code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__ ( unittest.TestCase ): def __magic_name__ ( self ): lowercase : Optional[Any] = tempfile.mkdtemp() # fmt: off lowercase : Any = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowercase : Optional[int] = dict(zip(_a , range(len(_a ) ) ) ) lowercase : Any = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] lowercase : Dict = {"unk_token": "<unk>"} lowercase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_a ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_a ) ) lowercase : Optional[Any] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], "image_std": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowercase : List[str] = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_a , _a ) def __magic_name__ ( self , **_a ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **_a ) def __magic_name__ ( self , **_a ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def __magic_name__ ( self , **_a ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __magic_name__ ( self ): shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ): lowercase : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase : List[str] = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __magic_name__ ( self ): lowercase : Optional[int] = self.get_tokenizer() lowercase : int = self.get_rust_tokenizer() lowercase : List[str] = self.get_image_processor() lowercase : int = CLIPProcessor(tokenizer=_a , image_processor=_a ) processor_slow.save_pretrained(self.tmpdirname ) lowercase : List[str] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_a ) lowercase : int = CLIPProcessor(tokenizer=_a , image_processor=_a ) processor_fast.save_pretrained(self.tmpdirname ) lowercase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _a ) self.assertIsInstance(processor_fast.tokenizer , _a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _a ) self.assertIsInstance(processor_fast.image_processor , _a ) def __magic_name__ ( self ): lowercase : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase : Optional[int] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase : Optional[Any] = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) lowercase : Any = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __magic_name__ ( self ): lowercase : Any = self.get_image_processor() lowercase : Dict = self.get_tokenizer() lowercase : Any = CLIPProcessor(tokenizer=_a , image_processor=_a ) lowercase : Dict = self.prepare_image_inputs() lowercase : Tuple = image_processor(_a , return_tensors="np" ) lowercase : Optional[int] = processor(images=_a , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __magic_name__ ( self ): lowercase : Tuple = self.get_image_processor() lowercase : Tuple = self.get_tokenizer() lowercase : Tuple = CLIPProcessor(tokenizer=_a , image_processor=_a ) lowercase : Optional[Any] = "lower newer" lowercase : int = processor(text=_a ) lowercase : Optional[int] = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __magic_name__ ( self ): lowercase : Optional[Any] = self.get_image_processor() lowercase : Optional[Any] = self.get_tokenizer() lowercase : Dict = CLIPProcessor(tokenizer=_a , image_processor=_a ) lowercase : Union[str, Any] = "lower newer" lowercase : Any = self.prepare_image_inputs() lowercase : str = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __magic_name__ ( self ): lowercase : int = self.get_image_processor() lowercase : List[Any] = self.get_tokenizer() lowercase : str = CLIPProcessor(tokenizer=_a , image_processor=_a ) lowercase : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase : Dict = processor.batch_decode(_a ) lowercase : Union[str, Any] = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): lowercase : int = self.get_image_processor() lowercase : Dict = self.get_tokenizer() lowercase : Optional[Any] = CLIPProcessor(tokenizer=_a , image_processor=_a ) lowercase : Optional[int] = "lower newer" lowercase : Union[str, Any] = self.prepare_image_inputs() lowercase : List[str] = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
202
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _A : Optional[int] = """ Human: <<task>> Assistant: """ _A : List[Any] = """huggingface-tools/default-prompts""" _A : Optional[int] = {"""chat""": """chat_prompt_template.txt""", """run""": """run_prompt_template.txt"""} def __magic_name__ ( __snake_case : int , __snake_case : List[Any] , __snake_case : Dict="run" ) -> Union[str, Any]: if prompt_or_repo_id is None: lowercase : List[Any] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , __snake_case ) is not None: return prompt_or_repo_id lowercase : Optional[int] = cached_file( __snake_case , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(__snake_case , "r" , encoding="utf-8" ) as f: return f.read()
202
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline __lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( _UpperCamelCase ): def __init__( self : int ,_UpperCAmelCase : int ,_UpperCAmelCase : Tuple ): super().__init__() self.register_modules(unet=_UpperCAmelCase ,scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self : str ,_UpperCAmelCase : int = 1 ,_UpperCAmelCase : int = 100 ,_UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_UpperCAmelCase : Optional[float] = None ,_UpperCAmelCase : bool = True ,): if audio_length_in_s is None: _a : str = self.unet.config.sample_size / self.unet.config.sample_rate _a : Any = audio_length_in_s * self.unet.config.sample_rate _a : Tuple = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" F""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) _a : Tuple = int(_UpperCAmelCase ) if sample_size % down_scale_factor != 0: _a : Tuple = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" F""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" ' process.' ) _a : List[Any] = int(_UpperCAmelCase ) _a : int = next(iter(self.unet.parameters() ) ).dtype _a : int = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(_UpperCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _a : Union[str, Any] = randn_tensor(_UpperCAmelCase ,generator=_UpperCAmelCase ,device=self.device ,dtype=_UpperCAmelCase ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase ,device=audio.device ) _a : str = self.scheduler.timesteps.to(_UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _a : Any = self.unet(_UpperCAmelCase ,_UpperCAmelCase ).sample # 2. compute previous image: x_t -> t_t-1 _a : Dict = self.scheduler.step(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ).prev_sample _a : List[str] = audio.clamp(-1 ,1 ).float().cpu().numpy() _a : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_UpperCAmelCase )
107
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase = { '''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''], '''configuration_data2vec_text''': [ '''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecTextConfig''', '''Data2VecTextOnnxConfig''', ], '''configuration_data2vec_vision''': [ '''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecVisionConfig''', '''Data2VecVisionOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecAudioForAudioFrameClassification''', '''Data2VecAudioForCTC''', '''Data2VecAudioForSequenceClassification''', '''Data2VecAudioForXVector''', '''Data2VecAudioModel''', '''Data2VecAudioPreTrainedModel''', ] __lowerCAmelCase = [ '''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecTextForCausalLM''', '''Data2VecTextForMaskedLM''', '''Data2VecTextForMultipleChoice''', '''Data2VecTextForQuestionAnswering''', '''Data2VecTextForSequenceClassification''', '''Data2VecTextForTokenClassification''', '''Data2VecTextModel''', '''Data2VecTextPreTrainedModel''', ] __lowerCAmelCase = [ '''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecVisionForImageClassification''', '''Data2VecVisionForMaskedImageModeling''', '''Data2VecVisionForSemanticSegmentation''', '''Data2VecVisionModel''', '''Data2VecVisionPreTrainedModel''', ] if is_tf_available(): __lowerCAmelCase = [ '''TFData2VecVisionForImageClassification''', '''TFData2VecVisionForSemanticSegmentation''', '''TFData2VecVisionModel''', '''TFData2VecVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
107
1
"""simple docstring""" import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[Any]=1_3, UpperCAmelCase__ : Union[str, Any]=7, UpperCAmelCase__ : Tuple=True, UpperCAmelCase__ : Optional[Any]=True, UpperCAmelCase__ : Optional[int]=False, UpperCAmelCase__ : Union[str, Any]=True, UpperCAmelCase__ : Tuple=9_9, UpperCAmelCase__ : Optional[Any]=6_4, UpperCAmelCase__ : str=5, UpperCAmelCase__ : Optional[Any]=4, UpperCAmelCase__ : List[str]=6_4, UpperCAmelCase__ : Any="gelu", UpperCAmelCase__ : int=0.1, UpperCAmelCase__ : Tuple=0.1, UpperCAmelCase__ : Optional[Any]=5_1_2, UpperCAmelCase__ : Union[str, Any]=1_6, UpperCAmelCase__ : List[Any]=2, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : str=3, UpperCAmelCase__ : List[str]=4, UpperCAmelCase__ : Dict=None, ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def _lowercase ( self : List[str] ): return MPNetConfig.from_pretrained("microsoft/mpnet-base" ) def _lowercase ( self : Union[str, Any] ): __lowercase = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) __lowercase = ids_tensor([self.batch_size], self.num_choices ) __lowercase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : Dict ): return MPNetConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Optional[Any] ): __lowercase = MPNetModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : str, UpperCAmelCase__ : Any, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : int, UpperCAmelCase__ : str ): __lowercase = MPNetForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model( UpperCAmelCase__, attention_mask=UpperCAmelCase__, start_positions=UpperCAmelCase__, end_positions=UpperCAmelCase__, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[str] ): __lowercase = self.num_labels __lowercase = MPNetForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def _lowercase ( self : int, UpperCAmelCase__ : int, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Any, UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[str] ): __lowercase = self.num_choices __lowercase = MPNetForMultipleChoice(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() __lowercase = model( UpperCAmelCase__, attention_mask=UpperCAmelCase__, labels=UpperCAmelCase__, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any] ): __lowercase = self.num_labels __lowercase = MPNetForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : int ): __lowercase = self.prepare_config_and_inputs() ((__lowercase) ,(__lowercase) ,(__lowercase) ,(__lowercase) ,(__lowercase) ,(__lowercase)) = config_and_inputs __lowercase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) __UpperCAmelCase : Optional[int] = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : Any = False __UpperCAmelCase : List[Any] = True def _lowercase ( self : int ): __lowercase = MPNetModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, hidden_size=3_7 ) def _lowercase ( self : Dict ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*UpperCAmelCase__ ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Dict ): __lowercase = MPNetModel.from_pretrained("microsoft/mpnet-base" ) __lowercase = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowercase = model(UpperCAmelCase__ )[0] __lowercase = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape, UpperCAmelCase__ ) __lowercase = torch.tensor( [[[-0.0_550, 0.1_943, -0.0_740], [-0.0_562, 0.2_211, -0.0_579], [-0.0_437, 0.3_337, -0.0_641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3], UpperCAmelCase__, atol=1E-4 ) )
17
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : List[Any] = "▁" _lowercase : Tuple = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } _lowercase : List[str] = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } _lowercase : List[str] = { "facebook/m2m100_418M": 1_0_2_4, } # fmt: off _lowercase : Tuple = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"] } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = [] lowerCAmelCase_ = [] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="m2m100" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=8 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs lowercase_ : List[Any] = language_codes lowercase_ : Optional[int] = FAIRSEQ_LANGUAGE_CODES[language_codes] lowercase_ : List[Any] = {lang_code: F'''__{lang_code}__''' for lang_code in fairseq_language_code} lowercase_ : Union[str, Any] = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__SCREAMING_SNAKE_CASE ) for lang_code in fairseq_language_code if self.get_lang_token(__SCREAMING_SNAKE_CASE ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , language_codes=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) lowercase_ : int = vocab_file lowercase_ : Any = load_json(__SCREAMING_SNAKE_CASE ) lowercase_ : str = {v: k for k, v in self.encoder.items()} lowercase_ : Optional[int] = spm_file lowercase_ : Any = load_spm(__SCREAMING_SNAKE_CASE , self.sp_model_kwargs ) lowercase_ : List[Any] = len(self.encoder ) lowercase_ : Dict = { self.get_lang_token(__SCREAMING_SNAKE_CASE ): self.encoder_size + i for i, lang_code in enumerate(__SCREAMING_SNAKE_CASE ) } lowercase_ : Optional[int] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__SCREAMING_SNAKE_CASE )} lowercase_ : Union[str, Any] = {v: k for k, v in self.lang_token_to_id.items()} lowercase_ : Tuple = src_lang if src_lang is not None else '''en''' lowercase_ : Optional[int] = tgt_lang lowercase_ : Any = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) lowercase_ : Dict = num_madeup_words @property def _snake_case ( self ): """simple docstring""" return len(self.encoder ) + len(self.lang_token_to_id ) @property def _snake_case ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__SCREAMING_SNAKE_CASE , self.encoder[self.unk_token] ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Tuple = [] lowercase_ : List[str] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token lowercase_ : Optional[Any] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = [1] * len(self.prefix_tokens ) lowercase_ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowercase_ : List[Any] = self.__dict__.copy() lowercase_ : List[Any] = None return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase_ : List[Any] = {} lowercase_ : Union[str, Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" lowercase_ : Tuple = Path(__SCREAMING_SNAKE_CASE ) if not save_dir.is_dir(): raise OSError(F'''{save_directory} should be a directory''' ) lowercase_ : Dict = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) lowercase_ : Dict = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __SCREAMING_SNAKE_CASE ) if os.path.abspath(self.spm_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.spm_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: lowercase_ : int = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (str(__SCREAMING_SNAKE_CASE ), str(__SCREAMING_SNAKE_CASE )) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Optional[Any] = src_lang lowercase_ : List[str] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowercase_ : Tuple = src_lang lowercase_ : Any = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = self.get_lang_id(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = tgt_lang_id return inputs def _snake_case ( self ): """simple docstring""" self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self ): """simple docstring""" self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Any = self.get_lang_token(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = self.lang_token_to_id[lang_token] lowercase_ : Optional[Any] = [self.cur_lang_id] lowercase_ : Union[str, Any] = [self.eos_token_id] def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Any = self.get_lang_token(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = self.lang_token_to_id[lang_token] lowercase_ : str = [self.cur_lang_id] lowercase_ : List[str] = [self.eos_token_id] def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.lang_code_to_token[lang] def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[Any] = self.get_lang_token(__SCREAMING_SNAKE_CASE ) return self.lang_token_to_id[lang_token] def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict[str, Any] ): """simple docstring""" lowercase_ : Optional[int] = sentencepiece.SentencePieceProcessor(**__SCREAMING_SNAKE_CASE ) spm.Load(str(__SCREAMING_SNAKE_CASE ) ) return spm def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f: return json.load(__SCREAMING_SNAKE_CASE ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , indent=2 )
93
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if not len(lowercase ) == len(lowercase ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can't be zero.""" ) # Extract the coefficients _UpperCAmelCase = equationa _UpperCAmelCase = equationa # Calculate the determinants of the matrices _UpperCAmelCase = aa * ba - aa * ba _UpperCAmelCase = ca * ba - ca * ba _UpperCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _UpperCAmelCase = determinant_x / determinant _UpperCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
367
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __UpperCAmelCase ( *lowercase ): """simple docstring""" if not isinstance(lowercase ,lowercase ): _UpperCAmelCase = list(lowercase ) for i in range(len(lowercase ) ): _UpperCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowercase ,lowercase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __UpperCAmelCase ( lowercase = None ,lowercase = 1_28 ): """simple docstring""" if function is None: return functools.partial(lowercase ,starting_batch_size=lowercase ) _UpperCAmelCase = starting_batch_size def decorator(*lowercase ,**lowercase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _UpperCAmelCase = list(inspect.signature(lowercase ).parameters.keys() ) # Guard against user error if len(lowercase ) < (len(lowercase ) + 1): _UpperCAmelCase = """, """.join([f'''{arg}={value}''' for arg, value in zip(params[1:] ,args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowercase ,*lowercase ,**lowercase ) except Exception as e: if should_reduce_batch_size(lowercase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
30
0
from __future__ import annotations def a ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
226
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A =logging.get_logger(__name__) class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , a_ : List[Any]="</s>" , a_ : str="<unk>" , a_ : Tuple="<pad>" , a_ : List[Any]=1_25 , a_ : Any=None , **a_ : Tuple , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: __UpperCAmelCase : Optional[Any] = [F'<extra_id_{i}>' for i in range(a_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __UpperCAmelCase : Optional[Any] = len(set(filter(lambda a_ : bool('''extra_id''' in str(a_ ) ) , a_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ''' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the''' ''' extra_ids tokens''' ) __UpperCAmelCase : str = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else pad_token __UpperCAmelCase : str = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else eos_token __UpperCAmelCase : int = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else unk_token super().__init__( eos_token=a_ , unk_token=a_ , pad_token=a_ , extra_ids=a_ , additional_special_tokens=a_ , **a_ , ) __UpperCAmelCase : Dict = extra_ids __UpperCAmelCase : Any = 2**8 # utf is 8 bits # define special tokens dict __UpperCAmelCase : Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } __UpperCAmelCase : Optional[int] = len(self.special_tokens_encoder ) __UpperCAmelCase : Union[str, Any] = len(a_ ) for i, token in enumerate(a_ ): __UpperCAmelCase : Union[str, Any] = self.vocab_size + i - n __UpperCAmelCase : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def snake_case__ ( self : Tuple ): '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def snake_case__ ( self : Any , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(a_ )) + [1] return ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1] def snake_case__ ( self : Any , a_ : List[int] ): '''simple docstring''' if len(a_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def snake_case__ ( self : Union[str, Any] , a_ : List[int] , a_ : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : str = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def snake_case__ ( self : Optional[Any] , a_ : List[int] , a_ : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self._add_eos_if_not_present(a_ ) if token_ids_a is None: return token_ids_a else: __UpperCAmelCase : List[str] = self._add_eos_if_not_present(a_ ) return token_ids_a + token_ids_a def snake_case__ ( self : List[Any] , a_ : str ): '''simple docstring''' __UpperCAmelCase : str = [chr(a_ ) for i in text.encode('''utf-8''' )] return tokens def snake_case__ ( self : Optional[Any] , a_ : int ): '''simple docstring''' if token in self.special_tokens_encoder: __UpperCAmelCase : Union[str, Any] = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: __UpperCAmelCase : Optional[Any] = self.added_tokens_encoder[token] elif len(a_ ) != 1: __UpperCAmelCase : int = self.unk_token_id else: __UpperCAmelCase : List[str] = ord(a_ ) + self._num_special_tokens return token_id def snake_case__ ( self : Union[str, Any] , a_ : Optional[int] ): '''simple docstring''' if index in self.special_tokens_decoder: __UpperCAmelCase : Dict = self.special_tokens_decoder[index] else: __UpperCAmelCase : List[Any] = chr(index - self._num_special_tokens ) return token def snake_case__ ( self : int , a_ : Dict ): '''simple docstring''' __UpperCAmelCase : List[Any] = b'''''' for token in tokens: if token in self.special_tokens_decoder: __UpperCAmelCase : Optional[int] = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.added_tokens_decoder: __UpperCAmelCase : List[str] = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.special_tokens_encoder: __UpperCAmelCase : Tuple = token.encode('''utf-8''' ) elif token in self.added_tokens_encoder: __UpperCAmelCase : int = token.encode('''utf-8''' ) else: __UpperCAmelCase : Any = bytes([ord(a_ )] ) bstring += tok_string __UpperCAmelCase : Dict = bstring.decode('''utf-8''' , errors='''ignore''' ) return string def snake_case__ ( self : Tuple , a_ : str , a_ : Optional[str] = None ): '''simple docstring''' return ()
226
1
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int]) -> int: '''simple docstring''' if not numbers: return 0 if not isinstance(_lowerCamelCase , (list, tuple)) or not all( isinstance(_lowerCamelCase , _lowerCamelCase) for number in numbers): raise ValueError("numbers must be an iterable of integers") __UpperCamelCase : List[str] = numbers[0] for i in range(1 , len(_lowerCamelCase)): # update the maximum and minimum subarray products __UpperCamelCase : Union[str, Any] = numbers[i] if number < 0: __UpperCamelCase , __UpperCamelCase : Union[str, Any] = min_till_now, max_till_now __UpperCamelCase : Optional[Any] = max(_lowerCamelCase , max_till_now * number) __UpperCamelCase : Any = min(_lowerCamelCase , min_till_now * number) # update the maximum product found till now __UpperCamelCase : Any = max(_lowerCamelCase , _lowerCamelCase) return max_prod
151
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowercase : Any = logging.get_logger(__name__) lowercase : Any = {'vocab_file': 'spiece.model'} lowercase : int = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class lowerCamelCase__ ( __lowercase): '''simple docstring''' def __init__( self :int , a :List[Any] , a :Optional[Any]=False , a :List[str]=True , a :str=False , a :Optional[Any]="<s>" , a :Tuple="</s>" , a :int="<unk>" , a :Optional[Any]="<sep>" , a :List[str]="<pad>" , a :Any="<cls>" , a :List[Any]="<mask>" , a :Optional[Any]=["<eop>", "<eod>"] , a :Optional[Dict[str, Any]] = None , **a :List[str] , ) -> None: __UpperCamelCase : Any = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token __UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a , remove_space=a , keep_accents=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , additional_special_tokens=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) __UpperCamelCase : int = 3 __UpperCamelCase : Union[str, Any] = do_lower_case __UpperCamelCase : str = remove_space __UpperCamelCase : int = keep_accents __UpperCamelCase : Optional[int] = vocab_file __UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) __UpperCamelCase : Optional[Any] = jieba __UpperCamelCase : Optional[int] = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _lowerCamelCase ( self :Optional[int] ) -> List[str]: return len(self.sp_model ) def _lowerCamelCase ( self :Dict ) -> str: __UpperCamelCase : Optional[int] = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Optional[int] ) -> int: __UpperCamelCase : Tuple = self.__dict__.copy() __UpperCamelCase : Optional[Any] = None return state def __setstate__( self :Optional[int] , a :Dict ) -> str: __UpperCamelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCamelCase : Union[str, Any] = {} __UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self :List[Any] , a :str ) -> int: if self.remove_space: __UpperCamelCase : int = " ".join(inputs.strip().split() ) else: __UpperCamelCase : Union[str, Any] = inputs __UpperCamelCase : List[str] = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: __UpperCamelCase : Tuple = unicodedata.normalize("NFKD" , a ) __UpperCamelCase : Optional[Any] = "".join([c for c in outputs if not unicodedata.combining(a )] ) if self.do_lower_case: __UpperCamelCase : Any = outputs.lower() return outputs def _lowerCamelCase ( self :Tuple , a :str ) -> List[str]: __UpperCamelCase : List[Any] = self.preprocess_text(a ) __UpperCamelCase : int = self.sp_model.encode(a , out_type=a ) __UpperCamelCase : Optional[Any] = [] for piece in pieces: if len(a ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): __UpperCamelCase : str = self.sp_model.EncodeAsPieces(piece[:-1].replace(a , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __UpperCamelCase : List[str] = cur_pieces[1:] else: __UpperCamelCase : int = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(a ) else: new_pieces.append(a ) return new_pieces def _lowerCamelCase ( self :str , a :Dict ) -> List[str]: return self.sp_model.PieceToId(a ) def _lowerCamelCase ( self :Tuple , a :int ) -> Tuple: return self.sp_model.IdToPiece(a ) def _lowerCamelCase ( self :Union[str, Any] , a :Union[str, Any] ) -> List[Any]: __UpperCamelCase : str = "".join(a ).replace(a , " " ).strip() return out_string def _lowerCamelCase ( self :Any , a :List[int] , a :Optional[List[int]] = None ) -> List[int]: __UpperCamelCase : Tuple = [self.sep_token_id] __UpperCamelCase : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self :Any , a :List[int] , a :Optional[List[int]] = None , a :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is not None: return ([0] * len(a )) + [1] + ([0] * len(a )) + [1, 1] return ([0] * len(a )) + [1, 1] def _lowerCamelCase ( self :Dict , a :List[int] , a :Optional[List[int]] = None ) -> List[int]: __UpperCamelCase : Optional[int] = [self.sep_token_id] __UpperCamelCase : Dict = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCamelCase ( self :Union[str, Any] , a :str , a :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase : Tuple = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , "wb" ) as fi: __UpperCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,) def _lowerCamelCase ( self :str , *a :str , **a :Any ) -> Tuple: __UpperCamelCase : int = super()._decode(*a , **a ) __UpperCamelCase : int = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
151
1
