0.02 , _snake_case=1e-12 , _snake_case=True , _snake_case=True , _snake_case=2 , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = patch_sizes _lowerCAmelCase = patch_stride _lowerCAmelCase = patch_padding _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = num_labels _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = num_heads _lowerCAmelCase = stride_kv _lowerCAmelCase = depth _lowerCAmelCase = cls_token _lowerCAmelCase = attention_drop_rate _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps def snake_case ( self ): """simple docstring""" _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: # create a random int32 tensor of given shape _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def snake_case ( self ): """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def snake_case ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = TFCvtModel(config=_snake_case ) _lowerCAmelCase = model(_snake_case , training=_snake_case ) _lowerCAmelCase = (self.image_size, self.image_size) _lowerCAmelCase , _lowerCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): _lowerCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _lowerCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def snake_case ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFCvtForImageClassification(_snake_case ) _lowerCAmelCase = model(_snake_case , labels=_snake_case , training=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __lowerCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () __lowerCamelCase = ( {'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification} if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFCvtModelTester(self ) _lowerCAmelCase = TFCvtConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def snake_case ( self ): """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def snake_case ( self ): """simple docstring""" super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def snake_case ( self ): """simple docstring""" super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(_snake_case ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_snake_case ) _lowerCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _snake_case ) def snake_case ( self ): """simple docstring""" def check_hidden_states_output(_snake_case , _snake_case , _snake_case ): _lowerCAmelCase = model_class(_snake_case ) _lowerCAmelCase = model(**self._prepare_for_class(_snake_case , _snake_case ) ) _lowerCAmelCase = outputs.hidden_states _lowerCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def snake_case ( self ): """simple docstring""" for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = TFCvtModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=_snake_case , return_tensors="""tf""" ) # forward pass _lowerCAmelCase = model(**_snake_case ) # verify the logits _lowerCAmelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _snake_case ) _lowerCAmelCase = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _snake_case , atol=1e-4 ) )
82
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params SCREAMING_SNAKE_CASE_ = getLogger(__name__) SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 8 , _lowerCAmelCase = DEFAULT_DEVICE , _lowerCAmelCase=False , _lowerCAmelCase="summarization" , _lowerCAmelCase=None , **_lowerCAmelCase , ): __lowerCAmelCase = Path(_lowerCAmelCase ).open("""w""" , encoding="""utf-8""" ) __lowerCAmelCase = str(_lowerCAmelCase ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) if fpaa: __lowerCAmelCase = model.half() __lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. __lowerCAmelCase = time.time() # update config with task specific params use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase ) if prefix is None: __lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ): __lowerCAmelCase = [prefix + text for text in examples_chunk] __lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase , padding="""longest""" ).to(_lowerCAmelCase ) __lowerCAmelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , ) __lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() __lowerCAmelCase = int(time.time() - start_time ) # seconds __lowerCAmelCase = len(_lowerCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase (): return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def lowercase (_lowerCAmelCase=True ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""model_name""" , type=_lowerCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=_lowerCAmelCase , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=_lowerCAmelCase , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=_lowerCAmelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=_lowerCAmelCase , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args() __lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) __lowerCAmelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowerCAmelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) __lowerCAmelCase = generate_summaries_or_translations( _lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , ) if args.reference_path is None: return {} # Compute scores __lowerCAmelCase = calculate_bleu if """translation""" in args.task else calculate_rouge __lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )] __lowerCAmelCase = score_fn(_lowerCAmelCase , _lowerCAmelCase ) scores.update(_lowerCAmelCase ) if args.dump_args: scores.update(_lowerCAmelCase ) if args.info: __lowerCAmelCase = args.info if verbose: print(_lowerCAmelCase ) if args.score_path is not None: json.dump(_lowerCAmelCase , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __A : List[str] , __A : str , __A : Tuple , __A : Any , __A : Optional[int] ) -> List[str]: """simple docstring""" with open(_a ) as metadata_file: a_ : List[str] = json.load(_a ) a_ : str = LukeConfig(use_entity_aware_attention=_a , **metadata['model_config'] ) # Load in the weights from the checkpoint_path a_ : Any = torch.load(_a , map_location='cpu' )["module"] # Load the entity vocab file a_ : List[Any] = load_original_entity_vocab(_a ) # add an entry for [MASK2] a_ : Optional[Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 a_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks a_ : List[Any] = AddedToken('<ent>' , lstrip=_a , rstrip=_a ) a_ : str = AddedToken('<ent2>' , lstrip=_a , rstrip=_a ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(_a ) with open(os.path.join(_a , 'tokenizer_config.json' ) , 'r' ) as f: a_ : str = json.load(_a ) a_ : Any = "MLukeTokenizer" with open(os.path.join(_a , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(_a , _a ) with open(os.path.join(_a , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(_a , _a ) a_ : str = MLukeTokenizer.from_pretrained(_a ) # Initialize the embeddings of the special tokens a_ : Dict = tokenizer.convert_tokens_to_ids(['@'] )[0] a_ : str = tokenizer.convert_tokens_to_ids(['#'] )[0] a_ : Union[str, Any] = state_dict["embeddings.word_embeddings.weight"] a_ : Any = word_emb[ent_init_index].unsqueeze(0 ) a_ : List[Any] = word_emb[enta_init_index].unsqueeze(0 ) a_ : Dict = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: a_ : Optional[int] = state_dict[bias_name] a_ : List[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) a_ : List[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) a_ : Tuple = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: a_ : int = F"""encoder.layer.{layer_index}.attention.self.""" a_ : Optional[int] = state_dict[prefix + matrix_name] a_ : Tuple = state_dict[prefix + matrix_name] a_ : str = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks a_ : Optional[Any] = state_dict["entity_embeddings.entity_embeddings.weight"] a_ : Union[str, Any] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) a_ : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' a_ : Optional[int] = state_dict["entity_predictions.bias"] a_ : List[str] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) a_ : int = torch.cat([entity_prediction_bias, entity_mask_bias] ) a_ : Any = LukeForMaskedLM(config=_a ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) a_ : List[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): a_ : Union[str, Any] = state_dict[key] else: a_ : Dict = state_dict[key] a_ : int = model.load_state_dict(_a , strict=_a ) if set(_a ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(_a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs a_ : Any = MLukeTokenizer.from_pretrained(_a , task='entity_classification' ) a_ : int = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." a_ : int = (0, 9) a_ : List[Any] = tokenizer(_a , entity_spans=[span] , return_tensors='pt' ) a_ : Optional[int] = model(**_a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base a_ : List[str] = torch.Size((1, 33, 7_68) ) a_ : List[str] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _a , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base a_ : Optional[Any] = torch.Size((1, 1, 7_68) ) a_ : Optional[int] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _a , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction a_ : str = MLukeTokenizer.from_pretrained(_a ) a_ : str = "Tokyo is the capital of <mask>." a_ : Union[str, Any] = (24, 30) a_ : int = tokenizer(_a , entity_spans=[span] , return_tensors='pt' ) a_ : Tuple = model(**_a ) a_ : Union[str, Any] = encoding["input_ids"][0].tolist() a_ : Dict = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) a_ : Optional[Any] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_a ) a_ : Optional[Any] = outputs.entity_logits[0][0].argmax().item() a_ : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(_a ) ) model.save_pretrained(_a ) def SCREAMING_SNAKE_CASE_ ( __A : Any ) -> Any: """simple docstring""" a_ : Dict = ["[MASK]", "[PAD]", "[UNK]"] a_ : Tuple = [json.loads(_a ) for line in open(_a )] a_ : str = {} for entry in data: a_ : Optional[Any] = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: a_ : int = entity_id break a_ : List[str] = F"""{language}:{entity_name}""" a_ : Optional[Any] = entity_id return new_mapping if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) UpperCAmelCase_ : Dict = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
364
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: a_ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) a_ : Union[str, Any] = get_activation('gelu' ) self.assertTrue(torch.allclose(gelu_python(SCREAMING_SNAKE_CASE__ ) , torch_builtin(SCREAMING_SNAKE_CASE__ ) ) ) self.assertFalse(torch.allclose(gelu_python(SCREAMING_SNAKE_CASE__ ) , gelu_new(SCREAMING_SNAKE_CASE__ ) ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) a_ : Union[str, Any] = get_activation('gelu' ) a_ : str = get_activation('gelu_10' ) a_ : Tuple = torch_builtin(SCREAMING_SNAKE_CASE__ ) a_ : str = geluaa(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(SCREAMING_SNAKE_CASE__ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: get_activation('gelu' ) get_activation('gelu_10' ) get_activation('gelu_fast' ) get_activation('gelu_new' ) get_activation('gelu_python' ) get_activation('gelu_pytorch_tanh' ) get_activation('linear' ) get_activation('mish' ) get_activation('quick_gelu' ) get_activation('relu' ) get_activation('sigmoid' ) get_activation('silu' ) get_activation('swish' ) get_activation('tanh' ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): get_activation('bogus' ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): get_activation(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : str ) -> str: a_ : Any = get_activation('gelu' ) a_ : Any = 1 a_ : int = get_activation('gelu' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): a_ : Tuple = acta.a
120
0
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def a ( A__ : List[str] , A__ : int ) -> Optional[int]: """simple docstring""" _lowercase =old_name if "patch_embed" in old_name: _lowercase , _lowercase , _lowercase =old_name.split('.' ) if layer == "0": _lowercase =old_name.replace('0' , 'convolution1' ) elif layer == "1": _lowercase =old_name.replace('1' , 'batchnorm_before' ) elif layer == "3": _lowercase =old_name.replace('3' , 'convolution2' ) else: _lowercase =old_name.replace('4' , 'batchnorm_after' ) if "network" in old_name and re.search(r'\d\.\d' , A__ ): _lowercase =r'\b\d{2}\b' if bool(re.search(A__ , A__ ) ): _lowercase =re.search(r'\d\.\d\d.' , A__ ).group() else: _lowercase =re.search(r'\d\.\d.' , A__ ).group() if int(match[0] ) < 6: _lowercase =old_name.replace(A__ , '' ) _lowercase =trimmed_name.replace('network' , match[0] + '.meta4D_layers.blocks.' + match[2:-1] ) _lowercase ='intermediate_stages.' + trimmed_name else: _lowercase =old_name.replace(A__ , '' ) if int(match[2] ) < num_meta4D_last_stage: _lowercase =trimmed_name.replace('network' , 'meta4D_layers.blocks.' + match[2] ) else: _lowercase =str(int(match[2] ) - num_meta4D_last_stage ) _lowercase =trimmed_name.replace('network' , 'meta3D_layers.blocks.' + layer_index ) if "norm1" in old_name: _lowercase =trimmed_name.replace('norm1' , 'layernorm1' ) elif "norm2" in old_name: _lowercase =trimmed_name.replace('norm2' , 'layernorm2' ) elif "fc1" in old_name: _lowercase =trimmed_name.replace('fc1' , 'linear_in' ) elif "fc2" in old_name: _lowercase =trimmed_name.replace('fc2' , 'linear_out' ) _lowercase ='last_stage.' + trimmed_name elif "network" in old_name and re.search(r'.\d.' , A__ ): _lowercase =old_name.replace('network' , 'intermediate_stages' ) if "fc" in new_name: _lowercase =new_name.replace('fc' , 'convolution' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): _lowercase =new_name.replace('norm1' , 'batchnorm_before' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): _lowercase =new_name.replace('norm2' , 'batchnorm_after' ) if "proj" in new_name: _lowercase =new_name.replace('proj' , 'projection' ) if "dist_head" in new_name: _lowercase =new_name.replace('dist_head' , 'distillation_classifier' ) elif "head" in new_name: _lowercase =new_name.replace('head' , 'classifier' ) elif "patch_embed" in new_name: _lowercase ='efficientformer.' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": _lowercase =new_name.replace('norm' , 'layernorm' ) _lowercase ='efficientformer.' + new_name else: _lowercase ='efficientformer.encoder.' + new_name return new_name def a ( A__ : Optional[int] , A__ : List[Any] ) -> Union[str, Any]: """simple docstring""" for key in checkpoint.copy().keys(): _lowercase =checkpoint.pop(A__ ) _lowercase =val return checkpoint def a ( ) -> Union[str, Any]: """simple docstring""" _lowercase ='http://images.cocodataset.org/val2017/000000039769.jpg' _lowercase =Image.open(requests.get(A__ , stream=A__ ).raw ) return image def a ( A__ : Path , A__ : Path , A__ : Path , A__ : bool ) -> Union[str, Any]: """simple docstring""" _lowercase =torch.load(A__ , map_location='cpu' )['model'] _lowercase =EfficientFormerConfig.from_json_file(A__ ) _lowercase =EfficientFormerForImageClassificationWithTeacher(A__ ) _lowercase ='_'.join(checkpoint_path.split('/' )[-1].split('.' )[0].split('_' )[:-1] ) _lowercase =config.depths[-1] - config.num_metaad_blocks + 1 _lowercase =convert_torch_checkpoint(A__ , A__ ) model.load_state_dict(A__ ) model.eval() _lowercase ={ 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } # prepare image _lowercase =prepare_img() _lowercase =256 _lowercase =224 _lowercase =EfficientFormerImageProcessor( size={'shortest_edge': image_size} , crop_size={'height': crop_size, 'width': crop_size} , resample=pillow_resamplings['bicubic'] , ) _lowercase =processor(images=A__ , return_tensors='pt' ).pixel_values # original processing pipeline _lowercase =Compose( [ Resize(A__ , interpolation=pillow_resamplings['bicubic'] ), CenterCrop(A__ ), ToTensor(), Normalize(A__ , A__ ), ] ) _lowercase =image_transforms(A__ ).unsqueeze(0 ) assert torch.allclose(A__ , A__ ) _lowercase =model(A__ ) _lowercase =outputs.logits _lowercase =(1, 1000) if "l1" in model_name: _lowercase =torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , A__ , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: _lowercase =torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , A__ , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: _lowercase =torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( F'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' ) # Save Checkpoints Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) processor.save_pretrained(A__ ) print(F'''Processor successfuly saved at {pytorch_dump_path}''' ) if push_to_hub: print('Pushing model to the hub...' ) model.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message='Add model' , use_temp_dir=A__ , ) processor.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message='Add image processor' , use_temp_dir=A__ , ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) lowercase_ = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
205
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowercase_ = data_utils.TransfoXLTokenizer lowercase_ = data_utils.TransfoXLCorpus lowercase_ = data_utils lowercase_ = data_utils def a ( A__ : int , A__ : Dict , A__ : Union[str, Any] , A__ : Union[str, Any] ) -> List[str]: """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(A__ , 'rb' ) as fp: _lowercase =pickle.load(A__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) _lowercase =pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' ) _lowercase =corpus.vocab.__dict__ torch.save(A__ , A__ ) _lowercase =corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , A__ ) _lowercase =pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(A__ , A__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model _lowercase =os.path.abspath(A__ ) _lowercase =os.path.abspath(A__ ) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": _lowercase =TransfoXLConfig() else: _lowercase =TransfoXLConfig.from_json_file(A__ ) print(F'''Building PyTorch model from configuration: {config}''' ) _lowercase =TransfoXLLMHeadModel(A__ ) _lowercase =load_tf_weights_in_transfo_xl(A__ , A__ , A__ ) # Save pytorch-model _lowercase =os.path.join(A__ , A__ ) _lowercase =os.path.join(A__ , A__ ) print(F'''Save PyTorch model to {os.path.abspath(A__ )}''' ) torch.save(model.state_dict() , A__ ) print(F'''Save configuration file to {os.path.abspath(A__ )}''' ) with open(A__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) lowercase_ = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
205
1
def UpperCamelCase_( _snake_case : int = 50 ): """simple docstring""" __a =[1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
308
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) _lowerCAmelCase : Optional[Any] = "Hello world! cécé herlolip" _lowerCAmelCase : str = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCamelCase_( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" __a =BertAbsConfig( temp_dir='.' , finetune_bert=_snake_case , large=_snake_case , share_emb=_snake_case , use_bert_emb=_snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __a =torch.load(_snake_case , lambda _snake_case , _snake_case : storage ) __a =AbsSummarizer(_snake_case , torch.device('cpu' ) , _snake_case ) original.eval() __a =BertAbsSummarizer(_snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) __a =BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs __a =tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) __a =tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __a =encoder_input_ids __a =decoder_input_ids __a =__a =None __a =None __a =__a =None __a =__a =None __a =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __a =original(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =original.generator(_snake_case ) __a =new_model( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =new_model.generator(_snake_case ) __a =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.allclose(_snake_case , _snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
308
1
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class a ( lowercase__ ): """simple docstring""" a : Optional[Any] = ComputeEnvironment.AMAZON_SAGEMAKER a : Union[str, Any] = True a : Optional[Any] = 'ml.p3.2xlarge' a : List[Any] = 'accelerate_sagemaker_execution_role' a : Any = 'hf-sm' a : Optional[int] = 'us-east-1' a : str = 1 a : Dict = 'accelerate-sagemaker-1' a : str = '1.6' a : Dict = '4.4' a : List[str] = 'train.py' a : Optional[int] = [ '--model_name_or_path', 'bert', '--do_train', 'False', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] a : Union[str, Any] = [ '--model_name_or_path', 'bert', '--do_train', '--do_test', 'False', '--do_predict', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self : Tuple ) -> Tuple: # If no defaults are changed, `to_kwargs` returns an empty dict. __UpperCAmelCase : Any = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] , __lowercase ) assert isinstance(converted_args["""do_train"""] , __lowercase ) assert isinstance(converted_args["""epochs"""] , __lowercase ) assert isinstance(converted_args["""learning_rate"""] , __lowercase ) assert isinstance(converted_args["""max_steps"""] , __lowercase ) with pytest.raises(__lowercase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
114
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a : Union[str, Any] = logging.get_logger(__name__) class a ( lowercase__ ): """simple docstring""" a : Any = ['pixel_values'] def __init__( self : Optional[int] , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : int = 0.9 , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : Union[int, float] = 1 / 255 , __lowercase : bool = True , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Any , ) -> None: super().__init__(**__lowercase ) __UpperCAmelCase : Tuple = size if size is not None else {"""shortest_edge""": 224} __UpperCAmelCase : Union[str, Any] = get_size_dict(__lowercase , default_to_square=__lowercase ) __UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : Any = get_size_dict(__lowercase , param_name="""crop_size""" ) __UpperCAmelCase : Dict = do_resize __UpperCAmelCase : Dict = size __UpperCAmelCase : Tuple = crop_pct __UpperCAmelCase : List[Any] = resample __UpperCAmelCase : List[Any] = do_center_crop __UpperCAmelCase : List[Any] = crop_size __UpperCAmelCase : Any = do_rescale __UpperCAmelCase : Tuple = rescale_factor __UpperCAmelCase : int = do_normalize __UpperCAmelCase : List[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCAmelCase : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self : Tuple , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[float] = None , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[int] , ) -> np.ndarray: __UpperCAmelCase : Tuple = get_size_dict(__lowercase , default_to_square=__lowercase ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) if crop_pct is not None: if "shortest_edge" in size: __UpperCAmelCase : Union[str, Any] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __UpperCAmelCase : Tuple = int(size["""height"""] / crop_pct ) else: __UpperCAmelCase : str = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(__lowercase ) ) __UpperCAmelCase : str = get_resize_output_image_size(__lowercase , size=__lowercase , default_to_square=__lowercase ) else: if "shortest_edge" in size: __UpperCAmelCase : List[str] = get_resize_output_image_size(__lowercase , size=size["""shortest_edge"""] , default_to_square=__lowercase ) elif "height" in size and "width" in size: __UpperCAmelCase : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(__lowercase ) ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCAmelCase ( self : Dict , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Union[str, Any] , ) -> np.ndarray: __UpperCAmelCase : Optional[Any] = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(__lowercase , size=(size["""height"""], size["""width"""]) , data_format=__lowercase , **__lowercase ) def UpperCAmelCase ( self : List[str] , __lowercase : np.ndarray , __lowercase : Union[int, float] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : int , ) -> int: return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCAmelCase ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] , ) -> np.ndarray: return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCAmelCase ( self : Any , __lowercase : ImageInput , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : int = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : bool = None , __lowercase : float = None , __lowercase : bool = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : ChannelDimension = ChannelDimension.FIRST , **__lowercase : List[str] , ) -> PIL.Image.Image: __UpperCAmelCase : Any = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct __UpperCAmelCase : Optional[Any] = resample if resample is not None else self.resample __UpperCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Tuple = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Any = image_std if image_std is not None else self.image_std __UpperCAmelCase : Optional[int] = size if size is not None else self.size __UpperCAmelCase : Dict = get_size_dict(__lowercase , default_to_square=__lowercase ) __UpperCAmelCase : Tuple = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : Tuple = get_size_dict(__lowercase , param_name="""crop_size""" ) __UpperCAmelCase : Dict = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase : str = [to_numpy_array(__lowercase ) for image in images] if do_resize: __UpperCAmelCase : str = [self.resize(image=__lowercase , size=__lowercase , crop_pct=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: __UpperCAmelCase : Any = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: __UpperCAmelCase : List[str] = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: __UpperCAmelCase : str = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] __UpperCAmelCase : List[str] = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __UpperCAmelCase : Any = {"""pixel_values""": images} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
114
1
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = LEDTokenizer UpperCAmelCase = LEDTokenizerFast UpperCAmelCase = True def _snake_case ( self ) -> Any: super().setUp() _UpperCAmelCase : Optional[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _UpperCAmelCase : List[str] = dict(zip(a_ ,range(len(a_ ) ) ) ) _UpperCAmelCase : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _UpperCAmelCase : Optional[int] = {"""unk_token""": """<unk>"""} _UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _UpperCAmelCase : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(a_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a_ ) ) def _snake_case ( self ,**a_ ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**a_ ) def _snake_case ( self ,**a_ ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**a_ ) def _snake_case ( self ,a_ ) -> int: return "lower newer", "lower newer" @cached_property def _snake_case ( self ) -> str: return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def _snake_case ( self ) -> List[Any]: return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Any = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _UpperCAmelCase : Optional[Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : List[Any] = tokenizer(a_ ,max_length=len(a_ ) ,padding=a_ ,return_tensors="""pt""" ) self.assertIsInstance(a_ ,a_ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _UpperCAmelCase : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(a_ ,a_ ) @require_torch def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : int = tokenizer(a_ ,padding=a_ ,return_tensors="""pt""" ) self.assertIn("""input_ids""" ,a_ ) self.assertIn("""attention_mask""" ,a_ ) self.assertNotIn("""labels""" ,a_ ) self.assertNotIn("""decoder_attention_mask""" ,a_ ) @require_torch def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Optional[int] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : Optional[int] = tokenizer(text_target=a_ ,max_length=32 ,padding="""max_length""" ,return_tensors="""pt""" ) self.assertEqual(32 ,targets["""input_ids"""].shape[1] ) @require_torch def _snake_case ( self ) -> Tuple: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : List[str] = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] ,padding=a_ ,truncation=a_ ,return_tensors="""pt""" ) self.assertIsInstance(a_ ,a_ ) self.assertEqual(batch.input_ids.shape ,(2, 5_122) ) @require_torch def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Optional[int] = ["""A long paragraph for summarization."""] _UpperCAmelCase : str = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : Any = tokenizer(a_ ,return_tensors="""pt""" ) _UpperCAmelCase : Any = tokenizer(text_target=a_ ,return_tensors="""pt""" ) _UpperCAmelCase : List[str] = inputs["""input_ids"""] _UpperCAmelCase : int = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _snake_case ( self ) -> List[Any]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase : List[Any] = ["""Summary of the text.""", """Another summary."""] _UpperCAmelCase : int = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _UpperCAmelCase : Any = tokenizer(a_ ,padding=a_ ) _UpperCAmelCase : Any = [[0] * len(a_ ) for x in encoded_output["""input_ids"""]] _UpperCAmelCase : Optional[int] = tokenizer.pad(a_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] ,a_ ) def _snake_case ( self ) -> List[str]: pass def _snake_case ( self ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained(a_ ,**a_ ) _UpperCAmelCase : str = self.tokenizer_class.from_pretrained(a_ ,**a_ ) _UpperCAmelCase : int = """A, <mask> AllenNLP sentence.""" _UpperCAmelCase : str = tokenizer_r.encode_plus(a_ ,add_special_tokens=a_ ,return_token_type_ids=a_ ) _UpperCAmelCase : List[Any] = tokenizer_p.encode_plus(a_ ,add_special_tokens=a_ ,return_token_type_ids=a_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) _UpperCAmelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _UpperCAmelCase : Optional[int] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( a_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( a_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
361
'''simple docstring''' A_ : Optional[Any] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
349
0
from __future__ import annotations def snake_case_ ( snake_case , snake_case ) -> list[int]: lowercase__: List[str] = 0 lowercase__: Dict = len(snake_case ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowercase__: Dict = i + 1 else: lowercase__: List[Any] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'''{two_pointer([2, 7, 11, 15], 9) = }''')
196
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def snake_case_ ( snake_case=32 , snake_case=10 , snake_case=1_00 , snake_case=10_26 , snake_case=True , snake_case="data/tokenized_stories_train_wikitext103.jbl" , snake_case="igf_context_pairs.jbl" , ) -> Union[str, Any]: set_seed(3 ) # generate train_data and objective_set lowercase__ , lowercase__: List[str] = generate_datasets( snake_case , snake_case , number=snake_case , min_len=10_26 , trim=snake_case ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowercase__: Optional[Any] = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model lowercase__: str = load_gpta('gpt2' ).to(snake_case ) print('computing perplexity on objective set' ) lowercase__: int = compute_perplexity(snake_case , snake_case , snake_case ).item() print('perplexity on objective set:' , snake_case ) # collect igf pairs and save to file demo.jbl collect_objective_set(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def snake_case_ ( snake_case , snake_case=15 , snake_case=1_28 , snake_case=1_00 , snake_case="igf_model.pt" , ) -> Optional[Any]: set_seed(42 ) # Load pre-trained model lowercase__: Any = GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model lowercase__: Any = SecondaryLearner(snake_case ) # Train secondary learner lowercase__: Tuple = train_secondary_learner( snake_case , snake_case , max_epochs=snake_case , batch_size=snake_case , eval_freq=1_00 , igf_model_path=snake_case , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def snake_case_ ( snake_case , snake_case , snake_case , snake_case=32 , snake_case=10_00 , snake_case=16 , snake_case=1.0 , snake_case=recopy_gpta , snake_case=None , snake_case=10 , snake_case="gpt2_finetuned.pt" , ) -> Tuple: lowercase__: Dict = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) lowercase__: Optional[int] = RandomSampler(snake_case ) lowercase__: Optional[int] = DataLoader(snake_case , sampler=snake_case ) lowercase__: int = max_steps // (len(snake_case )) + 1 lowercase__: Union[str, Any] = 0 lowercase__: Optional[Any] = torch.zeros((1, context_len) , dtype=torch.long , device=snake_case ) lowercase__ , lowercase__ , lowercase__: Union[str, Any] = recopy_model(snake_case , snake_case , snake_case ) model.train() if secondary_learner is not None: secondary_learner.to(snake_case ) secondary_learner.eval() lowercase__: List[Any] = [] lowercase__: str = 0 lowercase__: Tuple = [] lowercase__: Dict = [] # Compute the performance of the transformer model at the beginning lowercase__: Optional[Any] = compute_perplexity(snake_case , snake_case , snake_case ) test_perps.append(snake_case ) print('Test perplexity, step' , snake_case , ':' , snake_case ) for epoch in range(int(snake_case ) ): for step, example in enumerate(snake_case ): torch.cuda.empty_cache() lowercase__: Union[str, Any] = random.randint(0 , example.size(2 ) - context_len - 1 ) lowercase__: Dict = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowercase__: Union[str, Any] = model(snake_case , labels=snake_case ) lowercase__: Tuple = True if secondary_learner is not None: lowercase__: Optional[Any] = secondary_learner.forward( torch.tensor(snake_case , dtype=torch.long , device=snake_case ).unsqueeze(0 ) )[0].item() observed_qs.append(float(snake_case ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: lowercase__: Optional[Any] = -1 if predicted_q < threshold: lowercase__: str = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) lowercase__: List[Any] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowercase__: Any = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowercase__: int = compute_perplexity(snake_case , snake_case , snake_case ) test_perps.append(snake_case ) print('Test perplexity, step' , snake_case , ':' , snake_case ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , snake_case ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def snake_case_ ( ) -> str: lowercase__: Tuple = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir' , default=snake_case , type=snake_case , required=snake_case , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=snake_case , type=snake_case , required=snake_case , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=snake_case , default=snake_case , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=snake_case , default=snake_case , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=snake_case , type=snake_case , required=snake_case , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=snake_case , type=snake_case , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=snake_case , default=snake_case , help='A seed for reproducible training.' ) parser.add_argument( '--context_len' , default=32 , type=snake_case , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=1_00 , type=snake_case , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=1_00 , type=snake_case , help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps' , default=10_00 , type=snake_case , help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size' , default=1_28 , type=snake_case , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=snake_case , help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval' , default=10 , type=snake_case , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=1_00 , type=snake_case , help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len' , default=10_26 , type=snake_case , help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=snake_case , help='number of epochs to train secondary learner' ) parser.add_argument('--trim' , default=snake_case , type=snake_case , help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold' , default=1.0 , type=snake_case , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=snake_case , help='finetuned_model_name' ) parser.add_argument( '--recopy_model' , default=snake_case , type=snake_case , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=snake_case , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner lowercase__: Tuple = joblib.load('data/IGF_values.jbl' ) # Train secondary learner lowercase__: List[str] = training_secondary_learner( snake_case , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model lowercase__: Dict = GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model lowercase__ , lowercase__: Tuple = generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=1_00 , min_len=10_26 , trim=snake_case ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( snake_case , snake_case , snake_case , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=snake_case , secondary_learner=snake_case , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
196
1
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : List[str] = logging.get_logger(__name__) lowerCAmelCase_ : int = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } lowerCAmelCase_ : Union[str, Any] = { 'b0': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 2_24, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 2_40, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 14_08, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 2_60, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 15_36, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 3_00, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 17_92, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 3_80, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 20_48, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 4_56, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 23_04, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 5_28, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 25_60, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 6_00, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def _lowerCamelCase ( lowercase : int ) -> Any: _a = EfficientNetConfig() _a = CONFIG_MAP[model_name]["hidden_dim"] _a = CONFIG_MAP[model_name]["width_coef"] _a = CONFIG_MAP[model_name]["depth_coef"] _a = CONFIG_MAP[model_name]["image_size"] _a = CONFIG_MAP[model_name]["dropout_rate"] _a = CONFIG_MAP[model_name]["dw_padding"] _a = "huggingface/label-files" _a = "imagenet-1k-id2label.json" _a = 1000 _a = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) _a = {int(lowercase ): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} return config def _lowerCamelCase ( ) -> Any: _a = "http://images.cocodataset.org/val2017/000000039769.jpg" _a = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def _lowerCamelCase ( lowercase : Union[str, Any] ) -> str: _a = CONFIG_MAP[model_name]["image_size"] _a = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=lowercase , ) return preprocessor def _lowerCamelCase ( lowercase : Union[str, Any] ) -> List[Any]: _a = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] _a = sorted(set(lowercase ) ) _a = len(lowercase ) _a = {b: str(lowercase ) for b, i in zip(lowercase , range(lowercase ) )} _a = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: _a = block_name_mapping[b] rename_keys.append((F'block{b}_expand_conv/kernel:0', F'encoder.blocks.{hf_b}.expansion.expand_conv.weight') ) rename_keys.append((F'block{b}_expand_bn/gamma:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.weight') ) rename_keys.append((F'block{b}_expand_bn/beta:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.bias') ) rename_keys.append( (F'block{b}_expand_bn/moving_mean:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.running_mean') ) rename_keys.append( (F'block{b}_expand_bn/moving_variance:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.running_var') ) rename_keys.append( (F'block{b}_dwconv/depthwise_kernel:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight') ) rename_keys.append((F'block{b}_bn/gamma:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight') ) rename_keys.append((F'block{b}_bn/beta:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias') ) rename_keys.append( (F'block{b}_bn/moving_mean:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean') ) rename_keys.append( (F'block{b}_bn/moving_variance:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var') ) rename_keys.append((F'block{b}_se_reduce/kernel:0', F'encoder.blocks.{hf_b}.squeeze_excite.reduce.weight') ) rename_keys.append((F'block{b}_se_reduce/bias:0', F'encoder.blocks.{hf_b}.squeeze_excite.reduce.bias') ) rename_keys.append((F'block{b}_se_expand/kernel:0', F'encoder.blocks.{hf_b}.squeeze_excite.expand.weight') ) rename_keys.append((F'block{b}_se_expand/bias:0', F'encoder.blocks.{hf_b}.squeeze_excite.expand.bias') ) rename_keys.append( (F'block{b}_project_conv/kernel:0', F'encoder.blocks.{hf_b}.projection.project_conv.weight') ) rename_keys.append((F'block{b}_project_bn/gamma:0', F'encoder.blocks.{hf_b}.projection.project_bn.weight') ) rename_keys.append((F'block{b}_project_bn/beta:0', F'encoder.blocks.{hf_b}.projection.project_bn.bias') ) rename_keys.append( (F'block{b}_project_bn/moving_mean:0', F'encoder.blocks.{hf_b}.projection.project_bn.running_mean') ) rename_keys.append( (F'block{b}_project_bn/moving_variance:0', F'encoder.blocks.{hf_b}.projection.project_bn.running_var') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) _a = {} for item in rename_keys: if item[0] in original_param_names: _a = "efficientnet." + item[1] _a = "classifier.weight" _a = "classifier.bias" return key_mapping def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : int , lowercase : str ) -> Optional[int]: for key, value in tf_params.items(): if "normalization" in key: continue _a = key_mapping[key] if "_conv" in key and "kernel" in key: _a = torch.from_numpy(lowercase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: _a = torch.from_numpy(lowercase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: _a = torch.from_numpy(np.transpose(lowercase ) ) else: _a = torch.from_numpy(lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase ) @torch.no_grad() def _lowerCamelCase ( lowercase : Any , lowercase : List[str] , lowercase : int , lowercase : List[Any] ) -> Optional[Any]: _a = model_classes[model_name]( include_top=lowercase , weights="imagenet" , input_tensor=lowercase , input_shape=lowercase , pooling=lowercase , classes=1000 , classifier_activation="softmax" , ) _a = original_model.trainable_variables _a = original_model.non_trainable_variables _a = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _a = param.numpy() _a = list(tf_params.keys() ) # Load HuggingFace model _a = get_efficientnet_config(lowercase ) _a = EfficientNetForImageClassification(lowercase ).eval() _a = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) _a = rename_keys(lowercase ) replace_params(lowercase , lowercase , lowercase ) # Initialize preprocessor and preprocess input image _a = convert_image_processor(lowercase ) _a = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): _a = hf_model(**lowercase ) _a = outputs.logits.detach().numpy() # Original model inference _a = False _a = CONFIG_MAP[model_name]["image_size"] _a = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) _a = image.img_to_array(lowercase ) _a = np.expand_dims(lowercase , axis=0 ) _a = original_model.predict(lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase , lowercase , atol=1E-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(lowercase ): os.mkdir(lowercase ) # Save converted model and image processor hf_model.save_pretrained(lowercase ) preprocessor.save_pretrained(lowercase ) if push_to_hub: # Push model and image processor to hub print(F'Pushing converted {model_name} to the hub...' ) _a = F'efficientnet-{model_name}' preprocessor.push_to_hub(lowercase ) hf_model.push_to_hub(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') lowerCAmelCase_ : List[Any] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
362
'''simple docstring''' def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Union[str, Any]: _enforce_args(lowercase , lowercase ) if n == 0: return 0 _a = float("-inf" ) for i in range(1 , n + 1 ): _a = max( lowercase , prices[i - 1] + naive_cut_rod_recursive(n - i , lowercase ) ) return max_revue def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Tuple: _enforce_args(lowercase , lowercase ) _a = [float("-inf" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(lowercase , lowercase , lowercase ) def _lowerCamelCase ( lowercase : int , lowercase : list , lowercase : list ) -> List[str]: if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _a = float("-inf" ) for i in range(1 , n + 1 ): _a = max( lowercase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , lowercase , lowercase ) , ) _a = max_revenue return max_rev[n] def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Any: _enforce_args(lowercase , lowercase ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _a = [float("-inf" ) for _ in range(n + 1 )] _a = 0 for i in range(1 , n + 1 ): _a = max_rev[i] for j in range(1 , i + 1 ): _a = max(lowercase , prices[j - 1] + max_rev[i - j] ) _a = max_revenue_i return max_rev[n] def _lowerCamelCase ( lowercase : int , lowercase : list ) -> Dict: if n < 0: _a = F'n must be greater than or equal to 0. Got n = {n}' raise ValueError(lowercase ) if n > len(lowercase ): _a = ( "Each integral piece of rod must have a corresponding price. " F'Got n = {n} but length of prices = {len(lowercase )}' ) raise ValueError(lowercase ) def _lowerCamelCase ( ) -> Any: _a = [6, 10, 12, 15, 20, 23] _a = len(lowercase ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _a = 36 _a = top_down_cut_rod(lowercase , lowercase ) _a = bottom_up_cut_rod(lowercase , lowercase ) _a = naive_cut_rod_recursive(lowercase , lowercase ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
346
0
"""simple docstring""" from collections import defaultdict def lowercase ( __snake_case : str , __snake_case : str ): lowercase_ : int = first_str.lower().strip() lowercase_ : Any = second_str.lower().strip() # Remove whitespace lowercase_ : int = first_str.replace(''' ''' , '''''' ) lowercase_ : Optional[int] = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(__snake_case ) != len(__snake_case ): return False # Default values for count should be 0 lowercase_ : defaultdict[str, int] = defaultdict(__snake_case ) # For each character in input strings, # increment count in the corresponding for i in range(len(__snake_case ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __A : Optional[Any] = input('''Enter the first string ''').strip() __A : Any = input('''Enter the second string ''').strip() __A : Any = check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {'' if status else 'not '}anagrams.""")