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : torch.FloatTensor UpperCAmelCase__ : Optional[torch.FloatTensor] = None def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : int=0.999 , snake_case__ : str="cosine" , ) -> List[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case__ : Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case__ : str ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCamelCase : Dict = [] for i in range(snake_case__ ): UpperCamelCase : str = i / num_diffusion_timesteps UpperCamelCase : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case__ ) / alpha_bar_fn(snake_case__ ) , snake_case__ ) ) return torch.tensor(snake_case__ , dtype=torch.floataa ) class lowerCAmelCase_ ( a__ , a__ ): @register_to_config def __init__( self, SCREAMING_SNAKE_CASE_ = 1000, SCREAMING_SNAKE_CASE_ = "fixed_small_log", SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = 1.0, SCREAMING_SNAKE_CASE_ = "epsilon", SCREAMING_SNAKE_CASE_ = "squaredcos_cap_v2", ) -> Tuple: if beta_schedule != "squaredcos_cap_v2": raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'' ) UpperCamelCase : Dict = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = 1.0 - self.betas UpperCamelCase : Tuple = torch.cumprod(self.alphas, dim=0 ) UpperCamelCase : Tuple = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCamelCase : Any = 1.0 # setable values UpperCamelCase : Tuple = None UpperCamelCase : Any = torch.from_numpy(np.arange(0, SCREAMING_SNAKE_CASE_ )[::-1].copy() ) UpperCamelCase : Optional[int] = variance_type def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> torch.FloatTensor: return sample def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Any: UpperCamelCase : List[str] = num_inference_steps UpperCamelCase : Optional[Any] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCamelCase : Dict = (np.arange(0, SCREAMING_SNAKE_CASE_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCamelCase : int = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None ) -> Tuple: if prev_timestep is None: UpperCamelCase : Union[str, Any] = t - 1 UpperCamelCase : List[Any] = self.alphas_cumprod[t] UpperCamelCase : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCamelCase : Optional[Any] = 1 - alpha_prod_t UpperCamelCase : Dict = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCamelCase : Dict = self.betas[t] else: UpperCamelCase : Tuple = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCamelCase : List[Any] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCamelCase : Tuple = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCamelCase : Optional[Any] = torch.log(torch.clamp(SCREAMING_SNAKE_CASE_, min=1e-20 ) ) UpperCamelCase : Any = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCamelCase : Tuple = variance.log() UpperCamelCase : Optional[int] = beta.log() UpperCamelCase : Optional[int] = (predicted_variance + 1) / 2 UpperCamelCase : Tuple = frac * max_log + (1 - frac) * min_log return variance def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_ = True, ) -> Union[UnCLIPSchedulerOutput, Tuple]: UpperCamelCase : Any = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCamelCase , UpperCamelCase : Union[str, Any] = torch.split(SCREAMING_SNAKE_CASE_, sample.shape[1], dim=1 ) else: UpperCamelCase : Optional[int] = None # 1. compute alphas, betas if prev_timestep is None: UpperCamelCase : int = t - 1 UpperCamelCase : List[str] = self.alphas_cumprod[t] UpperCamelCase : Optional[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCamelCase : Optional[Any] = 1 - alpha_prod_t UpperCamelCase : List[Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCamelCase : Optional[int] = self.betas[t] UpperCamelCase : Any = self.alphas[t] else: UpperCamelCase : Any = 1 - alpha_prod_t / alpha_prod_t_prev UpperCamelCase : int = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCamelCase : Tuple = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCamelCase : List[Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" ' for the UnCLIPScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCamelCase : int = torch.clamp( SCREAMING_SNAKE_CASE_, -self.config.clip_sample_range, self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCamelCase : Any = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCamelCase : List[Any] = 0 if t > 0: UpperCamelCase : int = randn_tensor( model_output.shape, dtype=model_output.dtype, generator=SCREAMING_SNAKE_CASE_, device=model_output.device ) UpperCamelCase : Dict = self._get_variance( SCREAMING_SNAKE_CASE_, predicted_variance=SCREAMING_SNAKE_CASE_, prev_timestep=SCREAMING_SNAKE_CASE_, ) if self.variance_type == "fixed_small_log": UpperCamelCase : Dict = variance elif self.variance_type == "learned_range": UpperCamelCase : Any = (0.5 * variance).exp() else: raise ValueError( F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" ' for the UnCLIPScheduler.' ) UpperCamelCase : str = variance * variance_noise UpperCamelCase : int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_, pred_original_sample=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples UpperCamelCase : Any = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype ) UpperCamelCase : Dict = timesteps.to(original_samples.device ) UpperCamelCase : Optional[int] = alphas_cumprod[timesteps] ** 0.5 UpperCamelCase : List[Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCamelCase : Optional[int] = sqrt_alpha_prod.unsqueeze(-1 ) UpperCamelCase : List[str] = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCamelCase : Tuple = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCamelCase : List[str] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCamelCase : int = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
119
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowerCAmelCase_ ( a__ ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = "arrow", **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: super().__init__( split=SCREAMING_SNAKE_CASE_, features=SCREAMING_SNAKE_CASE_, cache_dir=SCREAMING_SNAKE_CASE_, keep_in_memory=SCREAMING_SNAKE_CASE_, streaming=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : List[str] = load_from_cache_file UpperCamelCase : List[str] = file_format UpperCamelCase : Optional[int] = Spark( df=SCREAMING_SNAKE_CASE_, features=SCREAMING_SNAKE_CASE_, cache_dir=SCREAMING_SNAKE_CASE_, working_dir=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) def snake_case_ ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) UpperCamelCase : Union[str, Any] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=SCREAMING_SNAKE_CASE_, file_format=self._file_format, ) return self.builder.as_dataset(split=self.split )
119
1
from __future__ import annotations import math import random from typing import Any class __lowercase : '''simple docstring''' def __init__( self : Optional[Any] ): UpperCamelCase__ = [] UpperCamelCase__ = 0 UpperCamelCase__ = 0 def A_ ( self : List[str] ): return self.head == self.tail def A_ ( self : Tuple , _a : List[Any] ): self.data.append(__lowerCAmelCase ) UpperCamelCase__ = self.tail + 1 def A_ ( self : str ): UpperCamelCase__ = self.data[self.head] UpperCamelCase__ = self.head + 1 return ret def A_ ( self : List[Any] ): return self.tail - self.head def A_ ( self : str ): print(self.data ) print('''**************''' ) print(self.data[self.head : self.tail] ) class __lowercase : '''simple docstring''' def __init__( self : List[str] , _a : Union[str, Any] ): UpperCamelCase__ = data UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = 1 def A_ ( self : Optional[Any] ): return self.data def A_ ( self : List[Any] ): return self.left def A_ ( self : Union[str, Any] ): return self.right def A_ ( self : str ): return self.height def A_ ( self : int , _a : Union[str, Any] ): UpperCamelCase__ = data def A_ ( self : List[Any] , _a : int ): UpperCamelCase__ = node def A_ ( self : Union[str, Any] , _a : Optional[int] ): UpperCamelCase__ = node def A_ ( self : Optional[Any] , _a : List[str] ): UpperCamelCase__ = height def lowerCamelCase_ ( UpperCamelCase__ : MyNode | None ): '''simple docstring''' if node is None: return 0 return node.get_height() def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' if a > b: return a return b def lowerCamelCase_ ( UpperCamelCase__ : MyNode ): '''simple docstring''' print('''left rotation node:''', node.get_data() ) UpperCamelCase__ = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowerCAmelCase__ ) UpperCamelCase__ = my_max(get_height(node.get_right() ), get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) UpperCamelCase__ = my_max(get_height(ret.get_right() ), get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCAmelCase__ ) return ret def lowerCamelCase_ ( UpperCamelCase__ : MyNode ): '''simple docstring''' print('''right rotation node:''', node.get_data() ) UpperCamelCase__ = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowerCAmelCase__ ) UpperCamelCase__ = my_max(get_height(node.get_right() ), get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) UpperCamelCase__ = my_max(get_height(ret.get_right() ), get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCAmelCase__ ) return ret def lowerCamelCase_ ( UpperCamelCase__ : MyNode ): '''simple docstring''' UpperCamelCase__ = node.get_left() assert left_child is not None node.set_left(left_rotation(lowerCAmelCase__ ) ) return right_rotation(lowerCAmelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : MyNode ): '''simple docstring''' UpperCamelCase__ = node.get_right() assert right_child is not None node.set_right(right_rotation(lowerCAmelCase__ ) ) return left_rotation(lowerCAmelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : MyNode | None, UpperCamelCase__ : Any ): '''simple docstring''' if node is None: return MyNode(lowerCAmelCase__ ) if data < node.get_data(): node.set_left(insert_node(node.get_left(), lowerCAmelCase__ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected UpperCamelCase__ = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child UpperCamelCase__ = right_rotation(lowerCAmelCase__ ) else: UpperCamelCase__ = lr_rotation(lowerCAmelCase__ ) else: node.set_right(insert_node(node.get_right(), lowerCAmelCase__ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: UpperCamelCase__ = node.get_right() assert right_child is not None if data < right_child.get_data(): UpperCamelCase__ = rl_rotation(lowerCAmelCase__ ) else: UpperCamelCase__ = left_rotation(lowerCAmelCase__ ) UpperCamelCase__ = my_max(get_height(node.get_right() ), get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) return node def lowerCamelCase_ ( UpperCamelCase__ : MyNode ): '''simple docstring''' while True: UpperCamelCase__ = root.get_right() if right_child is None: break UpperCamelCase__ = right_child return root.get_data() def lowerCamelCase_ ( UpperCamelCase__ : MyNode ): '''simple docstring''' while True: UpperCamelCase__ = root.get_left() if left_child is None: break UpperCamelCase__ = left_child return root.get_data() def lowerCamelCase_ ( UpperCamelCase__ : MyNode, UpperCamelCase__ : Any ): '''simple docstring''' UpperCamelCase__ = root.get_left() UpperCamelCase__ = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: UpperCamelCase__ = get_left_most(lowerCAmelCase__ ) root.set_data(lowerCAmelCase__ ) root.set_right(del_node(lowerCAmelCase__, lowerCAmelCase__ ) ) elif left_child is not None: UpperCamelCase__ = left_child elif right_child is not None: UpperCamelCase__ = right_child else: return None elif root.get_data() > data: if left_child is None: print('''No such data''' ) return root else: root.set_left(del_node(lowerCAmelCase__, lowerCAmelCase__ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowerCAmelCase__, lowerCAmelCase__ ) ) if get_height(lowerCAmelCase__ ) - get_height(lowerCAmelCase__ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): UpperCamelCase__ = left_rotation(lowerCAmelCase__ ) else: UpperCamelCase__ = rl_rotation(lowerCAmelCase__ ) elif get_height(lowerCAmelCase__ ) - get_height(lowerCAmelCase__ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): UpperCamelCase__ = right_rotation(lowerCAmelCase__ ) else: UpperCamelCase__ = lr_rotation(lowerCAmelCase__ ) UpperCamelCase__ = my_max(get_height(root.get_right() ), get_height(root.get_left() ) ) + 1 root.set_height(lowerCAmelCase__ ) return root class __lowercase : '''simple docstring''' def __init__( self : Dict ): UpperCamelCase__ = None def A_ ( self : int ): return get_height(self.root ) def A_ ( self : List[str] , _a : int ): print('''insert:''' + str(__lowerCAmelCase ) ) UpperCamelCase__ = insert_node(self.root , __lowerCAmelCase ) def A_ ( self : int , _a : Optional[Any] ): print('''delete:''' + str(__lowerCAmelCase ) ) if self.root is None: print('''Tree is empty!''' ) return UpperCamelCase__ = del_node(self.root , __lowerCAmelCase ) def __str__( self : Union[str, Any] , ): # a level traversale, gives a more intuitive look on the tree UpperCamelCase__ = '''''' UpperCamelCase__ = MyQueue() q.push(self.root ) UpperCamelCase__ = self.get_height() if layer == 0: return output UpperCamelCase__ = 0 while not q.is_empty(): UpperCamelCase__ = q.pop() UpperCamelCase__ = ''' ''' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(__lowerCAmelCase ) q.push(__lowerCAmelCase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space UpperCamelCase__ = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , __lowerCAmelCase ) - 1: UpperCamelCase__ = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def lowerCamelCase_ ( ): '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() lowercase = AVLtree() lowercase = list(range(1_0)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
360
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class __lowercase : '''simple docstring''' _A : int = MBartConfig _A : str = {} _A : str = '''gelu''' def __init__( self : Tuple , _a : Dict , _a : Optional[Any]=13 , _a : List[Any]=7 , _a : Any=True , _a : List[Any]=False , _a : List[Any]=99 , _a : int=32 , _a : Optional[Any]=2 , _a : Optional[Any]=4 , _a : Any=37 , _a : Any=0.1 , _a : Any=0.1 , _a : Dict=20 , _a : Optional[Any]=2 , _a : List[str]=1 , _a : List[str]=0 , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = eos_token_id UpperCamelCase__ = pad_token_id UpperCamelCase__ = bos_token_id def A_ ( self : Any ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase__ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase__ = prepare_mbart_inputs_dict(_a , _a , _a ) return config, inputs_dict def A_ ( self : Union[str, Any] , _a : Tuple , _a : Dict ): UpperCamelCase__ = TFMBartModel(config=_a ).get_decoder() UpperCamelCase__ = inputs_dict['''input_ids'''] UpperCamelCase__ = input_ids[:1, :] UpperCamelCase__ = inputs_dict['''attention_mask'''][:1, :] UpperCamelCase__ = inputs_dict['''head_mask'''] UpperCamelCase__ = 1 # first forward pass UpperCamelCase__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) UpperCamelCase__ , UpperCamelCase__ = outputs.to_tuple() UpperCamelCase__ = past_key_values[1] def lowerCamelCase_ ( UpperCamelCase__ : Dict, UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[Any]=None, UpperCamelCase__ : Tuple=None, UpperCamelCase__ : Dict=None, UpperCamelCase__ : Tuple=None, UpperCamelCase__ : Tuple=None, ): '''simple docstring''' if attention_mask is None: UpperCamelCase__ = tf.cast(tf.math.not_equal(UpperCamelCase__, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: UpperCamelCase__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: UpperCamelCase__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __lowercase ( A, A, unittest.TestCase ): '''simple docstring''' _A : List[str] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () _A : List[str] = (TFMBartForConditionalGeneration,) if is_tf_available() else () _A : List[Any] = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) _A : List[Any] = True _A : Any = False _A : List[Any] = False def A_ ( self : Any , _a : Tuple , _a : List[Any] , _a : Tuple , _a : List[str] , _a : List[Any] ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def A_ ( self : List[Any] ): UpperCamelCase__ = TFMBartModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=_a ) def A_ ( self : Tuple ): self.config_tester.run_common_tests() def A_ ( self : Optional[Any] ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_sentencepiece @require_tokenizers @require_tf class __lowercase ( unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] _A : Dict = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] _A : Dict = '''facebook/mbart-large-en-ro''' @cached_property def A_ ( self : Any ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def A_ ( self : str ): UpperCamelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def A_ ( self : Optional[int] , **_a : Optional[int] ): UpperCamelCase__ = self.translate_src_text(**_a ) self.assertListEqual(self.expected_text , _a ) def A_ ( self : List[str] , **_a : Dict ): UpperCamelCase__ = self.tokenizer(self.src_text , **_a , return_tensors='''tf''' ) UpperCamelCase__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCamelCase__ = self.tokenizer.batch_decode(_a , skip_special_tokens=_a ) return generated_words @slow def A_ ( self : Optional[Any] ): self._assert_generated_batch_equal_expected()
35
0
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] SCREAMING_SNAKE_CASE_ : Optional[str] = None # Automatically constructed SCREAMING_SNAKE_CASE_ : ClassVar[str] = "dict" SCREAMING_SNAKE_CASE_ : ClassVar[Any] = None SCREAMING_SNAKE_CASE_ : str = field(default="""Translation""" , init=_UpperCamelCase , repr=_UpperCamelCase ) def __call__( self : Any ) -> Union[str, Any]: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value("string" ) for k in sorted(self.languages )} @dataclass class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[List] = None SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Optional[str] = None # Automatically constructed SCREAMING_SNAKE_CASE_ : ClassVar[str] = "dict" SCREAMING_SNAKE_CASE_ : ClassVar[Any] = None SCREAMING_SNAKE_CASE_ : str = field(default="""TranslationVariableLanguages""" , init=_UpperCamelCase , repr=_UpperCamelCase ) def __UpperCAmelCase ( self : int ) -> List[Any]: a = sorted(set(self.languages ) ) if self.languages else None a = len(self.languages ) if self.languages else None def __call__( self : str ) -> Dict: return pa.struct({"language": pa.list_(pa.string() ), "translation": pa.list_(pa.string() )} ) def __UpperCAmelCase ( self : int , __lowerCamelCase : Tuple ) -> Dict: a = set(self.languages ) if self.languages and set(__lowerCamelCase ) - lang_set: raise ValueError( f"""Some languages in example ({", ".join(sorted(set(__lowerCamelCase ) - lang_set ) )}) are not in valid set ({", ".join(__lowerCamelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. a = [] for lang, text in translation_dict.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. a , a = zip(*sorted(__lowerCamelCase ) ) return {"language": languages, "translation": translations} def __UpperCAmelCase ( self : List[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value("string" ) ), "translation": Sequence(Value("string" ) ), }
107
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase : List[str] = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __lowerCAmelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
107
1
def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(_SCREAMING_SNAKE_CASE , exponent // 2 , _SCREAMING_SNAKE_CASE ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(_SCREAMING_SNAKE_CASE , exponent - 1 , _SCREAMING_SNAKE_CASE )) % modulo_value def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 1777 , _SCREAMING_SNAKE_CASE = 1855 , _SCREAMING_SNAKE_CASE = 8 ) -> int: lowercase__ = base for _ in range(1 , _SCREAMING_SNAKE_CASE ): lowercase__ = _modexpt(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
269
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : str = 'xlnet' _UpperCamelCase : Optional[Any] = ['mems'] _UpperCamelCase : Union[str, Any] = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : str , a : int=32_000 , a : Any=1_024 , a : Optional[Any]=24 , a : str=16 , a : int=4_096 , a : List[str]="gelu" , a : Any=True , a : Dict="bi" , a : str=0.02 , a : List[str]=1E-1_2 , a : Tuple=0.1 , a : Optional[Any]=512 , a : Tuple=None , a : Union[str, Any]=True , a : int=False , a : int=False , a : Tuple=-1 , a : Any=False , a : Tuple="last" , a : List[str]=True , a : Optional[Any]="tanh" , a : List[Any]=0.1 , a : int=5 , a : List[Any]=5 , a : Optional[int]=5 , a : Dict=1 , a : Optional[Any]=2 , **a : List[Any] , )-> List[str]: """simple docstring""" lowercase__ = vocab_size lowercase__ = d_model lowercase__ = n_layer lowercase__ = n_head if d_model % n_head != 0: raise ValueError(f"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) lowercase__ = d_model // n_head lowercase__ = ff_activation lowercase__ = d_inner lowercase__ = untie_r lowercase__ = attn_type lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = dropout lowercase__ = mem_len lowercase__ = reuse_len lowercase__ = bi_data lowercase__ = clamp_len lowercase__ = same_length lowercase__ = summary_type lowercase__ = summary_use_proj lowercase__ = summary_activation lowercase__ = summary_last_dropout lowercase__ = start_n_top lowercase__ = end_n_top lowercase__ = bos_token_id lowercase__ = pad_token_id lowercase__ = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , a , ) lowercase__ = kwargs['use_cache'] lowercase__ = use_mems_eval lowercase__ = use_mems_train super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[str]: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Union[str, Any] )-> List[Any]: """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
269
1
"""simple docstring""" _a = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _a = [None] * 10_000_000 _a = True _a = False def __a ( __lowerCamelCase ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase_ : List[Any] = chain(next_number(__lowerCamelCase ) ) UpperCAmelCase_ : List[Any] = number_chain while number < 1000_0000: UpperCAmelCase_ : Dict = number_chain number *= 10 return number_chain def __a ( __lowerCamelCase = 1000_0000 ): for i in range(1, __lowerCamelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
61
import argparse from collections import defaultdict import yaml __a = 'docs/source/en/_toctree.yml' def a ( snake_case__: Dict ): '''simple docstring''' lowercase_ = defaultdict(snake_case__ ) for doc in model_doc: counts[doc["local"]] += 1 lowercase_ = [key for key, value in counts.items() if value > 1] lowercase_ = [] for duplicate_key in duplicates: lowercase_ = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(snake_case__ ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(snake_case__ , key=lambda snake_case__ : s["title"].lower() ) def a ( snake_case__: List[Any]=False ): '''simple docstring''' with open(snake_case__ , encoding='''utf-8''' ) as f: lowercase_ = yaml.safe_load(f.read() ) # Get to the API doc lowercase_ = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase_ = content[api_idx]['''sections'''] # Then to the model doc lowercase_ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowercase_ = api_doc[model_idx]['''sections'''] lowercase_ = [(idx, section) for idx, section in enumerate(snake_case__ ) if '''sections''' in section] lowercase_ = False for idx, modality_doc in modalities_docs: lowercase_ = modality_doc['''sections'''] lowercase_ = clean_model_doc_toc(snake_case__ ) if old_modality_doc != new_modality_doc: lowercase_ = True if overwrite: lowercase_ = new_modality_doc if diff: if overwrite: lowercase_ = model_doc lowercase_ = api_doc with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(snake_case__ , allow_unicode=snake_case__ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __a = parser.parse_args() check_model_doc(args.fix_and_overwrite)
30
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off __UpperCAmelCase = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] __UpperCAmelCase = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class __a ( __UpperCamelCase ): __snake_case : Optional[Any] = """whisper""" __snake_case : str = ["""past_key_values"""] __snake_case : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Optional[int] , UpperCAmelCase : Any=5_18_65 , UpperCAmelCase : Optional[int]=80 , UpperCAmelCase : Union[str, Any]=6 , UpperCAmelCase : int=4 , UpperCAmelCase : Tuple=6 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Any=15_36 , UpperCAmelCase : Optional[Any]=15_36 , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : List[str]=5_02_57 , UpperCAmelCase : int=True , UpperCAmelCase : str=True , UpperCAmelCase : Tuple="gelu" , UpperCAmelCase : Tuple=2_56 , UpperCAmelCase : List[str]=0.0 , UpperCAmelCase : int=0.0 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : List[str]=0.02 , UpperCAmelCase : Tuple=False , UpperCAmelCase : Union[str, Any]=15_00 , UpperCAmelCase : Optional[int]=4_48 , UpperCAmelCase : Optional[int]=5_02_56 , UpperCAmelCase : str=5_02_56 , UpperCAmelCase : str=5_02_56 , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : List[Any]=[2_20, 5_02_56] , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : Any=2_56 , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Optional[Any]=0.05 , UpperCAmelCase : int=10 , UpperCAmelCase : Any=2 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : List[Any]=10 , UpperCAmelCase : Tuple=0 , UpperCAmelCase : Optional[int]=7 , **UpperCAmelCase : Union[str, Any] , ): lowerCAmelCase_ : int = vocab_size lowerCAmelCase_ : Optional[Any] = num_mel_bins lowerCAmelCase_ : int = d_model lowerCAmelCase_ : int = encoder_layers lowerCAmelCase_ : int = encoder_attention_heads lowerCAmelCase_ : Any = decoder_layers lowerCAmelCase_ : str = decoder_attention_heads lowerCAmelCase_ : Optional[Any] = decoder_ffn_dim lowerCAmelCase_ : Tuple = encoder_ffn_dim lowerCAmelCase_ : int = dropout lowerCAmelCase_ : Dict = attention_dropout lowerCAmelCase_ : Union[str, Any] = activation_dropout lowerCAmelCase_ : List[Any] = activation_function lowerCAmelCase_ : str = init_std lowerCAmelCase_ : Tuple = encoder_layerdrop lowerCAmelCase_ : List[str] = decoder_layerdrop lowerCAmelCase_ : List[Any] = use_cache lowerCAmelCase_ : Optional[int] = encoder_layers lowerCAmelCase_ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase_ : int = max_source_positions lowerCAmelCase_ : Any = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowerCAmelCase_ : Optional[int] = classifier_proj_size lowerCAmelCase_ : Dict = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase_ : List[Any] = apply_spec_augment lowerCAmelCase_ : Any = mask_time_prob lowerCAmelCase_ : Dict = mask_time_length lowerCAmelCase_ : List[Any] = mask_time_min_masks lowerCAmelCase_ : str = mask_feature_prob lowerCAmelCase_ : Dict = mask_feature_length lowerCAmelCase_ : Dict = mask_feature_min_masks lowerCAmelCase_ : Any = median_filter_width super().__init__( pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , is_encoder_decoder=UpperCAmelCase , decoder_start_token_id=UpperCAmelCase , suppress_tokens=UpperCAmelCase , begin_suppress_tokens=UpperCAmelCase , **UpperCAmelCase , ) class __a ( __UpperCamelCase ): @property def A ( self : Any ): lowerCAmelCase_ : List[str] = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: lowerCAmelCase_ : int = {0: """batch"""} else: lowerCAmelCase_ : Optional[Any] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" ) return common_inputs def A ( self : str , UpperCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional["TensorType"] = None , UpperCAmelCase : int = 2_20_50 , UpperCAmelCase : float = 5.0 , UpperCAmelCase : int = 2_20 , ): lowerCAmelCase_ : Tuple = OrderedDict() lowerCAmelCase_ : List[str] = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=UpperCAmelCase , framework=UpperCAmelCase , sampling_rate=UpperCAmelCase , time_duration=UpperCAmelCase , frequency=UpperCAmelCase , ) lowerCAmelCase_ : Optional[Any] = encoder_inputs["""input_features"""].shape[2] lowerCAmelCase_ : List[str] = encoder_sequence_length // 2 if self.use_past else seq_length lowerCAmelCase_ : Optional[Any] = super().generate_dummy_inputs( preprocessor.tokenizer , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : int = encoder_inputs.pop("""input_features""" ) lowerCAmelCase_ : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: lowerCAmelCase_ : Optional[Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def A ( self : List[Any] ): return 1e-3
28
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __a ( unittest.TestCase ): def A ( self : List[Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCAmelCase_ : Optional[Any] = Vector() def A ( self : List[str] ): lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" ) def A ( self : Any ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase ) , 4 ) def A ( self : Dict ): lowerCAmelCase_ : Dict = Vector([1, 2] ) lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] ) lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Dict = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product lowerCAmelCase_ : str = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def A ( self : List[str] ): self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def A ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" ) def A ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : int = x.copy() self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" ) def A ( self : Any ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Tuple ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCAmelCase_ : Any = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def A ( self : Tuple ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def A ( self : Dict ): lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def A ( self : Optional[int] ): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
28
1
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase__ = get_tests_dir("fixtures/dummy-config.json") class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = 0 def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('transformers.models.auto' ) ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: UpperCAmelCase : str = AutoConfig.from_pretrained('bert-base-uncased' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: UpperCAmelCase : Any = AutoConfig.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> List[Any]: UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = AutoConfig.for_model('roberta' ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. UpperCAmelCase : Optional[int] = os.path.join(lowercase_ , 'fake-roberta' ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) with open(os.path.join(lowercase_ , 'config.json' ) , 'w' ) as f: f.write(json.dumps({} ) ) UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(lowercase_ ) self.assertEqual(type(lowercase_ ) , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: try: AutoConfig.register('custom' , lowercase_ ) # Wrong model type will raise an error with self.assertRaises(lowercase_ ): AutoConfig.register('model' , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoConfig.register('bert' , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : int = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ ) UpperCAmelCase : int = AutoConfig.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.' , ): UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained('hf-internal-testing/no-config-test-repo' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): UpperCAmelCase : Tuple = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=lowercase_ ) UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=lowercase_ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ ) UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(lowercase_ , trust_remote_code=lowercase_ ) self.assertEqual(reloaded_config.__class__.__name__ , 'NewModelConfig' ) def UpperCAmelCase_ ( self : str ) -> Dict: class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """new-model""" try: AutoConfig.register('new-model' , lowercase_ ) # If remote code is not set, the default is to use local UpperCAmelCase : Any = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote code is disabled, we load the local one. UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=lowercase_ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote is enabled, we load from the Hub UpperCAmelCase : str = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=lowercase_ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
151
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A_ : '''simple docstring''' def __init__( self : Any , lowercase_ : List[Any] , lowercase_ : int=3 , lowercase_ : Dict=32 , lowercase_ : Optional[Any]=3 , lowercase_ : Tuple=10 , lowercase_ : Optional[Any]=[10, 20, 30, 40] , lowercase_ : List[str]=[1, 1, 2, 1] , lowercase_ : Optional[int]=True , lowercase_ : str=True , lowercase_ : Dict="relu" , lowercase_ : Optional[Any]=3 , lowercase_ : List[str]=None , ) -> int: UpperCAmelCase : Dict = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Any = image_size UpperCAmelCase : Any = num_channels UpperCAmelCase : List[str] = embeddings_size UpperCAmelCase : str = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : int = use_labels UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Union[str, Any] = scope UpperCAmelCase : Any = len(lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase_ ( self : int , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : List[Any] = TFResNetModel(config=lowercase_ ) UpperCAmelCase : int = model(lowercase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self : Any , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int] ) -> List[Any]: UpperCAmelCase : List[Any] = self.num_labels UpperCAmelCase : Union[str, Any] = TFResNetForImageClassification(lowercase_ ) UpperCAmelCase : Any = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCAmelCase_ : Dict = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : str = False UpperCAmelCase_ : Optional[int] = False def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: UpperCAmelCase : Optional[int] = TFResNetModelTester(self ) UpperCAmelCase : Dict = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def UpperCAmelCase_ ( self : str ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: pass def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(lowercase_ ) UpperCAmelCase : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : str = [*signature.parameters.keys()] UpperCAmelCase : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: def check_hidden_states_output(lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] ): UpperCAmelCase : Union[str, Any] = model_class(lowercase_ ) UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase : List[Any] = layer_type UpperCAmelCase : int = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : List[Any] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Tuple: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : str = TFResNetModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCamelCase( ): UpperCAmelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Optional[int] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCAmelCase : Any = self.default_image_processor UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=lowercase_ , return_tensors='tf' ) # forward pass UpperCAmelCase : List[Any] = model(**lowercase_ ) # verify the logits UpperCAmelCase : Optional[Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCAmelCase : int = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowercase_ , atol=1E-4 ) )
151
1
'''simple docstring''' a : Optional[int] = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
369
'''simple docstring''' a : Dict = 6_5521 def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' snake_case_ = 1 snake_case_ = 0 for plain_chr in plain_text: snake_case_ = (a + ord(__UpperCAmelCase )) % MOD_ADLER snake_case_ = (b + a) % MOD_ADLER return (b << 16) | a
72
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' __UpperCamelCase: Dict = MODEL_FOR_CAUSAL_LM_MAPPING __UpperCamelCase: Optional[Any] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _A ( self : Tuple ): _UpperCAmelCase : Union[str, Any] = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="pt" ) # Using `do_sample=False` to force deterministic output _UpperCAmelCase : Optional[int] = text_generator("This is a test" , do_sample=A ) self.assertEqual( A , [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ] , ) _UpperCAmelCase : Dict = text_generator(["This is a test", "This is a second test"] ) self.assertEqual( A , [ [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ], [ { "generated_text": ( "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy" " oscope. oscope. FiliFili@@" ) } ], ] , ) _UpperCAmelCase : Any = text_generator("This is a test" , do_sample=A , num_return_sequences=2 , return_tensors=A ) self.assertEqual( A , [ {"generated_token_ids": ANY(A )}, {"generated_token_ids": ANY(A )}, ] , ) _UpperCAmelCase : Any = text_generator.model.config.eos_token_id _UpperCAmelCase : List[Any] = "<pad>" _UpperCAmelCase : Dict = text_generator( ["This is a test", "This is a second test"] , do_sample=A , num_return_sequences=2 , batch_size=2 , return_tensors=A , ) self.assertEqual( A , [ [ {"generated_token_ids": ANY(A )}, {"generated_token_ids": ANY(A )}, ], [ {"generated_token_ids": ANY(A )}, {"generated_token_ids": ANY(A )}, ], ] , ) @require_tf def _A ( self : Union[str, Any] ): _UpperCAmelCase : int = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="tf" ) # Using `do_sample=False` to force deterministic output _UpperCAmelCase : int = text_generator("This is a test" , do_sample=A ) self.assertEqual( A , [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ] , ) _UpperCAmelCase : List[str] = text_generator(["This is a test", "This is a second test"] , do_sample=A ) self.assertEqual( A , [ [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ], [ { "generated_text": ( "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes" " Cannes 閲閲Cannes Cannes Cannes 攵 please," ) } ], ] , ) def _A ( self : Any , A : List[str] , A : List[str] , A : Union[str, Any] ): _UpperCAmelCase : Optional[Any] = TextGenerationPipeline(model=A , tokenizer=A ) return text_generator, ["This is a test", "Another test"] def _A ( self : Any ): _UpperCAmelCase : int = "Hello I believe in" _UpperCAmelCase : int = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) _UpperCAmelCase : Optional[int] = text_generator(A ) self.assertEqual( A , [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}] , ) _UpperCAmelCase : List[str] = text_generator(A , stop_sequence=" fe" ) self.assertEqual(A , [{"generated_text": "Hello I believe in fe"}] ) def _A ( self : Optional[int] , A : Optional[Any] , A : List[Any] ): _UpperCAmelCase : List[str] = text_generator.model _UpperCAmelCase : str = text_generator.tokenizer _UpperCAmelCase : Dict = text_generator("This is a test" ) self.assertEqual(A , [{"generated_text": ANY(A )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) _UpperCAmelCase : Dict = text_generator("This is a test" , return_full_text=A ) self.assertEqual(A , [{"generated_text": ANY(A )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) _UpperCAmelCase : int = pipeline(task="text-generation" , model=A , tokenizer=A , return_full_text=A ) _UpperCAmelCase : Optional[Any] = text_generator("This is a test" ) self.assertEqual(A , [{"generated_text": ANY(A )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) _UpperCAmelCase : str = text_generator("This is a test" , return_full_text=A ) self.assertEqual(A , [{"generated_text": ANY(A )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) _UpperCAmelCase : Dict = text_generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=A ) self.assertEqual( A , [ [{"generated_text": ANY(A )}, {"generated_text": ANY(A )}], [{"generated_text": ANY(A )}, {"generated_text": ANY(A )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCAmelCase : Optional[Any] = text_generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=A ) self.assertEqual( A , [ [{"generated_text": ANY(A )}, {"generated_text": ANY(A )}], [{"generated_text": ANY(A )}, {"generated_text": ANY(A )}], ] , ) with self.assertRaises(A ): _UpperCAmelCase : List[str] = text_generator("test" , return_full_text=A , return_text=A ) with self.assertRaises(A ): _UpperCAmelCase : Tuple = text_generator("test" , return_full_text=A , return_tensors=A ) with self.assertRaises(A ): _UpperCAmelCase : List[str] = text_generator("test" , return_text=A , return_tensors=A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCAmelCase : Any = text_generator("" ) self.assertEqual(A , [{"generated_text": ANY(A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCAmelCase : Dict = text_generator("" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCAmelCase : Any = ["RwkvForCausalLM", "XGLMForCausalLM", "GPTNeoXForCausalLM"] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("This is a test" * 500 , max_new_tokens=20 ) _UpperCAmelCase : Any = text_generator("This is a test" * 500 , handle_long_generation="hole" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(A ): text_generator( "This is a test" * 500 , handle_long_generation="hole" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def _A ( self : str ): import torch # Classic `model_kwargs` _UpperCAmelCase : Any = pipeline( model="hf-internal-testing/tiny-random-bloom" , model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCAmelCase : List[str] = pipe("This is a test" ) self.assertEqual( A , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCAmelCase : Tuple = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCAmelCase : List[Any] = pipe("This is a test" ) self.assertEqual( A , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCAmelCase : Tuple = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCAmelCase : Optional[Any] = pipe("This is a test" ) self.assertEqual( A , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) @require_torch @require_torch_gpu def _A ( self : Tuple ): import torch _UpperCAmelCase : Optional[int] = pipeline(model="hf-internal-testing/tiny-random-bloom" , device=0 , torch_dtype=torch.floataa ) pipe("This is a test" ) @require_torch @require_accelerate @require_torch_gpu def _A ( self : Optional[Any] ): import torch _UpperCAmelCase : int = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.floataa ) pipe("This is a test" , do_sample=A , top_p=0.5 ) def _A ( self : str ): _UpperCAmelCase : Any = "Hello world" _UpperCAmelCase : Any = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) if text_generator.model.framework == "tf": _UpperCAmelCase : Tuple = logging.get_logger("transformers.generation.tf_utils" ) else: _UpperCAmelCase : Optional[Any] = logging.get_logger("transformers.generation.utils" ) _UpperCAmelCase : int = "Both `max_new_tokens`" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(A ) as cl: _UpperCAmelCase : int = text_generator(A , max_length=10 , max_new_tokens=1 ) self.assertIn(A , cl.out ) # The user only sets one -> no warning with CaptureLogger(A ) as cl: _UpperCAmelCase : Tuple = text_generator(A , max_new_tokens=1 ) self.assertNotIn(A , cl.out ) with CaptureLogger(A ) as cl: _UpperCAmelCase : List[str] = text_generator(A , max_length=10 ) self.assertNotIn(A , cl.out )
31
'''simple docstring''' __a = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __a = frozenset(["prompt", "negative_prompt"]) __a = frozenset([]) __a = frozenset(["image"]) __a = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __a = frozenset(["image"]) __a = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __a = frozenset(["prompt", "image", "negative_prompt"]) __a = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __a = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __a = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __a = frozenset(["image", "mask_image"]) __a = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __a = frozenset(["example_image", "image", "mask_image"]) __a = frozenset(["class_labels"]) __a = frozenset(["class_labels"]) __a = frozenset(["batch_size"]) __a = frozenset([]) __a = frozenset(["batch_size"]) __a = frozenset([]) __a = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __a = frozenset(["prompt", "negative_prompt"]) __a = frozenset(["input_tokens"]) __a = frozenset(["input_tokens"])
35
0
def lowerCAmelCase__ ( a__ , a__ , a__ , a__ , a__ , ) ->float: '''simple docstring''' _UpperCamelCase = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: _UpperCamelCase = 1 - (matter_density + radiation_density + dark_energy) _UpperCamelCase = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) _UpperCamelCase = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCamelCase__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
63
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" _UpperCamelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") _UpperCamelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowercase_) _UpperCamelCase = -1 _UpperCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowercase_) _UpperCamelCase = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_) _UpperCamelCase = tokenizer.decode(greedy_ids[0]) with CaptureStdout() as cs: _UpperCamelCase = TextStreamer(lowercase_) model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ , streamer=lowercase_) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase = cs.out[:-1] self.assertEqual(lowercase_ , lowercase_) def __UpperCAmelCase ( self : List[str]) -> List[Any]: """simple docstring""" _UpperCamelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") _UpperCamelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowercase_) _UpperCamelCase = -1 _UpperCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowercase_) _UpperCamelCase = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_) _UpperCamelCase = tokenizer.decode(greedy_ids[0]) _UpperCamelCase = TextIteratorStreamer(lowercase_) _UpperCamelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase = Thread(target=model.generate , kwargs=lowercase_) thread.start() _UpperCamelCase = "" for new_text in streamer: streamer_text += new_text self.assertEqual(lowercase_ , lowercase_) def __UpperCAmelCase ( self : List[str]) -> List[Any]: """simple docstring""" _UpperCamelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") _UpperCamelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowercase_) _UpperCamelCase = -1 _UpperCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowercase_) _UpperCamelCase = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_) _UpperCamelCase = greedy_ids[:, input_ids.shape[1] :] _UpperCamelCase = tokenizer.decode(new_greedy_ids[0]) with CaptureStdout() as cs: _UpperCamelCase = TextStreamer(lowercase_ , skip_prompt=lowercase_) model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ , streamer=lowercase_) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase = cs.out[:-1] self.assertEqual(lowercase_ , lowercase_) def __UpperCAmelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" _UpperCamelCase = AutoTokenizer.from_pretrained("distilgpt2") _UpperCamelCase = AutoModelForCausalLM.from_pretrained("distilgpt2").to(lowercase_) _UpperCamelCase = -1 _UpperCamelCase = torch.ones((1, 5) , device=lowercase_).long() * model.config.bos_token_id with CaptureStdout() as cs: _UpperCamelCase = TextStreamer(lowercase_ , skip_special_tokens=lowercase_) model.generate(lowercase_ , max_new_tokens=1 , do_sample=lowercase_ , streamer=lowercase_) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _UpperCamelCase = cs.out[:-1] # Remove the final "\n" _UpperCamelCase = tokenizer(lowercase_ , return_tensors="pt") self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1)) def __UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" _UpperCamelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") _UpperCamelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowercase_) _UpperCamelCase = -1 _UpperCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowercase_) _UpperCamelCase = TextIteratorStreamer(lowercase_ , timeout=0.0_01) _UpperCamelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase = Thread(target=model.generate , kwargs=lowercase_) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowercase_): _UpperCamelCase = "" for new_text in streamer: streamer_text += new_text
63
1
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: int , _SCREAMING_SNAKE_CASE: Optional[Any]=0.01 , _SCREAMING_SNAKE_CASE: List[Any]=1000) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[int] = p_stop __lowerCAmelCase : Tuple = max_length def __iter__( self: Optional[int]) -> int: """simple docstring""" __lowerCAmelCase : Optional[Any] = 0 __lowerCAmelCase : Optional[int] = False while not stop and count < self.max_length: yield count count += 1 __lowerCAmelCase : Tuple = random.random() < self.p_stop class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: List[str]=True) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Dict = [ BatchSamplerShard(_SCREAMING_SNAKE_CASE , 2 , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE) for i in range(2) ] __lowerCAmelCase : List[Any] = [list(_SCREAMING_SNAKE_CASE) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_SCREAMING_SNAKE_CASE) for shard in batch_sampler_shards] , [len(_SCREAMING_SNAKE_CASE) for e in expected]) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Any) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[str] = BatchSampler(range(24) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = BatchSampler(range(24) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE) # Expected shouldn't change self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCAmelCase : Dict = BatchSampler(range(21) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = BatchSampler(range(21) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCAmelCase : Any = BatchSampler(range(22) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = BatchSampler(range(22) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCAmelCase : Optional[Any] = BatchSampler(range(20) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = BatchSampler(range(20) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) # Check the shards when the dataset is very small. __lowerCAmelCase : str = BatchSampler(range(2) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = BatchSampler(range(2) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = [[], []] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Any) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Tuple = BatchSampler(range(24) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = BatchSampler(range(24) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE) # Expected shouldn't change self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE) # Check the shards when the dataset is not a round multiple of batch size. __lowerCAmelCase : Tuple = BatchSampler(range(22) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = BatchSampler(range(22) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCAmelCase : Union[str, Any] = BatchSampler(range(21) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = BatchSampler(range(21) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE) # Check the shards when the dataset is very small. __lowerCAmelCase : Optional[Any] = BatchSampler(range(2) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = BatchSampler(range(2) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = [[], []] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> List[Any]: """simple docstring""" __lowerCAmelCase : Tuple = BatchSampler(range(24) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = BatchSampler(range(24) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE) # Expected shouldn't change self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCAmelCase : Optional[Any] = BatchSampler(range(21) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = BatchSampler(range(21) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCAmelCase : Dict = BatchSampler(range(22) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = BatchSampler(range(22) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCAmelCase : int = BatchSampler(range(20) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = BatchSampler(range(20) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE) # Check the shards when the dataset is very small. __lowerCAmelCase : Any = BatchSampler(range(2) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = BatchSampler(range(2) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = [[], []] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = BatchSampler(range(24) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = BatchSampler(range(24) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE) # Expected shouldn't change self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE) # Check the shards when the dataset is not a round multiple of batch size. __lowerCAmelCase : Optional[Any] = BatchSampler(range(22) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = BatchSampler(range(22) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCAmelCase : Dict = BatchSampler(range(21) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = BatchSampler(range(21) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE) # Check the shards when the dataset is very small. __lowerCAmelCase : Dict = BatchSampler(range(2) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = [[[0, 1]], []] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = BatchSampler(range(2) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = [[], []] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: str) -> str: """simple docstring""" __lowerCAmelCase : Union[str, Any] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __lowerCAmelCase : List[Any] = [BatchSamplerShard(_SCREAMING_SNAKE_CASE , 2 , _SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE) for i in range(2)] self.assertEqual(len(batch_sampler_shards[0]) , 3) self.assertEqual(len(batch_sampler_shards[1]) , 2) self.assertListEqual(list(batch_sampler_shards[0]) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]]) self.assertListEqual(list(batch_sampler_shards[1]) , [[3, 4], [9, 10, 11]]) def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: int=False , _SCREAMING_SNAKE_CASE: Optional[Any]=2 , _SCREAMING_SNAKE_CASE: Union[str, Any]=False) -> str: """simple docstring""" random.seed(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = list(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = [ IterableDatasetShard( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , drop_last=_SCREAMING_SNAKE_CASE , num_processes=_SCREAMING_SNAKE_CASE , process_index=_SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE , ) for i in range(_SCREAMING_SNAKE_CASE) ] __lowerCAmelCase : List[str] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_SCREAMING_SNAKE_CASE) iterable_dataset_lists.append(list(_SCREAMING_SNAKE_CASE)) __lowerCAmelCase : List[str] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __lowerCAmelCase : Union[str, Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_SCREAMING_SNAKE_CASE) , len(_SCREAMING_SNAKE_CASE)) self.assertTrue(len(_SCREAMING_SNAKE_CASE) % shard_batch_size == 0) __lowerCAmelCase : str = [] for idx in range(0 , len(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_SCREAMING_SNAKE_CASE) < len(_SCREAMING_SNAKE_CASE): reference += reference self.assertListEqual(_SCREAMING_SNAKE_CASE , reference[: len(_SCREAMING_SNAKE_CASE)]) def _SCREAMING_SNAKE_CASE ( self: Any) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[str] = 42 __lowerCAmelCase : Tuple = RandomIterableDataset() self.check_iterable_dataset_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE) self.check_iterable_dataset_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE) self.check_iterable_dataset_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE) self.check_iterable_dataset_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE) # Edge case with a very small dataset __lowerCAmelCase : Dict = RandomIterableDataset(max_length=2) self.check_iterable_dataset_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE) self.check_iterable_dataset_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE) self.check_iterable_dataset_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE) self.check_iterable_dataset_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Tuple: """simple docstring""" __lowerCAmelCase : Optional[int] = BatchSampler(range(16) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = SkipBatchSampler(_SCREAMING_SNAKE_CASE , 2) self.assertListEqual(list(_SCREAMING_SNAKE_CASE) , [[8, 9, 10, 11], [12, 13, 14, 15]]) def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> List[Any]: """simple docstring""" __lowerCAmelCase : str = SkipDataLoader(list(range(16)) , batch_size=4 , skip_batches=2) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]]) def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Dict = DataLoader(list(range(16)) , batch_size=4) __lowerCAmelCase : Dict = skip_first_batches(_SCREAMING_SNAKE_CASE , num_batches=2) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]]) def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = DataLoaderShard(list(range(16)) , batch_size=4) for idx, _ in enumerate(_SCREAMING_SNAKE_CASE): self.assertEqual(dataloader.end_of_dataloader , idx == 3) # Test it also works on the second iteration for idx, _ in enumerate(_SCREAMING_SNAKE_CASE): self.assertEqual(dataloader.end_of_dataloader , idx == 3) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Optional[Any]: """simple docstring""" Accelerator() __lowerCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16) , batch_size=4) for idx, _ in enumerate(_SCREAMING_SNAKE_CASE): self.assertEqual(dataloader.end_of_dataloader , idx == 3) # Test it also works on the second iteration for idx, _ in enumerate(_SCREAMING_SNAKE_CASE): self.assertEqual(dataloader.end_of_dataloader , idx == 3)
269