33
'''simple docstring''' class __snake_case : """simple docstring""" def __init__( self : int , lowerCamelCase : int , lowerCamelCase : int=None , lowerCamelCase : int=None ) -> str: lowerCAmelCase_ : str = data lowerCAmelCase_ : Optional[Any] = previous lowerCAmelCase_ : int = next_node def __str__( self : Any ) -> str: return F'{self.data}' def __lowercase ( self : Optional[Any] ) -> int: return self.data def __lowercase ( self : str ) -> List[str]: return self.next def __lowercase ( self : int ) -> Optional[int]: return self.previous class __snake_case : """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : Optional[int] ) -> Optional[Any]: lowerCAmelCase_ : Optional[Any] = head def __iter__( self : str ) -> Optional[Any]: return self def __lowercase ( self : Union[str, Any] ) -> Dict: if not self.current: raise StopIteration else: lowerCAmelCase_ : Dict = self.current.get_data() lowerCAmelCase_ : Tuple = self.current.get_next() return value class __snake_case : """simple docstring""" def __init__( self : Union[str, Any] ) -> Any: lowerCAmelCase_ : Optional[Any] = None # First node in list lowerCAmelCase_ : Optional[Any] = None # Last node in list def __str__( self : Optional[int] ) -> Dict: lowerCAmelCase_ : str = self.head lowerCAmelCase_ : Tuple = [] while current is not None: nodes.append(current.get_data() ) lowerCAmelCase_ : str = current.get_next() return " ".join(str(lowerCamelCase ) for node in nodes ) def __contains__( self : List[Any] , lowerCamelCase : int ) -> List[str]: lowerCAmelCase_ : List[str] = self.head while current: if current.get_data() == value: return True lowerCAmelCase_ : List[Any] = current.get_next() return False def __iter__( self : str ) -> Optional[Any]: return LinkedListIterator(self.head ) def __lowercase ( self : Dict ) -> Optional[int]: if self.head: return self.head.get_data() return None def __lowercase ( self : List[str] ) -> Optional[Any]: if self.tail: return self.tail.get_data() return None def __lowercase ( self : Optional[Any] , lowerCamelCase : Node ) -> None: if self.head is None: lowerCAmelCase_ : Union[str, Any] = node lowerCAmelCase_ : List[str] = node else: self.insert_before_node(self.head , lowerCamelCase ) def __lowercase ( self : Tuple , lowerCamelCase : Node ) -> None: if self.head is None: self.set_head(lowerCamelCase ) else: self.insert_after_node(self.tail , lowerCamelCase ) def __lowercase ( self : Union[str, Any] , lowerCamelCase : int ) -> None: lowerCAmelCase_ : int = Node(lowerCamelCase ) if self.head is None: self.set_head(lowerCamelCase ) else: self.set_tail(lowerCamelCase ) def __lowercase ( self : Optional[Any] , lowerCamelCase : Node , lowerCamelCase : Node ) -> None: lowerCAmelCase_ : Optional[int] = node lowerCAmelCase_ : List[Any] = node.previous if node.get_previous() is None: lowerCAmelCase_ : Tuple = node_to_insert else: lowerCAmelCase_ : Dict = node_to_insert lowerCAmelCase_ : Optional[int] = node_to_insert def __lowercase ( self : Union[str, Any] , lowerCamelCase : Node , lowerCamelCase : Node ) -> None: lowerCAmelCase_ : Optional[int] = node lowerCAmelCase_ : Tuple = node.next if node.get_next() is None: lowerCAmelCase_ : Tuple = node_to_insert else: lowerCAmelCase_ : Tuple = node_to_insert lowerCAmelCase_ : Optional[Any] = node_to_insert def __lowercase ( self : Dict , lowerCamelCase : int , lowerCamelCase : int ) -> None: lowerCAmelCase_ : List[str] = 1 lowerCAmelCase_ : Tuple = Node(lowerCamelCase ) lowerCAmelCase_ : List[Any] = self.head while node: if current_position == position: self.insert_before_node(lowerCamelCase , lowerCamelCase ) return current_position += 1 lowerCAmelCase_ : str = node.next self.insert_after_node(self.tail , lowerCamelCase ) def __lowercase ( self : int , lowerCamelCase : int ) -> Node: lowerCAmelCase_ : List[Any] = self.head while node: if node.get_data() == item: return node lowerCAmelCase_ : List[Any] = node.get_next() raise Exception("""Node not found""" ) def __lowercase ( self : str , lowerCamelCase : str ) -> int: if (node := self.get_node(lowerCamelCase )) is not None: if node == self.head: lowerCAmelCase_ : Any = self.head.get_next() if node == self.tail: lowerCAmelCase_ : Optional[int] = self.tail.get_previous() self.remove_node_pointers(lowerCamelCase ) @staticmethod def __lowercase ( lowerCamelCase : Node ) -> None: if node.get_next(): lowerCAmelCase_ : Tuple = node.previous if node.get_previous(): lowerCAmelCase_ : Any = node.next lowerCAmelCase_ : List[Any] = None lowerCAmelCase_ : Any = None def __lowercase ( self : str ) -> Optional[Any]: return self.head is None def UpperCamelCase_ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
120
0
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : List[str] = SpeechTaTokenizer UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Dict = True def lowerCAmelCase__ ( self: Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase = SpeechTaTokenizer(UpperCamelCase_ ) __lowerCamelCase = AddedToken("""<mask>""" , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) __lowerCamelCase = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = """this is a test""" __lowerCamelCase = """this is a test""" return input_text, output_text def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: List[str]=False , UpperCamelCase_: Any=20 , UpperCamelCase_: Tuple=5 ): __lowerCamelCase, __lowerCamelCase = self.get_input_output_texts(UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) return text, ids def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = """<pad>""" __lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-4] , """œ""" ) self.assertEqual(vocab_keys[-2] , """<mask>""" ) self.assertEqual(vocab_keys[-1] , """<ctc_blank>""" ) self.assertEqual(len(UpperCamelCase_ ) , 81 ) def lowerCAmelCase__ ( self: str ): self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_tokenizers(do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __lowerCamelCase = tokenizer.vocab_size __lowerCamelCase = len(UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __lowerCamelCase = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] __lowerCamelCase = tokenizer.add_tokens(UpperCamelCase_ ) __lowerCamelCase = tokenizer.vocab_size __lowerCamelCase = len(UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ , 0 ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , len(UpperCamelCase_ ) ) self.assertEqual(UpperCamelCase_ , all_size + len(UpperCamelCase_ ) ) __lowerCamelCase = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=UpperCamelCase_ ) self.assertGreaterEqual(len(UpperCamelCase_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) __lowerCamelCase = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} __lowerCamelCase = tokenizer.add_special_tokens(UpperCamelCase_ ) __lowerCamelCase = tokenizer.vocab_size __lowerCamelCase = len(UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ , 0 ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , len(UpperCamelCase_ ) ) self.assertEqual(UpperCamelCase_ , all_size_a + len(UpperCamelCase_ ) ) __lowerCamelCase = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=UpperCamelCase_ ) self.assertGreaterEqual(len(UpperCamelCase_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def lowerCAmelCase__ ( self: Union[str, Any] ): pass def lowerCAmelCase__ ( self: str ): pass def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = tokenizer.tokenize("""This is a test""" ) # fmt: off self.assertListEqual(UpperCamelCase_ , [SPIECE_UNDERLINE, """T""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """a""", SPIECE_UNDERLINE, """t""", """e""", """s""", """t"""] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) __lowerCamelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase_ , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """92000""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) # fmt: off self.assertListEqual(UpperCamelCase_ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on __lowerCamelCase = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """<unk>""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] ) @slow def lowerCAmelCase__ ( self: str ): # Use custom sequence because this tokenizer does not handle numbers. __lowerCamelCase = [ """Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides """ """general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural """ """Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained """ """models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.""", """BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly """ """conditioning on both left and right context in all layers.""", """The quick brown fox jumps over the lazy dog.""", ] # fmt: off __lowerCamelCase = { """input_ids""": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name="""microsoft/speecht5_asr""" , revision="""c5ef64c71905caeccde0e4462ef3f9077224c524""" , sequences=UpperCamelCase_ , )
29
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = 'yolos' def __init__( self: Dict , UpperCamelCase_: List[Any]=7_68 , UpperCamelCase_: Tuple=12 , UpperCamelCase_: int=12 , UpperCamelCase_: int=30_72 , UpperCamelCase_: List[str]="gelu" , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: int=0.0 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: Dict=1E-12 , UpperCamelCase_: List[Any]=[5_12, 8_64] , UpperCamelCase_: Optional[int]=16 , UpperCamelCase_: Any=3 , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: List[str]=1_00 , UpperCamelCase_: List[str]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[Any]=1 , UpperCamelCase_: Any=5 , UpperCamelCase_: Any=2 , UpperCamelCase_: Tuple=5 , UpperCamelCase_: str=2 , UpperCamelCase_: Any=0.1 , **UpperCamelCase_: Any , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = qkv_bias __lowerCamelCase = num_detection_tokens __lowerCamelCase = use_mid_position_embeddings __lowerCamelCase = auxiliary_loss # Hungarian matcher __lowerCamelCase = class_cost __lowerCamelCase = bbox_cost __lowerCamelCase = giou_cost # Loss coefficients __lowerCamelCase = bbox_loss_coefficient __lowerCamelCase = giou_loss_coefficient __lowerCamelCase = eos_coefficient class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = version.parse('1.11') @property def lowerCAmelCase__ ( self: Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self: Dict ): return 1E-4 @property def lowerCAmelCase__ ( self: Dict ): return 12
29
1
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _A ( _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : int = AudioLDMPipeline _UpperCamelCase : Tuple = TEXT_TO_AUDIO_PARAMS _UpperCamelCase : int = TEXT_TO_AUDIO_BATCH_PARAMS _UpperCamelCase : int = frozenset( [ '''num_inference_steps''', '''num_waveforms_per_prompt''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) lowercase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=(32, 64) , class_embed_type='''simple_projection''' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=_A , ) lowercase : Tuple = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) lowercase : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase : str = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , projection_dim=32 , ) lowercase : Optional[Any] = ClapTextModelWithProjection(_A ) lowercase : Any = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' , model_max_length=77 ) lowercase : Dict = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16_000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=_A , ) lowercase : Any = SpeechTaHifiGan(_A ) lowercase : List[str] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''vocoder''': vocoder, } return components def __a ( self : Union[str, Any] , _A : str , _A : Any=0 ) -> Union[str, Any]: """simple docstring""" if str(_A ).startswith('''mps''' ): lowercase : Union[str, Any] = torch.manual_seed(_A ) else: lowercase : Dict = torch.Generator(device=_A ).manual_seed(_A ) lowercase : int = { '''prompt''': '''A hammer hitting a wooden surface''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, } return inputs def __a ( self : Union[str, Any] ) -> int: """simple docstring""" lowercase : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : Optional[Any] = self.get_dummy_components() lowercase : int = AudioLDMPipeline(**_A ) lowercase : int = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) lowercase : Dict = self.get_dummy_inputs(_A ) lowercase : Dict = audioldm_pipe(**_A ) lowercase : Tuple = output.audios[0] assert audio.ndim == 1 assert len(_A ) == 256 lowercase : int = audio[:10] lowercase : Any = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def __a ( self : List[str] ) -> str: """simple docstring""" lowercase : Optional[int] = self.get_dummy_components() lowercase : Union[str, Any] = AudioLDMPipeline(**_A ) lowercase : Any = audioldm_pipe.to(_A ) lowercase : Union[str, Any] = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) lowercase : Optional[Any] = self.get_dummy_inputs(_A ) lowercase : Tuple = 3 * [inputs['''prompt''']] # forward lowercase : Any = audioldm_pipe(**_A ) lowercase : Optional[Any] = output.audios[0] lowercase : Any = self.get_dummy_inputs(_A ) lowercase : Any = 3 * [inputs.pop('''prompt''' )] lowercase : Optional[Any] = audioldm_pipe.tokenizer( _A , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_A , return_tensors='''pt''' , ) lowercase : Any = text_inputs['''input_ids'''].to(_A ) lowercase : Union[str, Any] = audioldm_pipe.text_encoder( _A , ) lowercase : Optional[int] = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state lowercase : str = F.normalize(_A , dim=-1 ) lowercase : List[str] = prompt_embeds # forward lowercase : Dict = audioldm_pipe(**_A ) lowercase : Tuple = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def __a ( self : Optional[Any] ) -> Any: """simple docstring""" lowercase : Tuple = self.get_dummy_components() lowercase : Optional[Any] = AudioLDMPipeline(**_A ) lowercase : Tuple = audioldm_pipe.to(_A ) lowercase : int = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) lowercase : List[str] = self.get_dummy_inputs(_A ) lowercase : str = 3 * ['''this is a negative prompt'''] lowercase : Any = negative_prompt lowercase : Any = 3 * [inputs['''prompt''']] # forward lowercase : List[str] = audioldm_pipe(**_A ) lowercase : List[str] = output.audios[0] lowercase : Optional[Any] = self.get_dummy_inputs(_A ) lowercase : Union[str, Any] = 3 * [inputs.pop('''prompt''' )] lowercase : Dict = [] for p in [prompt, negative_prompt]: lowercase : List[str] = audioldm_pipe.tokenizer( _A , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_A , return_tensors='''pt''' , ) lowercase : Union[str, Any] = text_inputs['''input_ids'''].to(_A ) lowercase : int = audioldm_pipe.text_encoder( _A , ) lowercase : Tuple = text_embeds.text_embeds # additional L_2 normalization over each hidden-state lowercase : int = F.normalize(_A , dim=-1 ) embeds.append(_A ) lowercase , lowercase : Any = embeds # forward lowercase : List[Any] = audioldm_pipe(**_A ) lowercase : Union[str, Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def __a ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : str = self.get_dummy_components() lowercase : Union[str, Any] = PNDMScheduler(skip_prk_steps=_A ) lowercase : Dict = AudioLDMPipeline(**_A ) lowercase : Union[str, Any] = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) lowercase : str = self.get_dummy_inputs(_A ) lowercase : Optional[Any] = '''egg cracking''' lowercase : Union[str, Any] = audioldm_pipe(**_A , negative_prompt=_A ) lowercase : int = output.audios[0] assert audio.ndim == 1 assert len(_A ) == 256 lowercase : List[Any] = audio[:10] lowercase : Dict = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def __a ( self : Optional[Any] ) -> str: """simple docstring""" lowercase : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : Optional[Any] = self.get_dummy_components() lowercase : int = PNDMScheduler(skip_prk_steps=_A ) lowercase : int = AudioLDMPipeline(**_A ) lowercase : Any = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) lowercase : List[str] = '''A hammer hitting a wooden surface''' # test num_waveforms_per_prompt=1 (default) lowercase : Optional[Any] = audioldm_pipe(_A , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts lowercase : Any = 2 lowercase : Any = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt lowercase : Dict = 2 lowercase : Union[str, Any] = audioldm_pipe(_A , num_inference_steps=2 , num_waveforms_per_prompt=_A ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts lowercase : Optional[Any] = 2 lowercase : List[Any] = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=_A ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def __a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : str = self.get_dummy_components() lowercase : Optional[Any] = AudioLDMPipeline(**_A ) lowercase : List[Any] = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) lowercase : Dict = audioldm_pipe.vocoder.config.sampling_rate lowercase : Optional[int] = self.get_dummy_inputs(_A ) lowercase : Optional[int] = audioldm_pipe(audio_length_in_s=0.016 , **_A ) lowercase : Optional[Any] = output.audios[0] assert audio.ndim == 1 assert len(_A ) / vocoder_sampling_rate == 0.016 lowercase : Dict = audioldm_pipe(audio_length_in_s=0.032 , **_A ) lowercase : List[str] = output.audios[0] assert audio.ndim == 1 assert len(_A ) / vocoder_sampling_rate == 0.032 def __a ( self : Optional[int] ) -> str: """simple docstring""" lowercase : str = self.get_dummy_components() lowercase : Optional[Any] = AudioLDMPipeline(**_A ) lowercase : Tuple = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) lowercase : List[str] = ['''hey'''] lowercase : Dict = audioldm_pipe(_A , num_inference_steps=1 ) lowercase : Optional[Any] = output.audios.shape assert audio_shape == (1, 256) lowercase : Union[str, Any] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 lowercase : Optional[int] = SpeechTaHifiGan(_A ).to(_A ) lowercase : Dict = audioldm_pipe(_A , num_inference_steps=1 ) lowercase : List[str] = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def __a ( self : Tuple ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_A ) def __a ( self : int ) -> Optional[int]: """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=_A ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_A ) @slow class _A ( unittest.TestCase ): def __a ( self : str ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Optional[int] , _A : List[Any] , _A : str="cpu" , _A : Dict=torch.floataa , _A : str=0 ) -> int: """simple docstring""" lowercase : Union[str, Any] = torch.Generator(device=_A ).manual_seed(_A ) lowercase : List[str] = np.random.RandomState(_A ).standard_normal((1, 8, 128, 16) ) lowercase : List[Any] = torch.from_numpy(_A ).to(device=_A , dtype=_A ) lowercase : Optional[Any] = { '''prompt''': '''A hammer hitting a wooden surface''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 2.5, } return inputs def __a ( self : Any ) -> List[Any]: """simple docstring""" lowercase : Tuple = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowercase : Dict = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) lowercase : Optional[int] = self.get_inputs(_A ) lowercase : Any = 25 lowercase : str = audioldm_pipe(**_A ).audios[0] assert audio.ndim == 1 assert len(_A ) == 81_920 lowercase : Dict = audio[77_230:77_240] lowercase : Any = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) lowercase : Any = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def __a ( self : List[Any] ) -> str: """simple docstring""" lowercase : Tuple = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowercase : str = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) lowercase : List[Any] = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) lowercase : Optional[int] = self.get_inputs(_A ) lowercase : Tuple = audioldm_pipe(**_A ).audios[0] assert audio.ndim == 1 assert len(_A ) == 81_920 lowercase : Dict = audio[27_780:27_790] lowercase : int = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) lowercase : Dict = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
308
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt'} lowerCAmelCase_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } lowerCAmelCase_ = { 'openbmb/cpm-ant-10b': 10_24, } def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = collections.OrderedDict() with open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as reader: lowercase : str = reader.readlines() for index, token in enumerate(__magic_name__ ): lowercase : Union[str, Any] = token.rstrip('''\n''' ) lowercase : List[Any] = index return vocab class _A ( _lowerCamelCase ): def __init__( self : List[str] , _A : Any , _A : List[str]="<unk>" , _A : Union[str, Any]=200 ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = vocab lowercase : List[str] = unk_token lowercase : Any = max_input_chars_per_word def __a ( self : List[str] , _A : Tuple ) -> str: """simple docstring""" lowercase : Dict = list(_A ) if len(_A ) > self.max_input_chars_per_word: return [self.unk_token] lowercase : int = 0 lowercase : Dict = [] while start < len(_A ): lowercase : Optional[Any] = len(_A ) lowercase : List[str] = None while start < end: lowercase : List[Any] = ''''''.join(chars[start:end] ) if substr in self.vocab: lowercase : Union[str, Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_A ) lowercase : Dict = end return sub_tokens class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : int = False def __init__( self : List[str] , _A : int , _A : Optional[Any]="<d>" , _A : Any="</d>" , _A : Optional[Any]="<s>" , _A : Any="</s>" , _A : Any="<pad>" , _A : List[Any]="<unk>" , _A : Optional[Any]="</n>" , _A : List[str]="</_>" , _A : Optional[Any]="left" , **_A : str , ) -> Tuple: """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_A , eod_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , unk_token=_A , line_token=_A , space_token=_A , padding_side=_A , **_A , ) lowercase : str = bod_token lowercase : str = eod_token lowercase : Any = load_vocab(_A ) lowercase : List[Any] = self.encoder[space_token] lowercase : Tuple = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowercase : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) lowercase : int = {v: k for k, v in self.encoder.items()} lowercase : Optional[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self : Dict ) -> Optional[int]: """simple docstring""" return self.encoder[self.bod_token] @property def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.encoder[self.eod_token] @property def __a ( self : List[str] ) -> List[str]: """simple docstring""" return self.encoder["\n"] @property def __a ( self : List[Any] ) -> int: """simple docstring""" return len(self.encoder ) def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : str , _A : List[str] ) -> Tuple: """simple docstring""" lowercase : int = [] for x in jieba.cut(_A , cut_all=_A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_A ) ) return output_tokens def __a ( self : List[Any] , _A : Tuple , **_A : Optional[int] ) -> Any: """simple docstring""" lowercase : List[str] = [i for i in token_ids if i >= 0] lowercase : Any = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_A , **_A ) def __a ( self : List[Any] , _A : int ) -> Optional[Any]: """simple docstring""" return token in self.encoder def __a ( self : Dict , _A : List[str] ) -> str: """simple docstring""" return "".join(_A ) def __a ( self : List[str] , _A : List[str] ) -> Any: """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __a ( self : Tuple , _A : Union[str, Any] ) -> Tuple: """simple docstring""" return self.decoder.get(_A , self.unk_token ) def __a ( self : List[Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(_A ): lowercase : str = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase : Optional[int] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowercase : Any = 0 if " " in self.encoder: lowercase : List[Any] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowercase : Dict = self.encoder['''\n'''] del self.encoder["\n"] lowercase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowercase : Any = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __a ( self : str , _A : List[int] , _A : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self : int , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) return [1] + ([0] * len(_A ))
308
1
def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Tuple = [] SCREAMING_SNAKE_CASE_ : Tuple = set({'(', '[', '{'} ) SCREAMING_SNAKE_CASE_ : Tuple = set({')', ']', '}'} ) SCREAMING_SNAKE_CASE_ : Optional[Any] = {'{': '}', '[': ']', '(': ')'} for i in range(len(A__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(A__ ) == 0 or (len(A__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(A__ ) == 0 def a__ ( ): SCREAMING_SNAKE_CASE_ : List[Any] = input('Enter sequence of brackets: ' ) if is_balanced(A__ ): print(A__, 'is balanced' ) else: print(A__, 'is not balanced' ) if __name__ == "__main__": main()
361
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def a__ ( A__ ): if is_torch_version('<', '2.0.0' ) or not hasattr(A__, '_dynamo' ): return False return isinstance(A__, torch._dynamo.eval_frame.OptimizedModule ) def a__ ( A__, A__ = True ): SCREAMING_SNAKE_CASE_ : Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) SCREAMING_SNAKE_CASE_ : List[str] = is_compiled_module(A__ ) if is_compiled: SCREAMING_SNAKE_CASE_ : List[Any] = model SCREAMING_SNAKE_CASE_ : Dict = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(A__, A__ ): SCREAMING_SNAKE_CASE_ : int = model.module if not keep_fpaa_wrapper: SCREAMING_SNAKE_CASE_ : str = getattr(A__, 'forward' ) SCREAMING_SNAKE_CASE_ : Any = model.__dict__.pop('_original_forward', A__ ) if original_forward is not None: while hasattr(A__, '__wrapped__' ): SCREAMING_SNAKE_CASE_ : Optional[int] = forward.__wrapped__ if forward == original_forward: break SCREAMING_SNAKE_CASE_ : Any = forward if getattr(A__, '_converted_to_transformer_engine', A__ ): convert_model(A__, to_transformer_engine=A__ ) if is_compiled: SCREAMING_SNAKE_CASE_ : List[str] = model SCREAMING_SNAKE_CASE_ : Dict = compiled_model return model def a__ ( ): PartialState().wait_for_everyone() def a__ ( A__, A__ ): if PartialState().distributed_type == DistributedType.TPU: xm.save(A__, A__ ) elif PartialState().local_process_index == 0: torch.save(A__, A__ ) @contextmanager def a__ ( **A__ ): for key, value in kwargs.items(): SCREAMING_SNAKE_CASE_ : List[Any] = str(A__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def a__ ( A__ ): if not hasattr(A__, '__qualname__' ) and not hasattr(A__, '__name__' ): SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(A__, '__class__', A__ ) if hasattr(A__, '__qualname__' ): return obj.__qualname__ if hasattr(A__, '__name__' ): return obj.__name__ return str(A__ ) def a__ ( A__, A__ ): for key, value in source.items(): if isinstance(A__, A__ ): SCREAMING_SNAKE_CASE_ : Dict = destination.setdefault(A__, {} ) merge_dicts(A__, A__ ) else: SCREAMING_SNAKE_CASE_ : Tuple = value return destination def a__ ( A__ = None ): if port is None: SCREAMING_SNAKE_CASE_ : Tuple = 2_9_5_0_0 with socket.socket(socket.AF_INET, socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
162
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class SCREAMING_SNAKE_CASE : __lowerCamelCase : Any =field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) __lowerCamelCase : Optional[int] =field( default=UpperCAmelCase_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __lowerCamelCase : Union[str, Any] =field( default=UpperCAmelCase_ , metadata={'help': 'The column name of the images in the files.'} ) __lowerCamelCase : Tuple =field(default=UpperCAmelCase_ , metadata={'help': 'A folder containing the training data.'} ) __lowerCamelCase : int =field(default=UpperCAmelCase_ , metadata={'help': 'A folder containing the validation data.'} ) __lowerCamelCase : Optional[Any] =field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) __lowerCamelCase : str =field( default=UpperCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __lowerCamelCase : Optional[int] =field( default=UpperCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = {} if self.train_dir is not None: __a = self.train_dir if self.validation_dir is not None: __a = self.validation_dir __a = data_files if data_files else None @dataclass class SCREAMING_SNAKE_CASE : __lowerCamelCase : Union[str, Any] =field( default=UpperCAmelCase_ , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) __lowerCamelCase : Union[str, Any] =field( default=UpperCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) __lowerCamelCase : Dict =field( default=UpperCAmelCase_ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __lowerCamelCase : Dict =field( default=UpperCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) __lowerCamelCase : Tuple =field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowerCamelCase : Tuple =field(default=UpperCAmelCase_ , metadata={'help': 'Name or path of preprocessor config.'} ) __lowerCamelCase : List[Any] =field( default=UpperCAmelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __lowerCamelCase : Optional[Any] =field( default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) __lowerCamelCase : Union[str, Any] =field( default=UpperCAmelCase_ , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): __lowerCamelCase : Tuple =field( default=1e-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" __a = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def lowerCAmelCase__ ( ): """simple docstring""" __a = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , __A , __A ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __a = training_args.get_process_log_level() logger.setLevel(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. __a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. __a = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __a = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __A ) and data_args.train_val_split > 0.0: __a = ds["""train"""].train_test_split(data_args.train_val_split ) __a = split["""train"""] __a = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: __a = ViTMAEConfig.from_pretrained(model_args.config_name , **__A ) elif model_args.model_name_or_path: __a = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **__A ) else: __a = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: __a = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **__A ) elif model_args.model_name_or_path: __a = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **__A ) else: __a = ViTImageProcessor() # create model if model_args.model_name_or_path: __a = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) __a = ViTMAEForPreTraining(__A ) if training_args.do_train: __a = ds["""train"""].column_names else: __a = ds["""validation"""].column_names if data_args.image_column_name is not None: __a = data_args.image_column_name elif "image" in column_names: __a = """image""" elif "img" in column_names: __a = """img""" else: __a = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: __a = image_processor.size["""shortest_edge"""] else: __a = (image_processor.size["""height"""], image_processor.size["""width"""]) __a = Compose( [ Lambda(lambda _SCREAMING_SNAKE_CASE : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(__A , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_SCREAMING_SNAKE_CASE : Optional[int] ): __a = [transforms(__A ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: __a = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__A ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: __a = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__A ) # Compute absolute learning rate __a = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: __a = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer __a = Trainer( model=__A , args=__A , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=__A , data_collator=__A , ) # Training if training_args.do_train: __a = None if training_args.resume_from_checkpoint is not None: __a = training_args.resume_from_checkpoint elif last_checkpoint is not None: __a = last_checkpoint __a = trainer.train(resume_from_checkpoint=__A ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __a = trainer.evaluate() trainer.log_metrics("""eval""" , __A ) trainer.save_metrics("""eval""" , __A ) # Write model card and (optionally) push to hub __a = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**__A ) else: trainer.create_model_card(**__A ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" main() if __name__ == "__main__": main()
302
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig a__ : Union[str, Any] = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = '''albert''' def __init__( self , lowercase=3_0_0_0_0 , lowercase=1_2_8 , lowercase=4_0_9_6 , lowercase=1_2 , lowercase=1 , lowercase=6_4 , lowercase=1_6_3_8_4 , lowercase=1 , lowercase="gelu_new" , lowercase=0 , lowercase=0 , lowercase=5_1_2 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=0.1 , lowercase="absolute" , lowercase=0 , lowercase=2 , lowercase=3 , **lowercase , ) -> Any: super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) __UpperCamelCase = vocab_size __UpperCamelCase = embedding_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_hidden_groups __UpperCamelCase = num_attention_heads __UpperCamelCase = inner_group_num __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = classifier_dropout_prob __UpperCamelCase = position_embedding_type class UpperCAmelCase__ ( UpperCAmelCase_): @property def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __UpperCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __UpperCamelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
0
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _lowercase ( _lowercase , _lowercase , unittest.TestCase ): a = VQModel a = """sample""" @property def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: Tuple=(32, 32) ): lowerCamelCase__ : List[Any] = 4 lowerCamelCase__ : Dict = 3 lowerCamelCase__ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) return {"sample": image} @property def lowerCamelCase_ ( self: str ): return (3, 32, 32) @property def lowerCamelCase_ ( self: Optional[int] ): return (3, 32, 32) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Optional[Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } lowerCamelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Any ): pass def lowerCamelCase_ ( self: Any ): pass def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : str = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : List[str] = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(UpperCamelCase__ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCamelCase__ : Optional[int] = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) lowerCamelCase__ : Tuple = image.to(UpperCamelCase__ ) with torch.no_grad(): lowerCamelCase__ : List[Any] = model(UpperCamelCase__ ).sample lowerCamelCase__ : Union[str, Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase__ : Optional[Any] = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] ) # fmt: on self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) )
353
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _A : str =WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Tuple: lowerCamelCase__ : int = test_results.split(""" """ ) lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : Any = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowerCamelCase__ : Union[str, Any] = expressions[-2] if """=""" in expressions[-1] else expressions[-1] for i, expression in enumerate(UpperCamelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Tuple: lowerCamelCase__ : Optional[Any] = {} lowerCamelCase__ : int = None lowerCamelCase__ : Optional[int] = False for line in failures_short_lines.split("""\n""" ): if re.search(r"""_ \[doctest\]""" , UpperCamelCase ): lowerCamelCase__ : Dict = True lowerCamelCase__ : Optional[int] = line.split(""" """ )[2] elif in_error and not line.split(""" """ )[0].isdigit(): lowerCamelCase__ : List[str] = line lowerCamelCase__ : int = False return failures class _lowercase : def __init__( self: Tuple , UpperCamelCase__: str , UpperCamelCase__: Dict ): lowerCamelCase__ : Union[str, Any] = title lowerCamelCase__ : Tuple = doc_test_results["""time_spent"""].split(""",""" )[0] lowerCamelCase__ : Union[str, Any] = doc_test_results["""success"""] lowerCamelCase__ : List[Any] = doc_test_results["""failures"""] lowerCamelCase__ : List[str] = self.n_success + self.n_failures # Failures and success of the modeling tests lowerCamelCase__ : str = doc_test_results @property def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Union[str, Any] = [self._time_spent] lowerCamelCase__ : Tuple = 0 for time in time_spent: lowerCamelCase__ : Tuple = time.split(""":""" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(UpperCamelCase__ ) == 1: lowerCamelCase__ : Tuple = [0, 0, time_parts[0]] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_600 + minutes * 60 + seconds lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = total_secs // 3_600, (total_secs % 3_600) // 60, total_secs % 60 return F'''{int(UpperCamelCase__ )}h{int(UpperCamelCase__ )}m{int(UpperCamelCase__ )}s''' @property def lowerCamelCase_ ( self: Dict ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCamelCase_ ( self: Any ): return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } @property def lowerCamelCase_ ( self: Any ): return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } @property def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Any = 40 lowerCamelCase__ : List[str] = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(UpperCamelCase__ , UpperCamelCase__ )} lowerCamelCase__ : List[Any] = """""" for category, failures in category_failures.items(): if len(UpperCamelCase__ ) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(UpperCamelCase__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Union[str, Any] = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(UpperCamelCase__ ) @staticmethod def lowerCamelCase_ ( ): lowerCamelCase__ : List[Any] = [ { """type""": """section""", """text""": { """type""": """plain_text""", """text""": """There was an issue running the tests.""", }, """accessory""": { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True}, """url""": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } ] print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(UpperCamelCase__ )} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=UpperCamelCase__ , ) def lowerCamelCase_ ( self: Any ): print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(self.payload )} ) ) lowerCamelCase__ : Any = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else """All tests passed.""" lowerCamelCase__ : List[str] = client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=UpperCamelCase__ , ) def lowerCamelCase_ ( self: Any , UpperCamelCase__: str , UpperCamelCase__: Dict , UpperCamelCase__: List[Any] , UpperCamelCase__: Union[str, Any] ): lowerCamelCase__ : Optional[Any] = """""" for key, value in failures.items(): lowerCamelCase__ : int = value[:200] + """ [Truncated]""" if len(UpperCamelCase__ ) > 250 else value failures_text += F'''*{key}*\n_{value}_\n\n''' lowerCamelCase__ : Tuple = job_name lowerCamelCase__ : Union[str, Any] = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}} if job_link is not None: lowerCamelCase__ : Union[str, Any] = { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True}, """url""": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCamelCase_ ( self: Tuple ): if self.thread_ts is None: raise ValueError("""Can only post reply if a post has been made.""" ) lowerCamelCase__ : int = self.doc_test_results.pop("""job_link""" ) self.doc_test_results.pop("""failures""" ) self.doc_test_results.pop("""success""" ) self.doc_test_results.pop("""time_spent""" ) lowerCamelCase__ : List[Any] = sorted(self.doc_test_results.items() , key=lambda UpperCamelCase__ : t[0] ) for job, job_result in sorted_dict: if len(job_result["""failures"""] ): lowerCamelCase__ : Union[str, Any] = F'''*Num failures* :{len(job_result['failed'] )} \n''' lowerCamelCase__ : Union[str, Any] = job_result["""failures"""] lowerCamelCase__ : int = self.get_reply_blocks(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , text=UpperCamelCase__ ) print("""Sending the following reply""" ) print(json.dumps({"""blocks""": blocks} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=F'''Results for {job}''' , blocks=UpperCamelCase__ , thread_ts=self.thread_ts["""ts"""] , ) time.sleep(1 ) def SCREAMING_SNAKE_CASE_ () -> Tuple: lowerCamelCase__ : Any = os.environ["""GITHUB_RUN_ID"""] lowerCamelCase__ : List[Any] = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' lowerCamelCase__ : Optional[int] = requests.get(UpperCamelCase ).json() lowerCamelCase__ : List[Any] = {} try: jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCamelCase__ : Any = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(UpperCamelCase ): lowerCamelCase__ : List[Any] = requests.get(url + f'''&page={i + 2}''' ).json() jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return jobs except Exception as e: print("""Unknown error, could not fetch links.""" , UpperCamelCase ) return {} def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Any: lowerCamelCase__ : int = {} if os.path.exists(UpperCamelCase ): lowerCamelCase__ : List[str] = os.listdir(UpperCamelCase ) for file in files: try: with open(os.path.join(UpperCamelCase , UpperCamelCase ) , encoding="""utf-8""" ) as f: lowerCamelCase__ : List[Any] = f.read() except UnicodeDecodeError as e: raise ValueError(f'''Could not open {os.path.join(UpperCamelCase , UpperCamelCase )}.''' ) from e return _artifact def SCREAMING_SNAKE_CASE_ () -> Optional[Any]: class _lowercase : def __init__( self: Tuple , UpperCamelCase__: str ): lowerCamelCase__ : Any = name lowerCamelCase__ : Union[str, Any] = [] def __str__( self: int ): return self.name def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: str ): self.paths.append({"""name""": self.name, """path""": path} ) lowerCamelCase__ : Dict[str, Artifact] = {} lowerCamelCase__ : List[str] = filter(os.path.isdir , os.listdir() ) for directory in directories: lowerCamelCase__ : Union[str, Any] = directory if artifact_name not in _available_artifacts: lowerCamelCase__ : Optional[int] = Artifact(UpperCamelCase ) _available_artifacts[artifact_name].add_path(UpperCamelCase ) return _available_artifacts if __name__ == "__main__": _A : Any =get_job_links() _A : str =retrieve_available_artifacts() _A : int =collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _A : Union[str, Any] ={ v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _A : Union[str, Any] =github_actions_job_links.get('''run_doctests''') _A : Any =available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _A : Dict =retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _A , _A , _A : Optional[int] =handle_test_results(artifact['''stats''']) _A : Union[str, Any] =failed _A : int =success _A : Optional[int] =time_spent[1:-1] + ''', ''' _A : Any =extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _A : List[Any] =line.replace('''FAILED ''', '''''') _A : Any =line.split()[0].replace('''\n''', '''''') if "::" in line: _A , _A : Any =line.split('''::''') else: _A , _A : Tuple =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _A : str =docs[file_regex] doc_test_results[category]["failed"].append(test) _A : str =all_failures[test] if test in all_failures else '''N/A''' _A : Tuple =failure break _A : Union[str, Any] =Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
129
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase_ = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
251
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py UpperCAmelCase_ = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' UpperCAmelCase_ = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' UpperCAmelCase_ = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Union[str, Any]=False ): """simple docstring""" UpperCAmelCase__ = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
346
0
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowercase ( unittest.TestCase ): def __init__( self : List[Any] , snake_case : int , snake_case : Union[str, Any]=2 , snake_case : Optional[Any]=5_6 , snake_case : Dict=True , snake_case : Optional[Any]=True , snake_case : Any=True , snake_case : List[Any]=True , snake_case : Tuple=9_9 , snake_case : Any=3_2 , snake_case : List[Any]=2 , snake_case : Optional[Any]=2 , snake_case : str=7 , snake_case : Dict="gelu_new" , snake_case : List[str]=0.1 , snake_case : Dict=0.1 , snake_case : Optional[Any]=5_1_2 , snake_case : Tuple=1_6 , snake_case : Dict=2 , snake_case : List[str]=0.02 , snake_case : Optional[int]=4 , snake_case : str="block_sparse" , snake_case : List[Any]=True , snake_case : int=False , snake_case : Tuple=2 , snake_case : Optional[int]=3 , ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : List[Any] = parent UpperCamelCase_ : str = batch_size UpperCamelCase_ : List[str] = seq_length UpperCamelCase_ : Union[str, Any] = is_training UpperCamelCase_ : Dict = use_attention_mask UpperCamelCase_ : List[Any] = use_token_type_ids UpperCamelCase_ : Optional[Any] = use_labels UpperCamelCase_ : Dict = vocab_size UpperCamelCase_ : Union[str, Any] = hidden_size UpperCamelCase_ : Optional[Any] = num_hidden_layers UpperCamelCase_ : Any = num_attention_heads UpperCamelCase_ : Optional[Any] = intermediate_size UpperCamelCase_ : Optional[Any] = hidden_act UpperCamelCase_ : int = hidden_dropout_prob UpperCamelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase_ : List[str] = max_position_embeddings UpperCamelCase_ : List[Any] = type_vocab_size UpperCamelCase_ : Any = type_sequence_label_size UpperCamelCase_ : Optional[int] = initializer_range UpperCamelCase_ : int = num_choices UpperCamelCase_ : str = rescale_embeddings UpperCamelCase_ : List[Any] = attention_type UpperCamelCase_ : Optional[Any] = use_bias UpperCamelCase_ : List[str] = block_size UpperCamelCase_ : int = num_random_blocks def SCREAMING_SNAKE_CASE__ ( self : str ) -> Tuple: """simple docstring""" UpperCamelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ : str = None if self.use_attention_mask: UpperCamelCase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ : int = None if self.use_token_type_ids: UpperCamelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ : Tuple = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: """simple docstring""" UpperCamelCase_ : Any = self.prepare_config_and_inputs() UpperCamelCase_ : int = config_and_inputs UpperCamelCase_ : Tuple = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class _lowercase ( snake_case_ , unittest.TestCase ): lowercase = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) lowercase = False lowercase = False def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int: """simple docstring""" UpperCamelCase_ : List[str] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: """simple docstring""" super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[str]: """simple docstring""" super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: """simple docstring""" super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE__ ( self : str ) -> Tuple: """simple docstring""" super().test_hidden_states_output() @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[int]: """simple docstring""" for model_class_name in self.all_model_classes: UpperCamelCase_ : Optional[Any] = model_class_name.from_pretrained('google/bigbird-roberta-base' ) self.assertIsNotNone(snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: """simple docstring""" if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase_ : Optional[Any] = self._prepare_for_class(snake_case , snake_case ) UpperCamelCase_ : Optional[Any] = model_class(snake_case ) @jax.jit def model_jitted(snake_case : str , snake_case : List[str]=None , **snake_case : Tuple ): return model(input_ids=snake_case , attention_mask=snake_case , **snake_case ) with self.subTest('JIT Enabled' ): UpperCamelCase_ : List[str] = model_jitted(**snake_case ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase_ : List[str] = model_jitted(**snake_case ).to_tuple() self.assertEqual(len(snake_case ) , len(snake_case ) ) for jitted_output, output in zip(snake_case , snake_case ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : Optional[Any] , snake_case : Any , snake_case : Optional[Any] , snake_case : Optional[int]=1e-5 , snake_case : Tuple="outputs" , snake_case : Dict=None ) -> Dict: """simple docstring""" if name.startswith('outputs.attentions' ): return else: super().check_pt_flax_outputs(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case )
367
from __future__ import annotations import numpy as np def __lowercase ( lowerCamelCase : list[float] ): return np.maximum(0 , lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
50
0
def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if not head: return True # split the list to two parts UpperCAmelCase_ , UpperCAmelCase_ : Any = head.next, head while fast and fast.next: UpperCAmelCase_ : str = fast.next.next UpperCAmelCase_ : Union[str, Any] = slow.next UpperCAmelCase_ : int = slow.next UpperCAmelCase_ : List[Any] = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase_ : Tuple = None while second: UpperCAmelCase_ : int = second.next UpperCAmelCase_ : Any = node UpperCAmelCase_ : Optional[Any] = second UpperCAmelCase_ : Tuple = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase_ : Optional[Any] = node.next UpperCAmelCase_ : Dict = head.next return True def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase_ : Any = head while fast and fast.next: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase_ : List[str] = [slow.val] while slow.next: UpperCAmelCase_ : List[str] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase_ : int = cur.next return True def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if not head or not head.next: return True UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : int = 0 while head: if head.val in d: d[head.val].append(__snake_case ) else: UpperCAmelCase_ : List[Any] = [pos] UpperCAmelCase_ : Any = head.next pos += 1 UpperCAmelCase_ : Dict = pos - 1 UpperCAmelCase_ : Optional[int] = 0 for v in d.values(): if len(__snake_case ) % 2 != 0: middle += 1 else: UpperCAmelCase_ : int = 0 for i in range(0 , len(__snake_case ) ): if v[i] + v[len(__snake_case ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
29
def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if not head: return True # split the list to two parts UpperCAmelCase_ , UpperCAmelCase_ : Any = head.next, head while fast and fast.next: UpperCAmelCase_ : str = fast.next.next UpperCAmelCase_ : Union[str, Any] = slow.next UpperCAmelCase_ : int = slow.next UpperCAmelCase_ : List[Any] = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase_ : Tuple = None while second: UpperCAmelCase_ : int = second.next UpperCAmelCase_ : Any = node UpperCAmelCase_ : Optional[Any] = second UpperCAmelCase_ : Tuple = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase_ : Optional[Any] = node.next UpperCAmelCase_ : Dict = head.next return True def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase_ : Any = head while fast and fast.next: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase_ : List[str] = [slow.val] while slow.next: UpperCAmelCase_ : List[str] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase_ : int = cur.next return True def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if not head or not head.next: return True UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : int = 0 while head: if head.val in d: d[head.val].append(__snake_case ) else: UpperCAmelCase_ : List[Any] = [pos] UpperCAmelCase_ : Any = head.next pos += 1 UpperCAmelCase_ : Dict = pos - 1 UpperCAmelCase_ : Optional[int] = 0 for v in d.values(): if len(__snake_case ) % 2 != 0: middle += 1 else: UpperCAmelCase_ : int = 0 for i in range(0 , len(__snake_case ) ): if v[i] + v[len(__snake_case ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
29
1
from __future__ import annotations import math def _UpperCAmelCase (UpperCamelCase_ : int ): '''simple docstring''' if num <= 0: _lowerCAmelCase : Dict = F"{num}: Invalid input, please enter a positive integer." raise ValueError(UpperCamelCase_ ) _lowerCAmelCase : List[str] = [True] * (num + 1) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : Any = int(math.sqrt(UpperCamelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(UpperCamelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , UpperCamelCase_ ): if sieve[i] is True: _lowerCAmelCase : List[Any] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(UpperCamelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
352
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __snake_case (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : int ) -> Any: '''simple docstring''' _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Any = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on _lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) _lowerCAmelCase : Optional[Any] = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] , **_UpperCAmelCase : Any ) -> str: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] , **_UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase : Tuple = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Optional[int] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: '''simple docstring''' _lowerCAmelCase : Tuple = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase : int = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) _lowerCAmelCase : List[str] = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> str: '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : List[Any] = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Tuple = image_processor(_UpperCAmelCase , return_tensors="""np""" ) _lowerCAmelCase : Union[str, Any] = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Union[str, Any] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : int = processor(text=_UpperCAmelCase ) _lowerCAmelCase : Dict = tokenizer(_UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : List[Any] = self.get_tokenizer() _lowerCAmelCase : Any = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) _lowerCAmelCase : Tuple = """lower newer""" _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Optional[int] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(_UpperCAmelCase ): processor() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : List[Any] = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) _lowerCAmelCase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : str = processor.batch_decode(_UpperCAmelCase ) _lowerCAmelCase : List[str] = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) _lowerCAmelCase : Dict = """lower newer""" _lowerCAmelCase : Optional[int] = self.prepare_image_inputs() _lowerCAmelCase : Union[str, Any] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
159
0
import copy import re class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = "hp" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = None @classmethod def _lowerCamelCase ( cls , __lowerCamelCase , __lowerCamelCase) -> List[str]: _A : Any = prefix _A : Any = defaults cls.build_naming_info() @staticmethod def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase) -> str: if len(UpperCamelCase__) == 0: return "" _A : Any = None if any(char.isdigit() for char in word): raise Exception(F"Parameters should not contain numbers: \'{word}\' contains a number") if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(UpperCamelCase__) + 1): _A : Tuple = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: _A : List[Any] = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__lowerCamelCase): _A : str = "" while integer != 0: _A : int = chr(ord("A") + integer % 1_0) + s integer //= 1_0 return s _A : List[Any] = 0 while True: _A : Optional[Any] = word + "#" + int_to_alphabetic(UpperCamelCase__) if sword in info["reverse_short_word"]: continue else: _A : List[Any] = sword break _A : List[str] = short_word _A : Dict = word return short_word @staticmethod def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase) -> str: _A : Optional[int] = param_name.split("_") _A : Optional[Any] = [TrialShortNamer.shortname_for_word(UpperCamelCase__ , UpperCamelCase__) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name _A : int = ["", "_"] for separator in separators: _A : Tuple = separator.join(UpperCamelCase__) if shortname not in info["reverse_short_param"]: _A : Any = shortname _A : List[str] = param_name return shortname return param_name @staticmethod def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase) -> Union[str, Any]: _A : Tuple = TrialShortNamer.shortname_for_key(UpperCamelCase__ , UpperCamelCase__) _A : Optional[Any] = short_name _A : Union[str, Any] = param_name @classmethod def _lowerCamelCase ( cls) -> str: if cls.NAMING_INFO is not None: return _A : List[Any] = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } _A : Dict = list(cls.DEFAULTS.keys()) for k in field_keys: cls.add_new_param_name(UpperCamelCase__ , UpperCamelCase__) _A : Optional[int] = info @classmethod def _lowerCamelCase ( cls , __lowerCamelCase) -> List[str]: cls.build_naming_info() assert cls.PREFIX is not None _A : List[str] = [copy.copy(cls.PREFIX)] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F"You should provide a default value for the param name {k} with value {v}") if v == cls.DEFAULTS[k]: # The default value is not added to the name continue _A : Optional[int] = cls.NAMING_INFO["short_param"][k] if isinstance(UpperCamelCase__ , UpperCamelCase__): _A : List[Any] = 1 if v else 0 _A : List[Any] = "" if isinstance(UpperCamelCase__ , (int, float)) else "-" _A : str = F"{key}{sep}{v}" name.append(UpperCamelCase__) return "_".join(UpperCamelCase__) @classmethod def _lowerCamelCase ( cls , __lowerCamelCase) -> Optional[int]: _A : List[Any] = repr[len(cls.PREFIX) + 1 :] if repr == "": _A : Union[str, Any] = [] else: _A : Union[str, Any] = repr.split("_") _A : int = {} for value in values: if "-" in value: _A , _A : int = value.split("-") else: _A : Any = re.sub("[0-9.]" , "" , UpperCamelCase__) _A : Optional[Any] = float(re.sub("[^0-9.]" , "" , UpperCamelCase__)) _A : int = cls.NAMING_INFO["reverse_short_param"][p_k] _A : List[str] = p_v for k in cls.DEFAULTS: if k not in parameters: _A : List[Any] = cls.DEFAULTS[k] return parameters
11
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] __lowerCamelCase = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
162
0
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class _UpperCAmelCase ( TensorFormatter[Mapping, 'torch.Tensor', Mapping] ): '''simple docstring''' def __init__(self , a_=None , **a_ ): '''simple docstring''' super().__init__(features=a_ ) __snake_case : Dict = torch_tensor_kwargs import torch # noqa import torch at initialization def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' import torch if isinstance(a_ , a_ ) and column: if all( isinstance(a_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(a_ ) return column def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' import torch if isinstance(a_ , (str, bytes, type(a_ )) ): return value elif isinstance(a_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __snake_case : str = {} if isinstance(a_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __snake_case : Dict = {'''dtype''': torch.intaa} elif isinstance(a_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __snake_case : Tuple = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a_ , PIL.Image.Image ): __snake_case : Any = np.asarray(a_ ) return torch.tensor(a_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(a_ , '''__array__''' ) and not isinstance(a_ , torch.Tensor ): __snake_case : List[str] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a_ ) for substruct in data_struct] ) elif isinstance(a_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a_ ) for substruct in data_struct] ) return self._tensorize(a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return map_nested(self._recursive_tensorize , a_ , map_list=a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = self.numpy_arrow_extractor().extract_row(a_ ) __snake_case : Dict = self.python_features_decoder.decode_row(a_ ) return self.recursive_tensorize(a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = self.numpy_arrow_extractor().extract_column(a_ ) __snake_case : Dict = self.python_features_decoder.decode_column(a_ , pa_table.column_names[0] ) __snake_case : List[Any] = self.recursive_tensorize(a_ ) __snake_case : Dict = self._consolidate(a_ ) return column def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[str] = self.numpy_arrow_extractor().extract_batch(a_ ) __snake_case : Tuple = self.python_features_decoder.decode_batch(a_ ) __snake_case : str = self.recursive_tensorize(a_ ) for column_name in batch: __snake_case : Union[str, Any] = self._consolidate(batch[column_name] ) return batch
24
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast SCREAMING_SNAKE_CASE : int = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ =10000 lowerCamelCase__ =None lowerCamelCase__ =None class _UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCamelCase__ =ParquetConfig def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __snake_case : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a_ , (str, list, tuple) ): __snake_case : Union[str, Any] = data_files if isinstance(a_ , a_ ): __snake_case : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : List[Any] = [dl_manager.iter_files(a_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __snake_case : int = [] for split_name, files in data_files.items(): if isinstance(a_ , a_ ): __snake_case : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : int = [dl_manager.iter_files(a_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a_ ): with open(a_ , '''rb''' ) as f: __snake_case : Any = datasets.Features.from_arrow_schema(pq.read_schema(a_ ) ) break splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={'''files''': files} ) ) return splits def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case : List[Any] = table_cast(a_ , self.info.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ): with open(a_ , '''rb''' ) as f: __snake_case : int = pq.ParquetFile(a_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __snake_case : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(a_ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(a_ )}: {e}""" ) raise
24
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
96
import math def lowerCAmelCase__ ( lowerCamelCase_ : int): '''simple docstring''' if not isinstance(lowerCamelCase_ ,lowerCamelCase_): lowerCAmelCase__ : Union[str, Any] = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCamelCase_) if number < 1: lowerCAmelCase__ : Dict = f"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCamelCase_) elif number == 1: return 3 elif number == 2: return 5 else: lowerCAmelCase__ : Optional[Any] = int(math.log(number // 3 ,2)) + 2 lowerCAmelCase__ : Optional[Any] = [3, 5] lowerCAmelCase__ : List[Any] = 2 lowerCAmelCase__ : Tuple = 3 for block in range(1 ,lowerCamelCase_): for _ in range(lowerCamelCase_): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1]) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): __snake_case : Optional[int] =0 try: __snake_case : List[Any] =proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
129
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 42 class _UpperCAmelCase( lowerCamelCase , lowerCamelCase ): @register_to_config def __init__( self , __a = 16 , __a = 88 , __a = None , __a = None , __a = 1 , __a = 0.0 , __a = 32 , __a = None , __a = False , __a = None , __a = "geglu" , __a = True , __a = True , ) -> List[Any]: '''simple docstring''' super().__init__() _UpperCamelCase = num_attention_heads _UpperCamelCase = attention_head_dim _UpperCamelCase = num_attention_heads * attention_head_dim _UpperCamelCase = in_channels _UpperCamelCase = torch.nn.GroupNorm(num_groups=__a , num_channels=__a , eps=1e-6 , affine=__a) _UpperCamelCase = nn.Linear(__a , __a) # 3. Define transformers blocks _UpperCamelCase = nn.ModuleList( [ BasicTransformerBlock( __a , __a , __a , dropout=__a , cross_attention_dim=__a , activation_fn=__a , attention_bias=__a , double_self_attention=__a , norm_elementwise_affine=__a , ) for d in range(__a) ]) _UpperCamelCase = nn.Linear(__a , __a) def UpperCAmelCase ( self , __a , __a=None , __a=None , __a=None , __a=1 , __a=None , __a = True , ) -> Dict: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = hidden_states.shape _UpperCamelCase = batch_frames // num_frames _UpperCamelCase = hidden_states _UpperCamelCase = hidden_states[None, :].reshape(__a , __a , __a , __a , __a) _UpperCamelCase = hidden_states.permute(0 , 2 , 1 , 3 , 4) _UpperCamelCase = self.norm(__a) _UpperCamelCase = hidden_states.permute(0 , 3 , 4 , 2 , 1).reshape(batch_size * height * width , __a , __a) _UpperCamelCase = self.proj_in(__a) # 2. Blocks for block in self.transformer_blocks: _UpperCamelCase = block( __a , encoder_hidden_states=__a , timestep=__a , cross_attention_kwargs=__a , class_labels=__a , ) # 3. Output _UpperCamelCase = self.proj_out(__a) _UpperCamelCase = ( hidden_states[None, None, :] .reshape(__a , __a , __a , __a , __a) .permute(0 , 3 , 4 , 1 , 2) .contiguous() ) _UpperCamelCase = hidden_states.reshape(__a , __a , __a , __a) _UpperCamelCase = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=__a)
100
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=False , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self) -> str: '''simple docstring''' return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Any: '''simple docstring''' _UpperCamelCase = BioGptModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a , __a , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = BioGptForCausalLM(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , *__a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = BioGptModel(config=__a) model.to(__a) model.eval() # create attention mask _UpperCamelCase = torch.ones(input_ids.shape , dtype=torch.long , device=__a) _UpperCamelCase = self.seq_length // 2 _UpperCamelCase = 0 # first forward pass _UpperCamelCase , _UpperCamelCase = model(__a , attention_mask=__a).to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids _UpperCamelCase = ids_tensor((1,) , __a).item() + 1 _UpperCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) _UpperCamelCase = random_other_next_tokens # append to next input_ids and attn_mask _UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1) _UpperCamelCase = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__a)] , dim=1 , ) # get two different outputs _UpperCamelCase = model(__a , attention_mask=__a)['''last_hidden_state'''] _UpperCamelCase = model(__a , past_key_values=__a , attention_mask=__a)['''last_hidden_state'''] # select random slice _UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1]).item() _UpperCamelCase = output_from_no_past[:, -1, random_slice_idx].detach() _UpperCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1e-3)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , *__a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = BioGptModel(config=__a).to(__a).eval() _UpperCamelCase = torch.ones(input_ids.shape , dtype=torch.long , device=__a) # first forward pass _UpperCamelCase = model(__a , attention_mask=__a , use_cache=__a) _UpperCamelCase , _UpperCamelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size) _UpperCamelCase = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and _UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1) _UpperCamelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1) _UpperCamelCase = model(__a , attention_mask=__a)['''last_hidden_state'''] _UpperCamelCase = model(__a , attention_mask=__a , past_key_values=__a)[ '''last_hidden_state''' ] # select random slice _UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1]).item() _UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1e-3)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , *__a , __a=False) -> List[Any]: '''simple docstring''' _UpperCamelCase = BioGptForCausalLM(__a) model.to(__a) if gradient_checkpointing: model.gradient_checkpointing_enable() _UpperCamelCase = model(__a , labels=__a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def UpperCAmelCase ( self , __a , *__a) -> Any: '''simple docstring''' _UpperCamelCase = BioGptModel(__a) _UpperCamelCase = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.001) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.01) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , *__a) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = BioGptForTokenClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) lowercase__ = (BioGptForCausalLM,) if is_torch_available() else () lowercase__ = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = False def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = BioGptModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> str: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCamelCase = type self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__a , gradient_checkpointing=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__a) @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(__a) _UpperCamelCase = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') _UpperCamelCase = '''left''' # Define PAD Token = EOS Token = 50256 _UpperCamelCase = tokenizer.eos_token _UpperCamelCase = model.config.eos_token_id # use different length sentences to test batching _UpperCamelCase = [ '''Hello, my dog is a little''', '''Today, I''', ] _UpperCamelCase = tokenizer(__a , return_tensors='''pt''' , padding=__a) _UpperCamelCase = inputs['''input_ids'''].to(__a) _UpperCamelCase = model.generate( input_ids=__a , attention_mask=inputs['''attention_mask'''].to(__a) , ) _UpperCamelCase = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(__a) _UpperCamelCase = model.generate(input_ids=__a) _UpperCamelCase = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() _UpperCamelCase = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(__a) _UpperCamelCase = model.generate(input_ids=__a , max_length=model.config.max_length - num_paddings) _UpperCamelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a) _UpperCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__a) _UpperCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=__a) _UpperCamelCase = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(__a , __a) self.assertListEqual(__a , [non_padded_sentence, padded_sentence]) @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = BioGptModel.from_pretrained(__a) self.assertIsNotNone(__a) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = 3 _UpperCamelCase = input_dict['''input_ids'''] _UpperCamelCase = input_ids.ne(1).to(__a) _UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) _UpperCamelCase = BioGptForSequenceClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , labels=__a) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = 3 _UpperCamelCase = '''multi_label_classification''' _UpperCamelCase = input_dict['''input_ids'''] _UpperCamelCase = input_ids.ne(1).to(__a) _UpperCamelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) _UpperCamelCase = BioGptForSequenceClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , labels=__a) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') _UpperCamelCase = torch.tensor([[2, 48_05, 9, 6_56, 21]]) _UpperCamelCase = model(__a)[0] _UpperCamelCase = 4_23_84 _UpperCamelCase = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , __a) _UpperCamelCase = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4)) @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') _UpperCamelCase = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(__a) torch.manual_seed(0) _UpperCamelCase = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(__a) _UpperCamelCase = model.generate( **__a , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=__a , ) _UpperCamelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=__a) _UpperCamelCase = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(__a , __a)