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Optional[Any] = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off __snake_case : Any = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] __snake_case : str = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'whisper' SCREAMING_SNAKE_CASE = ['past_key_values'] SCREAMING_SNAKE_CASE = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: Any=5_1865 , _SCREAMING_SNAKE_CASE: Optional[Any]=80 , _SCREAMING_SNAKE_CASE: Optional[int]=6 , _SCREAMING_SNAKE_CASE: Any=4 , _SCREAMING_SNAKE_CASE: Dict=6 , _SCREAMING_SNAKE_CASE: Dict=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=1536 , _SCREAMING_SNAKE_CASE: List[str]=1536 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: str=0.0 , _SCREAMING_SNAKE_CASE: List[str]=5_0257 , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: List[str]=True , _SCREAMING_SNAKE_CASE: Optional[int]="gelu" , _SCREAMING_SNAKE_CASE: Tuple=256 , _SCREAMING_SNAKE_CASE: str=0.0 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.02 , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Union[str, Any]=1500 , _SCREAMING_SNAKE_CASE: str=448 , _SCREAMING_SNAKE_CASE: Any=5_0256 , _SCREAMING_SNAKE_CASE: Any=5_0256 , _SCREAMING_SNAKE_CASE: List[str]=5_0256 , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: List[Any]=[220, 5_0256] , _SCREAMING_SNAKE_CASE: Dict=False , _SCREAMING_SNAKE_CASE: str=256 , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: Tuple=0.05 , _SCREAMING_SNAKE_CASE: List[str]=10 , _SCREAMING_SNAKE_CASE: str=2 , _SCREAMING_SNAKE_CASE: Any=0.0 , _SCREAMING_SNAKE_CASE: Optional[int]=10 , _SCREAMING_SNAKE_CASE: int=0 , _SCREAMING_SNAKE_CASE: Any=7 , **_SCREAMING_SNAKE_CASE: List[str] , ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = vocab_size __lowerCAmelCase : Optional[Any] = num_mel_bins __lowerCAmelCase : int = d_model __lowerCAmelCase : List[Any] = encoder_layers __lowerCAmelCase : List[Any] = encoder_attention_heads __lowerCAmelCase : List[str] = decoder_layers __lowerCAmelCase : Tuple = decoder_attention_heads __lowerCAmelCase : Any = decoder_ffn_dim __lowerCAmelCase : Tuple = encoder_ffn_dim __lowerCAmelCase : List[str] = dropout __lowerCAmelCase : Union[str, Any] = attention_dropout __lowerCAmelCase : Union[str, Any] = activation_dropout __lowerCAmelCase : Dict = activation_function __lowerCAmelCase : Tuple = init_std __lowerCAmelCase : str = encoder_layerdrop __lowerCAmelCase : int = decoder_layerdrop __lowerCAmelCase : Optional[int] = use_cache __lowerCAmelCase : Union[str, Any] = encoder_layers __lowerCAmelCase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase : int = max_source_positions __lowerCAmelCase : Any = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __lowerCAmelCase : Dict = classifier_proj_size __lowerCAmelCase : Dict = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCAmelCase : int = apply_spec_augment __lowerCAmelCase : Union[str, Any] = mask_time_prob __lowerCAmelCase : str = mask_time_length __lowerCAmelCase : int = mask_time_min_masks __lowerCAmelCase : List[Any] = mask_feature_prob __lowerCAmelCase : Tuple = mask_feature_length __lowerCAmelCase : Any = mask_feature_min_masks __lowerCAmelCase : Union[str, Any] = median_filter_width super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , suppress_tokens=_SCREAMING_SNAKE_CASE , begin_suppress_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __lowerCAmelCase : List[str] = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ]) if self.use_past: __lowerCAmelCase : Tuple = {0: "batch"} else: __lowerCAmelCase : Union[str, Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction="inputs") return common_inputs def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: Optional["TensorType"] = None , _SCREAMING_SNAKE_CASE: int = 2_2050 , _SCREAMING_SNAKE_CASE: float = 5.0 , _SCREAMING_SNAKE_CASE: int = 220 , ) -> Mapping[str, Any]: """simple docstring""" __lowerCAmelCase : int = OrderedDict() __lowerCAmelCase : Optional[Any] = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , time_duration=_SCREAMING_SNAKE_CASE , frequency=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : List[str] = encoder_inputs["input_features"].shape[2] __lowerCAmelCase : List[str] = encoder_sequence_length // 2 if self.use_past else seq_length __lowerCAmelCase : List[Any] = super().generate_dummy_inputs( preprocessor.tokenizer , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = encoder_inputs.pop("input_features") __lowerCAmelCase : List[Any] = decoder_inputs.pop("decoder_input_ids") if "past_key_values" in decoder_inputs: __lowerCAmelCase : int = decoder_inputs.pop("past_key_values") return dummy_inputs @property def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> float: """simple docstring""" return 1e-3
269
1
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def a__ ( lowerCAmelCase__ ) -> Tuple: # getting number of pixels in the image UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): UpperCAmelCase__ : List[Any] = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image UpperCamelCase__ = imread('''image_data/lena.jpg''', 1) # convert to its negative UpperCamelCase__ = convert_to_negative(img) # show result image imshow('''negative of original image''', img) waitKey(0) destroyAllWindows()
299
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : Union[str, Any]=7 , _A : List[str]=3 , _A : str=30 , _A : Tuple=400 , _A : Optional[int]=True , _A : List[str]=None , _A : int=True , _A : int=[0.5, 0.5, 0.5] , _A : Optional[int]=[0.5, 0.5, 0.5] , _A : List[Any]=True , _A : str=1 / 255 , _A : Tuple=True , ): '''simple docstring''' UpperCAmelCase__ : str = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : List[Any] = min_resolution UpperCAmelCase__ : List[str] = max_resolution UpperCAmelCase__ : Tuple = do_resize UpperCAmelCase__ : Union[str, Any] = size UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : Union[str, Any] = image_mean UpperCAmelCase__ : Optional[int] = image_std UpperCAmelCase__ : Dict = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : int = do_pad def lowercase_ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Any , _A : Union[str, Any] , _A : Union[str, Any]=False ): '''simple docstring''' if not batched: UpperCAmelCase__ : Optional[int] = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase__ , UpperCAmelCase__ : str = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : Optional[Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase__ : List[Any] = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase__ : int = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase__ : List[str] = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = self.size['''shortest_edge'''] else: UpperCAmelCase__ : int = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = DetaImageProcessor if is_vision_available() else None def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = DetaImageProcessingTester(self ) @property def lowercase_ ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''do_rescale''' ) ) self.assertTrue(hasattr(_A , '''do_pad''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333} ) self.assertEqual(image_processor.do_pad , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' pass def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : str = self.image_processor_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase__ : Union[str, Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[str] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : str = json.loads(f.read() ) UpperCAmelCase__ : Tuple = {'''image_id''': 39_769, '''annotations''': target} # encode them UpperCAmelCase__ : Optional[int] = DetaImageProcessor() UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : int = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : str = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify orig_size UpperCAmelCase__ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : int = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : int = json.loads(f.read() ) UpperCAmelCase__ : str = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} UpperCAmelCase__ : Dict = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCAmelCase__ : Any = DetaImageProcessor(format='''coco_panoptic''' ) UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : str = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : Any = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : Optional[int] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify masks UpperCAmelCase__ : Dict = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _A ) # verify orig_size UpperCAmelCase__ : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : Optional[Any] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
299
1
'''simple docstring''' import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = RoFormerTokenizer _SCREAMING_SNAKE_CASE = RoFormerTokenizerFast _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True def A ( self : Dict ): """simple docstring""" super().setUp() def A ( self : Optional[Any] , **UpperCamelCase__ : List[str] ): """simple docstring""" return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **UpperCamelCase__ ) def A ( self : Any , **UpperCamelCase__ : Union[str, Any] ): """simple docstring""" return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **UpperCamelCase__ ) def A ( self : str ): """simple docstring""" UpperCamelCase = '永和服装饰品有限公司,今天天气非常好' UpperCamelCase = '永和 服装 饰品 有限公司 , 今 天 天 气 非常 好' return input_text, output_text def A ( self : Dict ): """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase , UpperCamelCase = self.get_chinese_input_output_texts() UpperCamelCase = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , output_text.split() ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase , UpperCamelCase = self.get_chinese_input_output_texts() UpperCamelCase = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , output_text.split() ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def A ( self : Dict ): """simple docstring""" pass def A ( self : List[Any] ): """simple docstring""" pass def A ( self : Union[str, Any] ): """simple docstring""" pass
28
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCamelCase : List[str] = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" _lowerCamelCase : Optional[int] = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" _lowerCamelCase : str = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def A ( self : Union[str, Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def A ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[Any]=False ): """simple docstring""" if rouge_types is None: UpperCamelCase = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] UpperCamelCase = rouge_scorer.RougeScorer(rouge_types=UpperCamelCase__ , use_stemmer=UpperCamelCase__ ) if use_aggregator: UpperCamelCase = scoring.BootstrapAggregator() else: UpperCamelCase = [] for ref, pred in zip(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = scorer.score(UpperCamelCase__ , UpperCamelCase__ ) if use_aggregator: aggregator.add_scores(UpperCamelCase__ ) else: scores.append(UpperCamelCase__ ) if use_aggregator: UpperCamelCase = aggregator.aggregate() else: UpperCamelCase = {} for key in scores[0]: UpperCamelCase = [score[key] for score in scores] return result
28
1
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowercase__: Any = ksize + 1 lowercase__: List[Any] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__UpperCAmelCase ): for x in range(__UpperCAmelCase ): # distance from center lowercase__: Union[str, Any] = x - ksize // 2 lowercase__: str = y - ksize // 2 # degree to radiant lowercase__: Tuple = theta / 1_8_0 * np.pi lowercase__: Tuple = np.cos(_theta ) lowercase__: Optional[int] = np.sin(_theta ) # get kernel x lowercase__: Dict = cos_theta * px + sin_theta * py # get kernel y lowercase__: Optional[int] = -sin_theta * px + cos_theta * py # fill kernel lowercase__: Optional[int] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __A = imread("../image_data/lena.jpg") # turn image in gray scale value __A = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __A = np.zeros(gray.shape[:2]) for theta in [0, 3_0, 6_0, 9_0, 1_2_0, 1_5_0]: __A = gabor_filter_kernel(1_0, 8, theta, 1_0, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __A = out / out.max() * 2_5_5 __A = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
2
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class UpperCAmelCase : """simple docstring""" _UpperCAmelCase :str = field( metadata={"help": "The output directory where the model will be written."} ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } ,) _UpperCAmelCase :str = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } ,) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) _UpperCAmelCase :Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: lowercase__: Dict = HfArgumentParser((ModelArguments,) ) ((lowercase__), ): List[str] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: lowercase__: List[Any] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: lowercase__: int = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: lowercase__: str = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: lowercase__: Union[str, Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed lowercase__: Tuple = True lowercase__: int = True lowercase__: Any = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=__UpperCAmelCase , decoder_config=__UpperCAmelCase , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens lowercase__: int = decoder_config.decoder_start_token_id lowercase__: Tuple = decoder_config.pad_token_id if decoder_start_token_id is None: lowercase__: Tuple = decoder_config.bos_token_id if pad_token_id is None: lowercase__: Optional[int] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work lowercase__: Optional[Any] = decoder_config.eos_token_id lowercase__: Tuple = decoder_start_token_id lowercase__: Dict = pad_token_id lowercase__: Optional[int] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) lowercase__: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) lowercase__: Tuple = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
2
1
from math import factorial __A = {str(d): factorial(d) for d in range(10)} def lowerCamelCase_ ( UpperCamelCase__ : int ) -> str: """simple docstring""" return sum(DIGIT_FACTORIAL[d] for d in str(A_ ) ) def lowerCamelCase_ ( ) -> Any: """simple docstring""" __lowerCamelCase = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , A_ ) if sum_of_digit_factorial(A_ ) == i ) if __name__ == "__main__": print(f'''{solution() = }''')
90
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
0
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=0.2 , UpperCAmelCase_ : Union[str, Any]=0.2 ): """simple docstring""" __UpperCAmelCase : Optional[Any] = bp_numa __UpperCAmelCase : Optional[int] = bp_numa __UpperCAmelCase : str = bp_numa __UpperCAmelCase : Optional[int] = conva_get[:2] __UpperCAmelCase : Tuple = conva_get[2] __UpperCAmelCase : str = size_pa __UpperCAmelCase : List[str] = rate_w __UpperCAmelCase : Optional[int] = rate_t __UpperCAmelCase : Optional[int] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] __UpperCAmelCase : str = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) __UpperCAmelCase : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) __UpperCAmelCase : Tuple = -2 * np.random.rand(self.conva[1] ) + 1 __UpperCAmelCase : Tuple = -2 * np.random.rand(self.num_bpa ) + 1 __UpperCAmelCase : int = -2 * np.random.rand(self.num_bpa ) + 1 def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ): """simple docstring""" __UpperCAmelCase : Tuple = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(UpperCAmelCase_ , "wb" ) as f: pickle.dump(UpperCAmelCase_ , UpperCAmelCase_ ) print(f"Model saved: {save_path}" ) @classmethod def lowerCamelCase_ ( cls : Any , UpperCAmelCase_ : Optional[int] ): """simple docstring""" # read saved model with open(UpperCAmelCase_ , "rb" ) as f: __UpperCAmelCase : Tuple = pickle.load(UpperCAmelCase_ ) # noqa: S301 __UpperCAmelCase : Any = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) __UpperCAmelCase : Tuple = model_dic.get("size_pooling1" ) __UpperCAmelCase : Optional[int] = model_dic.get("num_bp1" ) __UpperCAmelCase : Optional[int] = model_dic.get("num_bp2" ) __UpperCAmelCase : List[Any] = model_dic.get("num_bp3" ) __UpperCAmelCase : Any = model_dic.get("rate_weight" ) __UpperCAmelCase : str = model_dic.get("rate_thre" ) # create model instance __UpperCAmelCase : Optional[int] = CNN(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # modify model parameter __UpperCAmelCase : str = model_dic.get("w_conv1" ) __UpperCAmelCase : Optional[Any] = model_dic.get("wkj" ) __UpperCAmelCase : Union[str, Any] = model_dic.get("vji" ) __UpperCAmelCase : List[Any] = model_dic.get("thre_conv1" ) __UpperCAmelCase : Union[str, Any] = model_dic.get("thre_bp2" ) __UpperCAmelCase : int = model_dic.get("thre_bp3" ) return conv_ins def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase_ : int ): """simple docstring""" return 1 / (1 + np.exp(-1 * x )) def lowerCamelCase_ ( self : str , UpperCAmelCase_ : List[Any] ): """simple docstring""" return round(UpperCAmelCase_ , 3 ) def lowerCamelCase_ ( self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] ): """simple docstring""" __UpperCAmelCase : Tuple = convs[0] __UpperCAmelCase : Optional[Any] = convs[1] __UpperCAmelCase : Optional[int] = np.shape(UpperCAmelCase_ )[0] # get the data slice of original image data, data_focus __UpperCAmelCase : Optional[int] = [] for i_focus in range(0 , size_data - size_conv + 1 , UpperCAmelCase_ ): for j_focus in range(0 , size_data - size_conv + 1 , UpperCAmelCase_ ): __UpperCAmelCase : Optional[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(UpperCAmelCase_ ) # calculate the feature map of every single kernel, and saved as list of matrix __UpperCAmelCase : Dict = [] __UpperCAmelCase : Union[str, Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(UpperCAmelCase_ ): __UpperCAmelCase : List[Any] = [] for i_focus in range(len(UpperCAmelCase_ ) ): __UpperCAmelCase : Tuple = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(UpperCAmelCase_ ) ) __UpperCAmelCase : Optional[Any] = np.asmatrix(UpperCAmelCase_ ).reshape( UpperCAmelCase_ , UpperCAmelCase_ ) data_featuremap.append(UpperCAmelCase_ ) # expanding the data slice to One dimenssion __UpperCAmelCase : Any = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(UpperCAmelCase_ ) ) __UpperCAmelCase : Dict = np.asarray(UpperCAmelCase_ ) return focus_list, data_featuremap def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int="average_pool" ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = len(featuremaps[0] ) __UpperCAmelCase : Any = int(size_map / size_pooling ) __UpperCAmelCase : Optional[int] = [] for i_map in range(len(UpperCAmelCase_ ) ): __UpperCAmelCase : Dict = featuremaps[i_map] __UpperCAmelCase : Tuple = [] for i_focus in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): for j_focus in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): __UpperCAmelCase : List[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(UpperCAmelCase_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(UpperCAmelCase_ ) ) __UpperCAmelCase : List[Any] = np.asmatrix(UpperCAmelCase_ ).reshape(UpperCAmelCase_ , UpperCAmelCase_ ) featuremap_pooled.append(UpperCAmelCase_ ) return featuremap_pooled def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] ): """simple docstring""" __UpperCAmelCase : str = [] for i in range(len(UpperCAmelCase_ ) ): __UpperCAmelCase : Dict = np.shape(data[i] ) __UpperCAmelCase : Optional[Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) __UpperCAmelCase : Union[str, Any] = data_listed.getA().tolist()[0] data_expanded.extend(UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = np.asarray(UpperCAmelCase_ ) return data_expanded def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : Any ): """simple docstring""" __UpperCAmelCase : List[str] = np.asarray(UpperCAmelCase_ ) __UpperCAmelCase : Dict = np.shape(UpperCAmelCase_ ) __UpperCAmelCase : Any = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def lowerCamelCase_ ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ): """simple docstring""" __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Dict = 0 for i_map in range(UpperCAmelCase_ ): __UpperCAmelCase : List[Any] = np.ones((size_map, size_map) ) for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): for j in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): __UpperCAmelCase : str = pd_pool[ i_pool ] __UpperCAmelCase : Union[str, Any] = i_pool + 1 __UpperCAmelCase : Union[str, Any] = np.multiply( UpperCAmelCase_ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(UpperCAmelCase_ ) return pd_all def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any]=bool ): """simple docstring""" print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(UpperCAmelCase_ )) ) print((" - - Shape: Teach_Data ", np.shape(UpperCAmelCase_ )) ) __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : List[Any] = 10_000 while rp < n_repeat and mse >= error_accuracy: __UpperCAmelCase : List[Any] = 0 print(f"-------------Learning Time {rp}--------------" ) for p in range(len(UpperCAmelCase_ ) ): # print('------------Learning Image: %d--------------'%p) __UpperCAmelCase : List[Any] = np.asmatrix(datas_train[p] ) __UpperCAmelCase : str = np.asarray(datas_teach[p] ) __UpperCAmelCase : Dict = self.convolute( UpperCAmelCase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __UpperCAmelCase : Tuple = self.pooling(UpperCAmelCase_ , self.size_poolinga ) __UpperCAmelCase : Optional[Any] = np.shape(UpperCAmelCase_ ) __UpperCAmelCase : Optional[int] = self._expand(UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = data_bp_input __UpperCAmelCase : Dict = np.dot(UpperCAmelCase_ , self.vji.T ) - self.thre_bpa __UpperCAmelCase : Union[str, Any] = self.sig(UpperCAmelCase_ ) __UpperCAmelCase : int = np.dot(UpperCAmelCase_ , self.wkj.T ) - self.thre_bpa __UpperCAmelCase : Tuple = self.sig(UpperCAmelCase_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- __UpperCAmelCase : List[str] = np.multiply( (data_teach - bp_outa) , np.multiply(UpperCAmelCase_ , (1 - bp_outa) ) ) __UpperCAmelCase : Union[str, Any] = np.multiply( np.dot(UpperCAmelCase_ , self.wkj ) , np.multiply(UpperCAmelCase_ , (1 - bp_outa) ) ) __UpperCAmelCase : Optional[int] = np.dot(UpperCAmelCase_ , self.vji ) __UpperCAmelCase : int = pd_i_all / (self.size_poolinga * self.size_poolinga) __UpperCAmelCase : Union[str, Any] = pd_conva_pooled.T.getA().tolist() __UpperCAmelCase : str = self._calculate_gradient_from_pool( UpperCAmelCase_ , UpperCAmelCase_ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): __UpperCAmelCase : Optional[int] = self._expand_mat(pd_conva_all[k_conv] ) __UpperCAmelCase : Union[str, Any] = self.rate_weight * np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) __UpperCAmelCase : int = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) __UpperCAmelCase : Optional[int] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer __UpperCAmelCase : int = self.wkj + pd_k_all.T * bp_outa * self.rate_weight __UpperCAmelCase : Optional[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight __UpperCAmelCase : Optional[Any] = self.thre_bpa - pd_k_all * self.rate_thre __UpperCAmelCase : Union[str, Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image __UpperCAmelCase : Optional[int] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) __UpperCAmelCase : Any = rp + 1 __UpperCAmelCase : List[str] = error_count / patterns all_mse.append(UpperCAmelCase_ ) def draw_error(): __UpperCAmelCase : Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(UpperCAmelCase_ , "+-" ) plt.plot(UpperCAmelCase_ , "r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(UpperCAmelCase_ , alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, f" - - Mse: {mse:.6f}") ) if draw_e: draw_error() return mse def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] ): """simple docstring""" __UpperCAmelCase : Dict = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(UpperCAmelCase_ )) ) for p in range(len(UpperCAmelCase_ ) ): __UpperCAmelCase : Optional[int] = np.asmatrix(datas_test[p] ) __UpperCAmelCase : Union[str, Any] = self.convolute( UpperCAmelCase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __UpperCAmelCase : Any = self.pooling(UpperCAmelCase_ , self.size_poolinga ) __UpperCAmelCase : List[Any] = self._expand(UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = data_bp_input __UpperCAmelCase : int = bp_outa * self.vji.T - self.thre_bpa __UpperCAmelCase : Union[str, Any] = self.sig(UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = bp_outa * self.wkj.T - self.thre_bpa __UpperCAmelCase : str = self.sig(UpperCAmelCase_ ) produce_out.extend(bp_outa.getA().tolist() ) __UpperCAmelCase : int = [list(map(self.do_round , UpperCAmelCase_ ) ) for each in produce_out] return np.asarray(UpperCAmelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple ): """simple docstring""" __UpperCAmelCase : Any = np.asmatrix(UpperCAmelCase_ ) __UpperCAmelCase : Any = self.convolute( UpperCAmelCase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __UpperCAmelCase : Optional[int] = self.pooling(UpperCAmelCase_ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
358
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = '''M-CLIP''' def __init__( self : List[str] , UpperCAmelCase_ : str=1_024 , UpperCAmelCase_ : Optional[Any]=768 , **UpperCAmelCase_ : Tuple ): """simple docstring""" __UpperCAmelCase : Any = transformerDimSize __UpperCAmelCase : Union[str, Any] = imageDimSize super().__init__(**UpperCAmelCase_ ) class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = MCLIPConfig def __init__( self : Optional[Any] , UpperCAmelCase_ : Dict , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[Any] ): """simple docstring""" super().__init__(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) __UpperCAmelCase : int = XLMRobertaModel(UpperCAmelCase_ ) __UpperCAmelCase : str = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def lowerCamelCase_ ( self : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.transformer(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] __UpperCAmelCase : List[Any] = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(UpperCAmelCase_ ), embs
37
0
'''simple docstring''' import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _lowerCamelCase ( lowercase : Dict , lowercase : Optional[Any] ) -> str: assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Any ) -> Optional[Any]: _a = tmp_path / "cache" _a = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _a = SqlDatasetReader( "dataset" , "sqlite:///" + sqlite_path , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_sql_dataset(lowercase , lowercase ) @require_sqlalchemy @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def _lowerCamelCase ( lowercase : Any , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : int ) -> Optional[int]: _a = tmp_path / "cache" _a = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _a = features.copy() if features else default_expected_features _a = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) _a = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , features=lowercase , cache_dir=lowercase ).read() _check_sql_dataset(lowercase , lowercase ) def _lowerCamelCase ( lowercase : List[str] ) -> Optional[Any]: with contextlib.closing(sqlitea.connect(lowercase ) ) as con: _a = con.cursor() cur.execute("SELECT * FROM dataset" ) for row in cur: yield row @require_sqlalchemy def _lowerCamelCase ( lowercase : List[Any] , lowercase : Tuple , lowercase : Optional[int] ) -> Optional[Any]: _a = tmp_path / "cache" _a = os.path.join(lowercase , "tmp.sql" ) _a = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=lowercase ).read() SqlDatasetWriter(lowercase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=1 ).write() _a = iter_sql_file(lowercase ) _a = iter_sql_file(lowercase ) for rowa, rowa in zip(lowercase , lowercase ): assert rowa == rowa @require_sqlalchemy def _lowerCamelCase ( lowercase : Any , lowercase : Any , lowercase : Union[str, Any] ) -> List[Any]: _a = tmp_path / "cache" _a = os.path.join(lowercase , "tmp.sql" ) _a = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=lowercase ).read() SqlDatasetWriter(lowercase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=2 ).write() _a = iter_sql_file(lowercase ) _a = iter_sql_file(lowercase ) for rowa, rowa in zip(lowercase , lowercase ): assert rowa == rowa @require_sqlalchemy def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : Optional[Any] ) -> Tuple: _a = tmp_path / "cache" _a = os.path.join(lowercase , "tmp.sql" ) _a = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=lowercase ).read() with pytest.raises(lowercase ): SqlDatasetWriter(lowercase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=0 ).write()
63
'''simple docstring''' import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" @register_to_config def __init__( self : Dict , *, __a : int = 4 , __a : int = 7_68 , __a : int , __a : int , ): super().__init__() _a = nn.Parameter(torch.zeros(__a ) ) # parameters for additional clip time embeddings _a = nn.Linear(__a , __a ) _a = nn.Linear(__a , __a ) # parameters for encoder hidden states _a = clip_extra_context_tokens _a = nn.Linear( __a , self.clip_extra_context_tokens * cross_attention_dim ) _a = nn.Linear(__a , __a ) _a = nn.LayerNorm(__a ) def UpperCamelCase__ ( self : Optional[Any] , *, __a : Tuple , __a : Union[str, Any] , __a : Any , __a : List[Any] ): if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings _a = image_embeddings.shape[0] _a = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) _a = classifier_free_guidance_embeddings.expand( __a , -1 ) _a = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] _a = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... _a = self.embedding_proj(__a ) _a = self.clip_image_embeddings_project_to_time_embeddings(__a ) _a = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" _a = self.clip_extra_context_tokens_proj(__a ) _a = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens ) _a = clip_extra_context_tokens.permute(0 , 2 , 1 ) _a = self.encoder_hidden_states_proj(__a ) _a = self.text_encoder_hidden_states_norm(__a ) _a = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
63
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : str = logging.get_logger(__name__) lowercase : List[Any] = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __snake_case ( lowerCAmelCase ): _a : Optional[int]= "trocr" _a : int= ["past_key_values"] _a : str= { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self ,snake_case=50265 ,snake_case=1024 ,snake_case=12 ,snake_case=16 ,snake_case=4096 ,snake_case="gelu" ,snake_case=512 ,snake_case=0.1 ,snake_case=0.0 ,snake_case=0.0 ,snake_case=2 ,snake_case=0.02 ,snake_case=0.0 ,snake_case=True ,snake_case=False ,snake_case=True ,snake_case=True ,snake_case=1 ,snake_case=0 ,snake_case=2 ,**snake_case ,): '''simple docstring''' lowercase : List[str] = vocab_size lowercase : str = d_model lowercase : Optional[Any] = decoder_layers lowercase : str = decoder_attention_heads lowercase : Dict = decoder_ffn_dim lowercase : Dict = activation_function lowercase : Any = max_position_embeddings lowercase : int = dropout lowercase : List[str] = attention_dropout lowercase : List[str] = activation_dropout lowercase : Any = init_std lowercase : List[str] = decoder_layerdrop lowercase : Tuple = use_cache lowercase : Optional[int] = scale_embedding lowercase : int = use_learned_position_embeddings lowercase : Union[str, Any] = layernorm_embedding super().__init__( pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
364
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowercase : Tuple = get_logger(__name__) lowercase : Optional[int] = Path(__file__).parent / """model_card_template.md""" lowercase : Dict = uuida().hex lowercase : Tuple = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES lowercase : str = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES lowercase : Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def _snake_case( SCREAMING_SNAKE_CASE__ = None ) -> str: lowercase : str = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"; torch/{_torch_version}" if is_flax_available(): ua += f"; jax/{_jax_version}" ua += f"; flax/{_flax_version}" if is_onnx_available(): ua += f"; onnxruntime/{_onnxruntime_version}" # CI will set this value to True if os.environ.get("""DIFFUSERS_IS_CI""" , """""" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ) -> Dict: if token is None: lowercase : Optional[int] = HfFolder.get_token() if organization is None: lowercase : int = whoami(SCREAMING_SNAKE_CASE__ )["""name"""] return f"{username}/{model_id}" else: return f"{organization}/{model_id}" def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: if not is_jinja_available(): raise ValueError( """Modelcard rendering is based on Jinja templates.""" """ Please make sure to have `jinja` installed before using `create_model_card`.""" """ To install it, please run `pip install Jinja2`.""" ) if hasattr(SCREAMING_SNAKE_CASE__ , """local_rank""" ) and args.local_rank not in [-1, 0]: return lowercase : str = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , """hub_token""" ) else None lowercase : int = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="""en""" , license="""apache-2.0""" , library_name="""diffusers""" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , """dataset_name""" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , """gradient_accumulation_steps""" ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , """adam_beta1""" ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , """adam_beta2""" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , """adam_weight_decay""" ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , """adam_epsilon""" ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , """lr_scheduler""" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , """lr_warmup_steps""" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , """ema_inv_gamma""" ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , """ema_power""" ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , """ema_max_decay""" ) else None , mixed_precision=args.mixed_precision , ) lowercase : str = os.path.join(args.output_dir , """README.md""" ) model_card.save(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Optional[Any]: if resolved_file is None or commit_hash is not None: return commit_hash lowercase : List[Any] = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) lowercase : Any = re.search(R"""snapshots/([^/]+)/""" , SCREAMING_SNAKE_CASE__ ) if search is None: return None lowercase : List[Any] = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowercase : Optional[Any] = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) lowercase : Optional[int] = os.path.join(hf_cache_home, """diffusers""") def _snake_case( SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ) -> None: if new_cache_dir is None: lowercase : Union[str, Any] = DIFFUSERS_CACHE if old_cache_dir is None: lowercase : List[str] = old_diffusers_cache lowercase : Dict = Path(SCREAMING_SNAKE_CASE__ ).expanduser() lowercase : int = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob("""**/blobs/*""" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowercase : Any = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( """Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.""" ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowercase : Dict = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): lowercase : Any = 0 else: with open(cache_version_file) as f: try: lowercase : List[Any] = int(f.read()) except ValueError: lowercase : int = 0 if cache_version < 1: lowercase : Union[str, Any] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: lowercase : int = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( F'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( F'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' """the directory exists and can be written to.""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> str: if variant is not None: lowercase : List[str] = weights_name.split(""".""" ) lowercase : Optional[Any] = splits[:-1] + [variant] + splits[-1:] lowercase : int = """.""".join(SCREAMING_SNAKE_CASE__ ) return weights_name def _snake_case( SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ) -> Optional[Any]: lowercase : Optional[int] = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint lowercase : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): lowercase : Any = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse("""0.20.0""" ) ): try: lowercase : Any = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead." , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}' so that the correct variant file can be added." , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual lowercase : int = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " """listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a """ """token having permission to this repo with `use_auth_token` or log in with `huggingface-cli """ """login`.""" ) except RevisionNotFoundError: raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " """this model name. Check the model page at """ f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." ) except HTTPError as err: raise EnvironmentError( f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}" ) except ValueError: raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" f" directory containing a file named {weights_name} or" """ \nCheckout your internet connection or see how to run the library in""" """ offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'.""" ) except EnvironmentError: raise EnvironmentError( f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " """'https://huggingface.co/models', make sure you don't have a local directory with the same name. """ f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " f"containing a file named {weights_name}" )
285
0
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCAmelCase = 2 class UpperCamelCase__ : """simple docstring""" def __init__( self , *, # begin keyword-only arguments _A="<s>" , _A="<pad>" , _A="</s>" , _A="<unk>" , _A=None , ) -> List[str]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = bos, unk, pad, eos SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = self.add_symbol(_A ) SCREAMING_SNAKE_CASE_ = self.add_symbol(_A ) SCREAMING_SNAKE_CASE_ = self.add_symbol(_A ) SCREAMING_SNAKE_CASE_ = self.add_symbol(_A ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_A ) SCREAMING_SNAKE_CASE_ = len(self.symbols ) def __eq__( self , _A ) -> Optional[Any]: return self.indices == other.indices def __getitem__( self , _A ) -> Optional[int]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ) -> Optional[int]: return len(self.symbols ) def __contains__( self , _A ) -> str: return sym in self.indices @classmethod def _UpperCamelCase ( cls , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = cls() d.add_from_file(_A ) return d def _UpperCamelCase ( self , _A , _A=1 , _A=False ) -> int: if word in self.indices and not overwrite: SCREAMING_SNAKE_CASE_ = self.indices[word] SCREAMING_SNAKE_CASE_ = self.count[idx] + n return idx else: SCREAMING_SNAKE_CASE_ = len(self.symbols ) SCREAMING_SNAKE_CASE_ = idx self.symbols.append(_A ) self.count.append(_A ) return idx def _UpperCamelCase ( self , _A ) -> int: return 0 def _UpperCamelCase ( self , _A ) -> Any: if isinstance(_A , _A ): try: with open(_A , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(_A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(_A ) ) return SCREAMING_SNAKE_CASE_ = f.readlines() SCREAMING_SNAKE_CASE_ = self._load_meta(_A ) for line in lines[indices_start_line:]: try: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = line.rstrip().rsplit(''' ''' , 1 ) if field == "#fairseq:overwrite": SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = line.rsplit(''' ''' , 1 ) else: SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = int(_A ) SCREAMING_SNAKE_CASE_ = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(_A ) ) self.add_symbol(_A , n=_A , overwrite=_A ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def A__ ( __lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} SCREAMING_SNAKE_CASE_ = dict((re.sub(r'''@@$''', '''''', __lowerCamelCase ), v) if k.endswith('''@@''' ) else (re.sub(r'''$''', '''</w>''', __lowerCamelCase ), v) for k, v in d.items() ) SCREAMING_SNAKE_CASE_ = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] SCREAMING_SNAKE_CASE_ = d[k] # restore return da def A__ ( __lowerCamelCase, __lowerCamelCase ): # prep if not os.path.exists(__lowerCamelCase ): raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''checkpoint.pt''' ) if not os.path.isfile(__lowerCamelCase ): raise ValueError(F'''path to the file {checkpoint_file} does not exist!''' ) SCREAMING_SNAKE_CASE_ = torch.load(__lowerCamelCase, map_location='''cpu''' ) SCREAMING_SNAKE_CASE_ = chkpt['''cfg''']['''model'''] # dicts SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''dict.txt''' ) if not os.path.isfile(__lowerCamelCase ): raise ValueError(F'''path to the file {dict_file} does not exist!''' ) SCREAMING_SNAKE_CASE_ = Dictionary.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = rewrite_dict_keys(src_dict.indices ) SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, VOCAB_FILES_NAMES['''vocab_file'''] ) print(F'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(__lowerCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(__lowerCamelCase, ensure_ascii=__lowerCamelCase, indent=__lowerCamelCase ) ) # merges_file (bpecodes) SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''bpecodes''' ) if not os.path.isfile(__lowerCamelCase ): raise ValueError(F'''path to the file {bpecodes_file} does not exist!''' ) SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(__lowerCamelCase, __lowerCamelCase ) # model config SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''config.json''' ) SCREAMING_SNAKE_CASE_ = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.02, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1E-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(F'''Generating {biogpt_model_config_file}''' ) with open(__lowerCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(__lowerCamelCase, ensure_ascii=__lowerCamelCase, indent=__lowerCamelCase ) ) # tokenizer config SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 10_24, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(F'''Generating {biogpt_tokenizer_config_file}''' ) with open(__lowerCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(__lowerCamelCase, ensure_ascii=__lowerCamelCase, indent=__lowerCamelCase ) ) # model SCREAMING_SNAKE_CASE_ = chkpt['''model'''] # remove unneeded keys SCREAMING_SNAKE_CASE_ = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): SCREAMING_SNAKE_CASE_ = model_state_dict.pop(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = model_state_dict.pop(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = BioGptConfig.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = BioGptForCausalLM(__lowerCamelCase ) # check that it loads ok model_new.load_state_dict(__lowerCamelCase ) # save SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, __lowerCamelCase ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(__lowerCamelCase, __lowerCamelCase ) print('''Conversion is done!''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--biogpt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCAmelCase = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
299
def A__ ( __lowerCamelCase = 10_00 ): SCREAMING_SNAKE_CASE_ = 2**power SCREAMING_SNAKE_CASE_ = 0 while n: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_ = { """configuration_graphormer""": ["""GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GraphormerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """GraphormerForGraphClassification""", """GraphormerModel""", """GraphormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
367
def __lowercase ( _SCREAMING_SNAKE_CASE = 50 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
193
0
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _SCREAMING_SNAKE_CASE (A , A , A , A , A , A ) -> np.ndarray: """simple docstring""" if (ksize % 2) == 0: lowercase__ = ksize + 1 lowercase__ = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(A ): for x in range(A ): # distance from center lowercase__ = x - ksize // 2 lowercase__ = y - ksize // 2 # degree to radiant lowercase__ = theta / 180 * np.pi lowercase__ = np.cos(_theta ) lowercase__ = np.sin(_theta ) # get kernel x lowercase__ = cos_theta * px + sin_theta * py # get kernel y lowercase__ = -sin_theta * px + cos_theta * py # fill kernel lowercase__ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image lowerCamelCase : Tuple = imread('../image_data/lena.jpg') # turn image in gray scale value lowerCamelCase : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges lowerCamelCase : int = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: lowerCamelCase : Any = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) lowerCamelCase : List[str] = out / out.max() * 255 lowerCamelCase : int = out.astype(np.uinta) imshow('Original', gray) imshow('Gabor filter with 20x20 mask and 6 directions', out) waitKey(0)
2
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : List[str] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : int = DebertaVaTokenizer lowerCAmelCase__ : List[Any] = DebertaVaTokenizerFast lowerCAmelCase__ : str = True lowerCAmelCase__ : Tuple = True def UpperCamelCase__ (self : Tuple ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__ = DebertaVaTokenizer(UpperCamelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = '''this is a test''' lowercase__ = '''this is a test''' return input_text, output_text def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''<pad>''' lowercase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(UpperCamelCase ) , 30001 ) def UpperCamelCase__ (self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = ''' \tHeLLo!how \n Are yoU? ''' lowercase__ = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowercase__ = DebertaVaTokenizer(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , do_lower_case=UpperCamelCase , split_by_punct=UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = '''This is a test''' lowercase__ = [13, 1, 4398, 25, 21, 1289] lowercase__ = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowercase__ = DebertaVaTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = DebertaVaTokenizerFast(UpperCamelCase , keep_accents=UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # fmt: off lowercase__ = '''I was born in 92000, and this is falsé.''' lowercase__ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase__ = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowercase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DebertaVaTokenizer(UpperCamelCase ) lowercase__ = tokenizer.encode('''sequence builders''' ) lowercase__ = tokenizer.encode('''multi-sequence build''' ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase , ) @slow def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
2
1
from __future__ import annotations from typing import Any def _lowerCAmelCase ( __lowerCAmelCase ) -> Any: """simple docstring""" create_state_space_tree(_A , [] , 0 ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: """simple docstring""" if index == len(_A ): print(_A ) return create_state_space_tree(_A , _A , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_A , _A , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowercase_ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['''A''', '''B''', '''C''']) generate_all_subsequences(seq)
353
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Dict = TransfoXLTokenizer __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : List[str] = False def __lowerCamelCase ( self :Union[str, Any] ): super().setUp() snake_case__ : Optional[int] = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] snake_case__ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCamelCase ( self :int ,**__lowercase :Any ): snake_case__ : str = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname ,**__lowercase ) def __lowerCamelCase ( self :int ,__lowercase :Optional[int] ): snake_case__ : int = '''<unk> UNwanted , running''' snake_case__ : List[Any] = '''<unk> unwanted, running''' return input_text, output_text def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Optional[Any] = TransfoXLTokenizer(vocab_file=self.vocab_file ,lower_case=__lowercase ) snake_case__ : Tuple = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(__lowercase ,['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) ,[0, 4, 8, 7] ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : List[Any] = TransfoXLTokenizer(lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) ,['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __lowerCamelCase ( self :Tuple ): snake_case__ : Optional[Any] = TransfoXLTokenizer(lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Any = TransfoXLTokenizer(lower_case=__lowercase ) snake_case__ : List[str] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' snake_case__ : Union[str, Any] = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(__lowercase ) ,__lowercase ) self.assertEqual(tokenizer.convert_tokens_to_string(__lowercase ) ,__lowercase ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Any = self.get_tokenizer() snake_case__ : Optional[Any] = len(__lowercase ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' ,1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__lowercase ) ,original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) ,[1] ) self.assertEqual(tokenizer.decode([1] ) ,'''new1''' )
44
0
import torch from transformers import AutoModel class __lowerCAmelCase ( torch.nn.Module ): def __init__( self : Optional[int] , A : List[str]="sayef/fsner-bert-base-uncased") -> str: """simple docstring""" super(__UpperCAmelCase , self).__init__() _UpperCAmelCase = AutoModel.from_pretrained(__UpperCAmelCase , return_dict=__UpperCAmelCase) _UpperCAmelCase = torch.nn.CosineSimilarity(3 , 1E-08) _UpperCAmelCase = torch.nn.Softmax(dim=1) def _lowerCamelCase ( self : Optional[int] , **A : Union[str, Any]) -> int: """simple docstring""" return self.bert(**__UpperCAmelCase).last_hidden_state def _lowerCamelCase ( self : Optional[Any] , A : str) -> List[Any]: """simple docstring""" return token_embeddings.sum(2 , keepdim=__UpperCAmelCase) def _lowerCamelCase ( self : Optional[int] , A : Tuple , A : Optional[int] , A : Any=1) -> Dict: """simple docstring""" return self.softmax(T * self.cos(__UpperCAmelCase , __UpperCAmelCase)) def _lowerCamelCase ( self : Optional[int] , A : Optional[int] , A : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = W_supports["""sizes"""].tolist() _UpperCAmelCase = W_supports["""start_token_id"""].item() _UpperCAmelCase = W_supports["""end_token_id"""].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _UpperCAmelCase = self.BERT(**__UpperCAmelCase) _UpperCAmelCase = self.BERT(**__UpperCAmelCase) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = W_supports["""input_ids"""] == start_token_id _UpperCAmelCase = W_supports["""input_ids"""] == end_token_id for i, size in enumerate(__UpperCAmelCase): if i == 0: _UpperCAmelCase = 0 else: _UpperCAmelCase = support_sizes[i - 1] _UpperCAmelCase = S[s : s + size][start_token_masks[s : s + size]] _UpperCAmelCase = S[s : s + size][end_token_masks[s : s + size]] _UpperCAmelCase = torch.matmul(q[i] , s_start.T).sum(1).softmax(0) _UpperCAmelCase = torch.matmul(q[i] , s_end.T).sum(1).softmax(0) if p_starts is not None: _UpperCAmelCase = torch.vstack((p_starts, p_start)) _UpperCAmelCase = torch.vstack((p_ends, p_end)) else: _UpperCAmelCase = p_start _UpperCAmelCase = p_end return p_starts, p_ends
339
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase=1 ): """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase=0 ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = [] for old_item in old_list: lowerCAmelCase__ : Optional[Any] = old_item.replace("""in_layers.0""" , """norm1""" ) lowerCAmelCase__ : Optional[int] = new_item.replace("""in_layers.2""" , """conv1""" ) lowerCAmelCase__ : Dict = new_item.replace("""out_layers.0""" , """norm2""" ) lowerCAmelCase__ : str = new_item.replace("""out_layers.3""" , """conv2""" ) lowerCAmelCase__ : str = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) lowerCAmelCase__ : Optional[Any] = new_item.replace("""skip_connection""" , """conv_shortcut""" ) lowerCAmelCase__ : Union[str, Any] = shave_segments(UpperCamelCase , n_shave_prefix_segments=UpperCamelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase=0 ): """simple docstring""" lowerCAmelCase__ : int = [] for old_item in old_list: lowerCAmelCase__ : List[str] = old_item lowerCAmelCase__ : int = new_item.replace("""norm.weight""" , """group_norm.weight""" ) lowerCAmelCase__ : Optional[Any] = new_item.replace("""norm.bias""" , """group_norm.bias""" ) lowerCAmelCase__ : Optional[Any] = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) lowerCAmelCase__ : int = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) lowerCAmelCase__ : str = shave_segments(UpperCamelCase , n_shave_prefix_segments=UpperCamelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): lowerCAmelCase__ : Any = old_checkpoint[path] lowerCAmelCase__ : int = old_tensor.shape[0] // 3 lowerCAmelCase__ : int = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) lowerCAmelCase__ : Tuple = old_tensor.shape[0] // config["""num_head_channels"""] // 3 lowerCAmelCase__ : List[Any] = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = old_tensor.split(channels // num_heads , dim=1 ) lowerCAmelCase__ : int = query.reshape(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = key.reshape(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = value.reshape(UpperCamelCase ) for path in paths: lowerCAmelCase__ : Any = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here lowerCAmelCase__ : Any = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) lowerCAmelCase__ : Any = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) lowerCAmelCase__ : Any = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: lowerCAmelCase__ : Any = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: lowerCAmelCase__ : List[Any] = old_checkpoint[path["""old"""]][:, :, 0] else: lowerCAmelCase__ : Dict = old_checkpoint[path["""old"""]] def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : str = {} lowerCAmelCase__ : str = checkpoint["""time_embed.0.weight"""] lowerCAmelCase__ : List[Any] = checkpoint["""time_embed.0.bias"""] lowerCAmelCase__ : int = checkpoint["""time_embed.2.weight"""] lowerCAmelCase__ : List[str] = checkpoint["""time_embed.2.bias"""] lowerCAmelCase__ : str = checkpoint["""input_blocks.0.0.weight"""] lowerCAmelCase__ : Any = checkpoint["""input_blocks.0.0.bias"""] lowerCAmelCase__ : Union[str, Any] = checkpoint["""out.0.weight"""] lowerCAmelCase__ : Union[str, Any] = checkpoint["""out.0.bias"""] lowerCAmelCase__ : str = checkpoint["""out.2.weight"""] lowerCAmelCase__ : Tuple = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only lowerCAmelCase__ : Optional[Any] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) lowerCAmelCase__ : Optional[Any] = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(UpperCamelCase ) } # Retrieves the keys for the middle blocks only lowerCAmelCase__ : Union[str, Any] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) lowerCAmelCase__ : Union[str, Any] = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(UpperCamelCase ) } # Retrieves the keys for the output blocks only lowerCAmelCase__ : List[str] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) lowerCAmelCase__ : List[Any] = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(UpperCamelCase ) } for i in range(1 , UpperCamelCase ): lowerCAmelCase__ : Dict = (i - 1) // (config["""num_res_blocks"""] + 1) lowerCAmelCase__ : Tuple = (i - 1) % (config["""num_res_blocks"""] + 1) lowerCAmelCase__ : Optional[int] = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] lowerCAmelCase__ : Optional[Any] = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: lowerCAmelCase__ : Optional[int] = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] lowerCAmelCase__ : Tuple = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue lowerCAmelCase__ : Optional[Any] = renew_resnet_paths(UpperCamelCase ) lowerCAmelCase__ : Dict = {"""old""": f"""input_blocks.{i}.0""", """new""": f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} lowerCAmelCase__ : Optional[Any] = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( UpperCamelCase , UpperCamelCase , UpperCamelCase , additional_replacements=[meta_path, resnet_op] , config=UpperCamelCase ) if len(UpperCamelCase ): lowerCAmelCase__ : Optional[Any] = renew_attention_paths(UpperCamelCase ) lowerCAmelCase__ : Tuple = { """old""": f"""input_blocks.{i}.1""", """new""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } lowerCAmelCase__ : List[str] = { f"""input_blocks.{i}.1.qkv.bias""": { """key""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", """query""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", """value""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { """key""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", """query""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", """value""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( UpperCamelCase , UpperCamelCase , UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=UpperCamelCase , config=UpperCamelCase , ) lowerCAmelCase__ : Dict = middle_blocks[0] lowerCAmelCase__ : Union[str, Any] = middle_blocks[1] lowerCAmelCase__ : Dict = middle_blocks[2] lowerCAmelCase__ : Any = renew_resnet_paths(UpperCamelCase ) assign_to_checkpoint(UpperCamelCase , UpperCamelCase , UpperCamelCase , config=UpperCamelCase ) lowerCAmelCase__ : Dict = renew_resnet_paths(UpperCamelCase ) assign_to_checkpoint(UpperCamelCase , UpperCamelCase , UpperCamelCase , config=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = renew_attention_paths(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( UpperCamelCase , UpperCamelCase , UpperCamelCase , attention_paths_to_split=UpperCamelCase , config=UpperCamelCase ) for i in range(UpperCamelCase ): lowerCAmelCase__ : Tuple = i // (config["""num_res_blocks"""] + 1) lowerCAmelCase__ : List[str] = i % (config["""num_res_blocks"""] + 1) lowerCAmelCase__ : int = [shave_segments(UpperCamelCase , 2 ) for name in output_blocks[i]] lowerCAmelCase__ : Union[str, Any] = {} for layer in output_block_layers: lowerCAmelCase__ , lowerCAmelCase__ : Any = layer.split(""".""" )[0], shave_segments(UpperCamelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(UpperCamelCase ) else: lowerCAmelCase__ : str = [layer_name] if len(UpperCamelCase ) > 1: lowerCAmelCase__ : str = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] lowerCAmelCase__ : Dict = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] lowerCAmelCase__ : Optional[int] = renew_resnet_paths(UpperCamelCase ) lowerCAmelCase__ : int = renew_resnet_paths(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = {"""old""": f"""output_blocks.{i}.0""", """new""": f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(UpperCamelCase , UpperCamelCase , UpperCamelCase , additional_replacements=[meta_path] , config=UpperCamelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): lowerCAmelCase__ : List[Any] = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) lowerCAmelCase__ : int = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] lowerCAmelCase__ : int = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(UpperCamelCase ) == 2: lowerCAmelCase__ : Tuple = [] if len(UpperCamelCase ): lowerCAmelCase__ : Dict = renew_attention_paths(UpperCamelCase ) lowerCAmelCase__ : Tuple = { """old""": f"""output_blocks.{i}.1""", """new""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } lowerCAmelCase__ : Tuple = { f"""output_blocks.{i}.1.qkv.bias""": { """key""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", """query""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", """value""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { """key""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", """query""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", """value""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( UpperCamelCase , UpperCamelCase , UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=UpperCamelCase , ) else: lowerCAmelCase__ : int = renew_resnet_paths(UpperCamelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: lowerCAmelCase__ : Tuple = """.""".join(["""output_blocks""", str(UpperCamelCase ), path["""old"""]] ) lowerCAmelCase__ : List[Any] = """.""".join(["""up_blocks""", str(UpperCamelCase ), """resnets""", str(UpperCamelCase ), path["""new"""]] ) lowerCAmelCase__ : Union[str, Any] = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowerCAmelCase = json.loads(f.read()) _lowerCAmelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowerCAmelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowerCAmelCase = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) _lowerCAmelCase = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) _lowerCAmelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