100
1
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def lowerCAmelCase_ ( snake_case_,snake_case_ = 16 ): _A : List[str] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _A : int = load_dataset("""glue""","""mrpc""" ) def tokenize_function(snake_case_ ): # max_length=None => use the model max length (it's actually the default) _A : Optional[Any] = tokenizer(examples["""sentence1"""],examples["""sentence2"""],truncation=_UpperCAmelCase,max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _A : List[str] = datasets.map( _UpperCAmelCase,batched=_UpperCAmelCase,remove_columns=["""idx""", """sentence1""", """sentence2"""],) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _A : Tuple = tokenized_datasets.rename_column("""label""","""labels""" ) def collate_fn(snake_case_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _A : Union[str, Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _A : Dict = 16 elif accelerator.mixed_precision != "no": _A : List[Any] = 8 else: _A : Optional[int] = None return tokenizer.pad( _UpperCAmelCase,padding="""longest""",max_length=_UpperCAmelCase,pad_to_multiple_of=_UpperCAmelCase,return_tensors="""pt""",) # Instantiate dataloaders. _A : Tuple = DataLoader( tokenized_datasets["""train"""],shuffle=_UpperCAmelCase,collate_fn=_UpperCAmelCase,batch_size=_UpperCAmelCase ) _A : Any = DataLoader( tokenized_datasets["""validation"""],shuffle=_UpperCAmelCase,collate_fn=_UpperCAmelCase,batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def lowerCAmelCase_ ( snake_case_,snake_case_ ): # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""",_UpperCAmelCase ) == "1": _A : Any = 2 # Initialize accelerator _A : str = Accelerator(cpu=args.cpu,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _A : str = config['lr'] _A : Dict = int(config["""num_epochs"""] ) _A : int = int(config["""seed"""] ) _A : int = int(config["""batch_size"""] ) _A : str = evaluate.load("""glue""","""mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_UpperCAmelCase ) def inner_training_loop(snake_case_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _A : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""",return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _A : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _A : List[Any] = AdamW(params=model.parameters(),lr=_UpperCAmelCase ) _A : Tuple = get_dataloaders(_UpperCAmelCase,_UpperCAmelCase ) # Instantiate scheduler _A : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase,num_warmup_steps=100,num_training_steps=(len(_UpperCAmelCase ) * num_epochs),) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _A : Optional[Any] = accelerator.prepare( _UpperCAmelCase,_UpperCAmelCase,_UpperCAmelCase,_UpperCAmelCase,_UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _A : List[str] = model(**_UpperCAmelCase ) _A : Union[str, Any] = outputs.loss accelerator.backward(_UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _A : List[str] = model(**_UpperCAmelCase ) _A : Union[str, Any] = outputs.logits.argmax(dim=-1 ) _A : int = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_UpperCAmelCase,references=_UpperCAmelCase,) _A : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''',_UpperCAmelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def lowerCAmelCase_ ( ): _A : Dict = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""",type=_UpperCAmelCase,default=_UpperCAmelCase,choices=["""no""", """fp16""", """bf16""", """fp8"""],help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""",) parser.add_argument("""--cpu""",action="""store_true""",help="""If passed, will train on the CPU.""" ) _A : Union[str, Any] = parser.parse_args() _A : int = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(_UpperCAmelCase,_UpperCAmelCase ) if __name__ == "__main__": main()
26
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _UpperCAmelCase : str = pytest.mark.integration @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : List[Any] ) -> Union[str, Any]: lowerCamelCase__ : List[Any] = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(UpperCAmelCase ) for x in np.arange(30 ).tolist()]} ) return dset def A_ ( self : Optional[Any] ) -> Optional[int]: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() lowerCamelCase__ : List[Any] = dset.map( lambda UpperCAmelCase , UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCAmelCase , keep_in_memory=UpperCAmelCase ) lowerCamelCase__ : Tuple = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def A_ ( self : Union[str, Any] ) -> int: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : List[str] ) -> Tuple: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(UpperCAmelCase , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def A_ ( self : Dict ) -> Dict: from elasticsearch import Elasticsearch lowerCamelCase__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : List[Any] = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase__ : int = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCamelCase__ : List[str] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Any ) -> Dict: import faiss lowerCamelCase__ : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase__ : int = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Any = 1 lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = index.search(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase__ : str = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase__ , lowerCamelCase__ : Dict = index.search_batch(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search_batch , queries[0] ) lowerCamelCase__ : str = [scores[0] for scores in total_scores] lowerCamelCase__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCAmelCase ) def A_ ( self : List[Any] ) -> List[Any]: import faiss lowerCamelCase__ : Any = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase__ : Tuple = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCAmelCase ): lowerCamelCase__ : List[str] = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def A_ ( self : List[str] ) -> Optional[int]: import faiss lowerCamelCase__ : Optional[Any] = faiss.IndexFlat(5 ) lowerCamelCase__ : int = FaissIndex(custom_index=UpperCAmelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def A_ ( self : Any ) -> Optional[int]: import faiss lowerCamelCase__ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase__ : List[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ : List[str] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Tuple = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(UpperCAmelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Any: import faiss lowerCamelCase__ : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase__ : Optional[int] = 'index.faiss' lowerCamelCase__ : Optional[Any] = F"""mock://{index_name}""" index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Tuple = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Optional[int] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Dict = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Dict ) -> List[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : Any = Elasticsearch() lowerCamelCase__ : Tuple = {'acknowledged': True} lowerCamelCase__ : Tuple = ElasticSearchIndex(es_client=UpperCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase__ : Optional[int] = 'foo' lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search(UpperCAmelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase__ : Any = 'foo' lowerCamelCase__ : List[str] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Tuple = index.search(UpperCAmelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase__ : List[str] = ['foo', 'bar', 'foobar'] lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : str = index.search_batch(UpperCAmelCase ) lowerCamelCase__ : List[str] = [scores[0] for scores in total_scores] lowerCamelCase__ : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase ) # batched queries with timeout lowerCamelCase__ : str = ['foo', 'bar', 'foobar'] lowerCamelCase__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search_batch(UpperCAmelCase , request_timeout=30 ) lowerCamelCase__ : Optional[Any] = [scores[0] for scores in total_scores] lowerCamelCase__ : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase )
50
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : List[Any] ,_a : int ,_a : int ,_a : float ,**_a : List[str] ): '''simple docstring''' _a : Union[str, Any] = feature_size _a : Union[str, Any] = sampling_rate _a : Optional[Any] = padding_value _a : Tuple = kwargs.pop('padding_side' ,'right' ) _a : List[Any] = kwargs.pop('return_attention_mask' ,_a ) super().__init__(**_a ) def __lowercase ( self : int ,_a : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] ,_a : Union[bool, str, PaddingStrategy] = True ,_a : Optional[int] = None ,_a : bool = False ,_a : Optional[int] = None ,_a : Optional[bool] = None ,_a : Optional[Union[str, TensorType]] = None ,): '''simple docstring''' if isinstance(_a ,(list, tuple) ) and isinstance(processed_features[0] ,(dict, BatchFeature) ): _a : List[Any] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) _a : Any = processed_features[self.model_input_names[0]] _a : List[str] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(_a ) == 0: if return_attention_mask: _a : Tuple = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _a : List[Any] = required_input[0] if isinstance(_a ,(list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _a : Optional[int] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(_a ): _a : str = required_input[index][0] if return_tensors is None: if is_tf_tensor(_a ): _a : Any = 'tf' elif is_torch_tensor(_a ): _a : int = 'pt' elif isinstance(_a ,(int, float, list, tuple, np.ndarray) ): _a : Tuple = 'np' else: raise ValueError( F"""type of {first_element} unknown: {type(_a )}. """ 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] ,(int, float) ): _a : Optional[Any] = to_numpy(_a ) else: _a : int = [to_numpy(_a ) for v in value] # Convert padding_strategy in PaddingStrategy _a : Dict = self._get_padding_strategies(padding=_a ,max_length=_a ) _a : Optional[Any] = processed_features[self.model_input_names[0]] _a : Optional[Any] = len(_a ) if not all(len(_a ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) _a : str = [] for i in range(_a ): _a : Any = {k: v[i] for k, v in processed_features.items()} # truncation _a : List[Any] = self._truncate( _a ,max_length=_a ,pad_to_multiple_of=_a ,truncation=_a ,) truncated_inputs.append(_a ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _a : Dict = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) _a : Union[str, Any] = PaddingStrategy.MAX_LENGTH _a : List[str] = {} for i in range(_a ): # padding _a : Optional[Any] = self._pad( truncated_inputs[i] ,max_length=_a ,padding_strategy=_a ,pad_to_multiple_of=_a ,return_attention_mask=_a ,) for key, value in outputs.items(): if key not in batch_outputs: _a : List[str] = [] if value.dtype is np.dtype(np.floataa ): _a : Any = value.astype(np.floataa ) batch_outputs[key].append(_a ) return BatchFeature(_a ,tensor_type=_a ) def __lowercase ( self : Optional[Any] ,_a : Union[Dict[str, np.ndarray], BatchFeature] ,_a : Optional[int] = None ,_a : PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,_a : Optional[int] = None ,_a : Optional[bool] = None ,): '''simple docstring''' _a : Optional[int] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _a : int = len(_a ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _a : Any = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _a : str = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(_a ) < max_length if return_attention_mask and "attention_mask" not in processed_features: _a : List[str] = np.ones(len(_a ) ,dtype=np.intaa ) if needs_to_be_padded: _a : Any = max_length - len(_a ) if self.padding_side == "right": if return_attention_mask: _a : Optional[int] = np.pad( processed_features['attention_mask'] ,(0, difference) ) _a : int = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _a : Dict = np.pad( _a ,_a ,'constant' ,constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: _a : Any = np.pad( processed_features['attention_mask'] ,(difference, 0) ) _a : str = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _a : Union[str, Any] = np.pad( _a ,_a ,'constant' ,constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def __lowercase ( self : Dict ,_a : Union[Dict[str, np.ndarray], BatchFeature] ,_a : Optional[int] = None ,_a : Optional[int] = None ,_a : Optional[bool] = None ,): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) _a : str = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _a : str = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _a : Dict = len(_a ) > max_length if needs_to_be_truncated: _a : str = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _a : str = processed_features['attention_mask'][:max_length] return processed_features def __lowercase ( self : Optional[Any] ,_a : Any=False ,_a : Optional[Any]=None ): '''simple docstring''' if padding is not False: if padding is True: _a : int = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(_a ,_a ): _a : Tuple = PaddingStrategy(_a ) elif isinstance(_a ,_a ): _a : int = padding else: _a : int = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
5
'''simple docstring''' import sys def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : List[str] = len(__a ) _a : Dict = [[0 for x in range(__a )] for x in range(__a )] _a : Union[str, Any] = [[0 for x in range(__a )] for x in range(__a )] for chain_length in range(2 , __a ): for a in range(1 , n - chain_length + 1 ): _a : Tuple = a + chain_length - 1 _a : Any = sys.maxsize for c in range(__a , __a ): _a : Optional[Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _a : Dict = cost _a : Any = c return matrix, sol def UpperCAmelCase_ (__a : Tuple , __a : List[str] , __a : Dict ): """simple docstring""" if i == j: print('A' + str(__a ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(__a , __a , optimal_solution[i][j] ) print_optiomal_solution(__a , optimal_solution[i][j] + 1 , __a ) print(')' , end=' ' ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] _a : Any = len(__a ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _a, _a : Union[str, Any] = matrix_chain_order(__a ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__a , 1 , n - 1 ) if __name__ == "__main__": main()
5
1
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance SCREAMING_SNAKE_CASE_ : Tuple = 6_3_7_8_1_3_7.0 SCREAMING_SNAKE_CASE_ : List[str] = 6_3_5_6_7_5_2.3_1_4_2_4_5 SCREAMING_SNAKE_CASE_ : List[Any] = 6_3_7_8_1_3_7 def _snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ): A__ = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude A__ = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) A__ = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius A__ = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values A__ = (b_lata + b_lata) / 2 A__ = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) A__ = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) A__ = cos(sigma / 2 ) ** 2 A__ = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) A__ = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) A__ = sin(sigma / 2 ) ** 2 A__ = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
335
from math import pi def _lowerCAmelCase ( lowerCAmelCase_ :int , lowerCAmelCase_ :int )->float: '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
159
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : str = { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/config.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/config.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json""" ), """distilbert-base-uncased-finetuned-sst-2-english""": ( """https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json""" ), } class UpperCamelCase_ ( a__ ): '''simple docstring''' UpperCAmelCase__ = '''distilbert''' UpperCAmelCase__ = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self : str , UpperCAmelCase__ : List[Any]=30_522 , UpperCAmelCase__ : str=512 , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : Any=6 , UpperCAmelCase__ : Union[str, Any]=12 , UpperCAmelCase__ : List[str]=768 , UpperCAmelCase__ : Dict=4 * 768 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Tuple="gelu" , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Union[str, Any]=0.2 , UpperCAmelCase__ : List[str]=0 , **UpperCAmelCase__ : Any , ) ->Dict: '''simple docstring''' A__ = vocab_size A__ = max_position_embeddings A__ = sinusoidal_pos_embds A__ = n_layers A__ = n_heads A__ = dim A__ = hidden_dim A__ = dropout A__ = attention_dropout A__ = activation A__ = initializer_range A__ = qa_dropout A__ = seq_classif_dropout super().__init__(**UpperCAmelCase__ , pad_token_id=UpperCAmelCase__) class UpperCamelCase_ ( a__ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: '''simple docstring''' if self.task == "multiple-choice": A__ = {0: "batch", 1: "choice", 2: "sequence"} else: A__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
370
from __future__ import annotations import queue class UpperCamelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase__ : Dict) ->Any: '''simple docstring''' A__ = data A__ = None A__ = None def SCREAMING_SNAKE_CASE ( ) -> TreeNode: """simple docstring""" print('''\n********Press N to stop entering at any point of time********\n''' ) A__ = input('''Enter the value of the root node: ''' ).strip().lower() A__ = queue.Queue() A__ = TreeNode(int(lowercase_ ) ) q.put(lowercase_ ) while not q.empty(): A__ = q.get() A__ = f"""Enter the left node of {node_found.data}: """ A__ = input(lowercase_ ).strip().lower() or '''n''' if check == "n": return tree_node A__ = TreeNode(int(lowercase_ ) ) A__ = left_node q.put(lowercase_ ) A__ = f"""Enter the right node of {node_found.data}: """ A__ = input(lowercase_ ).strip().lower() or '''n''' if check == "n": return tree_node A__ = TreeNode(int(lowercase_ ) ) A__ = right_node q.put(lowercase_ ) raise def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return A__ = queue.Queue() q.put(lowercase_ ) while not q.empty(): A__ = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return A__ = queue.Queue() q.put(lowercase_ ) while not q.empty(): A__ = [] while not q.empty(): A__ = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return A__ = [] A__ = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(lowercase_ ) A__ = n.left # end of while means current node doesn't have left child A__ = stack.pop() # start to traverse its right child A__ = n.right def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return A__ = [] A__ = node while n or stack: while n: stack.append(lowercase_ ) A__ = n.left A__ = stack.pop() print(n.data , end=''',''' ) A__ = n.right def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not node: return A__ , A__ = [], [] A__ = node stacka.append(lowercase_ ) while stacka: # to find the reversed order of post order, store it in stack2 A__ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(lowercase_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def SCREAMING_SNAKE_CASE ( lowercase_ = "" , lowercase_=50 , lowercase_="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char A__ , A__ = divmod(width - len(lowercase_ ) - 2 , 2 ) return f"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) _lowerCamelCase : TreeNode = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 50 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
231
0
from collections import defaultdict from math import gcd def lowerCamelCase__ ( snake_case_ : int = 150_0000 ) -> int: __snake_case = defaultdict(snake_case_ ) __snake_case = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , snake_case_ , 2 ): if gcd(snake_case_ , snake_case_ ) > 1: continue __snake_case = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(snake_case_ , limit + 1 , snake_case_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'{solution() = }')
24
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : list[int] , snake_case_ : int ) -> list[list[int]]: __snake_case = [] __snake_case = [] __snake_case = 0 __snake_case = sum(snake_case_ ) create_state_space_tree(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) return result def lowerCamelCase__ ( snake_case_ : list[int] , snake_case_ : int , snake_case_ : int , snake_case_ : list[int] , snake_case_ : list[list[int]] , snake_case_ : int , ) -> None: if sum(snake_case_ ) > max_sum or (remaining_nums_sum + sum(snake_case_ )) < max_sum: return if sum(snake_case_ ) == max_sum: result.append(snake_case_ ) return for index in range(snake_case_ , len(snake_case_ ) ): create_state_space_tree( snake_case_ , snake_case_ , index + 1 , [*path, nums[index]] , snake_case_ , remaining_nums_sum - nums[index] , ) snake_case_ = [3, 34, 4, 12, 5, 2] snake_case_ = 9 snake_case_ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
24
1
"""simple docstring""" from __future__ import annotations import time a : Optional[Any] = list[tuple[int, int]] a : int = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a : List[str] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCAmelCase_: Any = pos_x UpperCAmelCase_: List[Any] = pos_y UpperCAmelCase_: Any = (pos_y, pos_x) UpperCAmelCase_: List[Any] = goal_x UpperCAmelCase_: Tuple = goal_y UpperCAmelCase_: int = parent class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCAmelCase_: List[Any] = Node(start[1], start[0], goal[1], goal[0], SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = Node(goal[1], goal[0], goal[1], goal[0], SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = [self.start] UpperCAmelCase_: Dict = False def __snake_case (self ) -> Path | None: while self.node_queue: UpperCAmelCase_: Dict = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: UpperCAmelCase_: Optional[Any] = True return self.retrace_path(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = self.get_successors(SCREAMING_SNAKE_CASE_ ) for node in successors: self.node_queue.append(SCREAMING_SNAKE_CASE_ ) if not self.reached: return [self.start.pos] return None def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> list[Node]: UpperCAmelCase_: Optional[Any] = [] for action in delta: UpperCAmelCase_: str = parent.pos_x + action[1] UpperCAmelCase_: List[str] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, self.target.pos_y, self.target.pos_x, SCREAMING_SNAKE_CASE_ ) ) return successors def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Path: UpperCAmelCase_: int = node UpperCAmelCase_: List[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase_: Optional[int] = current_node.parent path.reverse() return path class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCAmelCase_: List[str] = BreadthFirstSearch(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = BreadthFirstSearch(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = False def __snake_case (self ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: UpperCAmelCase_: str = self.fwd_bfs.node_queue.pop(0 ) UpperCAmelCase_: Optional[int] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: UpperCAmelCase_: List[str] = True return self.retrace_bidirectional_path( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = current_bwd_node UpperCAmelCase_: List[Any] = current_fwd_node UpperCAmelCase_: Optional[int] = { self.fwd_bfs: self.fwd_bfs.get_successors(SCREAMING_SNAKE_CASE_ ), self.bwd_bfs: self.bwd_bfs.get_successors(SCREAMING_SNAKE_CASE_ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(SCREAMING_SNAKE_CASE_ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Path: UpperCAmelCase_: List[Any] = self.fwd_bfs.retrace_path(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = self.bwd_bfs.retrace_path(SCREAMING_SNAKE_CASE_ ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_: Union[str, Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a : Dict = (0, 0) a : Any = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a : Union[str, Any] = time.time() a : Optional[int] = BreadthFirstSearch(init, goal) a : Dict = bfs.search() a : List[str] = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) a : Any = time.time() a : Optional[int] = BidirectionalBreadthFirstSearch(init, goal) a : Any = bd_bfs.search() a : Tuple = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
369
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=32 * 8, SCREAMING_SNAKE_CASE_=32 * 8, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=64, ) -> Union[str, Any]: UpperCAmelCase_: int = parent UpperCAmelCase_: Tuple = batch_size UpperCAmelCase_: int = is_training UpperCAmelCase_: Any = use_auxiliary_loss UpperCAmelCase_: str = num_queries UpperCAmelCase_: List[Any] = num_channels UpperCAmelCase_: Union[str, Any] = min_size UpperCAmelCase_: Optional[Any] = max_size UpperCAmelCase_: Tuple = num_labels UpperCAmelCase_: Union[str, Any] = hidden_dim UpperCAmelCase_: int = hidden_dim def __snake_case (self ) -> Tuple: UpperCAmelCase_: List[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = torch.ones([self.batch_size, self.min_size, self.max_size], device=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=SCREAMING_SNAKE_CASE_ ) > 0.5 ).float() UpperCAmelCase_: Optional[int] = (torch.rand((self.batch_size, self.num_labels), device=SCREAMING_SNAKE_CASE_ ) > 0.5).long() UpperCAmelCase_: Union[str, Any] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __snake_case (self ) -> Any: UpperCAmelCase_: Any = MaskaFormerConfig( hidden_size=self.hidden_dim, ) UpperCAmelCase_: Any = self.num_queries UpperCAmelCase_: Dict = self.num_labels UpperCAmelCase_: Dict = [1, 1, 1, 1] UpperCAmelCase_: int = self.num_channels UpperCAmelCase_: Union[str, Any] = 64 UpperCAmelCase_: List[Any] = 128 UpperCAmelCase_: Optional[Any] = self.hidden_dim UpperCAmelCase_: str = self.hidden_dim UpperCAmelCase_: List[str] = self.hidden_dim return config def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Dict = self.prepare_config_and_inputs() UpperCAmelCase_: Any = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCAmelCase_: Union[str, Any] = output.encoder_hidden_states UpperCAmelCase_: int = output.pixel_decoder_hidden_states UpperCAmelCase_: Any = output.transformer_decoder_hidden_states self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ), config.decoder_layers ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=False ) -> Optional[Any]: with torch.no_grad(): UpperCAmelCase_: Dict = MaskaFormerModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: List[Any] = model(pixel_values=SCREAMING_SNAKE_CASE_, pixel_mask=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = model(SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_dim), ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: Tuple = MaskaFormerForUniversalSegmentation(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() def comm_check_on_output(SCREAMING_SNAKE_CASE_ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape, (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4), ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCAmelCase_: Dict = model(pixel_values=SCREAMING_SNAKE_CASE_, pixel_mask=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = model(SCREAMING_SNAKE_CASE_ ) comm_check_on_output(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = model( pixel_values=SCREAMING_SNAKE_CASE_, pixel_mask=SCREAMING_SNAKE_CASE_, mask_labels=SCREAMING_SNAKE_CASE_, class_labels=SCREAMING_SNAKE_CASE_ ) comm_check_on_output(SCREAMING_SNAKE_CASE_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape, torch.Size([1] ) ) @require_torch class _a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): A = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () A = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} A = False A = False A = False A = False def __snake_case (self ) -> Any: UpperCAmelCase_: List[str] = MaskaFormerModelTester(self ) UpperCAmelCase_: Any = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[Any]: self.config_tester.run_common_tests() def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def __snake_case (self ) -> Dict: pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def __snake_case (self ) -> Optional[int]: pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def __snake_case (self ) -> List[str]: pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def __snake_case (self ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def __snake_case (self ) -> List[str]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __snake_case (self ) -> Dict: pass def __snake_case (self ) -> Any: UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_: Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_: Tuple = [*signature.parameters.keys()] UpperCAmelCase_: str = ["""pixel_values"""] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) @slow def __snake_case (self ) -> List[Any]: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCAmelCase_: Any = MaskaFormerModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: str = (self.model_tester.min_size,) * 2 UpperCAmelCase_: str = { """pixel_values""": torch.randn((2, 3, *size), device=SCREAMING_SNAKE_CASE_ ), """mask_labels""": torch.randn((2, 10, *size), device=SCREAMING_SNAKE_CASE_ ), """class_labels""": torch.zeros(2, 10, device=SCREAMING_SNAKE_CASE_ ).long(), } UpperCAmelCase_: Dict = self.model_tester.get_config() UpperCAmelCase_: Optional[Any] = MaskaFormerForUniversalSegmentation(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = model(**SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.loss is not None ) def __snake_case (self ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_: List[Any] = model_class(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = model(**SCREAMING_SNAKE_CASE_, output_attentions=SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.attentions is not None ) def __snake_case (self ) -> Optional[int]: if not self.model_tester.is_training: return UpperCAmelCase_: Union[str, Any] = self.all_model_classes[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_: Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCAmelCase_: Optional[int] = model(SCREAMING_SNAKE_CASE_, mask_labels=SCREAMING_SNAKE_CASE_, class_labels=SCREAMING_SNAKE_CASE_ ).loss loss.backward() def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Any = self.all_model_classes[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_: Union[str, Any] = True UpperCAmelCase_: str = True UpperCAmelCase_: Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCAmelCase_: Union[str, Any] = model(SCREAMING_SNAKE_CASE_, mask_labels=SCREAMING_SNAKE_CASE_, class_labels=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCAmelCase_: Union[str, Any] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCAmelCase_: Optional[int] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCAmelCase_: Optional[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) a : int = 1E-4 def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _a ( unittest.TestCase ): @cached_property def __snake_case (self ) -> Optional[int]: return "facebook/mask2former-swin-small-coco-instance" @cached_property def __snake_case (self ) -> Dict: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def __snake_case (self ) -> List[str]: UpperCAmelCase_: int = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = self.default_image_processor UpperCAmelCase_: Optional[Any] = prepare_img() UpperCAmelCase_: str = image_processor(SCREAMING_SNAKE_CASE_, return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(SCREAMING_SNAKE_CASE_, (1, 3, 384, 384) ) with torch.no_grad(): UpperCAmelCase_: Optional[int] = model(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: Dict = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: str = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Any = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase_: Tuple = self.default_image_processor UpperCAmelCase_: Dict = prepare_img() UpperCAmelCase_: Any = image_processor(SCREAMING_SNAKE_CASE_, return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(SCREAMING_SNAKE_CASE_, (1, 3, 384, 384) ) with torch.no_grad(): UpperCAmelCase_: int = model(**SCREAMING_SNAKE_CASE_ ) # masks_queries_logits UpperCAmelCase_: int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCAmelCase_: Optional[Any] = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] UpperCAmelCase_: int = torch.tensor(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) # class_queries_logits UpperCAmelCase_: Dict = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape, (1, model.config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase_: Any = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self ) -> Tuple: UpperCAmelCase_: List[str] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase_: Dict = self.default_image_processor UpperCAmelCase_: str = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )], segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )], return_tensors="""pt""", ) UpperCAmelCase_: int = inputs["""pixel_values"""].to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = [el.to(SCREAMING_SNAKE_CASE_ ) for el in inputs["""mask_labels"""]] UpperCAmelCase_: int = [el.to(SCREAMING_SNAKE_CASE_ ) for el in inputs["""class_labels"""]] with torch.no_grad(): UpperCAmelCase_: Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.loss is not None )
82
0
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : List[Any] = '''segformer''' def __init__( self , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=[2, 2, 2, 2] , lowerCAmelCase__=[8, 4, 2, 1] , lowerCAmelCase__=[3_2, 6_4, 1_6_0, 2_5_6] , lowerCAmelCase__=[7, 3, 3, 3] , lowerCAmelCase__=[4, 2, 2, 2] , lowerCAmelCase__=[1, 2, 5, 8] , lowerCAmelCase__=[4, 4, 4, 4] , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1E-6 , lowerCAmelCase__=2_5_6 , lowerCAmelCase__=2_5_5 , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = num_encoder_blocks __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = sr_ratios __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = patch_sizes __SCREAMING_SNAKE_CASE = strides __SCREAMING_SNAKE_CASE = mlp_ratios __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = classifier_dropout_prob __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = decoder_hidden_size __SCREAMING_SNAKE_CASE = kwargs.get("""reshape_last_stage""" , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Optional[int] = version.parse('''1.11''' ) @property def snake_case_ ( self): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def snake_case_ ( self): return 1E-4 @property def snake_case_ ( self): return 1_2
100
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE_ ( metaclass=__a ): """simple docstring""" __lowercase : Tuple = ['''keras_nlp'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""keras_nlp"""])
100
1
from heapq import heappop, heappush import numpy as np def _SCREAMING_SNAKE_CASE ( lowercase : np.ndarray , lowercase : tuple[int, int] , lowercase : tuple[int, int] , lowercase : bool , ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = grid.shape lowerCamelCase_ = [-1, 1, 0, 0] lowerCamelCase_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowerCamelCase_ , lowerCamelCase_ = [(0, source)], set() lowerCamelCase_ = np.full((rows, cols) , np.inf ) lowerCamelCase_ = 0 lowerCamelCase_ = np.empty((rows, cols) , dtype=__a ) lowerCamelCase_ = None while queue: ((lowerCamelCase_) , (lowerCamelCase_)) = heappop(__a ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowerCamelCase_ = [] while (x, y) != source: path.append((x, y) ) lowerCamelCase_ , lowerCamelCase_ = predecessors[x, y] path.append(__a ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__a ) ): lowerCamelCase_ , lowerCamelCase_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowerCamelCase_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__a , (dist + 1, (nx, ny)) ) lowerCamelCase_ = dist + 1 lowerCamelCase_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