37
0
'''simple docstring''' from collections import deque from .hash_table import HashTable class a ( __a ): def __init__( self : Any , *lowercase_ : Dict , **lowercase_ : List[str] ): super().__init__(*a__ , **a__ ) def A_ ( self : str , lowercase_ : Dict , lowercase_ : List[str] ): snake_case_ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(a__ ) snake_case_ = self.values[key] def A_ ( self : str ): return ( sum(self.charge_factor - len(a__ ) for slot in self.values ) / self.size_table * self.charge_factor ) def A_ ( self : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Tuple=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(a__ ) == 0 ): return key return super()._collision_resolution(a__ , a__ )
359
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList a : str = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class a ( _lowerCamelCase ): def __init__( self : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Optional[int]=None , lowercase_ : str=1 ): snake_case_ = tokenizer snake_case_ = dataset snake_case_ = len(lowercase_ ) if n_tasks is None else n_tasks snake_case_ = n_copies def __iter__( self : Optional[Any] ): snake_case_ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) snake_case_ = self.tokenizer(lowercase_ , padding=lowercase_ , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a ( _lowerCamelCase ): def __init__( self : str , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : int ): snake_case_ = start_length snake_case_ = eof_strings snake_case_ = tokenizer def __call__( self : List[Any] , lowercase_ : str , lowercase_ : Optional[int] , **lowercase_ : List[str] ): snake_case_ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) snake_case_ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowercase_ ) def __magic_name__ ( __UpperCAmelCase ) -> Any: '''simple docstring''' snake_case_ = re.split('''(%s)''' % '''|'''.join(__UpperCAmelCase ), __UpperCAmelCase ) # last string should be "" return "".join(string_list[:-2] ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=20, **__UpperCAmelCase ) -> str: '''simple docstring''' snake_case_ = defaultdict(__UpperCAmelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__UpperCAmelCase ) ): with torch.no_grad(): snake_case_ = batch['''ids'''].shape[-1] snake_case_ = accelerator.unwrap_model(__UpperCAmelCase ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']], num_return_sequences=__UpperCAmelCase, **__UpperCAmelCase ) # each task is generated batch_size times snake_case_ = batch['''task_id'''].repeat(__UpperCAmelCase ) snake_case_ = accelerator.pad_across_processes( __UpperCAmelCase, dim=1, pad_index=tokenizer.pad_token_id ) snake_case_ ,snake_case_ = accelerator.gather((generated_tokens, generated_tasks) ) snake_case_ = generated_tokens.cpu().numpy() snake_case_ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__UpperCAmelCase, __UpperCAmelCase ): gen_token_dict[task].append(__UpperCAmelCase ) snake_case_ = [[] for _ in range(__UpperCAmelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: snake_case_ = tokenizer.decode(__UpperCAmelCase, skip_special_tokens=__UpperCAmelCase, clean_up_tokenization_spaces=__UpperCAmelCase ) code_gens[task].append(remove_last_block(__UpperCAmelCase ) ) return code_gens def __magic_name__ ( ) -> Tuple: '''simple docstring''' snake_case_ = HfArgumentParser(__UpperCAmelCase ) snake_case_ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric snake_case_ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing snake_case_ = '''false''' if args.num_workers is None: snake_case_ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate snake_case_ = Accelerator() set_seed(args.seed, device_specific=__UpperCAmelCase ) # Load model and tokenizer snake_case_ = AutoTokenizer.from_pretrained(args.model_ckpt ) snake_case_ = tokenizer.eos_token snake_case_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings snake_case_ = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0, __UpperCAmelCase, __UpperCAmelCase )] ), } # Load evaluation dataset and metric snake_case_ = load_dataset('''openai_humaneval''' ) snake_case_ = load_metric('''code_eval''' ) snake_case_ = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) snake_case_ = args.n_samples // args.batch_size snake_case_ = TokenizedDataset(__UpperCAmelCase, human_eval['''test'''], n_copies=__UpperCAmelCase, n_tasks=__UpperCAmelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences snake_case_ = DataLoader(__UpperCAmelCase, batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: snake_case_ = code_eval_metric.compute(references=[''''''], predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception snake_case_ ,snake_case_ = accelerator.prepare(__UpperCAmelCase, __UpperCAmelCase ) snake_case_ = complete_code( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, n_tasks=__UpperCAmelCase, batch_size=args.batch_size, **__UpperCAmelCase, ) if accelerator.is_main_process: snake_case_ = [] for task in tqdm(range(__UpperCAmelCase ) ): snake_case_ = human_eval['''test'''][task]['''test'''] snake_case_ = F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric snake_case_ ,snake_case_ = code_eval_metric.compute( references=__UpperCAmelCase, predictions=__UpperCAmelCase, num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file, '''w''' ) as fp: json.dump(__UpperCAmelCase, __UpperCAmelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
72
0
'''simple docstring''' import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCAmelCase__ ( lowercase_ ): def __init__( self : List[str] , *lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : Any=None , **lowerCamelCase__ : Dict ) ->Tuple: '''simple docstring''' super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : str = eval_examples _UpperCAmelCase : Union[str, Any] = post_process_function def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : str = None , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Tuple = None , lowerCamelCase__ : Tuple = "eval" , **lowerCamelCase__ : int , ) ->Dict: '''simple docstring''' _UpperCAmelCase : str = gen_kwargs.copy() _UpperCAmelCase : Optional[Any] = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) _UpperCAmelCase : List[str] = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) _UpperCAmelCase : Tuple = gen_kwargs _UpperCAmelCase : List[str] = self.eval_dataset if eval_dataset is None else eval_dataset _UpperCAmelCase : Tuple = self.get_eval_dataloader(lowerCamelCase__ ) _UpperCAmelCase : Any = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _UpperCAmelCase : Dict = self.compute_metrics _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Union[str, Any] = time.time() _UpperCAmelCase : List[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _UpperCAmelCase : Dict = eval_loop( lowerCamelCase__ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCamelCase__ , metric_key_prefix=lowerCamelCase__ , ) finally: _UpperCAmelCase : Any = compute_metrics _UpperCAmelCase : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowerCamelCase__ , lowerCamelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _UpperCAmelCase : Any = self.post_process_function(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[str] = self.compute_metrics(lowerCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): _UpperCAmelCase : str = metrics.pop(lowerCamelCase__ ) metrics.update(output.metrics ) else: _UpperCAmelCase : Union[str, Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowerCamelCase__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _UpperCAmelCase : Optional[int] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCamelCase__ ) return metrics def lowerCAmelCase__ ( self : str , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : str=None , lowerCamelCase__ : Tuple = "test" , **lowerCamelCase__ : Tuple ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : int = gen_kwargs.copy() _UpperCAmelCase : Tuple = self.get_test_dataloader(lowerCamelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. _UpperCAmelCase : Any = self.compute_metrics _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : List[Any] = time.time() _UpperCAmelCase : List[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _UpperCAmelCase : List[str] = eval_loop( lowerCamelCase__ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCamelCase__ , metric_key_prefix=lowerCamelCase__ , ) finally: _UpperCAmelCase : Dict = compute_metrics _UpperCAmelCase : List[str] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowerCamelCase__ , lowerCamelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _UpperCAmelCase : List[Any] = self.post_process_function(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , "predict" ) _UpperCAmelCase : str = self.compute_metrics(lowerCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): _UpperCAmelCase : str = metrics.pop(lowerCamelCase__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCamelCase__ )
234
from __future__ import annotations import numpy as np def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ , snake_case_ = np.shape(UpperCamelCase__ ) if rows != columns: snake_case_ = ( '\'table\' has to be of square shaped array but got a ' F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(UpperCamelCase__ ) snake_case_ = np.zeros((rows, columns) ) snake_case_ = np.zeros((rows, columns) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): snake_case_ = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase__ ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) snake_case_ = (table[i][j] - total) / upper[j][j] snake_case_ = 1 for j in range(UpperCamelCase__ , UpperCamelCase__ ): snake_case_ = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase__ ) ) snake_case_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
285
0
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): __snake_case : str = yaml.safe_load( """\\nname: \"\"\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: \"Dataset Card for X\" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: \"Table of Contents\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Dataset Description\"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: \"Dataset Summary\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Supported Tasks and Leaderboards\"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n""" ) __snake_case : Union[str, Any] = { """name""": """root""", """text""": """""", """is_empty_text""": True, """subsections""": [ { """name""": """Dataset Card for My Dataset""", """text""": """""", """is_empty_text""": True, """subsections""": [ {"""name""": """Table of Contents""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": []}, { """name""": """Dataset Description""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Dataset Summary""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [], }, { """name""": """Supported Tasks and Leaderboards""", """text""": """""", """is_empty_text""": True, """subsections""": [], }, {"""name""": """Languages""", """text""": """Language Text""", """is_empty_text""": False, """subsections""": []}, ], }, ], } ], } __snake_case : Dict = """\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n""" __snake_case : str = """\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n""" __snake_case : Any = { """name""": """root""", """text""": """""", """is_empty_text""": True, """subsections""": [ { """name""": """Dataset Card for My Dataset""", """text""": """""", """is_empty_text""": True, """subsections""": [ {"""name""": """Table of Contents""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": []}, { """name""": """Dataset Description""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Dataset Summary""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Extra Ignored Subsection""", """text""": """""", """is_empty_text""": True, """subsections""": [], } ], }, { """name""": """Supported Tasks and Leaderboards""", """text""": """""", """is_empty_text""": True, """subsections""": [], }, {"""name""": """Languages""", """text""": """Language Text""", """is_empty_text""": False, """subsections""": []}, ], }, ], } ], } __snake_case : Union[str, Any] = """\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n""" __snake_case : List[str] = ( """The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.""" ) __snake_case : Tuple = """\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n""" __snake_case : Any = ( """The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.""" ) __snake_case : Union[str, Any] = """\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n""" __snake_case : Dict = """The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.""" __snake_case : Any = """\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n""" __snake_case : Union[str, Any] = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).""" __snake_case : Optional[Any] = """\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n""" __snake_case : Tuple = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.""" __snake_case : Tuple = """\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n""" __snake_case : Tuple = """The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.""" __snake_case : Optional[Any] = """\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n""" __snake_case : Any = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.""" __snake_case : List[str] = """\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n""" __snake_case : Any = """The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.""" __snake_case : int = """\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n""" __snake_case : Dict = """The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.""" __snake_case : int = """\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n""" __snake_case : Union[str, Any] = """The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.""" __snake_case : Tuple = """""" __snake_case : Optional[Any] = """The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.""" __snake_case : Tuple = """\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n""" __snake_case : Dict = """The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.""" @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def _UpperCamelCase ( UpperCamelCase_ : int , UpperCamelCase_ : Dict ) -> int: """simple docstring""" assert ReadMe.from_string(UpperCamelCase_ , UpperCamelCase_ ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def _UpperCamelCase ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] ) -> Optional[Any]: """simple docstring""" with pytest.raises(UpperCamelCase_ , match=re.escape(expected_error.format(path='root' ) ) ): lowerCAmelCase__ = ReadMe.from_string(UpperCamelCase_ , UpperCamelCase_ ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def _UpperCamelCase ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : int ) -> int: """simple docstring""" with pytest.raises(UpperCamelCase_ , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(UpperCamelCase_ , UpperCamelCase_ ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def _UpperCamelCase ( UpperCamelCase_ : int ) -> Any: """simple docstring""" ReadMe.from_string(UpperCamelCase_ , UpperCamelCase_ , suppress_parsing_errors=UpperCamelCase_ ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def _UpperCamelCase ( UpperCamelCase_ : Any , UpperCamelCase_ : int ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = Path(UpperCamelCase_ ) / 'README.md' with open(UpperCamelCase_ , 'w+' ) as readme_file: readme_file.write(UpperCamelCase_ ) lowerCAmelCase__ = ReadMe.from_readme(UpperCamelCase_ , UpperCamelCase_ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def _UpperCamelCase ( UpperCamelCase_ : Any , UpperCamelCase_ : Any ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = Path(UpperCamelCase_ ) / 'README.md' with open(UpperCamelCase_ , 'w+' ) as readme_file: readme_file.write(UpperCamelCase_ ) lowerCAmelCase__ = expected_error.format(path=UpperCamelCase_ ) with pytest.raises(UpperCamelCase_ , match=re.escape(UpperCamelCase_ ) ): lowerCAmelCase__ = ReadMe.from_readme(UpperCamelCase_ , UpperCamelCase_ ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def _UpperCamelCase ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = Path(UpperCamelCase_ ) / 'README.md' with open(UpperCamelCase_ , 'w+' ) as readme_file: readme_file.write(UpperCamelCase_ ) lowerCAmelCase__ = expected_error.format(path=UpperCamelCase_ ) with pytest.raises(UpperCamelCase_ , match=re.escape(UpperCamelCase_ ) ): ReadMe.from_readme(UpperCamelCase_ , UpperCamelCase_ ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def _UpperCamelCase ( UpperCamelCase_ : Dict ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = Path(UpperCamelCase_ ) / 'README.md' with open(UpperCamelCase_ , 'w+' ) as readme_file: readme_file.write(UpperCamelCase_ ) ReadMe.from_readme(UpperCamelCase_ , UpperCamelCase_ , suppress_parsing_errors=UpperCamelCase_ )
355
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __snake_case : Optional[int] = """\ @inproceedings{snover-etal-2006-study, title = \"A Study of Translation Edit Rate with Targeted Human Annotation\", author = \"Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John\", booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\", month = aug # \" 8-12\", year = \"2006\", address = \"Cambridge, Massachusetts, USA\", publisher = \"Association for Machine Translation in the Americas\", url = \"https://aclanthology.org/2006.amta-papers.25\", pages = \"223--231\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __snake_case : List[str] = """\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. """ __snake_case : Dict = """ Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: 'score' (float): TER score (num_edits / sum_ref_lengths * 100) 'num_edits' (int): The cumulative number of edits 'ref_length' (float): The cumulative average reference length Examples: Example 1: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0} Example 2: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0} Example 3: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5} Example 4: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0} Example 5: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __SCREAMING_SNAKE_CASE ( datasets.Metric): def UpperCamelCase__ ( self ): """simple docstring""" if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , ): """simple docstring""" lowerCAmelCase__ = len(references[0] ) if any(len(_UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase__ = [[refs[i] for refs in references] for i in range(_UpperCamelCase )] lowerCAmelCase__ = TER( normalized=_UpperCamelCase , no_punct=_UpperCamelCase , asian_support=_UpperCamelCase , case_sensitive=_UpperCamelCase , ) lowerCAmelCase__ = sb_ter.corpus_score(_UpperCamelCase , _UpperCamelCase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
122
0
'''simple docstring''' import os from datetime import datetime as dt from github import Github UpperCamelCase_ = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[Any] = Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase : Optional[int] = g.get_repo("""huggingface/diffusers""" ) _lowerCAmelCase : Union[str, Any] = repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase : Tuple = sorted(issue.get_comments() , key=lambda _lowerCamelCase : i.created_at , reverse=UpperCamelCase__ ) _lowerCAmelCase : List[str] = comments[0] if len(UpperCamelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
309
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a__: Union[str, Any] = logging.get_logger(__name__) a__: Union[str, Any] = {'vocab_file': 'spiece.model'} a__: Tuple = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } a__: Any = { 'google/bigbird-roberta-base': 4_096, 'google/bigbird-roberta-large': 4_096, 'google/bigbird-base-trivia-itc': 4_096, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] __SCREAMING_SNAKE_CASE = [] def __init__( self,__lowerCamelCase,__lowerCamelCase="<unk>",__lowerCamelCase="<s>",__lowerCamelCase="</s>",__lowerCamelCase="<pad>",__lowerCamelCase="[SEP]",__lowerCamelCase="[MASK]",__lowerCamelCase="[CLS]",__lowerCamelCase = None,**__lowerCamelCase,): A__ = AddedToken(__lowerCamelCase,lstrip=__lowerCamelCase,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase,__lowerCamelCase ) else bos_token A__ = AddedToken(__lowerCamelCase,lstrip=__lowerCamelCase,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase,__lowerCamelCase ) else eos_token A__ = AddedToken(__lowerCamelCase,lstrip=__lowerCamelCase,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase,__lowerCamelCase ) else unk_token A__ = AddedToken(__lowerCamelCase,lstrip=__lowerCamelCase,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase,__lowerCamelCase ) else pad_token A__ = AddedToken(__lowerCamelCase,lstrip=__lowerCamelCase,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase,__lowerCamelCase ) else cls_token A__ = AddedToken(__lowerCamelCase,lstrip=__lowerCamelCase,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase,__lowerCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it A__ = AddedToken(__lowerCamelCase,lstrip=__lowerCamelCase,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase,__lowerCamelCase ) else mask_token A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase,eos_token=__lowerCamelCase,unk_token=__lowerCamelCase,pad_token=__lowerCamelCase,sep_token=__lowerCamelCase,mask_token=__lowerCamelCase,cls_token=__lowerCamelCase,sp_model_kwargs=self.sp_model_kwargs,**__lowerCamelCase,) A__ = vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def UpperCamelCase ( self ): return self.sp_model.get_piece_size() def UpperCamelCase ( self ): A__ = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): A__ = self.__dict__.copy() A__ = None return state def __setstate__( self,__lowerCamelCase ): A__ = d # for backward compatibility if not hasattr(self,'''sp_model_kwargs''' ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase ( self,__lowerCamelCase ): return self.sp_model.encode(__lowerCamelCase,out_type=__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase ): return self.sp_model.piece_to_id(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase ): A__ = self.sp_model.IdToPiece(__lowerCamelCase ) return token def UpperCamelCase ( self,__lowerCamelCase ): A__ = [] A__ = '''''' A__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token A__ = True A__ = [] else: current_sub_tokens.append(__lowerCamelCase ) A__ = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = False,__lowerCamelCase = None,__lowerCamelCase = True,**__lowerCamelCase,): A__ = kwargs.pop('''use_source_tokenizer''',__lowerCamelCase ) A__ = self.convert_ids_to_tokens(__lowerCamelCase,skip_special_tokens=__lowerCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A__ = [] A__ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__lowerCamelCase ) ) A__ = [] sub_texts.append(__lowerCamelCase ) else: current_sub_text.append(__lowerCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__lowerCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: A__ = re.sub(r''' (\[(MASK|SEP)\])''',r'''\1''',''' '''.join(__lowerCamelCase ) ) else: A__ = ''''''.join(__lowerCamelCase ) A__ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A__ = self.clean_up_tokenization(__lowerCamelCase ) return clean_text else: return text def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ = os.path.join( __lowerCamelCase,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase,'''wb''' ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ = [self.cls_token_id] A__ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None,__lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase,token_ids_a=__lowerCamelCase,already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
193
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = """▁""" _UpperCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} _UpperCAmelCase = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model""" ), } } _UpperCAmelCase = { """facebook/nllb-200-distilled-600M""": 1024, } # fmt: off _UpperCAmelCase = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class __a ( __A ): '''simple docstring''' lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = ['''input_ids''', '''attention_mask'''] lowerCamelCase_ = [] lowerCamelCase_ = [] def __init__( self , lowercase , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=None , lowercase=None , lowercase=None , lowercase = None , lowercase=None , lowercase=False , **lowercase , ): """simple docstring""" A_ : Optional[Any] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token A_ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs A_ : List[Any] = legacy_behaviour super().__init__( bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , sep_token=lowercase , cls_token=lowercase , pad_token=lowercase , mask_token=lowercase , tokenizer_file=lowercase , src_lang=lowercase , tgt_lang=lowercase , additional_special_tokens=lowercase , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowercase , **lowercase , ) A_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase ) ) A_ : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token A_ : Union[str, Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A_ : List[str] = 1 A_ : str = len(self.sp_model ) A_ : List[Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowercase ) } A_ : Optional[Any] = {v: k for k, v in self.lang_code_to_id.items()} A_ : Any = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) A_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} A_ : Optional[Any] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) A_ : Optional[Any] = src_lang if src_lang is not None else 'eng_Latn' A_ : Union[str, Any] = self.lang_code_to_id[self._src_lang] A_ : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): """simple docstring""" A_ : Tuple = self.__dict__.copy() A_ : Optional[Any] = None A_ : Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowercase ): """simple docstring""" A_ : Optional[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): A_ : Tuple = {} A_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCAmelCase_ ( self ): """simple docstring""" return self._src_lang @src_lang.setter def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) A_ : List[str] = [1] * len(self.prefix_tokens ) A_ : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase )) + suffix_ones return prefix_ones + ([0] * len(lowercase )) + ([0] * len(lowercase )) + suffix_ones def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : List[Any] = [self.sep_token_id] A_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , lowercase , **lowercase ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) A_ : Optional[Any] = src_lang A_ : Union[str, Any] = self(lowercase , add_special_tokens=lowercase , return_tensors=lowercase , **lowercase ) A_ : Union[str, Any] = self.convert_tokens_to_ids(lowercase ) A_ : Dict = tgt_lang_id return inputs def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[Any] = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return self.sp_model.encode(lowercase , out_type=lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A_ : Dict = self.sp_model.PieceToId(lowercase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Optional[Any] = ''.join(lowercase ).replace(lowercase , ' ' ).strip() return out_string def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" if not os.path.isdir(lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return A_ : Tuple = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , 'wb' ) as fi: A_ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,) def lowerCAmelCase_ ( self , lowercase , lowercase = "eng_Latn" , lowercase = None , lowercase = "fra_Latn" , **lowercase , ): """simple docstring""" A_ : List[str] = src_lang A_ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase_ ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Any = self.lang_code_to_id[src_lang] if self.legacy_behaviour: A_ : Optional[Any] = [] A_ : int = [self.eos_token_id, self.cur_lang_code] else: A_ : Optional[int] = [self.cur_lang_code] A_ : Any = [self.eos_token_id] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Union[str, Any] = self.lang_code_to_id[lang] if self.legacy_behaviour: A_ : List[str] = [] A_ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: A_ : Optional[Any] = [self.cur_lang_code] A_ : List[Any] = [self.eos_token_id]