350
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''OwlViTImageProcessor''' UpperCamelCase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Optional[Any] , A_ : Tuple=None , A_ : Tuple=None , **A_ : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , A_ , ) lowerCamelCase_ = kwargs.pop('feature_extractor' ) lowerCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A_ , A_ ) def __call__( self : List[str] , A_ : List[str]=None , A_ : List[Any]=None , A_ : Dict=None , A_ : Tuple="max_length" , A_ : int="np" , **A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(A_ , A_ ) or (isinstance(A_ , A_ ) and not isinstance(text[0] , A_ )): lowerCamelCase_ = [self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ )] elif isinstance(A_ , A_ ) and isinstance(text[0] , A_ ): lowerCamelCase_ = [] # Maximum number of queries across batch lowerCamelCase_ = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: lowerCamelCase_ = t + [' '] * (max_num_queries - len(A_ )) lowerCamelCase_ = self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ ) encodings.append(A_ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": lowerCamelCase_ = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowerCamelCase_ = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowerCamelCase_ = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowerCamelCase_ = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowerCamelCase_ = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) lowerCamelCase_ = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowerCamelCase_ = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowerCamelCase_ = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) lowerCamelCase_ = BatchEncoding() lowerCamelCase_ = input_ids lowerCamelCase_ = attention_mask if query_images is not None: lowerCamelCase_ = BatchEncoding() lowerCamelCase_ = self.image_processor( A_ , return_tensors=A_ , **A_ ).pixel_values lowerCamelCase_ = query_pixel_values if images is not None: lowerCamelCase_ = self.image_processor(A_ , return_tensors=A_ , **A_ ) if text is not None and images is not None: lowerCamelCase_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowerCamelCase_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ) , tensor_type=A_ ) def a__ ( self : Tuple , *A_ : Dict , **A_ : Dict ) -> Any: """simple docstring""" return self.image_processor.post_process(*A_ , **A_ ) def a__ ( self : List[str] , *A_ : Any , **A_ : List[Any] ) -> Optional[int]: """simple docstring""" return self.image_processor.post_process_object_detection(*A_ , **A_ ) def a__ ( self : Any , *A_ : str , **A_ : List[Any] ) -> Any: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*A_ , **A_ ) def a__ ( self : Union[str, Any] , *A_ : Any , **A_ : Union[str, Any] ) -> str: """simple docstring""" return self.tokenizer.batch_decode(*A_ , **A_ ) def a__ ( self : Optional[int] , *A_ : List[Any] , **A_ : int ) -> int: """simple docstring""" return self.tokenizer.decode(*A_ , **A_ ) @property def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , A_ , ) return self.image_processor_class @property def a__ ( self : str ) -> List[str]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , A_ , ) return self.image_processor
208
0
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase__ = logging.get_logger(__name__) class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: _lowercase =feature_size _lowercase =sampling_rate _lowercase =padding_value _lowercase =kwargs.pop('''padding_side''' , '''right''' ) _lowercase =kwargs.pop('''return_attention_mask''' , UpperCAmelCase ) super().__init__(**UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(UpperCAmelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): _lowercase ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) _lowercase =processed_features[self.model_input_names[0]] _lowercase =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(UpperCAmelCase ) == 0: if return_attention_mask: _lowercase =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _lowercase =required_input[0] if isinstance(UpperCAmelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _lowercase =0 while len(required_input[index] ) == 0: index += 1 if index < len(UpperCAmelCase ): _lowercase =required_input[index][0] if return_tensors is None: if is_tf_tensor(UpperCAmelCase ): _lowercase ='''tf''' elif is_torch_tensor(UpperCAmelCase ): _lowercase ='''pt''' elif isinstance(UpperCAmelCase , (int, float, list, tuple, np.ndarray) ): _lowercase ='''np''' else: raise ValueError( f"type of {first_element} unknown: {type(UpperCAmelCase )}. " '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): _lowercase =to_numpy(UpperCAmelCase ) else: _lowercase =[to_numpy(UpperCAmelCase ) for v in value] # Convert padding_strategy in PaddingStrategy _lowercase =self._get_padding_strategies(padding=UpperCAmelCase , max_length=UpperCAmelCase ) _lowercase =processed_features[self.model_input_names[0]] _lowercase =len(UpperCAmelCase ) if not all(len(UpperCAmelCase ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) _lowercase =[] for i in range(UpperCAmelCase ): _lowercase ={k: v[i] for k, v in processed_features.items()} # truncation _lowercase =self._truncate( UpperCAmelCase , max_length=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , truncation=UpperCAmelCase , ) truncated_inputs.append(UpperCAmelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _lowercase =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) _lowercase =PaddingStrategy.MAX_LENGTH _lowercase ={} for i in range(UpperCAmelCase ): # padding _lowercase =self._pad( truncated_inputs[i] , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) for key, value in outputs.items(): if key not in batch_outputs: _lowercase =[] if value.dtype is np.dtype(np.floataa ): _lowercase =value.astype(np.floataa ) batch_outputs[key].append(UpperCAmelCase ) return BatchFeature(UpperCAmelCase , tensor_type=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase = None , UpperCAmelCase = None , ) -> dict: _lowercase =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _lowercase =len(UpperCAmelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _lowercase =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _lowercase =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(UpperCAmelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: _lowercase =np.ones(len(UpperCAmelCase ) , dtype=np.intaa ) if needs_to_be_padded: _lowercase =max_length - len(UpperCAmelCase ) if self.padding_side == "right": if return_attention_mask: _lowercase =np.pad( processed_features['''attention_mask'''] , (0, difference) ) _lowercase =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _lowercase =np.pad( UpperCAmelCase , UpperCAmelCase , '''constant''' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: _lowercase =np.pad( processed_features['''attention_mask'''] , (difference, 0) ) _lowercase =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _lowercase =np.pad( UpperCAmelCase , UpperCAmelCase , '''constant''' , constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def __A (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ) -> List[str]: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) _lowercase =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _lowercase =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _lowercase =len(UpperCAmelCase ) > max_length if needs_to_be_truncated: _lowercase =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _lowercase =processed_features['''attention_mask'''][:max_length] return processed_features def __A (self , UpperCAmelCase=False , UpperCAmelCase=None ) -> Dict: # Get padding strategy if padding is not False: if padding is True: _lowercase =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =PaddingStrategy(UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =padding else: _lowercase =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
5
def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =0 # if input_string is "aba" than new_input_string become "a|b|a" _lowercase ='''''' _lowercase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowercase , _lowercase =0, 0 # length[i] shows the length of palindromic substring with center i _lowercase =[1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _lowercase =0 for j in range(len(__snake_case ) ): _lowercase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowercase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowercase =j - k + 1 # noqa: E741 _lowercase =j + k - 1 # update max_length and start position if max_length < length[j]: _lowercase =length[j] _lowercase =j # create that string _lowercase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Any = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Dict = 0 while number > 0: __UpperCAmelCase : Any = number % 10 sum_of_digits += last_digit __UpperCAmelCase : Any = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowercase_ ( lowerCAmelCase__ : int = 100 ): """simple docstring""" __UpperCAmelCase : Any = factorial(lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = split_and_add(lowerCAmelCase__ ) return result if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
16
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _A : _SCREAMING_SNAKE_CASE : List[str] _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self ) -> Any: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class _A : _SCREAMING_SNAKE_CASE : Optional[List] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None __UpperCAmelCase : int = len(self.languages ) if self.languages else None def __call__( self ) -> Optional[Any]: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def __A ( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = set(self.languages ) if self.languages and set(__UpperCAmelCase ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __UpperCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) ) return {"language": languages, "translation": translations} def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
16
1
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process lowercase_ = logging.getLogger(__name__) lowercase_ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) lowercase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a_ : '''simple docstring''' UpperCamelCase = field( default=snake_case_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase = field( default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , ) UpperCamelCase = field( default=snake_case_ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase = field( default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=snake_case_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=snake_case_ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=snake_case_ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def snake_case_( self ) -> str: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class a_ : '''simple docstring''' UpperCamelCase = field( default=snake_case_ , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=snake_case_ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field(default=snake_case_ , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase = field( default=snake_case_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase = field( default=snake_case_ , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=snake_case_ , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCamelCase = field( default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=snake_case_ , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCamelCase = field( default=snake_case_ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase = field( default=snake_case_ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def snake_case_( self ) -> Optional[int]: if self.train_file is not None: _SCREAMING_SNAKE_CASE = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _SCREAMING_SNAKE_CASE = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def lowerCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ) ->Tuple: with open(__lowerCamelCase , """r""" , encoding="""utf-8""" ) as f: _SCREAMING_SNAKE_CASE = [json.loads(__lowerCamelCase ) for line in f.read().splitlines() if (len(__lowerCamelCase ) > 0 and not line.isspace())] assert len(__lowerCamelCase ) == len(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = {c: dataset[c] for c in dataset.column_names} _SCREAMING_SNAKE_CASE = refs return Dataset.from_dict(__lowerCamelCase ) def lowerCamelCase ( ) ->Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , __lowerCamelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _SCREAMING_SNAKE_CASE = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'train[:{data_args.validation_split_percentage}%]' , ) _SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'train[{data_args.validation_split_percentage}%:]' , ) else: _SCREAMING_SNAKE_CASE = {} if data_args.train_file is not None: _SCREAMING_SNAKE_CASE = data_args.train_file if data_args.validation_file is not None: _SCREAMING_SNAKE_CASE = data_args.validation_file _SCREAMING_SNAKE_CASE = data_args.train_file.split(""".""" )[-1] if extension == "txt": _SCREAMING_SNAKE_CASE = """text""" _SCREAMING_SNAKE_CASE = load_dataset(__lowerCamelCase , data_files=__lowerCamelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _SCREAMING_SNAKE_CASE = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.config_name , **__lowerCamelCase ) elif model_args.model_name_or_path: _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowerCamelCase ) else: _SCREAMING_SNAKE_CASE = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) _SCREAMING_SNAKE_CASE = { """cache_dir""": model_args.cache_dir, """use_fast""": model_args.use_fast_tokenizer, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowerCamelCase ) elif model_args.model_name_or_path: _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowerCamelCase ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: _SCREAMING_SNAKE_CASE = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) _SCREAMING_SNAKE_CASE = AutoModelForMaskedLM.from_config(__lowerCamelCase ) model.resize_token_embeddings(len(__lowerCamelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _SCREAMING_SNAKE_CASE = datasets["""train"""].column_names else: _SCREAMING_SNAKE_CASE = datasets["""validation"""].column_names _SCREAMING_SNAKE_CASE = """text""" if """text""" in column_names else column_names[0] _SCREAMING_SNAKE_CASE = """max_length""" if data_args.pad_to_max_length else False def tokenize_function(__lowerCamelCase : List[str] ): # Remove empty lines _SCREAMING_SNAKE_CASE = [line for line in examples["""text"""] if len(__lowerCamelCase ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=data_args.max_seq_length ) _SCREAMING_SNAKE_CASE = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _SCREAMING_SNAKE_CASE = add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _SCREAMING_SNAKE_CASE = add_chinese_references( tokenized_datasets["""validation"""] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _SCREAMING_SNAKE_CASE = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _SCREAMING_SNAKE_CASE = False # Data collator # This one will take care of randomly masking the tokens. _SCREAMING_SNAKE_CASE = DataCollatorForWholeWordMask(tokenizer=__lowerCamelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _SCREAMING_SNAKE_CASE = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: _SCREAMING_SNAKE_CASE = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _SCREAMING_SNAKE_CASE = model_args.model_name_or_path else: _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=__lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , """train_results.txt""" ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # Evaluation _SCREAMING_SNAKE_CASE = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _SCREAMING_SNAKE_CASE = trainer.evaluate() _SCREAMING_SNAKE_CASE = math.exp(eval_output["""eval_loss"""] ) _SCREAMING_SNAKE_CASE = perplexity _SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) return results def lowerCamelCase ( __lowerCamelCase : List[str] ) ->Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
58
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __a , unittest.TestCase ): _lowercase =None _lowercase =BloomTokenizerFast _lowercase =BloomTokenizerFast _lowercase =True _lowercase =False _lowercase ='''tokenizer_file''' _lowercase ={'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def __a ( self ) -> Dict: super().setUp() lowerCAmelCase_ = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self , **_UpperCamelCase ) -> Tuple: kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __a ( self ) -> List[str]: lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] lowerCAmelCase_ = [[2_175, 23_714, 73_173, 144_252, 2], [77, 132_619, 3_478, 368, 109_586, 35_433, 2]] lowerCAmelCase_ = tokenizer.batch_encode_plus(_UpperCamelCase )["input_ids"] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = tokenizer.batch_decode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def __a ( self , _UpperCamelCase=6 ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowerCAmelCase_ = "This is a simple input" lowerCAmelCase_ = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ = ("This is a simple input", "This is a pair") lowerCAmelCase_ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(_UpperCamelCase , max_length=_UpperCamelCase ) tokenizer_r.encode_plus(_UpperCamelCase , max_length=_UpperCamelCase ) tokenizer_r.batch_encode_plus(_UpperCamelCase , max_length=_UpperCamelCase ) tokenizer_r.encode(_UpperCamelCase , max_length=_UpperCamelCase ) tokenizer_r.batch_encode_plus(_UpperCamelCase , max_length=_UpperCamelCase ) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding" ) lowerCAmelCase_ = None # Hotfixing padding = None self.assertRaises(_UpperCamelCase , tokenizer_r.encode , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises(_UpperCamelCase , tokenizer_r.encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises( _UpperCamelCase , tokenizer_r.batch_encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) # Pair input self.assertRaises(_UpperCamelCase , tokenizer_r.encode , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises(_UpperCamelCase , tokenizer_r.encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises( _UpperCamelCase , tokenizer_r.batch_encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) def __a ( self ) -> Any: lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = load_dataset("xnli" , "all_languages" , split="test" , streaming=_UpperCamelCase ) lowerCAmelCase_ = next(iter(_UpperCamelCase ) )["premise"] # pick up one data lowerCAmelCase_ = list(sample_data.values() ) lowerCAmelCase_ = list(map(tokenizer.encode , _UpperCamelCase ) ) lowerCAmelCase_ = [tokenizer.decode(_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) for x in output_tokens] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def __a ( self ) -> List[Any]: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
231
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCamelCase = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""GLPNFeatureExtractor"""] _UpperCamelCase = ["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
234
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) def _a ( _snake_case ): """simple docstring""" if isinstance(_snake_case , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_snake_case , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_snake_case ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = ['''pixel_values'''] def __init__( self ,A = True ,A = None ,A = PILImageResampling.BILINEAR ,A = True ,A = None ,A = True ,A = 1 / 255 ,A = True ,A = True ,A = None ,A = None ,**A ,): super().__init__(**A ) UpperCAmelCase = size if size is not None else {"""shortest_edge""": 256} UpperCAmelCase = get_size_dict(A ,default_to_square=A ) UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase = get_size_dict(A ,param_name="""crop_size""" ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = resample UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = offset UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _UpperCamelCase ( self ,A ,A ,A = PILImageResampling.BILINEAR ,A = None ,**A ,): UpperCAmelCase = get_size_dict(A ,default_to_square=A ) if "shortest_edge" in size: UpperCAmelCase = get_resize_output_image_size(A ,size["""shortest_edge"""] ,default_to_square=A ) elif "height" in size and "width" in size: UpperCAmelCase = (size["""height"""], size["""width"""]) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(A ,size=A ,resample=A ,data_format=A ,**A ) def _UpperCamelCase ( self ,A ,A ,A = None ,**A ,): UpperCAmelCase = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(A ,size=(size["""height"""], size["""width"""]) ,data_format=A ,**A ) def _UpperCamelCase ( self ,A ,A ,A = True ,A = None ,**A ,): UpperCAmelCase = image.astype(np.floataa ) if offset: UpperCAmelCase = image - (scale / 2) return rescale(A ,scale=A ,data_format=A ,**A ) def _UpperCamelCase ( self ,A ,A ,A ,A = None ,**A ,): return normalize(A ,mean=A ,std=A ,data_format=A ,**A ) def _UpperCamelCase ( self ,A ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = ChannelDimension.FIRST ,): if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. UpperCAmelCase = to_numpy_array(A ) if do_resize: UpperCAmelCase = self.resize(image=A ,size=A ,resample=A ) if do_center_crop: UpperCAmelCase = self.center_crop(A ,size=A ) if do_rescale: UpperCAmelCase = self.rescale(image=A ,scale=A ,offset=A ) if do_normalize: UpperCAmelCase = self.normalize(image=A ,mean=A ,std=A ) UpperCAmelCase = to_channel_dimension_format(A ,A ) return image def _UpperCamelCase ( self ,A ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = None ,A = ChannelDimension.FIRST ,**A ,): UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = offset if offset is not None else self.offset UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(A ,default_to_square=A ) UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(A ,param_name="""crop_size""" ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) UpperCAmelCase = make_batched(A ) UpperCAmelCase = [ [ self._preprocess_image( image=A ,do_resize=A ,size=A ,resample=A ,do_center_crop=A ,crop_size=A ,do_rescale=A ,rescale_factor=A ,offset=A ,do_normalize=A ,image_mean=A ,image_std=A ,data_format=A ,) for img in video ] for video in videos ] UpperCAmelCase = {"""pixel_values""": videos} return BatchFeature(data=A ,tensor_type=A )
234
1
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class __magic_name__ ( lowerCamelCase__): def __init__( self : Optional[int] , lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : Union[str, Any]=1024 , lowercase_ : Optional[int]=1024 , lowercase_ : Union[str, Any]=3.6 ): lowercase_ : str = tokenizer lowercase_ : int = tokenizer.bos_token_id lowercase_ : Union[str, Any] = dataset lowercase_ : Union[str, Any] = seq_length lowercase_ : Optional[int] = seq_length * chars_per_token * num_of_sequences def __iter__( self : int ): lowercase_ : str = iter(self.dataset ) lowercase_ : Any = True while more_examples: lowercase_ , lowercase_ : List[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_snake_case )["""content"""] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase_ : Tuple = False break lowercase_ : Dict = tokenizer(_snake_case , truncation=_snake_case )["""input_ids"""] lowercase_ : List[str] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_snake_case ) , self.seq_length ): lowercase_ : Dict = all_token_ids[i : i + self.seq_length] if len(_snake_case ) == self.seq_length: yield torch.tensor(_snake_case ) def lowerCamelCase ( UpperCAmelCase__ : Tuple ) -> Optional[int]: lowercase_ : Any = {"""streaming""": True} lowercase_ : Dict = load_dataset(args.dataset_name , split="""train""" , **UpperCAmelCase__ ) lowercase_ : Dict = ConstantLengthDataset(UpperCAmelCase__ , UpperCAmelCase__ , seq_length=args.seq_length ) lowercase_ : List[str] = DataLoader(UpperCAmelCase__ , batch_size=args.batch_size ) return eval_dataloader def lowerCamelCase ( UpperCAmelCase__ : List[Any] ) -> Dict: model.eval() lowercase_ : int = [] for step, batch in enumerate(UpperCAmelCase__ ): with torch.no_grad(): lowercase_ : Dict = model(UpperCAmelCase__ , labels=UpperCAmelCase__ ) lowercase_ : Union[str, Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(UpperCAmelCase__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase_ : Any = torch.mean(torch.cat(UpperCAmelCase__ ) ) try: lowercase_ : Optional[int] = torch.exp(UpperCAmelCase__ ) except OverflowError: lowercase_ : Tuple = float("""inf""" ) return loss.item(), perplexity.item() # Setup Accelerator _lowercase : Any = Accelerator() # Parse configuration _lowercase : Tuple = HfArgumentParser(EvaluationArguments) _lowercase : Optional[Any] = parser.parse_args() set_seed(args.seed) # Logging _lowercase : int = logging.getLogger(__name__) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) # Load model and tokenizer _lowercase : List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _lowercase : Optional[int] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _lowercase : Union[str, Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _lowercase , _lowercase : Union[str, Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("Evaluating and saving model after training") _lowercase , _lowercase : Optional[int] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
239
from collections.abc import Iterable from typing import Generic, TypeVar A__ = TypeVar("""_T""") class __lowerCAmelCase ( Generic[_T] ): def __init__( self , _snake_case = None ): """simple docstring""" _lowerCAmelCase = list(iterable or [] ) _lowerCAmelCase = [] def __len__( self ): """simple docstring""" return len(self._stacka ) + len(self._stacka ) def __repr__( self ): """simple docstring""" return F'Queue({tuple(self._stacka[::-1] + self._stacka )})' def snake_case ( self , _snake_case ): """simple docstring""" self._stacka.append(_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self._stacka.pop _lowerCAmelCase = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("""Queue is empty""" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
82
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """gpt-neox-20b""": 2_0_4_8, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase=False , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> List[int]: '''simple docstring''' lowercase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [self.eos_token_id] ) if len(UpperCAmelCase ) > self.model_max_length: lowercase_ = input_ids[-self.model_max_length :] return input_ids
297
import sys def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' lowercase_ = len(__lowerCamelCase ) lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] for chain_length in range(2 , __lowerCamelCase ): for a in range(1 , n - chain_length + 1 ): lowercase_ = a + chain_length - 1 lowercase_ = sys.maxsize for c in range(__lowerCamelCase , __lowerCamelCase ): lowercase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowercase_ = cost lowercase_ = c return matrix, sol def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict ): '''simple docstring''' if i == j: print("A" + str(__lowerCamelCase ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(__lowerCamelCase , __lowerCamelCase , optimal_solution[i][j] ) print_optiomal_solution(__lowerCamelCase , optimal_solution[i][j] + 1 , __lowerCamelCase ) print(")" , end=" " ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = [30, 35, 15, 5, 10, 20, 25] lowercase_ = len(__lowerCamelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowercase_ , lowercase_ = matrix_chain_order(__lowerCamelCase ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(__lowerCamelCase , 1 , n - 1 ) if __name__ == "__main__": main()
297
1
"""simple docstring""" def _A ( UpperCamelCase_ : int, UpperCamelCase_ : int) -> int: '''simple docstring''' return int(input_a == input_a == 0) def _A ( ) -> None: '''simple docstring''' print("Truth Table of NOR Gate:") print("| Input 1 | Input 2 | Output |") print(F"""| 0 | 0 | {nor_gate(0, 0)} |""") print(F"""| 0 | 1 | {nor_gate(0, 1)} |""") print(F"""| 1 | 0 | {nor_gate(1, 0)} |""") print(F"""| 1 | 1 | {nor_gate(1, 1)} |""") if __name__ == "__main__": import doctest doctest.testmod() main()
17
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging _UpperCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Optional[int]: if "xprophetnet" in prophetnet_checkpoint_path: __lowerCamelCase : Union[str, Any] = XLMProphetNetForConditionalGenerationOld.from_pretrained(_lowerCAmelCase ) __lowerCamelCase ,__lowerCamelCase : List[str] = XLMProphetNetForConditionalGeneration.from_pretrained( _lowerCAmelCase ,output_loading_info=_lowerCAmelCase ) else: __lowerCamelCase : Optional[int] = ProphetNetForConditionalGenerationOld.from_pretrained(_lowerCAmelCase ) __lowerCamelCase ,__lowerCamelCase : List[str] = ProphetNetForConditionalGeneration.from_pretrained( _lowerCAmelCase ,output_loading_info=_lowerCAmelCase ) __lowerCamelCase : Union[str, Any] = ['key_proj', 'value_proj', 'query_proj'] __lowerCamelCase : Optional[Any] = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: __lowerCamelCase : Optional[int] = key.split('.' ) if attributes[0] == "lm_head": __lowerCamelCase : Dict = prophet __lowerCamelCase : List[Any] = prophet_old else: __lowerCamelCase : Any = prophet.prophetnet __lowerCamelCase : Any = prophet_old.model __lowerCamelCase : Optional[Any] = False for attribute in attributes: if attribute in mapping: __lowerCamelCase : Any = mapping[attribute] if not hasattr(_lowerCAmelCase ,_lowerCAmelCase ) and len(_lowerCAmelCase ) > 0: __lowerCamelCase : int = attribute elif hasattr(_lowerCAmelCase ,_lowerCAmelCase ): __lowerCamelCase : Optional[int] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowerCamelCase : List[Any] = old_model.weight logger.info(F'{attribute} is initialized.' ) __lowerCamelCase : List[Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowerCamelCase : List[Any] = old_model.bias logger.info(F'{attribute} is initialized' ) __lowerCamelCase : Dict = True break elif attribute in special_keys and hasattr(_lowerCAmelCase ,'in_proj_weight' ): __lowerCamelCase : Optional[Any] = old_model.in_proj_weight.shape[0] // 3 __lowerCamelCase : Optional[Any] = getattr(_lowerCAmelCase ,_lowerCAmelCase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowerCamelCase : Optional[int] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowerCamelCase : Dict = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowerCamelCase : List[str] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowerCamelCase : Dict = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowerCamelCase : str = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowerCamelCase : Optional[int] = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowerCamelCase : Optional[int] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowerCamelCase : Optional[int] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowerCamelCase : Dict = True break if attribute.isdigit(): __lowerCamelCase : List[str] = model[int(_lowerCAmelCase )] __lowerCamelCase : Union[str, Any] = old_model[int(_lowerCAmelCase )] else: __lowerCamelCase : Union[str, Any] = getattr(_lowerCAmelCase ,_lowerCAmelCase ) if old_attribute == "": __lowerCamelCase : str = old_model else: if not hasattr(_lowerCAmelCase ,_lowerCAmelCase ): raise ValueError(F'{old_model} does not have {old_attribute}' ) __lowerCamelCase : str = getattr(_lowerCAmelCase ,_lowerCAmelCase ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
208
0
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = ConsistencyModelPipeline __SCREAMING_SNAKE_CASE = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __SCREAMING_SNAKE_CASE = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __SCREAMING_SNAKE_CASE = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ]) @property def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet""" , ) return unet @property def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet_class_cond""" , ) return unet def __lowerCamelCase ( self , lowercase=False ) -> Union[str, Any]: if class_cond: __UpperCamelCase = self.dummy_cond_unet else: __UpperCamelCase = self.dummy_uncond_unet # Default to CM multistep sampler __UpperCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) __UpperCamelCase = { """unet""": unet, """scheduler""": scheduler, } return components def __lowerCamelCase ( self , lowercase , lowercase=0 ) -> int: if str(lowercase ).startswith("""mps""" ): __UpperCamelCase = torch.manual_seed(lowercase ) else: __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(lowercase ) __UpperCamelCase = { """batch_size""": 1, """num_inference_steps""": None, """timesteps""": [2_2, 0], """generator""": generator, """output_type""": """np""", } return inputs def __lowerCamelCase ( self ) -> str: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = ConsistencyModelPipeline(**lowercase ) __UpperCamelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = self.get_dummy_inputs(lowercase ) __UpperCamelCase = pipe(**lowercase ).images assert image.shape == (1, 3_2, 3_2, 3) __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __lowerCamelCase ( self ) -> str: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components(class_cond=lowercase ) __UpperCamelCase = ConsistencyModelPipeline(**lowercase ) __UpperCamelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = self.get_dummy_inputs(lowercase ) __UpperCamelCase = 0 __UpperCamelCase = pipe(**lowercase ).images assert image.shape == (1, 3_2, 3_2, 3) __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = ConsistencyModelPipeline(**lowercase ) __UpperCamelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = self.get_dummy_inputs(lowercase ) __UpperCamelCase = 1 __UpperCamelCase = None __UpperCamelCase = pipe(**lowercase ).images assert image.shape == (1, 3_2, 3_2, 3) __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components(class_cond=lowercase ) __UpperCamelCase = ConsistencyModelPipeline(**lowercase ) __UpperCamelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = self.get_dummy_inputs(lowercase ) __UpperCamelCase = 1 __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = pipe(**lowercase ).images assert image.shape == (1, 3_2, 3_2, 3) __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self , lowercase=0 , lowercase=False , lowercase="cpu" , lowercase=torch.floataa , lowercase=(1, 3, 6_4, 6_4) ) -> Optional[int]: __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = { """num_inference_steps""": None, """timesteps""": [2_2, 0], """class_labels""": 0, """generator""": generator, """output_type""": """np""", } if get_fixed_latents: __UpperCamelCase = self.get_fixed_latents(seed=lowercase , device=lowercase , dtype=lowercase , shape=lowercase ) __UpperCamelCase = latents return inputs def __lowerCamelCase ( self , lowercase=0 , lowercase="cpu" , lowercase=torch.floataa , lowercase=(1, 3, 6_4, 6_4) ) -> Tuple: if type(lowercase ) == str: __UpperCamelCase = torch.device(lowercase ) __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(lowercase ) __UpperCamelCase = randn_tensor(lowercase , generator=lowercase , device=lowercase , dtype=lowercase ) return latents def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) __UpperCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) __UpperCamelCase = ConsistencyModelPipeline(unet=lowercase , scheduler=lowercase ) pipe.to(torch_device=lowercase ) pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = self.get_inputs() __UpperCamelCase = pipe(**lowercase ).images assert image.shape == (1, 6_4, 6_4, 3) __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.0_888, 0.0_881, 0.0_666, 0.0_479, 0.0_292, 0.0_195, 0.0_201, 0.0_163, 0.0_254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) __UpperCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) __UpperCamelCase = ConsistencyModelPipeline(unet=lowercase , scheduler=lowercase ) pipe.to(torch_device=lowercase ) pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = self.get_inputs() __UpperCamelCase = 1 __UpperCamelCase = None __UpperCamelCase = pipe(**lowercase ).images assert image.shape == (1, 6_4, 6_4, 3) __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.0_340, 0.0_152, 0.0_063, 0.0_267, 0.0_221, 0.0_107, 0.0_416, 0.0_186, 0.0_217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) __UpperCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) __UpperCamelCase = ConsistencyModelPipeline(unet=lowercase , scheduler=lowercase ) pipe.to(torch_device=lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = self.get_inputs(get_fixed_latents=lowercase , device=lowercase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowercase , enable_math=lowercase , enable_mem_efficient=lowercase ): __UpperCamelCase = pipe(**lowercase ).images assert image.shape == (1, 6_4, 6_4, 3) __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.1_875, 0.1_428, 0.1_289, 0.2_151, 0.2_092, 0.1_477, 0.1_877, 0.1_641, 0.1_353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def __lowerCamelCase ( self ) -> int: __UpperCamelCase = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) __UpperCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) __UpperCamelCase = ConsistencyModelPipeline(unet=lowercase , scheduler=lowercase ) pipe.to(torch_device=lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = self.get_inputs(get_fixed_latents=lowercase , device=lowercase ) __UpperCamelCase = 1 __UpperCamelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowercase , enable_math=lowercase , enable_mem_efficient=lowercase ): __UpperCamelCase = pipe(**lowercase ).images assert image.shape == (1, 6_4, 6_4, 3) __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.1_663, 0.1_948, 0.2_275, 0.1_680, 0.1_204, 0.1_245, 0.1_858, 0.1_338, 0.2_095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
243
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCamelCase ( self ) -> Any: torch.manual_seed(0 ) __UpperCamelCase = UNetaDModel( sample_size=(3_2, 6_4) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return model @property def __lowerCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( sample_size=(6_4, 3_2) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , cross_attention_dim=1_0 , ) return model @property def __lowerCamelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( sample_size=(1_2_8, 6_4) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , ) __UpperCamelCase = UNetaDModel( sample_size=(6_4, 3_2) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return vqvae, unet @slow def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) __UpperCamelCase = DDPMScheduler() __UpperCamelCase = AudioDiffusionPipeline(vqvae=lowercase , unet=self.dummy_unet , mel=lowercase , scheduler=lowercase ) __UpperCamelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(4_2 ) __UpperCamelCase = pipe(generator=lowercase , steps=4 ) __UpperCamelCase = output.audios[0] __UpperCamelCase = output.images[0] __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(4_2 ) __UpperCamelCase = pipe(generator=lowercase , steps=4 , return_dict=lowercase ) __UpperCamelCase = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:1_0] __UpperCamelCase = np.frombuffer(image_from_tuple.tobytes() , dtype="""uint8""" )[:1_0] __UpperCamelCase = np.array([6_9, 2_5_5, 2_5_5, 2_5_5, 0, 0, 7_7, 1_8_1, 1_2, 1_2_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 __UpperCamelCase = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) __UpperCamelCase = DDIMScheduler() __UpperCamelCase = self.dummy_vqvae_and_unet __UpperCamelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=lowercase , scheduler=lowercase ) __UpperCamelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) np.random.seed(0 ) __UpperCamelCase = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(4_2 ) __UpperCamelCase = pipe(raw_audio=lowercase , generator=lowercase , start_step=5 , steps=1_0 ) __UpperCamelCase = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:1_0] __UpperCamelCase = np.array([1_2_0, 1_1_7, 1_1_0, 1_0_9, 1_3_8, 1_6_7, 1_3_8, 1_4_8, 1_3_2, 1_2_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 __UpperCamelCase = self.dummy_unet_condition __UpperCamelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=lowercase , mel=lowercase , scheduler=lowercase ) __UpperCamelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) np.random.seed(0 ) __UpperCamelCase = torch.rand((1, 1, 1_0) ) __UpperCamelCase = pipe(generator=lowercase , encoding=lowercase ) __UpperCamelCase = output.images[0] __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:1_0] __UpperCamelCase = np.array([1_0_7, 1_0_3, 1_2_0, 1_2_7, 1_4_2, 1_2_2, 1_1_3, 1_2_2, 9_7, 1_1_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ) -> str: __UpperCamelCase = torch_device __UpperCamelCase = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) __UpperCamelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(4_2 ) __UpperCamelCase = pipe(generator=lowercase ) __UpperCamelCase = output.audios[0] __UpperCamelCase = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:1_0] __UpperCamelCase = np.array([1_5_1, 1_6_7, 1_5_4, 1_4_4, 1_2_2, 1_3_4, 1_2_1, 1_0_5, 7_0, 2_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
243
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> int: lowercase__ : Optional[Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def __UpperCAmelCase ( __lowerCamelCase ) -> int: lowercase__ : Optional[int] = 0 while number > 0: lowercase__ : List[Any] = number % 10 sum_of_digits += last_digit lowercase__ : List[str] = number // 10 # Removing the last_digit from the given number return sum_of_digits def __UpperCAmelCase ( __lowerCamelCase = 1_00 ) -> int: lowercase__ : Any = factorial(__lowerCamelCase ) lowercase__ : Dict = split_and_add(__lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
16
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : Union[str, Any]=13 ,_snake_case : Any=32 ,_snake_case : int=2 ,_snake_case : str=3 ,_snake_case : Optional[Any]=16 ,_snake_case : List[Any]=[1, 2, 1] ,_snake_case : Dict=[2, 2, 4] ,_snake_case : List[Any]=2 ,_snake_case : Any=2.0 ,_snake_case : Optional[int]=True ,_snake_case : Optional[int]=0.0 ,_snake_case : Union[str, Any]=0.0 ,_snake_case : str=0.1 ,_snake_case : List[Any]="gelu" ,_snake_case : Tuple=False ,_snake_case : Optional[int]=True ,_snake_case : str=0.02 ,_snake_case : List[str]=1e-5 ,_snake_case : int=True ,_snake_case : Dict=None ,_snake_case : str=True ,_snake_case : List[Any]=10 ,_snake_case : Any=8 ,) -> Union[str, Any]: """simple docstring""" lowercase__ : Dict = parent lowercase__ : Any = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Dict = patch_size lowercase__ : int = num_channels lowercase__ : Any = embed_dim lowercase__ : int = depths lowercase__ : Dict = num_heads lowercase__ : List[Any] = window_size lowercase__ : int = mlp_ratio lowercase__ : Optional[int] = qkv_bias lowercase__ : str = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : Dict = drop_path_rate lowercase__ : int = hidden_act lowercase__ : Tuple = use_absolute_embeddings lowercase__ : Tuple = patch_norm lowercase__ : Tuple = layer_norm_eps lowercase__ : Optional[Any] = initializer_range lowercase__ : int = is_training lowercase__ : Optional[int] = scope lowercase__ : str = use_labels lowercase__ : Dict = type_sequence_label_size lowercase__ : Union[str, Any] = encoder_stride def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Any = SwinvaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ) lowercase__ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Optional[Any] ,_snake_case : int ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = SwinvaForMaskedImageModeling(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Tuple = model(_snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ : Optional[int] = 1 lowercase__ : List[Any] = SwinvaForMaskedImageModeling(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : str = model(_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase ( self : str ,_snake_case : str ,_snake_case : str ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Tuple = self.type_sequence_label_size lowercase__ : Dict = SwinvaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) lowerCAmelCase : Optional[int] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : Dict = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Any = False def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = SwinvaModelTester(self ) lowercase__ : List[str] = ConfigTester(self ,config_class=_snake_case ,embed_dim=37 ) def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" pass def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case ,nn.Linear ) ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = True for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : Union[str, Any] = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Dict = outputs.attentions lowercase__ : Any = len(self.model_tester.depths ) self.assertEqual(len(_snake_case ) ,_snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : List[Any] = True lowercase__ : Optional[Any] = config.window_size**2 lowercase__ : Any = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) lowercase__ : Optional[Any] = len(_snake_case ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : Tuple = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) if hasattr(self.model_tester ,'''num_hidden_states_types''' ): lowercase__ : int = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowercase__ : List[str] = 2 self.assertEqual(out_len + added_hidden_states ,len(_snake_case ) ) lowercase__ : Optional[int] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def UpperCAmelCase ( self : List[str] ,_snake_case : int ,_snake_case : List[str] ,_snake_case : Optional[int] ,_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = getattr( self.model_tester ,'''expected_num_hidden_layers''' ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_snake_case ) ,_snake_case ) # Swinv2 has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) lowercase__ : Tuple = outputs.reshaped_hidden_states self.assertEqual(len(_snake_case ) ,_snake_case ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = reshaped_hidden_states[0].shape lowercase__ : int = ( reshaped_hidden_states[0].view(_snake_case ,_snake_case ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = 3 lowercase__ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Optional[int] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = SwinvaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = _config_zero_init(_snake_case ) for model_class in self.all_model_classes: lowercase__ : Optional[int] = model_class(config=_snake_case ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @require_vision @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowercase__ : str = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( _snake_case ) lowercase__ : Union[str, Any] = self.default_image_processor lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ : Dict = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**_snake_case ) # verify the logits lowercase__ : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Dict = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1e-4 ) )
16
1
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 a : Optional[Any] = sys.version_info >= (3, 1_0) def __lowerCamelCase ( _lowercase=None , _lowercase=None ) -> Union[str, Any]: """simple docstring""" return field(default_factory=lambda: default , metadata=_lowercase ) @dataclass class UpperCamelCase_ : lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 @dataclass class UpperCamelCase_ : lowercase = 42 lowercase = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class UpperCamelCase_ : lowercase = False lowercase = True lowercase = None class UpperCamelCase_ ( __magic_name__ ): lowercase = 'titi' lowercase = 'toto' class UpperCamelCase_ ( __magic_name__ ): lowercase = 'titi' lowercase = 'toto' lowercase = 42 @dataclass class UpperCamelCase_ : lowercase = 'toto' def _lowercase( self ) -> Dict: UpperCAmelCase : int = BasicEnum(self.foo ) @dataclass class UpperCamelCase_ : lowercase = 'toto' def _lowercase( self ) -> Tuple: UpperCAmelCase : Any = MixedTypeEnum(self.foo ) @dataclass class UpperCamelCase_ : lowercase = None lowercase = field(default=__magic_name__ , metadata={'help': 'help message'} ) lowercase = None lowercase = list_field(default=[] ) lowercase = list_field(default=[] ) @dataclass class UpperCamelCase_ : lowercase = list_field(default=[] ) lowercase = list_field(default=[1, 2, 3] ) lowercase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) lowercase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCamelCase_ : lowercase = field() lowercase = field() lowercase = field() def _lowercase( self ) -> Any: UpperCAmelCase : Dict = BasicEnum(self.required_enum ) @dataclass class UpperCamelCase_ : lowercase = 42 lowercase = field() lowercase = None lowercase = field(default='toto' , metadata={'help': 'help message'} ) lowercase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class UpperCamelCase_ : lowercase = False lowercase = True lowercase = None @dataclass class UpperCamelCase_ : lowercase = None lowercase = field(default=__magic_name__ , metadata={'help': 'help message'} ) lowercase = None lowercase = list_field(default=[] ) lowercase = list_field(default=[] ) class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A ) -> List[str]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): UpperCAmelCase : Optional[Any] = {k: v for k, v in vars(A ).items() if k != """container"""} UpperCAmelCase : Any = {k: v for k, v in vars(A ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , A ) and yy.get("""choices""" , A ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](A ) , yy["""type"""](A ) ) del xx["type"], yy["type"] self.assertEqual(A , A ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = HfArgumentParser(A ) UpperCAmelCase : str = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=A , required=A ) expected.add_argument("""--bar""" , type=A , required=A ) expected.add_argument("""--baz""" , type=A , required=A ) expected.add_argument("""--flag""" , type=A , default=A , const=A , nargs="""?""" ) self.argparsersEqual(A , A ) UpperCAmelCase : Optional[Any] = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] (UpperCAmelCase ) : Dict = parser.parse_args_into_dataclasses(A , look_for_args_file=A ) self.assertFalse(example.flag ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = HfArgumentParser(A ) UpperCAmelCase : str = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=A ) expected.add_argument("""--baz""" , default="""toto""" , type=A , help="""help message""" ) self.argparsersEqual(A , A ) def _lowercase( self ) -> Any: UpperCAmelCase : Tuple = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=A , default=A , const=A , nargs="""?""" ) expected.add_argument("""--baz""" , type=A , default=A , const=A , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=A , dest="""baz""" ) expected.add_argument("""--opt""" , type=A , default=A ) UpperCAmelCase : Union[str, Any] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(A ) for dataclass_type in dataclass_types: UpperCAmelCase : List[Any] = HfArgumentParser(A ) self.argparsersEqual(A , A ) UpperCAmelCase : Optional[Any] = parser.parse_args([] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) UpperCAmelCase : Tuple = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) UpperCAmelCase : List[Any] = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) UpperCAmelCase : Dict = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) UpperCAmelCase : Optional[Any] = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = HfArgumentParser(A ) UpperCAmelCase : Any = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(A , A ) UpperCAmelCase : List[Any] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) UpperCAmelCase : int = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) UpperCAmelCase : Optional[int] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) UpperCAmelCase : Tuple = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) UpperCAmelCase : Any = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) UpperCAmelCase : str = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _lowercase( self ) -> Optional[int]: @dataclass class UpperCamelCase_ : lowercase = 'toto' UpperCAmelCase : int = HfArgumentParser(A ) UpperCAmelCase : Dict = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(A , A ) UpperCAmelCase : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) UpperCAmelCase : Optional[int] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) UpperCAmelCase : int = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : int = HfArgumentParser(A ) UpperCAmelCase : Any = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=A ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=A ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=A ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=A ) self.argparsersEqual(A , A ) UpperCAmelCase : int = parser.parse_args([] ) self.assertEqual( A , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) UpperCAmelCase : Optional[int] = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(A , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Any = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=A , type=A ) expected.add_argument("""--bar""" , default=A , type=A , help="""help message""" ) expected.add_argument("""--baz""" , default=A , type=A ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=A ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=A ) UpperCAmelCase : Optional[Any] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(A ) for dataclass_type in dataclass_types: UpperCAmelCase : Optional[Any] = HfArgumentParser(A ) self.argparsersEqual(A , A ) UpperCAmelCase : List[Any] = parser.parse_args([] ) self.assertEqual(A , Namespace(foo=A , bar=A , baz=A , ces=[] , des=[] ) ) UpperCAmelCase : Tuple = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(A , Namespace(foo=12 , bar=3.1_4 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = HfArgumentParser(A ) UpperCAmelCase : List[str] = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=A , required=A ) expected.add_argument("""--required_str""" , type=A , required=A ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=A , ) self.argparsersEqual(A , A ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[int] = HfArgumentParser(A ) UpperCAmelCase : List[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=A , required=A ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=A , ) expected.add_argument("""--opt""" , type=A , default=A ) expected.add_argument("""--baz""" , default="""toto""" , type=A , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=A ) self.argparsersEqual(A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[int] = HfArgumentParser(A ) UpperCAmelCase : Dict = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, } UpperCAmelCase : List[Any] = parser.parse_dict(A )[0] UpperCAmelCase : Optional[int] = BasicExample(**A ) self.assertEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = HfArgumentParser(A ) UpperCAmelCase : int = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(A , parser.parse_dict , A , allow_extra_keys=A ) def _lowercase( self ) -> Any: UpperCAmelCase : Union[str, Any] = HfArgumentParser(A ) UpperCAmelCase : Any = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : List[Any] = os.path.join(A , """temp_json""" ) os.mkdir(A ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(A , A ) UpperCAmelCase : Union[str, Any] = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] UpperCAmelCase : List[str] = BasicExample(**A ) self.assertEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : Tuple = HfArgumentParser(A ) UpperCAmelCase : int = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : Optional[Any] = os.path.join(A , """temp_yaml""" ) os.mkdir(A ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(A , A ) UpperCAmelCase : List[Any] = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] UpperCAmelCase : Optional[Any] = BasicExample(**A ) self.assertEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = HfArgumentParser(A ) self.assertIsNotNone(A )
364
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True _UpperCAmelCase : Optional[Any] = 4 _UpperCAmelCase : Union[str, Any] = (1 << p) - 1 for _ in range(p - 2 ): _UpperCAmelCase : int = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
234
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[str] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = emb.weight.shape _UpperCAmelCase : str = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = emb.weight.data return lin_layer def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=None ): _UpperCAmelCase : int = {} for old_key in state_dict.keys(): _UpperCAmelCase : Tuple = old_key if "moe_layer.experts." in key: if expert_idx is not None: _UpperCAmelCase : Optional[int] = key.replace("moe_layer.experts.0" , F"""ffn.experts.expert_{expert_idx}""" ) else: _UpperCAmelCase : Any = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: _UpperCAmelCase : List[Any] = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: _UpperCAmelCase : Tuple = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: _UpperCAmelCase : List[Any] = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: _UpperCAmelCase : List[Any] = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: _UpperCAmelCase : Any = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: _UpperCAmelCase : int = key.replace("final_layer_norm" , "ff_layer_norm" ) _UpperCAmelCase : Tuple = state_dict[old_key] return new_dict def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = WEIGHTS_NAME ): _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Optional[Any] = 0 os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) for expert in range(__lowerCAmelCase ): _UpperCAmelCase : Tuple = switch_checkpoint_path + F"""-rank-{expert}.pt""" if os.path.isfile(__lowerCAmelCase ): _UpperCAmelCase : Tuple = torch.load(__lowerCAmelCase )["model"] remove_ignore_keys_(__lowerCAmelCase ) _UpperCAmelCase : Dict = rename_fairseq_keys(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : List[str] = os.path.join( __lowerCAmelCase , weights_name.replace(".bin" , F"""-{len(__lowerCAmelCase )+1:05d}-of-???.bin""" ) ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowerCAmelCase )[0]].dtype ) # Add the last block _UpperCAmelCase : Tuple = os.path.join(__lowerCAmelCase , weights_name.replace(".bin" , F"""-{len(__lowerCAmelCase )+1:05d}-of-???.bin""" ) ) _UpperCAmelCase : Union[str, Any] = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = rename_fairseq_keys(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Any = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowerCAmelCase ) == 1: _UpperCAmelCase : List[str] = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowerCAmelCase , __lowerCAmelCase ) # Otherwise, let's build the index _UpperCAmelCase : Union[str, Any] = {} for idx, shard in enumerate(__lowerCAmelCase ): _UpperCAmelCase : Tuple = weights_name.replace(".bin" , F"""-{idx+1:05d}-of-{len(__lowerCAmelCase ):05d}.bin""" ) _UpperCAmelCase : List[Any] = os.path.join(__lowerCAmelCase , weights_name.replace(".bin" , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) for key in shard: _UpperCAmelCase : List[Any] = shard_file # Add the metadata _UpperCAmelCase : Any = {"total_size": total_size} _UpperCAmelCase : List[str] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _UpperCAmelCase : Tuple = json.dumps(__lowerCAmelCase , indent=2 , sort_keys=__lowerCAmelCase ) + "\n" f.write(__lowerCAmelCase ) return metadata, index if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ ,lowerCamelCase__ = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) lowerCamelCase__ = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCamelCase__ = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
234
1
def A ( _UpperCAmelCase : str ) -> bool: '''simple docstring''' _UpperCAmelCase = [int(UpperCAmelCase_ ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(UpperCAmelCase_ ) == 4 and all(0 <= int(UpperCAmelCase_ ) <= 254 for octet in octets ) if __name__ == "__main__": UpperCAmelCase__ = input().strip() UpperCAmelCase__ = "valid" if is_ip_va_address_valid(ip) else "invalid" print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
357
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( A ): def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" _UpperCAmelCase = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(A , 'hidden_sizes')) self.parent.assertTrue(hasattr(A , 'neck_hidden_sizes')) self.parent.assertTrue(hasattr(A , 'num_attention_heads')) class __lowerCAmelCase : def __init__( self : int , A : Tuple , A : List[str]=13 , A : List[str]=32 , A : List[str]=2 , A : List[str]=3 , A : List[Any]=6_40 , A : Any=4 , A : int="silu" , A : int=3 , A : Dict=32 , A : List[Any]=0.1 , A : Optional[Any]=0.1 , A : Optional[int]=0.1 , A : List[str]=0.0_2 , A : int=True , A : Any=True , A : List[str]=10 , A : Tuple=None , ) -> Dict: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = last_hidden_size _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = conv_kernel_size _UpperCAmelCase = output_stride _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = classifier_dropout_prob _UpperCAmelCase = use_labels _UpperCAmelCase = is_training _UpperCAmelCase = num_labels _UpperCAmelCase = initializer_range _UpperCAmelCase = scope def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels) _UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) _UpperCAmelCase = self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCamelCase ( self : str) -> int: """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : List[Any] , A : Dict , A : Tuple , A : int , A : Tuple) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = MobileViTModel(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCamelCase ( self : int , A : Any , A : List[Any] , A : List[Any] , A : Optional[int]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = MobileViTForImageClassification(A) model.to(A) model.eval() _UpperCAmelCase = model(A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCamelCase ( self : int , A : Tuple , A : Optional[Any] , A : Union[str, Any] , A : List[Any]) -> int: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = MobileViTForSemanticSegmentation(A) model.to(A) model.eval() _UpperCAmelCase = model(A) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _UpperCAmelCase = model(A , labels=A) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCamelCase ( self : int) -> Any: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = MobileViTModelTester(self) _UpperCAmelCase = MobileViTConfigTester(self , config_class=A , has_text_modality=A) def _lowerCamelCase ( self : Optional[int]) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds') def _lowerCamelCase ( self : Tuple) -> Dict: """simple docstring""" pass @unittest.skip(reason='MobileViT does not support input and output embeddings') def _lowerCamelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViT does not output attentions') def _lowerCamelCase ( self : Any) -> Optional[Any]: """simple docstring""" pass def _lowerCamelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(A) _UpperCAmelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def _lowerCamelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" pass def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A) def _lowerCamelCase ( self : Optional[int]) -> Any: """simple docstring""" def check_hidden_states_output(A : List[str] , A : Union[str, Any] , A : int): _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = 5 self.assertEqual(len(A) , A) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _UpperCAmelCase = 2 for i in range(len(A)): self.assertListEqual( list(hidden_states[i].shape[-2:]) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(A , A , A) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(A , A , A) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A) def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A) @slow def _lowerCamelCase ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = MobileViTModel.from_pretrained(A) self.assertIsNotNone(A) def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self : Tuple) -> Dict: """simple docstring""" return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small') if is_vision_available() else None @slow def _lowerCamelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small').to(A) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=A , return_tensors='pt').to(A) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**A) # verify the logits _UpperCAmelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , A) _UpperCAmelCase = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3]).to(A) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4)) @slow def _lowerCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small') _UpperCAmelCase = model.to(A) _UpperCAmelCase = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small') _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=A , return_tensors='pt').to(A) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**A) _UpperCAmelCase = outputs.logits # verify the logits _UpperCAmelCase = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape , A) _UpperCAmelCase = torch.tensor( [ [[6.9_7_1_3, 6.9_7_8_6, 7.2_4_2_2], [7.2_8_9_3, 7.2_8_2_5, 7.4_4_4_6], [7.6_5_8_0, 7.8_7_9_7, 7.9_4_2_0]], [[-1_0.6_8_6_9, -1_0.3_2_5_0, -1_0.3_4_7_1], [-1_0.4_2_2_8, -9.9_8_6_8, -9.7_1_3_2], [-1_1.0_4_0_5, -1_1.0_2_2_1, -1_0.7_3_1_8]], [[-3.3_0_8_9, -2.8_5_3_9, -2.6_7_4_0], [-3.2_7_0_6, -2.5_6_2_1, -2.5_1_0_8], [-3.2_5_3_4, -2.6_6_1_5, -2.6_6_5_1]], ] , device=A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A , atol=1E-4)) @slow def _lowerCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small') _UpperCAmelCase = model.to(A) _UpperCAmelCase = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small') _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=A , return_tensors='pt').to(A) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**A) _UpperCAmelCase = outputs.logits.detach().cpu() _UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=A , target_sizes=[(50, 60)]) _UpperCAmelCase = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape , A) _UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=A) _UpperCAmelCase = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape , A)
290
0
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowerCAmelCase: str = logging.get_logger(__name__) lowerCAmelCase: int = TypeVar('DatasetType', Dataset, IterableDataset) def lowerCamelCase__ ( _A , _A = None , _A = None , _A = None , _A = None , _A = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(_A ): if not isinstance(_A , (Dataset, IterableDataset) ): if isinstance(_A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(_A )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_A ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_A ).__name__}.""" ) if i == 0: a , a : Optional[Any] = ( (Dataset, IterableDataset) if isinstance(_A , _A ) else (IterableDataset, Dataset) ) elif not isinstance(_A , _A ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( _A , _A , _A , info=_A , split=_A , stopping_strategy=_A ) else: return _interleave_iterable_datasets( _A , _A , _A , info=_A , split=_A , stopping_strategy=_A ) def lowerCamelCase__ ( _A , _A = None , _A = None , _A = 0 , ): if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(_A ): if not isinstance(_A , (Dataset, IterableDataset) ): if isinstance(_A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(_A )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_A ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_A ).__name__}.""" ) if i == 0: a , a : Optional[Any] = ( (Dataset, IterableDataset) if isinstance(_A , _A ) else (IterableDataset, Dataset) ) elif not isinstance(_A , _A ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_A , info=_A , split=_A , axis=_A ) else: return _concatenate_iterable_datasets(_A , info=_A , split=_A , axis=_A )
297
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a__( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = StableUnCLIPImgaImgPipeline lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase__ = frozenset([] ) def lowercase_ ( self : int ): a : Dict = 32 a : str = embedder_hidden_size # image encoding components a : List[Any] = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) a : Dict = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__snake_case , projection_dim=__snake_case , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) a : Dict = StableUnCLIPImageNormalizer(embedding_dim=__snake_case ) a : Optional[int] = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) a : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) a : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__snake_case , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) a : Union[str, Any] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__snake_case , layers_per_block=1 , upcast_attention=__snake_case , use_linear_projection=__snake_case , ) torch.manual_seed(0 ) a : List[Any] = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.00085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=__snake_case , steps_offset=1 , ) torch.manual_seed(0 ) a : List[str] = AutoencoderKL() a : str = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def lowercase_ ( self : Tuple , __snake_case : List[str] , __snake_case : Union[str, Any]=0 , __snake_case : Tuple=True ): if str(__snake_case ).startswith('mps' ): a : Tuple = torch.manual_seed(__snake_case ) else: a : List[Any] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) if pil_image: a : Optional[Any] = input_image * 0.5 + 0.5 a : Optional[Any] = input_image.clamp(0 , 1 ) a : Dict = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() a : int = DiffusionPipeline.numpy_to_pil(__snake_case )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def lowercase_ ( self : Optional[Any] ): a : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator a : Union[str, Any] = self.get_dummy_components() a : Any = StableUnCLIPImgaImgPipeline(**__snake_case ) a : Tuple = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) a : Union[str, Any] = self.get_dummy_inputs(__snake_case ) inputs.update({'image_embeds': None} ) a : str = sd_pipe(**__snake_case ).images a : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a : Optional[int] = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self : List[str] ): a : int = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=__snake_case ) def lowercase_ ( self : int ): a : Optional[int] = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=__snake_case ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowercase_ ( self : Dict ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__snake_case ) @slow @require_torch_gpu class a__( unittest.TestCase ): def lowercase_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Optional[Any] ): a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) a : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy' ) a : Optional[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img' , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) a : Optional[int] = pipe(__snake_case , 'anime turle' , generator=__snake_case , output_type='np' ) a : List[str] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def lowercase_ ( self : Optional[int] ): a : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) a : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy' ) a : Union[str, Any] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) a : str = pipe(__snake_case , 'anime turle' , generator=__snake_case , output_type='np' ) a : List[str] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def lowercase_ ( self : Any ): a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() a : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) a : Optional[Any] = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a : Optional[int] = pipe( __snake_case , 'anime turtle' , num_inference_steps=2 , output_type='np' , ) a : int = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