358
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCAmelCase = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } _UpperCAmelCase = logging.get_logger(__name__) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''mask2former''' lowerCamelCase_ = ['''swin'''] lowerCamelCase_ = {'''hidden_size''': '''hidden_dim'''} def __init__( self , lowercase = None , lowercase = 2_5_6 , lowercase = 2_5_6 , lowercase = 2_5_6 , lowercase = 1_0_2_4 , lowercase = "relu" , lowercase = 6 , lowercase = 1_0 , lowercase = 8 , lowercase = 0.0 , lowercase = 2_0_4_8 , lowercase = False , lowercase = False , lowercase = 4 , lowercase = 2_5_5 , lowercase = 1_0_0 , lowercase = 0.1 , lowercase = 2.0 , lowercase = 5.0 , lowercase = 5.0 , lowercase = 1_2_5_4_4 , lowercase = 3.0 , lowercase = 0.75 , lowercase = 0.02 , lowercase = 1.0 , lowercase = True , lowercase = [4, 8, 1_6, 3_2] , lowercase = None , **lowercase , ): """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) A_ : List[str] = CONFIG_MAPPING['swin']( image_size=2_2_4 , in_channels=3 , patch_size=4 , embed_dim=9_6 , depths=[2, 2, 1_8, 2] , num_heads=[3, 6, 1_2, 2_4] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowercase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowercase , lowercase ): A_ : str = backbone_config.pop('model_type' ) A_ : List[str] = CONFIG_MAPPING[backbone_model_type] A_ : Tuple = config_class.from_dict(lowercase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {','.join(self.backbones_supported )}''' ) A_ : List[Any] = backbone_config A_ : Optional[Any] = feature_size A_ : int = mask_feature_size A_ : Tuple = hidden_dim A_ : Dict = encoder_feedforward_dim A_ : int = activation_function A_ : str = encoder_layers A_ : Tuple = decoder_layers A_ : Tuple = num_attention_heads A_ : str = dropout A_ : List[str] = dim_feedforward A_ : List[str] = pre_norm A_ : Tuple = enforce_input_projection A_ : Dict = common_stride A_ : Union[str, Any] = ignore_value A_ : List[Any] = num_queries A_ : List[Any] = no_object_weight A_ : int = class_weight A_ : int = mask_weight A_ : Optional[Any] = dice_weight A_ : int = train_num_points A_ : Optional[int] = oversample_ratio A_ : Tuple = importance_sample_ratio A_ : Union[str, Any] = init_std A_ : List[Any] = init_xavier_std A_ : Optional[Any] = use_auxiliary_loss A_ : Dict = feature_strides A_ : List[Any] = output_auxiliary_logits A_ : Optional[int] = decoder_layers super().__init__(**lowercase ) @classmethod def lowerCAmelCase_ ( cls , lowercase , **lowercase ): """simple docstring""" return cls( backbone_config=lowercase , **lowercase , ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[Any] = copy.deepcopy(self.__dict__ ) A_ : Optional[int] = self.backbone_config.to_dict() A_ : Dict = self.__class__.model_type return output
192
0
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml snake_case_ = logging.get_logger(__name__) def lowerCamelCase__ ( snake_case_ : bool , snake_case_ : bool ) -> Optional[Any]: def run_func(snake_case_ : Union[str, Any] ): @wraps(snake_case_ ) def run_in_eager_mode(*snake_case_ : str , **snake_case_ : Any ): return func(*snake_case_ , **snake_case_ ) @wraps(snake_case_ ) @tf.function(experimental_compile=snake_case_ ) def run_in_graph_mode(*snake_case_ : List[str] , **snake_case_ : Any ): return func(*snake_case_ , **snake_case_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def lowerCamelCase__ ( snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> ["tf.Tensor"]: __snake_case = random.Random() __snake_case = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : TensorFlowBenchmarkArguments A_ : PretrainedConfig A_ : str = "TensorFlow" @property def a (self : str ): """simple docstring""" return tf.__version__ def a (self : Optional[int] , a__ : str , a__ : int , a__ : int ): """simple docstring""" __snake_case = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) __snake_case = self._prepare_inference_func(a__ , a__ , a__ ) return self._measure_speed(_inference ) def a (self : Dict , a__ : str , a__ : int , a__ : int ): """simple docstring""" __snake_case = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) __snake_case = self._prepare_train_func(a__ , a__ , a__ ) return self._measure_speed(_train ) def a (self : List[str] , a__ : str , a__ : int , a__ : int ): """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , a__ ) __snake_case = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) __snake_case = self._prepare_inference_func(a__ , a__ , a__ ) return self._measure_memory(_inference ) def a (self : Tuple , a__ : str , a__ : int , a__ : int ): """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , a__ ) __snake_case = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) __snake_case = self._prepare_train_func(a__ , a__ , a__ ) return self._measure_memory(_train ) def a (self : Union[str, Any] , a__ : str , a__ : int , a__ : int ): """simple docstring""" __snake_case = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) __snake_case = ( hasattr(a__ , '''architectures''' ) and isinstance(config.architectures , a__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __snake_case = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model __snake_case = __import__('''transformers''' , fromlist=[model_class] ) __snake_case = getattr(a__ , a__ ) __snake_case = model_cls(a__ ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: __snake_case = TF_MODEL_MAPPING[config.__class__](a__ ) # encoder-decoder has vocab size saved differently __snake_case = config.vocab_size if hasattr(a__ , '''vocab_size''' ) else config.encoder.vocab_size __snake_case = random_input_ids(a__ , a__ , a__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(a__ , decoder_input_ids=a__ , training=a__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(a__ , training=a__ ) __snake_case = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def a (self : Union[str, Any] , a__ : str , a__ : int , a__ : int ): """simple docstring""" __snake_case = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) __snake_case = ( hasattr(a__ , '''architectures''' ) and isinstance(config.architectures , a__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __snake_case = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model __snake_case = __import__('''transformers''' , fromlist=[model_class] ) __snake_case = getattr(a__ , a__ ) __snake_case = model_cls(a__ ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: __snake_case = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](a__ ) # encoder-decoder has vocab size saved differently __snake_case = config.vocab_size if hasattr(a__ , '''vocab_size''' ) else config.encoder.vocab_size __snake_case = random_input_ids(a__ , a__ , a__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): __snake_case = model(a__ , decoder_input_ids=a__ , labels=a__ , training=a__ )[0] __snake_case = tf.gradients(a__ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): __snake_case = model(a__ , labels=a__ , training=a__ )[0] __snake_case = tf.gradients(a__ , model.trainable_variables ) return gradients __snake_case = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def a (self : List[Any] , a__ : Dict ): """simple docstring""" with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(a__ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average __snake_case = timeit.repeat( a__ , repeat=self.args.repeat , number=10 , ) return min(a__ ) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def a (self : Dict , a__ : Callable[[], None] ): """simple docstring""" logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) __snake_case = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) __snake_case = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() __snake_case = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) __snake_case = nvml.nvmlDeviceGetMemoryInfo(a__ ) __snake_case = meminfo.used __snake_case = Memory(a__ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) __snake_case = None else: __snake_case = measure_peak_memory_cpu(a__ ) __snake_case = Memory(a__ ) if isinstance(a__ , a__ ) else memory_bytes if self.args.trace_memory_line_by_line: __snake_case = stop_memory_tracing(a__ ) if memory is None: __snake_case = summary.total else: __snake_case = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
24
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast _a : Dict = datasets.utils.logging.get_logger(__name__) @dataclass class __A ( datasets.BuilderConfig ): _UpperCamelCase : int = 10_000 _UpperCamelCase : Optional[List[str]] = None _UpperCamelCase : Optional[datasets.Features] = None class __A ( datasets.ArrowBasedBuilder ): _UpperCamelCase : List[str] = ParquetConfig def __A ( self ): return datasets.DatasetInfo(features=self.config.features ) def __A ( self , a__ ): if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) _lowerCAmelCase : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a__ , (str, list, tuple) ): _lowerCAmelCase : Any = data_files if isinstance(a__ , a__ ): _lowerCAmelCase : Tuple = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Any = [dl_manager.iter_files(a__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _lowerCAmelCase : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(a__ , a__ ): _lowerCAmelCase : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Tuple = [dl_manager.iter_files(a__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a__ ): with open(a__ , """rb""" ) as f: _lowerCAmelCase : Optional[Any] = datasets.Features.from_arrow_schema(pq.read_schema(a__ ) ) break splits.append(datasets.SplitGenerator(name=a__ , gen_kwargs={"""files""": files} ) ) return splits def __A ( self , a__ ): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : Optional[int] = table_cast(a__ , self.info.features.arrow_schema ) return pa_table def __A ( self , a__ ): _lowerCAmelCase : Optional[int] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F"Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'" ) for file_idx, file in enumerate(itertools.chain.from_iterable(a__ ) ): with open(a__ , """rb""" ) as f: _lowerCAmelCase : Tuple = pq.ParquetFile(a__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): _lowerCAmelCase : Any = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"{file_idx}_{batch_idx}", self._cast_table(a__ ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(a__ )}: {e}" ) raise
44
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __lowerCAmelCase ( _a ): lowerCamelCase_ : Optional[Any] = '''vit_msn''' def __init__(self , __magic_name__=768 , __magic_name__=12 , __magic_name__=12 , __magic_name__=3072 , __magic_name__="gelu" , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.02 , __magic_name__=1e-06 , __magic_name__=224 , __magic_name__=16 , __magic_name__=3 , __magic_name__=True , **__magic_name__ , ) -> Dict: '''simple docstring''' super().__init__(**__magic_name__ ) snake_case_ : Any = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : Any = num_attention_heads snake_case_ : Tuple = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : Any = hidden_dropout_prob snake_case_ : Optional[Any] = attention_probs_dropout_prob snake_case_ : Optional[Any] = initializer_range snake_case_ : Optional[Any] = layer_norm_eps snake_case_ : int = image_size snake_case_ : Optional[Any] = patch_size snake_case_ : Tuple = num_channels snake_case_ : Tuple = qkv_bias
367
from math import isclose, sqrt def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> tuple[float, float, float]: """simple docstring""" snake_case_ : Dict = point_y / 4 / point_x snake_case_ : List[str] = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) snake_case_ : Union[str, Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) snake_case_ : Tuple = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 snake_case_ : Union[str, Any] = outgoing_gradient**2 + 4 snake_case_ : Tuple = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) snake_case_ : Optional[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 snake_case_ : Dict = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) snake_case_ : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point snake_case_ : Any = x_minus if isclose(_UpperCamelCase , _UpperCamelCase ) else x_plus snake_case_ : int = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def lowerCamelCase_ ( _UpperCamelCase = 1.4 , _UpperCamelCase = -9.6 ) -> int: """simple docstring""" snake_case_ : int = 0 snake_case_ : float = first_x_coord snake_case_ : float = first_y_coord snake_case_ : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): snake_case_ , snake_case_ , snake_case_ : str = next_point(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F'''{solution() = }''')
279
0
"""simple docstring""" import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( 'kwargs, expected' , [ ({'num_shards': 0, 'max_num_jobs': 1}, []), ({'num_shards': 10, 'max_num_jobs': 1}, [range(10 )]), ({'num_shards': 10, 'max_num_jobs': 10}, [range(lowercase__ , i + 1 ) for i in range(10 )]), ({'num_shards': 1, 'max_num_jobs': 10}, [range(1 )]), ({'num_shards': 10, 'max_num_jobs': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'num_shards': 3, 'max_num_jobs': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : int = _distribute_shards(**lowercase__ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, max_num_jobs, expected' , [ ({'foo': 0}, 10, [{'foo': 0}]), ({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]), ({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]), ({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]), ({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]), ] , ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : int = _split_gen_kwargs(lowercase__ , lowercase__ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, expected' , [ ({'foo': 0}, 1), ({'shards': [0]}, 1), ({'shards': [0, 1, 2, 3]}, 4), ({'shards': [0, 1, 2, 3], 'foo': 0}, 4), ({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4), ({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError), ] , ) def _snake_case ( lowercase__ , lowercase__ ): if expected is RuntimeError: with pytest.raises(lowercase__ ): _number_of_shards_in_gen_kwargs(lowercase__ ) else: _lowerCamelCase : Tuple = _number_of_shards_in_gen_kwargs(lowercase__ ) assert out == expected
96
"""simple docstring""" def snake_case_ ( A_ : list[list[float]] ): '''simple docstring''' _lowerCamelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(A_ ): if len(A_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(A_ ) ) return data_lists def snake_case_ ( A_ : list[list[float]], A_ : list[int] ): '''simple docstring''' _lowerCamelCase : list[list[float]] = [] for dlist, weight in zip(A_, A_ ): _lowerCamelCase : Any = min(A_ ) _lowerCamelCase : Optional[Any] = max(A_ ) _lowerCamelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: _lowerCamelCase : str = F'''Invalid weight of {weight:f} provided''' raise ValueError(A_ ) score_lists.append(A_ ) return score_lists def snake_case_ ( A_ : list[list[float]] ): '''simple docstring''' _lowerCamelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(A_ ): _lowerCamelCase : List[str] = final_scores[j] + ele return final_scores def snake_case_ ( A_ : list[list[float]], A_ : list[int] ): '''simple docstring''' _lowerCamelCase : Tuple = get_data(A_ ) _lowerCamelCase : Optional[Any] = calculate_each_score(A_, A_ ) _lowerCamelCase : str = generate_final_scores(A_ ) # append scores to source data for i, ele in enumerate(A_ ): source_data[i].append(A_ ) return source_data
72
0
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowerCamelCase = logging.get_logger(__name__) class a ( UpperCAmelCase_ ): '''simple docstring''' lowerCAmelCase : str = ["""input_values""", """attention_mask"""] def __init__( self : Tuple , __snake_case : int = 1 , __snake_case : str = 1_60_00 , __snake_case : Union[str, Any] = 0.0 , __snake_case : str = False , __snake_case : Dict = 80 , __snake_case : Dict = 16 , __snake_case : str = 64 , __snake_case : Optional[int] = "hann_window" , __snake_case : Optional[Any] = 1.0 , __snake_case : str = 80 , __snake_case : List[Any] = 76_00 , __snake_case : str = 1E-10 , __snake_case : int = 2 , __snake_case : Union[str, Any] = True , **__snake_case : List[str] , ): super().__init__(feature_size=__lowercase , sampling_rate=__lowercase , padding_value=__lowercase , **__lowercase ) UpperCAmelCase_ = do_normalize UpperCAmelCase_ = return_attention_mask UpperCAmelCase_ = num_mel_bins UpperCAmelCase_ = hop_length UpperCAmelCase_ = win_length UpperCAmelCase_ = win_function UpperCAmelCase_ = frame_signal_scale UpperCAmelCase_ = fmin UpperCAmelCase_ = fmax UpperCAmelCase_ = mel_floor UpperCAmelCase_ = reduction_factor UpperCAmelCase_ = win_length * sampling_rate // 10_00 UpperCAmelCase_ = hop_length * sampling_rate // 10_00 UpperCAmelCase_ = optimal_fft_length(self.sample_size ) UpperCAmelCase_ = (self.n_fft // 2) + 1 UpperCAmelCase_ = window_function(window_length=self.sample_size , name=self.win_function , periodic=__lowercase ) UpperCAmelCase_ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='''slaney''' , mel_scale='''slaney''' , ) if frame_signal_scale != 1.0: warnings.warn( '''The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers''' , __lowercase , ) if reduction_factor != 2.0: warnings.warn( '''The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers''' , __lowercase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCamelCase_ ( __snake_case : str , __snake_case : Tuple , __snake_case : int = 0.0 ): if attention_mask is not None: UpperCAmelCase_ = np.array(__lowercase , np.intaa ) UpperCAmelCase_ = [] for vector, length in zip(__lowercase , attention_mask.sum(-1 ) ): UpperCAmelCase_ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: UpperCAmelCase_ = padding_value normed_input_values.append(__lowercase ) else: UpperCAmelCase_ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def lowerCamelCase_ ( self : List[Any] , __snake_case : Optional[Any] , ): UpperCAmelCase_ = spectrogram( __lowercase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='''log10''' , ) return log_mel_spec.T def __call__( self : Union[str, Any] , __snake_case : Dict = None , __snake_case : str = None , __snake_case : Dict = False , __snake_case : Tuple = None , __snake_case : List[str] = False , __snake_case : int = None , __snake_case : List[str] = None , __snake_case : Optional[int] = None , __snake_case : Optional[Any] = None , **__snake_case : List[str] , ): if audio is None and audio_target is None: raise ValueError('''You must provide either `audio` or `audio_target` values.''' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if audio is not None: UpperCAmelCase_ = self._process_audio( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , **__lowercase , ) else: UpperCAmelCase_ = None if audio_target is not None: UpperCAmelCase_ = self._process_audio( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , **__lowercase , ) if inputs is None: return inputs_target else: UpperCAmelCase_ = inputs_target['''input_values'''] UpperCAmelCase_ = inputs_target.get('''attention_mask''' ) if decoder_attention_mask is not None: UpperCAmelCase_ = decoder_attention_mask return inputs def lowerCamelCase_ ( self : Tuple , __snake_case : List[str] , __snake_case : Any = False , __snake_case : Optional[Any] = False , __snake_case : Optional[Any] = None , __snake_case : Tuple = False , __snake_case : int = None , __snake_case : str = None , __snake_case : Tuple = None , **__snake_case : Tuple , ): UpperCAmelCase_ = isinstance(__lowercase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) UpperCAmelCase_ = is_batched_numpy or ( isinstance(__lowercase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase_ = [np.asarray(__lowercase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(__lowercase , np.ndarray ): UpperCAmelCase_ = np.asarray(__lowercase , dtype=np.floataa ) elif isinstance(__lowercase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): UpperCAmelCase_ = speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase_ = [speech] # needed to make pad() work on spectrogram inputs UpperCAmelCase_ = self.feature_size # convert into correct format for padding if is_target: UpperCAmelCase_ = [self._extract_mel_features(__lowercase ) for waveform in speech] UpperCAmelCase_ = BatchFeature({'''input_values''': features} ) UpperCAmelCase_ = self.num_mel_bins else: UpperCAmelCase_ = BatchFeature({'''input_values''': speech} ) UpperCAmelCase_ = self.pad( __lowercase , padding=__lowercase , max_length=__lowercase , truncation=__lowercase , pad_to_multiple_of=__lowercase , return_attention_mask=__lowercase , **__lowercase , ) UpperCAmelCase_ = feature_size_hack # convert input values to correct format UpperCAmelCase_ = padded_inputs['''input_values'''] if not isinstance(input_values[0] , np.ndarray ): UpperCAmelCase_ = [np.asarray(__lowercase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(__lowercase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): UpperCAmelCase_ = [array.astype(np.floataa ) for array in input_values] elif isinstance(__lowercase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): UpperCAmelCase_ = input_values.astype(np.floataa ) # convert attention_mask to correct format UpperCAmelCase_ = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: UpperCAmelCase_ = [np.asarray(__lowercase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: UpperCAmelCase_ = ( attention_mask if self._get_padding_strategies(__lowercase , max_length=__lowercase ) is not PaddingStrategy.DO_NOT_PAD else None ) UpperCAmelCase_ = self.zero_mean_unit_var_norm( padded_inputs['''input_values'''] , attention_mask=__lowercase , padding_value=self.padding_value ) if return_tensors is not None: UpperCAmelCase_ = padded_inputs.convert_to_tensors(__lowercase ) return padded_inputs def lowerCamelCase_ ( self : Optional[Any] ): UpperCAmelCase_ = super().to_dict() # Don't serialize these as they are derived from the other properties. UpperCAmelCase_ = ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs'''] for name in names: if name in output: del output[name] return output
367
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCamelCase = logging.get_logger(__name__) class a ( _A ): '''simple docstring''' lowerCAmelCase : List[Any] = ['pixel_values'] def __init__( self : Any , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : bool = True , __snake_case : Union[int, float] = 1 / 2_55 , __snake_case : bool = True , __snake_case : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , __snake_case : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **__snake_case : Optional[Any] , ): super().__init__(**__snake_case ) UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 2_24} UpperCAmelCase_ = get_size_dict(__snake_case , default_to_square=__snake_case ) UpperCAmelCase_ = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} UpperCAmelCase_ = get_size_dict(__snake_case , param_name='''crop_size''' ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = resample UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowerCamelCase_ ( self : int , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Tuple , ): UpperCAmelCase_ = get_size_dict(__snake_case , default_to_square=__snake_case ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: UpperCAmelCase_ = int((2_56 / 2_24) * size['''shortest_edge'''] ) UpperCAmelCase_ = get_resize_output_image_size(__snake_case , size=__snake_case , default_to_square=__snake_case ) UpperCAmelCase_ = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( __snake_case , size=(size_dict['''height'''], size_dict['''width''']) , resample=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCamelCase_ ( self : Tuple , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[int] , ): UpperCAmelCase_ = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(__snake_case , size=(size['''height'''], size['''width''']) , data_format=__snake_case , **__snake_case ) def lowerCamelCase_ ( self : Optional[Any] , __snake_case : np.ndarray , __snake_case : Union[int, float] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : List[Any] , ): return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCamelCase_ ( self : int , __snake_case : np.ndarray , __snake_case : Union[float, List[float]] , __snake_case : Union[float, List[float]] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Union[str, Any] , ): return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCamelCase_ ( self : int , __snake_case : ImageInput , __snake_case : Optional[bool] = None , __snake_case : Optional[Dict[str, int]] = None , __snake_case : PILImageResampling = None , __snake_case : Optional[bool] = None , __snake_case : Optional[Dict[str, int]] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[float] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[Union[float, Iterable[float]]] = None , __snake_case : Optional[Union[float, Iterable[float]]] = None , __snake_case : Optional[TensorType] = None , __snake_case : ChannelDimension = ChannelDimension.FIRST , **__snake_case : List[str] , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(__snake_case , default_to_square=__snake_case ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(__snake_case , param_name='''crop_size''' ) UpperCAmelCase_ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(__snake_case ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(__snake_case , __snake_case , __snake_case ) for image in images] if do_center_crop: UpperCAmelCase_ = [self.center_crop(__snake_case , __snake_case ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(__snake_case , __snake_case ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(__snake_case , __snake_case , __snake_case ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] UpperCAmelCase_ = {'''pixel_values''': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
177
0
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __A = re.compile(R"\s+") def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> Any: """simple docstring""" return {"hash": hashlib.mda(re.sub(UpperCamelCase__ , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = [len(UpperCamelCase__ ) for line in example['content'].splitlines()] return {"line_mean": np.mean(UpperCamelCase__ ), "line_max": max(UpperCamelCase__ )} def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple ) -> Optional[Any]: """simple docstring""" if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict=5 ) -> List[str]: """simple docstring""" __lowerCamelCase = ['auto-generated', 'autogenerated', 'automatically generated'] __lowerCamelCase = example['content'].splitlines() for _, line in zip(range(UpperCamelCase__ ) , UpperCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Any=5 , UpperCamelCase__ : List[str]=0.05 ) -> List[Any]: """simple docstring""" __lowerCamelCase = ['unit tests', 'test file', 'configuration file'] __lowerCamelCase = example['content'].splitlines() __lowerCamelCase = 0 __lowerCamelCase = 0 # first test for _, line in zip(range(UpperCamelCase__ ) , UpperCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test __lowerCamelCase = example['content'].count('\n' ) __lowerCamelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> List[Any]: """simple docstring""" __lowerCamelCase = ['def ', 'class ', 'for ', 'while '] __lowerCamelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any]=4 ) -> str: """simple docstring""" __lowerCamelCase = example['content'].splitlines() __lowerCamelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> Dict: """simple docstring""" __lowerCamelCase = tokenizer(example['content'] , truncation=UpperCamelCase__ )['input_ids'] __lowerCamelCase = len(example['content'] ) / len(UpperCamelCase__ ) return {"ratio": ratio} def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> Tuple: """simple docstring""" __lowerCamelCase = {} results.update(get_hash(UpperCamelCase__ ) ) results.update(line_stats(UpperCamelCase__ ) ) results.update(alpha_stats(UpperCamelCase__ ) ) results.update(char_token_ratio(UpperCamelCase__ ) ) results.update(is_autogenerated(UpperCamelCase__ ) ) results.update(is_config_or_test(UpperCamelCase__ ) ) results.update(has_no_keywords(UpperCamelCase__ ) ) results.update(has_few_assignments(UpperCamelCase__ ) ) return results def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" if not check_uniques(UpperCamelCase__ , UpperCamelCase__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCamelCase_ ( UpperCamelCase__ : int ) -> int: """simple docstring""" with open(UpperCamelCase__ , 'rb' ) as f_in: with gzip.open(str(UpperCamelCase__ ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(UpperCamelCase__ , UpperCamelCase__ ) os.unlink(UpperCamelCase__ ) # Settings __A = HfArgumentParser(PreprocessingArguments) __A = parser.parse_args() if args.num_workers is None: __A = multiprocessing.cpu_count() __A = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __A = time.time() __A = load_dataset(args.dataset_name, split="train") print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing __A = time.time() __A = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes __A = set(ds.unique("hash")) __A = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics __A = time.time() __A = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __A = time.time() __A , __A = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file __A = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) __A = output_dir / "data" data_dir.mkdir(exist_ok=True) __A = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __A = str(data_dir / f'''file-{file_number+1:012}.json''') __A = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