297
1
from math import factorial def snake_case (UpperCAmelCase__ = 1_0_0 ) -> int: return sum(int(UpperCAmelCase__ ) for x in str(factorial(UpperCAmelCase__ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
292
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() A_ : str = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] A_ : Optional[int] = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: Dict = { 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks UpperCamelCase_: Tuple = int(re.match(R'.*layer_(\d*).*' , UpperCAmelCase__ )[1] ) layer_number -= 3 return F'''h.{layer_number}.''' + key def snake_case (UpperCAmelCase__ ) -> List[str]: if dtype == torch.bool: return 1 / 8 UpperCamelCase_: Optional[Any] = re.search(R'[^\d](\d+)$' , str(UpperCAmelCase__ ) ) if bit_search is None: raise ValueError(F'''`dtype` is not a valid dtype: {dtype}.''' ) UpperCamelCase_: List[Any] = int(bit_search.groups()[0] ) return bit_size // 8 def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: # Construct model if bloom_config_file == "": UpperCamelCase_: List[str] = BloomConfig() else: UpperCamelCase_: List[str] = BloomConfig.from_json_file(UpperCAmelCase__ ) if shard_model: UpperCamelCase_: str = os.listdir(UpperCAmelCase__ ) UpperCamelCase_: List[str] = sorted(filter(lambda UpperCAmelCase__ : s.startswith('layer' ) and "model_00" in s , UpperCAmelCase__ ) ) UpperCamelCase_: Optional[int] = {'weight_map': {}, 'metadata': {}} UpperCamelCase_: str = 0 UpperCamelCase_: Optional[Any] = None UpperCamelCase_: int = BloomConfig() for j, file in enumerate(UpperCAmelCase__ ): print('Processing file: {}'.format(UpperCAmelCase__ ) ) UpperCamelCase_: Tuple = None for i in range(UpperCAmelCase__ ): # load all TP files UpperCamelCase_: List[Any] = file.replace('model_00' , F'''model_0{i}''' ) UpperCamelCase_: List[str] = torch.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , map_location='cpu' ) # Rename keys in the transformers names UpperCamelCase_: Optional[int] = list(temp.keys() ) for key in keys: UpperCamelCase_: List[Any] = temp.pop(UpperCAmelCase__ ) if tensors is None: UpperCamelCase_: Dict = temp else: for key in tensors.keys(): if any(key.endswith(UpperCAmelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCamelCase_: List[Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks UpperCamelCase_: Dict = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): UpperCamelCase_: Optional[int] = tensors[key] / pretraining_tp torch.save( UpperCAmelCase__ , os.path.join( UpperCAmelCase__ , 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase__ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): UpperCamelCase_: int = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: UpperCamelCase_: Dict = 'pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase__ ) ).zfill(5 ) ) UpperCamelCase_: Union[str, Any] = BloomConfig() UpperCamelCase_: Any = pytorch_dump_folder_path + '/' + CONFIG_NAME UpperCamelCase_: Optional[int] = total_size with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(UpperCAmelCase__ , WEIGHTS_NAME + '.index.json' ) , 'w' , encoding='utf-8' ) as f: UpperCamelCase_: Tuple = json.dumps(UpperCAmelCase__ , indent=2 , sort_keys=UpperCAmelCase__ ) + '\n' f.write(UpperCAmelCase__ ) else: UpperCamelCase_: Optional[Any] = BloomModel(UpperCAmelCase__ ) UpperCamelCase_: Tuple = os.listdir(UpperCAmelCase__ ) UpperCamelCase_: Tuple = sorted(filter(lambda UpperCAmelCase__ : s.startswith('layer' ) and "model_00" in s , UpperCAmelCase__ ) ) UpperCamelCase_: Tuple = None for i, file in enumerate(UpperCAmelCase__ ): UpperCamelCase_: Union[str, Any] = None for i in range(UpperCAmelCase__ ): # load all TP files UpperCamelCase_: Any = file.replace('model_00' , F'''model_0{i}''' ) UpperCamelCase_: Union[str, Any] = torch.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , map_location='cpu' ) # Rename keys in the transformers names UpperCamelCase_: Dict = list(temp.keys() ) for key in keys: UpperCamelCase_: Any = temp.pop(UpperCAmelCase__ ) if tensors is None: UpperCamelCase_: Any = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(UpperCAmelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCamelCase_: int = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks UpperCamelCase_: Optional[int] = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): UpperCamelCase_: Tuple = tensors[key] / pretraining_tp UpperCamelCase_: Any = model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) assert not other_keys.unexpected_keys, F'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: UpperCamelCase_: Any = set(other_keys.missing_keys ) else: UpperCamelCase_: int = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME UpperCamelCase_: str = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: UpperCamelCase_: Tuple = model.to(config.torch_dtype ) torch.save(model.state_dict() , UpperCAmelCase__ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) A_ : Any = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
292
1
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Optional[Any] = """bart""" a_ : str = ["""past_key_values"""] a_ : str = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __UpperCAmelCase=5_02_65 , __UpperCAmelCase=10_24 , __UpperCAmelCase=12 , __UpperCAmelCase=40_96 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=40_96 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=10_24 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) ->Optional[Any]: a_ = vocab_size a_ = max_position_embeddings a_ = d_model a_ = encoder_ffn_dim a_ = encoder_layers a_ = encoder_attention_heads a_ = decoder_ffn_dim a_ = decoder_layers a_ = decoder_attention_heads a_ = dropout a_ = attention_dropout a_ = activation_dropout a_ = activation_function a_ = init_std a_ = encoder_layerdrop a_ = decoder_layerdrop a_ = classifier_dropout a_ = use_cache a_ = encoder_layers a_ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , __UpperCAmelCase): a_ = self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' "The config can simply be saved and uploaded again to be fixed.") class snake_case ( SCREAMING_SNAKE_CASE_ ): @property def UpperCAmelCase__ ( self) ->Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: a_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ]) if self.use_past: a_ = {0: "batch"} a_ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: a_ = {0: "batch", 1: "decoder_sequence"} a_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction="inputs") elif self.task == "causal-lm": # TODO: figure this case out. a_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ]) if self.use_past: a_ , a_ = self.num_layers for i in range(__UpperCAmelCase): a_ = {0: "batch", 2: "past_sequence + sequence"} a_ = {0: "batch", 2: "past_sequence + sequence"} else: a_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ]) return common_inputs @property def UpperCAmelCase__ ( self) ->Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: a_ = super().outputs else: a_ = super(__UpperCAmelCase , self).outputs if self.use_past: a_ , a_ = self.num_layers for i in range(__UpperCAmelCase): a_ = {0: "batch", 2: "past_sequence + sequence"} a_ = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) ->Mapping[str, Any]: a_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) # Generate decoder inputs a_ = seq_length if not self.use_past else 1 a_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a_ = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} a_ = dict(**__UpperCAmelCase , **__UpperCAmelCase) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch a_ , a_ = common_inputs["input_ids"].shape a_ = common_inputs["decoder_input_ids"].shape[1] a_ , a_ = self.num_attention_heads a_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) a_ = decoder_seq_length + 3 a_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) a_ = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__UpperCAmelCase , __UpperCAmelCase)] , dim=1) a_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered a_ , a_ = self.num_layers a_ = min(__UpperCAmelCase , __UpperCAmelCase) a_ = max(__UpperCAmelCase , __UpperCAmelCase) - min_num_layers a_ = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__UpperCAmelCase): common_inputs["past_key_values"].append( ( torch.zeros(__UpperCAmelCase), torch.zeros(__UpperCAmelCase), torch.zeros(__UpperCAmelCase), torch.zeros(__UpperCAmelCase), )) # TODO: test this. a_ = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__UpperCAmelCase , __UpperCAmelCase): common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase), torch.zeros(__UpperCAmelCase))) return common_inputs def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) ->Mapping[str, Any]: a_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch a_ , a_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values a_ = seqlen + 2 a_ , a_ = self.num_layers a_ , a_ = self.num_attention_heads a_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) a_ = common_inputs["attention_mask"].dtype a_ = torch.cat( [common_inputs["attention_mask"], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase)] , dim=1) a_ = [ (torch.zeros(__UpperCAmelCase), torch.zeros(__UpperCAmelCase)) for _ in range(__UpperCAmelCase) ] return common_inputs def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) ->Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX a_ = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX a_ = tokenizer.num_special_tokens_to_add(__UpperCAmelCase) a_ = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase) # Generate dummy inputs according to compute batch and sequence a_ = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size a_ = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase)) return common_inputs def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) ->Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: a_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase) elif self.task == "causal-lm": a_ = self._generate_dummy_inputs_for_causal_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase) else: a_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase) return common_inputs def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->List[Any]: if self.task in ["default", "seq2seq-lm"]: a_ = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) else: a_ = super(__UpperCAmelCase , self)._flatten_past_key_values_( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase)
243
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase ) ->list[int]: """simple docstring""" if length <= 0 or not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(UpperCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
243
1
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) def lowerCAmelCase (__UpperCamelCase : Optional[int] ): """simple docstring""" __UpperCamelCase =torch.load(__UpperCamelCase , map_location='''cpu''' ) if "model" in sd.keys(): __UpperCamelCase =torch.load(__UpperCamelCase , map_location='''cpu''' )['''model'''] # pop unnecessary weights __UpperCamelCase =[ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(__UpperCamelCase ) __UpperCamelCase ={ '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __UpperCamelCase =sd.pop(__UpperCamelCase ) __UpperCamelCase =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __UpperCamelCase =sd[key] # We split QKV in separate Q,K,V __UpperCamelCase =key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __UpperCamelCase =key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __UpperCamelCase =key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __UpperCamelCase =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =torch.split(__UpperCamelCase , depth // 3 , dim=0 ) __UpperCamelCase =q __UpperCamelCase =k __UpperCamelCase =v del sd[key] return sd @torch.no_grad() def lowerCAmelCase (__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any]=None ): """simple docstring""" __UpperCamelCase =load_checkpoint(__UpperCamelCase ) if config is not None: __UpperCamelCase =OPTConfig.from_pretrained(__UpperCamelCase ) else: __UpperCamelCase =OPTConfig() __UpperCamelCase =OPTModel(__UpperCamelCase ).half().eval() model.load_state_dict(__UpperCamelCase ) # Check results Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') __lowercase = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
360
"""simple docstring""" def lowerCAmelCase (__UpperCamelCase : str ): """simple docstring""" __UpperCamelCase =0 # if input_string is "aba" than new_input_string become "a|b|a" __UpperCamelCase ='''''' __UpperCamelCase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__UpperCamelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring __UpperCamelCase , __UpperCamelCase =0, 0 # length[i] shows the length of palindromic substring with center i __UpperCamelCase =[1 for i in range(len(__UpperCamelCase ) )] # for each character in new_string find corresponding palindromic string __UpperCamelCase =0 for j in range(len(__UpperCamelCase ) ): __UpperCamelCase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__UpperCamelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 __UpperCamelCase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: __UpperCamelCase =j - k + 1 # noqa: E741 __UpperCamelCase =j + k - 1 # update max_length and start position if max_length < length[j]: __UpperCamelCase =length[j] __UpperCamelCase =j # create that string __UpperCamelCase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
85
0
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowerCamelCase_ : """simple docstring""" def __init__( self : Union[str, Any] , _a : Any , _a : Optional[Any]=3 , _a : Any=32 , _a : Dict=3 , _a : str=10 , _a : str=[8, 16, 32, 64] , _a : Dict=[1, 1, 2, 1] , _a : Optional[int]=True , _a : Any=True , _a : List[Any]="relu" , _a : str=3 , _a : Dict=None , _a : Dict=["stage2", "stage3", "stage4"] , _a : str=[2, 3, 4] , _a : Optional[int]=1 , ) -> Union[str, Any]: __lowerCamelCase : Union[str, Any] = parent __lowerCamelCase : List[Any] = batch_size __lowerCamelCase : Dict = image_size __lowerCamelCase : int = num_channels __lowerCamelCase : List[str] = embeddings_size __lowerCamelCase : List[str] = hidden_sizes __lowerCamelCase : str = depths __lowerCamelCase : List[str] = is_training __lowerCamelCase : Tuple = use_labels __lowerCamelCase : str = hidden_act __lowerCamelCase : Optional[int] = num_labels __lowerCamelCase : Tuple = scope __lowerCamelCase : Tuple = len(__SCREAMING_SNAKE_CASE ) __lowerCamelCase : int = out_features __lowerCamelCase : int = out_indices __lowerCamelCase : str = num_groups def _lowercase ( self : Optional[int] ) -> Optional[Any]: __lowerCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : Union[str, Any] = None if self.use_labels: __lowerCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase : Tuple = self.get_config() return config, pixel_values, labels def _lowercase ( self : Union[str, Any] ) -> Tuple: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _lowercase ( self : Union[str, Any] , _a : List[Any] , _a : Tuple , _a : List[Any] ) -> Optional[Any]: __lowerCamelCase : int = BitModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCamelCase : Tuple = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase ( self : Optional[int] , _a : Optional[Any] , _a : Any , _a : List[str] ) -> Dict: __lowerCamelCase : Dict = self.num_labels __lowerCamelCase : Any = BitForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCamelCase : Any = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : Union[str, Any] , _a : int , _a : Optional[Any] , _a : str ) -> List[str]: __lowerCamelCase : List[str] = BitBackbone(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCamelCase : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __lowerCamelCase : List[str] = None __lowerCamelCase : int = BitBackbone(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCamelCase : Dict = model(__SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase ( self : List[str] ) -> Optional[int]: __lowerCamelCase : int = self.prepare_config_and_inputs() __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase : int = config_and_inputs __lowerCamelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ =(BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a_ =( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) a_ =False a_ =False a_ =False a_ =False a_ =False def _lowercase ( self : List[Any] ) -> List[Any]: __lowerCamelCase : List[str] = BitModelTester(self ) __lowerCamelCase : int = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def _lowercase ( self : int ) -> List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self : Optional[int] ) -> Any: return @unittest.skip(reason='Bit does not output attentions' ) def _lowercase ( self : int ) -> Optional[Any]: pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def _lowercase ( self : Dict ) -> Optional[int]: pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def _lowercase ( self : Union[str, Any] ) -> Dict: pass def _lowercase ( self : str ) -> Optional[Any]: __lowerCamelCase ,__lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE ) __lowerCamelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] __lowerCamelCase : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def _lowercase ( self : Union[str, Any] ) -> Any: __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _lowercase ( self : Any ) -> Union[str, Any]: __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__SCREAMING_SNAKE_CASE ) def _lowercase ( self : Any ) -> Union[str, Any]: __lowerCamelCase ,__lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[str] = model_class(config=__SCREAMING_SNAKE_CASE ) for name, module in model.named_modules(): if isinstance(__SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def _lowercase ( self : str ) -> Dict: def check_hidden_states_output(_a : str , _a : int , _a : Optional[Any] ): __lowerCamelCase : Any = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) __lowerCamelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCamelCase : str = self.model_tester.num_stages self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCamelCase ,__lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : List[Any] = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: __lowerCamelCase : int = layer_type __lowerCamelCase : Tuple = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : str = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def _lowercase ( self : Tuple ) -> List[str]: pass def _lowercase ( self : List[Any] ) -> Optional[int]: __lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self : Any ) -> List[Any]: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Tuple = BitModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def a_ ( ) -> Tuple: __lowerCamelCase : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Optional[Any] ) -> int: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowercase ( self : Optional[int] ) -> List[Any]: __lowerCamelCase : Union[str, Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__SCREAMING_SNAKE_CASE ) __lowerCamelCase : List[str] = self.default_image_processor __lowerCamelCase : Dict = prepare_img() __lowerCamelCase : int = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): __lowerCamelCase : List[str] = model(**__SCREAMING_SNAKE_CASE ) # verify the logits __lowerCamelCase : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) __lowerCamelCase : Optional[int] = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @require_torch class lowerCamelCase_ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ =(BitBackbone,) if is_torch_available() else () a_ =BitConfig a_ =False def _lowercase ( self : int ) -> Dict: __lowerCamelCase : Tuple = BitModelTester(self )
208
from collections import defaultdict from math import ceil, sqrt def SCREAMING_SNAKE_CASE_ ( snake_case__ = 1_0_0_0_0_0_0 , snake_case__ = 1_0 ) -> int: lowerCAmelCase = defaultdict(snake_case__ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowerCAmelCase = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: lowerCAmelCase = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(snake_case__ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(f'{solution() = }')
338
0
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( __UpperCAmelCase , unittest.TestCase ): __A : str = XLMTokenizer __A : str = False def __snake_case ( self : Optional[Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase :Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowercase :Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowercase :Tuple = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] lowercase :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(snake_case__ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(snake_case__ ) ) def __snake_case ( self : Tuple , snake_case__ : Tuple ): '''simple docstring''' lowercase :Dict = '''lower newer''' lowercase :Optional[int] = '''lower newer''' return input_text, output_text def __snake_case ( self : Any ): '''simple docstring''' lowercase :Union[str, Any] = XLMTokenizer(self.vocab_file , self.merges_file ) lowercase :Union[str, Any] = '''lower''' lowercase :Union[str, Any] = ['''low''', '''er</w>'''] lowercase :str = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) lowercase :List[Any] = tokens + ['''<unk>'''] lowercase :Optional[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) @slow def __snake_case ( self : int ): '''simple docstring''' lowercase :Optional[Any] = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) lowercase :List[str] = tokenizer.encode('''sequence builders''' , add_special_tokens=snake_case__ ) lowercase :Dict = tokenizer.encode('''multi-sequence build''' , add_special_tokens=snake_case__ ) lowercase :List[Any] = tokenizer.build_inputs_with_special_tokens(snake_case__ ) lowercase :List[str] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
172
"""simple docstring""" def lowerCamelCase (a_ :int) -> None: lowercase :Tuple = generate_pascal_triangle(a_) for row_idx in range(a_): # Print left spaces for _ in range(num_rows - row_idx - 1): print(end=''' ''') # Print row values for col_idx in range(row_idx + 1): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''') else: print(triangle[row_idx][col_idx] , end='''''') print() def lowerCamelCase (a_ :int) -> list[list[int]]: if not isinstance(a_ , a_): raise TypeError('''The input value of \'num_rows\' should be \'int\'''') if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''') lowercase :list[list[int]] = [] for current_row_idx in range(a_): lowercase :Union[str, Any] = populate_current_row(a_ , a_) triangle.append(a_) return triangle def lowerCamelCase (a_ :list[list[int]] , a_ :int) -> list[int]: lowercase :List[str] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowercase , lowercase :Dict = 1, 1 for current_col_idx in range(1 , a_): calculate_current_element( a_ , a_ , a_ , a_) return current_row def lowerCamelCase (a_ :list[list[int]] , a_ :list[int] , a_ :int , a_ :int , ) -> None: lowercase :str = triangle[current_row_idx - 1][current_col_idx - 1] lowercase :Dict = triangle[current_row_idx - 1][current_col_idx] lowercase :Any = above_to_left_elt + above_to_right_elt def lowerCamelCase (a_ :int) -> list[list[int]]: if not isinstance(a_ , a_): raise TypeError('''The input value of \'num_rows\' should be \'int\'''') if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''') lowercase :list[list[int]] = [[1]] for row_index in range(1 , a_): lowercase :Union[str, Any] = [0] + result[-1] + [0] lowercase :Union[str, Any] = row_index + 1 # Calculate the number of distinct elements in a row lowercase :List[str] = sum(divmod(a_ , 2)) lowercase :Dict = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1) ] lowercase :Optional[int] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowercase :Dict = row_first_half + row_second_half result.append(a_) return result def lowerCamelCase () -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(a_ :Callable , a_ :int) -> None: lowercase :int = F"""{func.__name__}({value})""" lowercase :Union[str, Any] = timeit(F"""__main__.{call}""" , setup='''import __main__''') # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"""{call:38} -- {timing:.4f} seconds""") for value in range(15): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(a_ , a_) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
172
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self : Optional[Any] ) -> List[str]: """simple docstring""" __magic_name__ = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) __magic_name__ = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house __magic_name__ = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim __magic_name__ = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __magic_name__ = model(UpperCamelCase__ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , UpperCamelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCamelCase__ , atol=1E-3 ) ) @slow def _lowercase ( self : Optional[Any] ) -> Any: """simple docstring""" __magic_name__ = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) __magic_name__ = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house __magic_name__ = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim __magic_name__ = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __magic_name__ = model(UpperCamelCase__ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , UpperCamelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCamelCase__ , atol=1E-3 ) )
88
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __snake_case ( __lowerCAmelCase ): a__ = 42 a__ = jnp.floataa a__ = True def lowerCamelCase_ ( self) -> int: '''simple docstring''' super().setup() a__: int = nn.Dense(5 , dtype=self.dtype) def __call__( self , *lowercase , **lowercase) -> Dict: '''simple docstring''' a__: Dict = super().__call__(*lowercase , **lowercase) a__: str = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class __snake_case ( __lowerCAmelCase ): a__ = FlaxBigBirdForNaturalQuestionsModule def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: def cross_entropy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): a__: Any = logits.shape[-1] a__: List[Any] = (labels[..., None] == jnp.arange(_SCREAMING_SNAKE_CASE )[None]).astype('f4' ) a__: List[str] = jax.nn.log_softmax(_SCREAMING_SNAKE_CASE , axis=-1 ) a__: Dict = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: a__: str = reduction(_SCREAMING_SNAKE_CASE ) return loss a__: Tuple = partial(_SCREAMING_SNAKE_CASE , reduction=jnp.mean ) a__: List[str] = cross_entropy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: Union[str, Any] = cross_entropy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: Any = cross_entropy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __snake_case : a__ = "google/bigbird-roberta-base" a__ = 3000 a__ = 1_0500 a__ = 128 a__ = 3 a__ = 1 a__ = 5 # tx_args a__ = 3e-5 a__ = 0.0 a__ = 2_0000 a__ = 0.0095 a__ = "bigbird-roberta-natural-questions" a__ = "training-expt" a__ = "data/nq-training.jsonl" a__ = "data/nq-validation.jsonl" def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' os.makedirs(self.base_dir , exist_ok=lowercase) a__: str = os.path.join(self.base_dir , self.save_dir) a__: List[str] = self.batch_size_per_device * jax.device_count() @dataclass class __snake_case : a__ = 42 a__ = 4096 # no dynamic padding on TPUs def __call__( self , lowercase) -> List[Any]: '''simple docstring''' a__: int = self.collate_fn(lowercase) a__: Optional[int] = jax.tree_util.tree_map(lowercase , lowercase) return batch def lowerCamelCase_ ( self , lowercase) -> Dict: '''simple docstring''' a__ , a__: Dict = self.fetch_inputs(features['input_ids']) a__: List[Any] = { 'input_ids': jnp.array(lowercase , dtype=jnp.intaa), 'attention_mask': jnp.array(lowercase , dtype=jnp.intaa), 'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa), 'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa), 'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa), } return batch def lowerCamelCase_ ( self , lowercase) -> List[str]: '''simple docstring''' a__: List[Any] = [self._fetch_inputs(lowercase) for ids in input_ids] return zip(*lowercase) def lowerCamelCase_ ( self , lowercase) -> Dict: '''simple docstring''' a__: Union[str, Any] = [1 for _ in range(len(lowercase))] while len(lowercase) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->List[Any]: if seed is not None: a__: int = dataset.shuffle(seed=_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) // batch_size ): a__: Union[str, Any] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(_SCREAMING_SNAKE_CASE ) @partial(jax.pmap , axis_name='batch' ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) ->Any: def loss_fn(_SCREAMING_SNAKE_CASE ): a__: str = model_inputs.pop('start_labels' ) a__: Dict = model_inputs.pop('end_labels' ) a__: Optional[int] = model_inputs.pop('pooled_labels' ) a__: Optional[Any] = state.apply_fn(**_SCREAMING_SNAKE_CASE , params=_SCREAMING_SNAKE_CASE , dropout_rng=_SCREAMING_SNAKE_CASE , train=_SCREAMING_SNAKE_CASE ) a__ , a__ , a__: Optional[int] = outputs return state.loss_fn( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) a__ , a__: Union[str, Any] = jax.random.split(_SCREAMING_SNAKE_CASE ) a__: List[Any] = jax.value_and_grad(_SCREAMING_SNAKE_CASE ) a__ , a__: str = grad_fn(state.params ) a__: Optional[int] = jax.lax.pmean({'loss': loss} , axis_name='batch' ) a__: int = jax.lax.pmean(_SCREAMING_SNAKE_CASE , 'batch' ) a__: Union[str, Any] = state.apply_gradients(grads=_SCREAMING_SNAKE_CASE ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='batch' ) def __a ( _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) ->Optional[Any]: a__: Optional[int] = model_inputs.pop('start_labels' ) a__: int = model_inputs.pop('end_labels' ) a__: Dict = model_inputs.pop('pooled_labels' ) a__: Union[str, Any] = state.apply_fn(**_SCREAMING_SNAKE_CASE , params=state.params , train=_SCREAMING_SNAKE_CASE ) a__ , a__ , a__: int = outputs a__: Optional[int] = state.loss_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: Tuple = jax.lax.pmean({'loss': loss} , axis_name='batch' ) return metrics class __snake_case ( train_state.TrainState ): a__ = struct.field(pytree_node=__lowerCAmelCase ) @dataclass class __snake_case : a__ = 42 a__ = 42 a__ = 42 a__ = 42 a__ = 42 a__ = 42 a__ = None def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase=None) -> Optional[int]: '''simple docstring''' a__: Dict = model.params a__: Any = TrainState.create( apply_fn=model.__call__ , params=lowercase , tx=lowercase , loss_fn=lowercase , ) if ckpt_dir is not None: a__ , a__ , a__ , a__ , a__: Any = restore_checkpoint(lowercase , lowercase) a__: Any = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } a__ , a__: str = build_tx(**lowercase) a__: Optional[Any] = train_state.TrainState( step=lowercase , apply_fn=model.__call__ , params=lowercase , tx=lowercase , opt_state=lowercase , ) a__: int = args a__: Union[str, Any] = data_collator a__: Any = lr a__: Dict = params a__: Tuple = jax_utils.replicate(lowercase) return state def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> int: '''simple docstring''' a__: int = self.args a__: str = len(lowercase) // args.batch_size a__: Tuple = jax.random.PRNGKey(0) a__: List[Any] = jax.random.split(lowercase , jax.device_count()) for epoch in range(args.max_epochs): a__: str = jnp.array(0 , dtype=jnp.floataa) a__: Tuple = get_batched_dataset(lowercase , args.batch_size , seed=lowercase) a__: Optional[int] = 0 for batch in tqdm(lowercase , total=lowercase , desc=f'Running EPOCH-{epoch}'): a__: List[str] = self.data_collator(lowercase) a__ , a__ , a__: int = self.train_step_fn(lowercase , lowercase , **lowercase) running_loss += jax_utils.unreplicate(metrics['loss']) i += 1 if i % args.logging_steps == 0: a__: List[Any] = jax_utils.unreplicate(state.step) a__: Tuple = running_loss.item() / i a__: Optional[Any] = self.scheduler_fn(state_step - 1) a__: List[Any] = self.evaluate(lowercase , lowercase) a__: List[str] = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(lowercase)) self.logger.log(lowercase , commit=lowercase) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=lowercase) def lowerCamelCase_ ( self , lowercase , lowercase) -> List[Any]: '''simple docstring''' a__: Tuple = get_batched_dataset(lowercase , self.args.batch_size) a__: Dict = len(lowercase) // self.args.batch_size a__: Tuple = jnp.array(0 , dtype=jnp.floataa) a__: List[Any] = 0 for batch in tqdm(lowercase , total=lowercase , desc='Evaluating ... '): a__: str = self.data_collator(lowercase) a__: List[str] = self.val_step_fn(lowercase , **lowercase) running_loss += jax_utils.unreplicate(metrics['loss']) i += 1 return running_loss / i def lowerCamelCase_ ( self , lowercase , lowercase) -> Any: '''simple docstring''' a__: List[Any] = jax_utils.unreplicate(lowercase) print(f'SAVING CHECKPOINT IN {save_dir}' , end=' ... ') self.model_save_fn(lowercase , params=state.params) with open(os.path.join(lowercase , 'opt_state.msgpack') , 'wb') as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(lowercase , 'args.joblib')) joblib.dump(self.data_collator , os.path.join(lowercase , 'data_collator.joblib')) with open(os.path.join(lowercase , 'training_state.json') , 'w') as f: json.dump({'step': state.step.item()} , lowercase) print('DONE') def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=' ... ' ) with open(os.path.join(_SCREAMING_SNAKE_CASE , 'flax_model.msgpack' ) , 'rb' ) as f: a__: int = from_bytes(state.params , f.read() ) with open(os.path.join(_SCREAMING_SNAKE_CASE , 'opt_state.msgpack' ) , 'rb' ) as f: a__: Optional[Any] = from_bytes(state.opt_state , f.read() ) a__: Optional[Any] = joblib.load(os.path.join(_SCREAMING_SNAKE_CASE , 'args.joblib' ) ) a__: int = joblib.load(os.path.join(_SCREAMING_SNAKE_CASE , 'data_collator.joblib' ) ) with open(os.path.join(_SCREAMING_SNAKE_CASE , 'training_state.json' ) , 'r' ) as f: a__: Any = json.load(_SCREAMING_SNAKE_CASE ) a__: Optional[Any] = training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]: a__: str = num_train_steps - warmup_steps a__: str = optax.linear_schedule(init_value=_SCREAMING_SNAKE_CASE , end_value=_SCREAMING_SNAKE_CASE , transition_steps=_SCREAMING_SNAKE_CASE ) a__: List[Any] = optax.linear_schedule(init_value=_SCREAMING_SNAKE_CASE , end_value=1e-7 , transition_steps=_SCREAMING_SNAKE_CASE ) a__: int = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Tuple: def weight_decay_mask(_SCREAMING_SNAKE_CASE ): a__: List[Any] = traverse_util.flatten_dict(_SCREAMING_SNAKE_CASE ) a__: List[str] = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(_SCREAMING_SNAKE_CASE ) a__: List[str] = scheduler_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: Any = optax.adamw(learning_rate=_SCREAMING_SNAKE_CASE , weight_decay=_SCREAMING_SNAKE_CASE , mask=_SCREAMING_SNAKE_CASE ) return tx, lr
290
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __A : List[Any] = logging.get_logger(__name__) @dataclass class __snake_case ( __a): """simple docstring""" lowercase = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self : int , **lowerCamelCase : List[Any] ) -> List[str]: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowerCAmelCase_ : Optional[int] = deprecated_arg[3:] lowerCAmelCase_ : int = not kwargs.pop(a__ ) logger.warning( F'{deprecated_arg} is depreciated. Please use --no-{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}' ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""tpu_name""" , self.tpu_name ) lowerCAmelCase_ : List[str] = kwargs.pop("""device_idx""" , self.device_idx ) lowerCAmelCase_ : Tuple = kwargs.pop("""eager_mode""" , self.eager_mode ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**a__ ) lowercase = field( default=__a ,metadata={'help': 'Name of TPU'} ,) lowercase = field( default=0 ,metadata={'help': 'CPU / GPU device index. Defaults to 0.'} ,) lowercase = field(default=__a ,metadata={'help': 'Benchmark models in eager model.'}) lowercase = field( default=__a ,metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } ,) @cached_property def __lowercase ( self : int ) -> Any: requires_backends(self , ["""tf"""] ) lowerCAmelCase_ : int = None if self.tpu: try: if self.tpu_name: lowerCAmelCase_ : int = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowerCAmelCase_ : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowerCAmelCase_ : int = None return tpu @cached_property def __lowercase ( self : Optional[Any] ) -> int: requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowerCAmelCase_ : List[str] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) lowerCAmelCase_ : Optional[int] = tf.distribute.OneDeviceStrategy(device=F'/gpu:{self.device_idx}' ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU lowerCAmelCase_ : Optional[Any] = tf.distribute.OneDeviceStrategy(device=F'/cpu:{self.device_idx}' ) return strategy @property def __lowercase ( self : List[str] ) -> List[str]: requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def __lowercase ( self : int ) -> Optional[int]: requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def __lowercase ( self : str ) -> Dict: requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def __lowercase ( self : Dict ) -> Union[str, Any]: requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __lowercase ( self : Optional[Any] ) -> Tuple: return self.n_gpu > 0
359
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def UpperCamelCase_ ( A__ : np.ndarray , A__ : np.ndarray , A__ : np.ndarray , A__ : int , A__ : int ): '''simple docstring''' lowerCAmelCase_ : List[Any] = cva.getAffineTransform(A__ , A__ ) return cva.warpAffine(A__ , A__ , (rows, cols) ) if __name__ == "__main__": # read original image __A : Dict = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value __A : List[Any] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __A , __A : Dict = gray_img.shape # set different points to rotate image __A : List[str] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __A : Tuple = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __A : List[Any] = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __A : Optional[Any] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __A : Optional[Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __A : Dict = plt.figure(1) __A : Optional[Any] = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.0_5, right=1.0, top=0.9_5) plt.show()
89
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case : List[Any] = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[Any] = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Any = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys _snake_case : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
292
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _snake_case : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( lowercase_ ): def __init__( self :Dict , __UpperCamelCase :WhisperForConditionalGeneration , __UpperCamelCase :WhisperProcessor , __UpperCamelCase :AutoencoderKL , __UpperCamelCase :CLIPTextModel , __UpperCamelCase :CLIPTokenizer , __UpperCamelCase :UNetaDConditionModel , __UpperCamelCase :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __UpperCamelCase :StableDiffusionSafetyChecker , __UpperCamelCase :CLIPImageProcessor , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=__UpperCamelCase , speech_processor=__UpperCamelCase , vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase , feature_extractor=__UpperCamelCase , ) def lowerCamelCase ( self :Any , __UpperCamelCase :Optional[Union[str, int]] = "auto" ): if slice_size == "auto": A = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCamelCase ) def lowerCamelCase ( self :Tuple ): self.enable_attention_slicing(__UpperCamelCase ) @torch.no_grad() def __call__( self :Optional[Any] , __UpperCamelCase :Any , __UpperCamelCase :Dict=1_60_00 , __UpperCamelCase :int = 5_12 , __UpperCamelCase :int = 5_12 , __UpperCamelCase :int = 50 , __UpperCamelCase :float = 7.5 , __UpperCamelCase :Optional[Union[str, List[str]]] = None , __UpperCamelCase :Optional[int] = 1 , __UpperCamelCase :float = 0.0 , __UpperCamelCase :Optional[torch.Generator] = None , __UpperCamelCase :Optional[torch.FloatTensor] = None , __UpperCamelCase :Optional[str] = "pil" , __UpperCamelCase :bool = True , __UpperCamelCase :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCamelCase :int = 1 , **__UpperCamelCase :Dict , ): A = self.speech_processor.feature_extractor( __UpperCamelCase , return_tensors="pt" , sampling_rate=__UpperCamelCase ).input_features.to(self.device ) A = self.speech_model.generate(__UpperCamelCase , max_length=48_00_00 ) A = self.speech_processor.tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase , normalize=__UpperCamelCase )[ 0 ] if isinstance(__UpperCamelCase , __UpperCamelCase ): A = 1 elif isinstance(__UpperCamelCase , __UpperCamelCase ): A = len(__UpperCamelCase ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(__UpperCamelCase )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCamelCase , __UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(__UpperCamelCase )}." ) # get prompt text embeddings A = self.tokenizer( __UpperCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) A = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) A = text_input_ids[:, : self.tokenizer.model_max_length] A = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A, A, A = text_embeddings.shape A = text_embeddings.repeat(1 , __UpperCamelCase , 1 ) A = text_embeddings.view(bs_embed * num_images_per_prompt , __UpperCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A = 42 if negative_prompt is None: A = [""] * batch_size elif type(__UpperCamelCase ) is not type(__UpperCamelCase ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(__UpperCamelCase )} !=" f" {type(__UpperCamelCase )}." ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): A = [negative_prompt] elif batch_size != len(__UpperCamelCase ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(__UpperCamelCase )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: A = negative_prompt A = text_input_ids.shape[-1] A = self.tokenizer( __UpperCamelCase , padding="max_length" , max_length=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors="pt" , ) A = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A = uncond_embeddings.shape[1] A = uncond_embeddings.repeat(1 , __UpperCamelCase , 1 ) A = uncond_embeddings.view(batch_size * num_images_per_prompt , __UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device="cpu" , dtype=__UpperCamelCase ).to( self.device ) else: A = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) A = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__UpperCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A = {} if accepts_eta: A = eta for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual A = self.unet(__UpperCamelCase , __UpperCamelCase , encoder_hidden_states=__UpperCamelCase ).sample # perform guidance if do_classifier_free_guidance: A, A = noise_pred.chunk(2 ) A = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) A = 1 / 0.18_215 * latents A = self.vae.decode(__UpperCamelCase ).sample A = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__UpperCamelCase , nsfw_content_detected=__UpperCamelCase )
292
1
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position _UpperCAmelCase = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _UpperCAmelCase = concatenate_datasets _UpperCAmelCase = DownloadConfig _UpperCAmelCase = DownloadManager _UpperCAmelCase = DownloadMode _UpperCAmelCase = DownloadConfig _UpperCAmelCase = DownloadMode _UpperCAmelCase = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
366
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class snake_case_ ( __lowercase ): A_ = 'biogpt' def __init__( self : int , _snake_case : Any=42384 , _snake_case : Any=1024 , _snake_case : List[Any]=24 , _snake_case : Any=16 , _snake_case : List[str]=4096 , _snake_case : Dict="gelu" , _snake_case : Tuple=0.1 , _snake_case : str=0.1 , _snake_case : Tuple=1024 , _snake_case : Tuple=0.02 , _snake_case : Tuple=1E-12 , _snake_case : Optional[int]=True , _snake_case : Optional[int]=True , _snake_case : Any=0.0 , _snake_case : Tuple=0.0 , _snake_case : str=1 , _snake_case : Dict=0 , _snake_case : str=2 , **_snake_case : Union[str, Any] , )->Dict: '''simple docstring''' __lowerCAmelCase : List[Any] = vocab_size __lowerCAmelCase : Dict = max_position_embeddings __lowerCAmelCase : str = hidden_size __lowerCAmelCase : Dict = num_hidden_layers __lowerCAmelCase : List[Any] = num_attention_heads __lowerCAmelCase : Optional[Any] = intermediate_size __lowerCAmelCase : int = hidden_act __lowerCAmelCase : Any = hidden_dropout_prob __lowerCAmelCase : Any = attention_probs_dropout_prob __lowerCAmelCase : Any = initializer_range __lowerCAmelCase : int = layer_norm_eps __lowerCAmelCase : Optional[int] = scale_embedding __lowerCAmelCase : List[Any] = use_cache __lowerCAmelCase : str = layerdrop __lowerCAmelCase : Dict = activation_dropout super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case )
232
0
import string def lowerCAmelCase_ (lowerCAmelCase__: str ): """simple docstring""" UpperCAmelCase_: List[Any] = """""" for i in sequence: UpperCAmelCase_: int = ord(lowerCAmelCase__ ) if 6_5 <= extract <= 9_0: output += chr(1_5_5 - extract ) elif 9_7 <= extract <= 1_2_2: output += chr(2_1_9 - extract ) else: output += i return output def lowerCAmelCase_ (lowerCAmelCase__: str ): """simple docstring""" UpperCAmelCase_: Union[str, Any] = string.ascii_letters UpperCAmelCase_: Tuple = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowerCAmelCase__ )] if c in letters else c for c in sequence ) def lowerCAmelCase_ (): """simple docstring""" from timeit import timeit print("""Running performance benchmarks...""" ) UpperCAmelCase_: Union[str, Any] = """from string import printable ; from __main__ import atbash, atbash_slow""" print(F'> atbash_slow(): {timeit("atbash_slow(printable)" , setup=lowerCAmelCase__ )} seconds' ) print(F'> atbash(): {timeit("atbash(printable)" , setup=lowerCAmelCase__ )} seconds' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
147
'''simple docstring''' def UpperCamelCase_( snake_case : Optional[int] , snake_case : Optional[int] ): '''simple docstring''' snake_case_ = [0 for i in range(r + 1 )] # nc0 = 1 snake_case_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case_ = min(snake_case , snake_case ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
85
0
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __UpperCAmelCase : @staticmethod def __magic_name__ ( *__A : Optional[int], **__A : str ): pass @is_pipeline_test @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): UpperCamelCase = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def __magic_name__ ( self : Any, __A : int, __A : int, __A : Optional[Any] ): UpperCAmelCase : Optional[Any] = pipeline('''visual-question-answering''', model='''hf-internal-testing/tiny-vilt-random-vqa''' ) UpperCAmelCase : int = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def __magic_name__ ( self : Dict, __A : List[str], __A : Optional[int] ): UpperCAmelCase : Union[str, Any] = vqa_pipeline(__A, top_k=1 ) self.assertEqual( __A, [ [{'''score''': ANY(__A ), '''answer''': ANY(__A )}], [{'''score''': ANY(__A ), '''answer''': ANY(__A )}], ], ) @require_torch def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : List[Any] = pipeline('''visual-question-answering''', model='''hf-internal-testing/tiny-vilt-random-vqa''' ) UpperCAmelCase : int = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase : int = '''How many cats are there?''' UpperCAmelCase : Union[str, Any] = vqa_pipeline(image=__A, question='''How many cats are there?''', top_k=2 ) self.assertEqual( __A, [{'''score''': ANY(__A ), '''answer''': ANY(__A )}, {'''score''': ANY(__A ), '''answer''': ANY(__A )}] ) UpperCAmelCase : Dict = vqa_pipeline({'''image''': image, '''question''': question}, top_k=2 ) self.assertEqual( __A, [{'''score''': ANY(__A ), '''answer''': ANY(__A )}, {'''score''': ANY(__A ), '''answer''': ANY(__A )}] ) @slow @require_torch def __magic_name__ ( self : int ): UpperCAmelCase : Tuple = pipeline('''visual-question-answering''', model='''dandelin/vilt-b32-finetuned-vqa''' ) UpperCAmelCase : List[Any] = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase : List[Any] = '''How many cats are there?''' UpperCAmelCase : List[str] = vqa_pipeline(image=__A, question=__A, top_k=2 ) self.assertEqual( nested_simplify(__A, decimals=4 ), [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}] ) UpperCAmelCase : Optional[int] = vqa_pipeline({'''image''': image, '''question''': question}, top_k=2 ) self.assertEqual( nested_simplify(__A, decimals=4 ), [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}] ) UpperCAmelCase : int = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}], top_k=2 ) self.assertEqual( nested_simplify(__A, decimals=4 ), [[{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]] * 2, ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''' ) def __magic_name__ ( self : List[str] ): pass
99
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Dict, __A : Any, __A : Optional[int]=1_3, __A : Any=7, __A : Tuple=True, __A : int=True, __A : Dict=True, __A : Union[str, Any]=True, __A : Optional[int]=9_9, __A : Optional[int]=3_2, __A : Union[str, Any]=5, __A : Optional[int]=4, __A : str=3_7, __A : Union[str, Any]="gelu", __A : Optional[int]=0.1, __A : Optional[Any]=0.1, __A : Any=5_1_2, __A : List[str]=1_6, __A : Optional[int]=2, __A : Union[str, Any]=0.0_2, __A : Optional[int]=False, __A : List[str]=True, __A : int="None", __A : List[str]=3, __A : Any=4, __A : Dict=None, ): UpperCAmelCase : str = parent UpperCAmelCase : int = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : Dict = use_input_mask UpperCAmelCase : Optional[Any] = use_token_type_ids UpperCAmelCase : str = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : int = type_vocab_size UpperCAmelCase : str = type_sequence_label_size UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Dict = num_labels UpperCAmelCase : Optional[Any] = num_choices UpperCAmelCase : str = relative_attention UpperCAmelCase : Any = position_biased_input UpperCAmelCase : str = pos_att_type UpperCAmelCase : Union[str, Any] = scope def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase : int = None if self.use_input_mask: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) UpperCAmelCase : Dict = None if self.use_token_type_ids: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCAmelCase : List[str] = None UpperCAmelCase : str = None UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size], self.num_choices ) UpperCAmelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : Any ): return DebertaVaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, pos_att_type=self.pos_att_type, ) def __magic_name__ ( self : Dict, __A : str ): self.parent.assertListEqual(list(result.loss.size() ), [] ) def __magic_name__ ( self : List[str], __A : Dict, __A : int, __A : str, __A : List[str], __A : Dict, __A : str, __A : int ): UpperCAmelCase : Optional[int] = DebertaVaModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[int] = model(__A, attention_mask=__A, token_type_ids=__A )[0] UpperCAmelCase : Optional[int] = model(__A, token_type_ids=__A )[0] UpperCAmelCase : int = model(__A )[0] self.parent.assertListEqual(list(sequence_output.size() ), [self.batch_size, self.seq_length, self.hidden_size] ) def __magic_name__ ( self : Dict, __A : Union[str, Any], __A : Optional[Any], __A : Tuple, __A : Optional[int], __A : List[Any], __A : List[Any], __A : Optional[int] ): UpperCAmelCase : int = DebertaVaForMaskedLM(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : int = model(__A, attention_mask=__A, token_type_ids=__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : List[str], __A : str, __A : Optional[Any], __A : List[str], __A : Optional[int], __A : List[Any], __A : int, __A : Optional[int] ): UpperCAmelCase : int = self.num_labels UpperCAmelCase : Union[str, Any] = DebertaVaForSequenceClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : int = model(__A, attention_mask=__A, token_type_ids=__A, labels=__A ) self.parent.assertListEqual(list(result.logits.size() ), [self.batch_size, self.num_labels] ) self.check_loss_output(__A ) def __magic_name__ ( self : Any, __A : Tuple, __A : Any, __A : str, __A : List[Any], __A : Dict, __A : Optional[Any], __A : List[str] ): UpperCAmelCase : Dict = self.num_labels UpperCAmelCase : int = DebertaVaForTokenClassification(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Tuple = model(__A, attention_mask=__A, token_type_ids=__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : Tuple, __A : List[str], __A : Tuple, __A : Tuple, __A : int, __A : Optional[Any], __A : Tuple, __A : Any ): UpperCAmelCase : Union[str, Any] = DebertaVaForQuestionAnswering(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Any = model( __A, attention_mask=__A, token_type_ids=__A, start_positions=__A, end_positions=__A, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def __magic_name__ ( self : Dict, __A : Optional[int], __A : str, __A : List[str], __A : Dict, __A : Optional[Any], __A : Union[str, Any], __A : int ): UpperCAmelCase : Union[str, Any] = DebertaVaForMultipleChoice(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase : int = model( __A, attention_mask=__A, token_type_ids=__A, labels=__A, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[str] = config_and_inputs UpperCAmelCase : int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : str = DebertaVaModelTester(self ) UpperCAmelCase : Dict = ConfigTester(self, config_class=__A, hidden_size=3_7 ) def __magic_name__ ( self : Any ): self.config_tester.run_common_tests() def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__A ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__A ) def __magic_name__ ( self : Tuple ): UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__A ) def __magic_name__ ( self : Any ): UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__A ) @slow def __magic_name__ ( self : Dict ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : str = DebertaVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''' ) def __magic_name__ ( self : str ): pass @slow def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : str = DebertaVaModel.from_pretrained('''microsoft/deberta-v2-xlarge''' ) UpperCAmelCase : Union[str, Any] = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) UpperCAmelCase : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase : List[str] = model(__A, attention_mask=__A )[0] # compare the actual values for a slice. UpperCAmelCase : List[str] = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], __A, atol=1E-4 ), F'''{output[:, 1:4, 1:4]}''' )
99
1
"""simple docstring""" import operator as op def __UpperCAmelCase ( UpperCAmelCase_ : List[Any] ) -> int: '''simple docstring''' __snake_case : Union[str, Any] = [] __snake_case : int = lambda UpperCAmelCase_ , UpperCAmelCase_ : int(x / y ) # noqa: E731 integer division operation __snake_case : Optional[Any] = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(UpperCAmelCase_ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(UpperCAmelCase_ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(UpperCAmelCase_ ) , sep=' | ' ) else: __snake_case : Dict = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(UpperCAmelCase_ ) , sep=' | ' ) __snake_case : int = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(UpperCAmelCase_ ) , sep=' | ' ) stack.append( str(opr[x](int(UpperCAmelCase_ ) , int(UpperCAmelCase_ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(UpperCAmelCase_ ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": _a : List[str]= input("\n\nEnter a Postfix Equation (space separated) = ").split(" ") print("\n\tResult = ", solve(Postfix))
172
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : str= { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Any= [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Any= [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _a : Any= _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
172
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) UpperCAmelCase = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
360
'''simple docstring''' import pytest import datasets # Import fixture modules as plugins UpperCAmelCase = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def _snake_case ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ) -> Optional[int]: """simple docstring""" # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["""integration""", """unit"""] ): continue item.add_marker(pytest.mark.unit ) def _snake_case ( _SCREAMING_SNAKE_CASE : List[str] ) -> Any: """simple docstring""" config.addinivalue_line("""markers""" , """torchaudio_latest: mark test to run with torchaudio>=0.12""" ) @pytest.fixture(autouse=_SCREAMING_SNAKE_CASE ) def _snake_case ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict ) -> str: """simple docstring""" # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? lowerCAmelCase = tmp_path_factory.getbasetemp() / """cache""" lowerCAmelCase = test_hf_cache_home / """datasets""" lowerCAmelCase = test_hf_cache_home / """metrics""" lowerCAmelCase = test_hf_cache_home / """modules""" monkeypatch.setattr("""datasets.config.HF_DATASETS_CACHE""" , str(_SCREAMING_SNAKE_CASE ) ) monkeypatch.setattr("""datasets.config.HF_METRICS_CACHE""" , str(_SCREAMING_SNAKE_CASE ) ) monkeypatch.setattr("""datasets.config.HF_MODULES_CACHE""" , str(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = test_hf_datasets_cache / """downloads""" monkeypatch.setattr("""datasets.config.DOWNLOADED_DATASETS_PATH""" , str(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(_SCREAMING_SNAKE_CASE ) ) @pytest.fixture(autouse=_SCREAMING_SNAKE_CASE , scope="""session""" ) def _snake_case ( ) -> Optional[Any]: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=_SCREAMING_SNAKE_CASE ) def _snake_case ( _SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" # don't take tests into account when counting downloads monkeypatch.setattr("""datasets.config.HF_UPDATE_DOWNLOAD_COUNTS""" , _SCREAMING_SNAKE_CASE ) @pytest.fixture def _snake_case ( _SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr("""sqlalchemy.util.deprecations.SILENCE_UBER_WARNING""" , _SCREAMING_SNAKE_CASE )
187
0
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : int = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, nicht wahr?', } # BLUE scores as follows: # "pair": [fairseq, transformers] _lowerCamelCase : List[Any] = { 'wmt16-en-de-dist-12-1': [2_8.3, 2_7.5_2], 'wmt16-en-de-dist-6-1': [2_7.4, 2_7.1_1], 'wmt16-en-de-12-1': [2_6.9, 2_5.7_5], } _lowerCamelCase : str = f'''{src_lang}-{tgt_lang}''' _lowerCamelCase : Tuple = f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=lowercase__ , exist_ok=lowercase__ ) _lowerCamelCase : int = os.path.join(lowercase__ , 'README.md' ) print(f'''Generating {path}''' ) with open(lowercase__ , 'w' , encoding='utf-8' ) as f: f.write(lowercase__ ) # make sure we are under the root of the project lowercase__ = Path(__file__).resolve().parent.parent.parent lowercase__ = repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: lowercase__ = model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
96
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __magic_name__ ( _UpperCamelCase ): @require_torch def __lowercase ( self : Tuple ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a : Optional[int] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _a : List[str] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _a : Tuple = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _a : List[Any] = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_UpperCAmelCase ) BertModel.from_pretrained(_UpperCAmelCase ) BertTokenizer.from_pretrained(_UpperCAmelCase ) pipeline(task='fill-mask' ,model=_UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a : Optional[int] = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed _a : Tuple = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a : int = '1' _a : List[Any] = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def __lowercase ( self : Any ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a : Dict = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _a : Optional[int] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _a : Optional[Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _a : int = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_UpperCAmelCase ) BertModel.from_pretrained(_UpperCAmelCase ) BertTokenizer.from_pretrained(_UpperCAmelCase ) pipeline(task='fill-mask' ,model=_UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a : Optional[int] = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed _a : str = self.get_env() _a : Optional[Any] = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def __lowercase ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a : Union[str, Any] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' _a : Optional[Any] = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' _a : str = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network _a : Optional[Any] = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed _a : Dict = self.get_env() _a : int = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) # next emulate no network _a : List[Any] = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a : int = '1' _a : Any = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def __lowercase ( self : int ): _a : Optional[Any] = '\nfrom transformers import pipeline\n ' _a : str = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' _a : List[str] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' _a : List[Any] = self.get_env() _a : Dict = '1' _a : Dict = [sys.executable, '-c', '\n'.join([load, mock, run] )] _a : str = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,1 ,result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' ,result.stderr.decode().replace('\n' ,'' ) ,) @require_torch def __lowercase ( self : int ): _a : Optional[int] = '\nfrom transformers import AutoModel\n ' _a : List[Any] = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network _a : Union[str, Any] = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed _a : Tuple = self.get_env() _a : List[str] = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a : Optional[Any] = '1' _a : Any = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() )
89
0
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowerCamelCase__ = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def __lowerCAmelCase (_UpperCamelCase ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): if args.student_type == "roberta": __lowerCAmelCase : Optional[int] = False elif args.student_type == "gpt2": __lowerCAmelCase : Tuple = False def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): if args.student_type == "roberta": __lowerCAmelCase : Optional[Any] = False def __lowerCAmelCase (): __lowerCAmelCase : Any = argparse.ArgumentParser(description='Training' ) parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' ) parser.add_argument( '--dump_path' , type=_UpperCamelCase , required=_UpperCamelCase , help='The output directory (log, checkpoints, parameters, etc.)' ) parser.add_argument( '--data_file' , type=_UpperCamelCase , required=_UpperCamelCase , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , ) parser.add_argument( '--student_type' , type=_UpperCamelCase , choices=['distilbert', 'roberta', 'gpt2'] , required=_UpperCamelCase , help='The student type (DistilBERT, RoBERTa).' , ) parser.add_argument('--student_config' , type=_UpperCamelCase , required=_UpperCamelCase , help='Path to the student configuration.' ) parser.add_argument( '--student_pretrained_weights' , default=_UpperCamelCase , type=_UpperCamelCase , help='Load student initialization checkpoint.' ) parser.add_argument( '--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=_UpperCamelCase , help='Teacher type (BERT, RoBERTa).' ) parser.add_argument('--teacher_name' , type=_UpperCamelCase , required=_UpperCamelCase , help='The teacher model.' ) parser.add_argument('--temperature' , default=2.0 , type=_UpperCamelCase , help='Temperature for the softmax temperature.' ) parser.add_argument( '--alpha_ce' , default=0.5 , type=_UpperCamelCase , help='Linear weight for the distillation loss. Must be >=0.' ) parser.add_argument( '--alpha_mlm' , default=0.0 , type=_UpperCamelCase , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , ) parser.add_argument('--alpha_clm' , default=0.5 , type=_UpperCamelCase , help='Linear weight for the CLM loss. Must be >=0.' ) parser.add_argument('--alpha_mse' , default=0.0 , type=_UpperCamelCase , help='Linear weight of the MSE loss. Must be >=0.' ) parser.add_argument( '--alpha_cos' , default=0.0 , type=_UpperCamelCase , help='Linear weight of the cosine embedding loss. Must be >=0.' ) parser.add_argument( '--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' ) parser.add_argument( '--mlm_mask_prop' , default=0.15 , type=_UpperCamelCase , help='Proportion of tokens for which we need to make a prediction.' , ) parser.add_argument('--word_mask' , default=0.8 , type=_UpperCamelCase , help='Proportion of tokens to mask out.' ) parser.add_argument('--word_keep' , default=0.1 , type=_UpperCamelCase , help='Proportion of tokens to keep.' ) parser.add_argument('--word_rand' , default=0.1 , type=_UpperCamelCase , help='Proportion of tokens to randomly replace.' ) parser.add_argument( '--mlm_smoothing' , default=0.7 , type=_UpperCamelCase , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , ) parser.add_argument('--token_counts' , type=_UpperCamelCase , help='The token counts in the data_file for MLM.' ) parser.add_argument( '--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , ) parser.add_argument( '--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , ) parser.add_argument( '--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , ) parser.add_argument('--n_epoch' , type=_UpperCamelCase , default=3 , help='Number of pass on the whole dataset.' ) parser.add_argument('--batch_size' , type=_UpperCamelCase , default=5 , help='Batch size (for each process).' ) parser.add_argument( '--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , ) parser.add_argument( '--gradient_accumulation_steps' , type=_UpperCamelCase , default=50 , help='Gradient accumulation for larger training batches.' , ) parser.add_argument('--warmup_prop' , default=0.05 , type=_UpperCamelCase , help='Linear warmup proportion.' ) parser.add_argument('--weight_decay' , default=0.0 , type=_UpperCamelCase , help='Weight decay if we apply some.' ) parser.add_argument('--learning_rate' , default=5e-4 , type=_UpperCamelCase , help='The initial learning rate for Adam.' ) parser.add_argument('--adam_epsilon' , default=1e-6 , type=_UpperCamelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , default=5.0 , type=_UpperCamelCase , help='Max gradient norm.' ) parser.add_argument('--initializer_range' , default=0.02 , type=_UpperCamelCase , help='Random initialization range.' ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=_UpperCamelCase , default='O1' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_gpu' , type=_UpperCamelCase , default=1 , help='Number of GPUs in the node.' ) parser.add_argument('--local_rank' , type=_UpperCamelCase , default=-1 , help='Distributed training - Local rank' ) parser.add_argument('--seed' , type=_UpperCamelCase , default=56 , help='Random seed' ) parser.add_argument('--log_interval' , type=_UpperCamelCase , default=500 , help='Tensorboard logging interval.' ) parser.add_argument('--checkpoint_interval' , type=_UpperCamelCase , default=4000 , help='Checkpoint interval.' ) __lowerCAmelCase : List[str] = parser.parse_args() sanity_checks(_UpperCamelCase ) # ARGS # init_gpu_params(_UpperCamelCase ) set_seed(_UpperCamelCase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" ' itUse `--force` if you want to overwrite it' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"Experiment will be dumped and logged in {args.dump_path}" ) # SAVE PARAMS # logger.info(F"Param: {args}" ) with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f: json.dump(vars(_UpperCamelCase ) , _UpperCamelCase , indent=4 ) git_log(args.dump_path ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[str] = MODEL_CLASSES[args.student_type] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Dict = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __lowerCAmelCase : Tuple = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __lowerCAmelCase : Optional[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __lowerCAmelCase : str = tokenizer.all_special_tokens.index(_UpperCamelCase ) __lowerCAmelCase : Tuple = tokenizer.all_special_ids[idx] logger.info(F"Special tokens {special_tok_ids}" ) __lowerCAmelCase : str = special_tok_ids __lowerCAmelCase : List[Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"Loading data from {args.data_file}" ) with open(args.data_file , 'rb' ) as fp: __lowerCAmelCase : Union[str, Any] = pickle.load(_UpperCamelCase ) if args.mlm: logger.info(F"Loading token counts from {args.token_counts} (already pre-computed)" ) with open(args.token_counts , 'rb' ) as fp: __lowerCAmelCase : Tuple = pickle.load(_UpperCamelCase ) __lowerCAmelCase : Optional[Any] = np.maximum(_UpperCamelCase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __lowerCAmelCase : Optional[int] = 0.0 # do not predict special tokens __lowerCAmelCase : Union[str, Any] = torch.from_numpy(_UpperCamelCase ) else: __lowerCAmelCase : Any = None __lowerCAmelCase : str = LmSeqsDataset(params=_UpperCamelCase , data=_UpperCamelCase ) logger.info('Data loader created.' ) # STUDENT # logger.info(F"Loading student config from {args.student_config}" ) __lowerCAmelCase : List[str] = student_config_class.from_pretrained(args.student_config ) __lowerCAmelCase : Optional[int] = True if args.student_pretrained_weights is not None: logger.info(F"Loading pretrained weights from {args.student_pretrained_weights}" ) __lowerCAmelCase : Union[str, Any] = student_model_class.from_pretrained(args.student_pretrained_weights , config=_UpperCamelCase ) else: __lowerCAmelCase : Any = student_model_class(_UpperCamelCase ) if args.n_gpu > 0: student.to(F"cuda:{args.local_rank}" ) logger.info('Student loaded.' ) # TEACHER # __lowerCAmelCase : Optional[int] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_UpperCamelCase ) if args.n_gpu > 0: teacher.to(F"cuda:{args.local_rank}" ) logger.info(F"Teacher loaded from {args.teacher_name}." ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_UpperCamelCase , _UpperCamelCase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_UpperCamelCase , _UpperCamelCase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __lowerCAmelCase : Any = Distiller( params=_UpperCamelCase , dataset=_UpperCamelCase , token_probs=_UpperCamelCase , student=_UpperCamelCase , teacher=_UpperCamelCase ) distiller.train() logger.info('Let\'s go get some drinks.' ) if __name__ == "__main__": main()
182
"""simple docstring""" import qiskit def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register __lowerCAmelCase : str = qiskit.QuantumCircuit(_UpperCamelCase , _UpperCamelCase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __lowerCAmelCase : Optional[int] = qiskit.execute(_UpperCamelCase , _UpperCamelCase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCamelCase ) if __name__ == "__main__": print(f'Total count for various states are: {single_qubit_measure(1, 1)}')
182
1