90
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=3_0 , __UpperCamelCase=4_0_0 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=True , __UpperCamelCase=1 / 2_5_5 , __UpperCamelCase=True , ): """simple docstring""" UpperCamelCase_ = size if size is not None else {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean UpperCamelCase_ = image_std UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_pad def lowerCamelCase_ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=False ): """simple docstring""" if not batched: UpperCamelCase_ = image_inputs[0] if isinstance(__UpperCamelCase , Image.Image ): UpperCamelCase_ , UpperCamelCase_ = image.size else: UpperCamelCase_ , UpperCamelCase_ = image.shape[1], image.shape[2] if w < h: UpperCamelCase_ = int(self.size["""shortest_edge"""] * h / w ) UpperCamelCase_ = self.size["""shortest_edge"""] elif w > h: UpperCamelCase_ = self.size["""shortest_edge"""] UpperCamelCase_ = int(self.size["""shortest_edge"""] * w / h ) else: UpperCamelCase_ = self.size["""shortest_edge"""] UpperCamelCase_ = self.size["""shortest_edge"""] else: UpperCamelCase_ = [] for image in image_inputs: UpperCamelCase_ , UpperCamelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase_ = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[0] )[0] UpperCamelCase_ = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : str = YolosImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = YolosImageProcessingTester(self ) @property def lowerCamelCase_ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """size""" ) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) UpperCamelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2, """longest_edge""": 8_4} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase_ = self.image_processing_class(do_resize=__UpperCamelCase , do_normalize=__UpperCamelCase , do_rescale=__UpperCamelCase ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors UpperCamelCase_ = image_processing_a.pad(__UpperCamelCase , return_tensors="""pt""" ) UpperCamelCase_ = image_processing_a(__UpperCamelCase , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: UpperCamelCase_ = json.loads(f.read() ) UpperCamelCase_ = {"""image_id""": 3_9_7_6_9, """annotations""": target} # encode them UpperCamelCase_ = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) UpperCamelCase_ = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify area UpperCamelCase_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes UpperCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1e-3 ) ) # verify image_id UpperCamelCase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd UpperCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels UpperCamelCase_ = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify orig_size UpperCamelCase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size UpperCamelCase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: UpperCamelCase_ = json.loads(f.read() ) UpperCamelCase_ = {"""file_name""": """000000039769.png""", """image_id""": 3_9_7_6_9, """segments_info""": target} UpperCamelCase_ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCamelCase_ = YolosImageProcessor(format="""coco_panoptic""" ) UpperCamelCase_ = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , masks_path=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify area UpperCamelCase_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes UpperCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1e-3 ) ) # verify image_id UpperCamelCase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd UpperCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels UpperCamelCase_ = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify masks UpperCamelCase_ = 8_2_2_8_7_3 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __UpperCamelCase ) # verify orig_size UpperCamelCase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size UpperCamelCase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) )
122
0
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : float , snake_case : bool = False )-> dict: '''simple docstring''' UpperCAmelCase__ : dict = {i: [] for i in range(snake_case )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(snake_case ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(snake_case ): for j in range(i + 1 , snake_case ): if random.random() < probability: graph[i].append(snake_case ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(snake_case ) return graph def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> dict: '''simple docstring''' return { i: [j for j in range(snake_case ) if i != j] for i in range(snake_case ) } if __name__ == "__main__": import doctest doctest.testmod()
298
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE__ ( snake_case : Dataset , snake_case : Dict[str, str] )-> Any: '''simple docstring''' UpperCAmelCase__ : str = args.log_outputs UpperCAmelCase__ : str = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric UpperCAmelCase__ : List[str] = load_metric("wer" ) UpperCAmelCase__ : Tuple = load_metric("cer" ) # compute metrics UpperCAmelCase__ : List[str] = wer.compute(references=result["target"] , predictions=result["prediction"] ) UpperCAmelCase__ : Tuple = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results UpperCAmelCase__ : Union[str, Any] = f'WER: {wer_result}\nCER: {cer_result}' print(snake_case ) with open(f'{dataset_id}_eval_results.txt' , "w" ) as f: f.write(snake_case ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCAmelCase__ : str = f'log_{dataset_id}_predictions.txt' UpperCAmelCase__ : List[str] = f'log_{dataset_id}_targets.txt' with open(snake_case , "w" ) as p, open(snake_case , "w" ) as t: # mapping function to write output def write_to_file(snake_case : List[Any] , snake_case : List[str] ): p.write(f'{i}' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(f'{i}' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case , with_indices=snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> str: '''simple docstring''' UpperCAmelCase__ : str = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCAmelCase__ : str = re.sub(snake_case , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCAmelCase__ : Tuple = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: UpperCAmelCase__ : List[Any] = " ".join(text.split(snake_case ) ) return text def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCAmelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCAmelCase__ : str = feature_extractor.sampling_rate # resample audio UpperCAmelCase__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case ) ) # load eval pipeline if args.device is None: UpperCAmelCase__ : List[str] = 0 if torch.cuda.is_available() else -1 UpperCAmelCase__ : Optional[int] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case : Any ): UpperCAmelCase__ : List[str] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCAmelCase__ : List[Any] = prediction["text"] UpperCAmelCase__ : Optional[int] = normalize_text(batch["sentence"] ) return batch # run inference on all examples UpperCAmelCase__ : Dict = dataset.map(snake_case , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case , snake_case ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCAmelCase : Tuple = parser.parse_args() main(args)
298
1
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict _SCREAMING_SNAKE_CASE : Any = namedtuple( "_TestCommandArgs", [ "dataset", "name", "cache_dir", "data_dir", "all_configs", "save_infos", "ignore_verifications", "force_redownload", "clear_cache", ], defaults=[None, None, None, False, False, False, False, False], ) def UpperCamelCase_( snake_case : Any , snake_case : List[str] ): '''simple docstring''' return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = _TestCommandArgs(dataset=lowercase_ , all_configs=lowercase_ , save_infos=lowercase_ ) snake_case_ = TestCommand(*lowercase_ ) test_command.run() snake_case_ = os.path.join(lowercase_ , "README.md" ) assert os.path.exists(lowercase_ ) snake_case_ = DatasetInfosDict.from_directory(lowercase_ ) snake_case_ = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string" ) ), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] ) ), "langs": Sequence(Value("string" ) ), "spans": Sequence(Value("string" ) ), } ) , splits=[ { "name": "train", "num_bytes": 2_3_5_1_5_6_3, "num_examples": 1_0_0_0_0, }, { "name": "validation", "num_bytes": 2_3_8_4_1_8, "num_examples": 1_0_0_0, }, ] , download_size=3_9_4_0_6_8_0 , dataset_size=2_5_8_9_9_8_1 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: snake_case_ = getattr(dataset_infos["default"] , lowercase_ ), getattr(expected_dataset_infos["default"] , lowercase_ ) if key == "num_bytes": assert is_apercent_close(lowercase_ , lowercase_ ) elif key == "splits": assert list(lowercase_ ) == list(lowercase_ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
85
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : int = logging.get_logger(__name__) A_ : Optional[Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: List[Any] = '''mgp-str''' def __init__( self , A__=[32, 128] , A__=4 , A__=3 , A__=27 , A__=38 , A__=5_0257 , A__=3_0522 , A__=768 , A__=12 , A__=12 , A__=4.0 , A__=True , A__=False , A__=1e-5 , A__=0.0 , A__=0.0 , A__=0.0 , A__=False , A__=0.0_2 , **A__ , ): super().__init__(**A__ ) A__ : Dict = image_size A__ : int = patch_size A__ : Dict = num_channels A__ : List[Any] = max_token_length A__ : str = num_character_labels A__ : Tuple = num_bpe_labels A__ : Optional[Any] = num_wordpiece_labels A__ : Optional[int] = hidden_size A__ : Tuple = num_hidden_layers A__ : Any = num_attention_heads A__ : List[Any] = mlp_ratio A__ : Tuple = distilled A__ : Union[str, Any] = layer_norm_eps A__ : Tuple = drop_rate A__ : List[str] = qkv_bias A__ : Optional[Any] = attn_drop_rate A__ : Union[str, Any] = drop_path_rate A__ : Optional[Any] = output_aa_attentions A__ : Optional[int] = initializer_range
192
0
'''simple docstring''' def __lowercase ( __lowercase ) -> Any: # noqa: E741 '''simple docstring''' _A = len(__lowercase ) _A = 0 _A = [0] * n _A = [False] * n _A = [False] * n def dfs(__lowercase , __lowercase , __lowercase , __lowercase ): if parent == root: out_edge_count += 1 _A = True _A = at for to in l[at]: if to == parent: pass elif not visited[to]: _A = dfs(__lowercase , __lowercase , __lowercase , __lowercase ) _A = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _A = True # AP found via cycle if at == low[to]: _A = True else: _A = min(low[at] , __lowercase ) return out_edge_count for i in range(__lowercase ): if not visited[i]: _A = 0 _A = dfs(__lowercase , __lowercase , -1 , __lowercase ) _A = out_edge_count > 1 for x in range(len(__lowercase ) ): if is_art[x] is True: print(__lowercase ) # Adjacency list of graph lowerCamelCase_ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
358
'''simple docstring''' import fire from utils import calculate_rouge, save_json def __lowercase ( __lowercase , __lowercase , __lowercase=None , **__lowercase ) -> Optional[int]: '''simple docstring''' _A = [x.strip() for x in open(__lowercase ).readlines()] _A = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] _A = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
174
0
'''simple docstring''' import os import sys import unittest a__ : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) a__ : Union[str, Any] = os.path.join("tests", "models", "bert", "test_modeling_bert.py") a__ : List[str] = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class UpperCamelCase__ ( unittest.TestCase): def lowercase_ ( self :str ) -> Optional[int]: '''simple docstring''' __A = get_test_to_tester_mapping(_A ) __A = get_test_to_tester_mapping(_A ) __A = {'''BertModelTest''': '''BertModelTester'''} __A = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(_A ) , _A ) self.assertEqual(get_test_info.to_json(_A ) , _A ) def lowercase_ ( self :Optional[Any] ) -> List[str]: '''simple docstring''' __A = get_model_to_test_mapping(_A ) __A = get_model_to_test_mapping(_A ) __A = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } __A = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(_A ) , _A ) self.assertEqual(get_test_info.to_json(_A ) , _A ) def lowercase_ ( self :Any ) -> Tuple: '''simple docstring''' __A = get_model_to_tester_mapping(_A ) __A = get_model_to_tester_mapping(_A ) __A = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } __A = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(_A ) , _A ) self.assertEqual(get_test_info.to_json(_A ) , _A )
161
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCAmelCase_ = random.Random() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=1.0 , _UpperCamelCase=None , _UpperCamelCase=None ) -> List[Any]: """simple docstring""" if rng is None: snake_case_ : str = global_rng snake_case_ : Any = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowerCAmelCase ( unittest.TestCase ): def __init__(self , __magic_name__ , __magic_name__=7 , __magic_name__=400 , __magic_name__=2000 , __magic_name__=10 , __magic_name__=160 , __magic_name__=8 , __magic_name__=0.0 , __magic_name__=4000 , __magic_name__=False , __magic_name__=True , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : str = batch_size snake_case_ : Union[str, Any] = min_seq_length snake_case_ : Tuple = max_seq_length snake_case_ : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case_ : Optional[int] = padding_value snake_case_ : Union[str, Any] = sampling_rate snake_case_ : Optional[int] = return_attention_mask snake_case_ : str = do_normalize snake_case_ : str = feature_size snake_case_ : Optional[Any] = chunk_length snake_case_ : Union[str, Any] = hop_length def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase (self , __magic_name__=False , __magic_name__=False ) -> Optional[Any]: '''simple docstring''' def _flatten(__magic_name__ ): return list(itertools.chain(*__magic_name__ ) ) if equal_length: snake_case_ : int = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case_ : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case_ : str = [np.asarray(__magic_name__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : Optional[Any] = WhisperFeatureExtractor if is_speech_available() else None def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : List[str] = WhisperFeatureExtractionTester(self ) def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : Union[str, Any] = feat_extract_first.save_pretrained(__magic_name__ )[0] check_json_file_has_correct_format(__magic_name__ ) snake_case_ : List[Any] = self.feature_extraction_class.from_pretrained(__magic_name__ ) snake_case_ : Optional[int] = feat_extract_first.to_dict() snake_case_ : Dict = feat_extract_second.to_dict() snake_case_ : List[str] = feat_extract_first.mel_filters snake_case_ : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(__magic_name__ , __magic_name__ ) ) self.assertEqual(__magic_name__ , __magic_name__ ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : List[Any] = os.path.join(__magic_name__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(__magic_name__ ) snake_case_ : Optional[int] = self.feature_extraction_class.from_json_file(__magic_name__ ) snake_case_ : int = feat_extract_first.to_dict() snake_case_ : Optional[int] = feat_extract_second.to_dict() snake_case_ : Union[str, Any] = feat_extract_first.mel_filters snake_case_ : str = feat_extract_second.mel_filters self.assertTrue(np.allclose(__magic_name__ , __magic_name__ ) ) self.assertEqual(__magic_name__ , __magic_name__ ) def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case_ : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case_ : str = [np.asarray(__magic_name__ ) for speech_input in speech_inputs] # Test feature size snake_case_ : str = feature_extractor(__magic_name__ , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input snake_case_ : Dict = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features snake_case_ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) # Test batched snake_case_ : int = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features snake_case_ : Union[str, Any] = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case_ : Union[str, Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] snake_case_ : List[str] = np.asarray(__magic_name__ ) snake_case_ : List[Any] = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features snake_case_ : Dict = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) # Test truncation required snake_case_ : Any = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] snake_case_ : Union[str, Any] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs] snake_case_ : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] snake_case_ : Optional[Any] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs_truncated] snake_case_ : Any = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features snake_case_ : List[Any] = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) def lowerCamelCase (self ) -> int: '''simple docstring''' import torch snake_case_ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Union[str, Any] = np.random.rand(100 , 32 ).astype(np.floataa ) snake_case_ : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case_ : Optional[Any] = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) snake_case_ : Optional[Any] = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCamelCase (self , __magic_name__ ) -> Dict: '''simple docstring''' snake_case_ : Optional[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech snake_case_ : Optional[Any] = ds.sort('''id''' ).select(range(__magic_name__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : str = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on snake_case_ : List[Any] = self._load_datasamples(1 ) snake_case_ : Union[str, Any] = WhisperFeatureExtractor() snake_case_ : Union[str, Any] = feature_extractor(__magic_name__ , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __magic_name__ , atol=1e-4 ) ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Optional[int] = self._load_datasamples(1 )[0] snake_case_ : List[str] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue snake_case_ : Optional[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__magic_name__ )[0] self.assertTrue(np.all(np.mean(__magic_name__ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__magic_name__ ) - 1 ) < 1e-3 ) )
279
0
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> int: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ = f"""Input value of [number={number}] must be an integer""" raise TypeError(_SCREAMING_SNAKE_CASE ) if number < 1: snake_case_ = f"""Input value of [number={number}] must be > 0""" raise ValueError(_SCREAMING_SNAKE_CASE ) snake_case_ = 1 for i in range(1 , _SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
233
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __SCREAMING_SNAKE_CASE : Tuple = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : bool , UpperCAmelCase_ : str = None , UpperCAmelCase_ : list = None ) ->List[Any]: """simple docstring""" snake_case_ = None snake_case_ = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) ) snake_case_ = os.path.abspath("""examples""" ) for item in os.listdir(UpperCAmelCase_ ): if item not in EXCLUDE_EXAMPLES: snake_case_ = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) if os.path.isfile(UpperCAmelCase_ ) and ".py" in item_path: with self.subTest( tested_script=UpperCAmelCase_ , feature_script=UpperCAmelCase_ , tested_section="""main()""" if parser_only else """training_function()""" , ): snake_case_ = compare_against_test( os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = """\n""".join(UpperCAmelCase_ ) if special_strings is not None: for string in special_strings: snake_case_ = diff.replace(UpperCAmelCase_ , """""" ) self.assertEqual(UpperCAmelCase_ , """""" ) def lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" self.one_complete_example("""complete_nlp_example.py""" , UpperCAmelCase_ ) self.one_complete_example("""complete_nlp_example.py""" , UpperCAmelCase_ ) def lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" snake_case_ = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) ) snake_case_ = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) self.one_complete_example("""complete_cv_example.py""" , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) @mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""}) class __A (snake_case__): '''simple docstring''' __lowercase: str = False @classmethod def lowerCAmelCase ( cls : Any ) ->List[str]: """simple docstring""" super().setUpClass() snake_case_ = tempfile.mkdtemp() snake_case_ = os.path.join(cls._tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) snake_case_ = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def lowerCAmelCase ( cls : List[str] ) ->int: """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" snake_case_ = F""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) ) def lowerCAmelCase ( self : Any ) ->Optional[Any]: """simple docstring""" snake_case_ = F""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() snake_case_ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) ) def lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" snake_case_ = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )} """.split() snake_case_ = run_command(self._launch_args + testargs , return_stdout=UpperCAmelCase_ ) self.assertNotIn("""epoch 0:""" , UpperCAmelCase_ ) self.assertIn("""epoch 1:""" , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" snake_case_ = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )} """.split() snake_case_ = run_command(self._launch_args + testargs , return_stdout=UpperCAmelCase_ ) if torch.cuda.is_available(): snake_case_ = torch.cuda.device_count() else: snake_case_ = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , UpperCAmelCase_ ) self.assertIn("""epoch 1:""" , UpperCAmelCase_ ) else: self.assertIn("""epoch 0:""" , UpperCAmelCase_ ) self.assertIn("""epoch 1:""" , UpperCAmelCase_ ) @slow def lowerCAmelCase ( self : Dict ) ->Dict: """simple docstring""" snake_case_ = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): snake_case_ = run_command(self._launch_args + testargs , return_stdout=UpperCAmelCase_ ) snake_case_ = re.findall("""({.+})""" , UpperCAmelCase_ ) snake_case_ = [r for r in results if """accuracy""" in r][-1] snake_case_ = ast.literal_eval(UpperCAmelCase_ ) self.assertGreaterEqual(results["""accuracy"""] , 0.75 ) def lowerCAmelCase ( self : Optional[int] ) ->int: """simple docstring""" snake_case_ = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: snake_case_ = F""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase_ , """tracking""" ) ) ) def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" snake_case_ = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs ) def lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" snake_case_ = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs )
233
1
"""simple docstring""" from collections.abc import Callable import numpy as np def lowercase ( _snake_case : Callable , _snake_case : float , _snake_case : float , _snake_case : float , _snake_case : float ) ->np.array: """simple docstring""" __snake_case : Any = int(np.ceil((x_end - xa) / step_size ) ) __snake_case : Tuple = np.zeros((n + 1,) ) __snake_case : Union[str, Any] = ya __snake_case : List[str] = xa for k in range(_snake_case ): __snake_case : List[str] = y[k] + step_size * ode_func(_snake_case , y[k] ) __snake_case : List[str] = y[k] + ( (step_size / 2) * (ode_func(_snake_case , y[k] ) + ode_func(x + step_size , _snake_case )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
102
"""simple docstring""" from jiwer import compute_measures import datasets __A = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" __A = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" __A = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase (datasets.Metric ): """simple docstring""" def _snake_case ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def _snake_case ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False ): if concatenate_texts: return compute_measures(_UpperCAmelCase , _UpperCAmelCase )["wer"] else: lowercase__: Dict = 0 lowercase__: Union[str, Any] = 0 for prediction, reference in zip(_UpperCAmelCase , _UpperCAmelCase ): lowercase__: Tuple = compute_measures(_UpperCAmelCase , _UpperCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
177
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = XLNetTokenizer __UpperCAmelCase : Union[str, Any] = XLNetTokenizerFast __UpperCAmelCase : List[Any] = True __UpperCAmelCase : Optional[int] = True def __UpperCAmelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing __a = XLNetTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self ): __a = "<s>" __a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def __UpperCAmelCase ( self ): __a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<eod>''' ) self.assertEqual(len(UpperCAmelCase_ ) , 1_006 ) def __UpperCAmelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def __UpperCAmelCase ( self ): __a = XLNetTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) __a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCAmelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [285, 46, 10, 170, 382] ) __a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __a = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) __a = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __UpperCAmelCase ( self ): __a = XLNetTokenizer(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ ) __a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + '''''', '''i''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''▁he''', '''ll''', '''o'''] ) def __UpperCAmelCase ( self ): __a = XLNetTokenizer(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ ) __a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) @slow def __UpperCAmelCase ( self ): __a = XLNetTokenizer.from_pretrained('''xlnet-base-cased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCAmelCase_ ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCAmelCase_ ) __a = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) __a = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def __UpperCAmelCase ( self ): __a = {"input_ids": [[17, 21_442, 270, 17, 10, 14_645, 318, 34, 17, 4_546, 3_145, 787, 13, 7_752, 22_018, 23, 21, 17, 4_546, 3_145, 787, 13, 3_352, 14_431, 13, 5_500, 11, 1_176, 580, 13, 16_819, 4_797, 23, 17, 10, 17_135, 658, 19, 457, 7_932, 13, 184, 19, 3_154, 17_135, 6_468, 19, 1_404, 12_269, 19, 4_229, 5_356, 16_264, 46, 19, 17, 20_545, 10_395, 9, 9, 9, 11, 28, 6_421, 9_531, 20_729, 17, 10, 353, 17_022, 11, 21, 6_421, 9_531, 16_949, 17, 10, 11_509, 753, 11, 33, 95, 2_421, 7_385, 956, 14_431, 2_626, 25, 842, 7_385, 4_836, 21, 1_429, 2_272, 9_855, 3_120, 161, 24_738, 19, 13_203, 658, 218, 787, 21, 430, 18_482, 847, 2_637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22_178, 27, 1_064, 22, 956, 13, 11_101, 1_429, 5_854, 24_313, 18_953, 40, 422, 24_366, 68, 1_758, 37, 10_483, 14_257, 31, 207, 263, 21, 203, 3_773, 25, 71, 9_735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2_049, 3_442, 17, 13_894, 3_380, 23, 95, 18, 17_634, 2_288, 9, 4, 3]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
364
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = ['image_processor', 'tokenizer'] __UpperCAmelCase : str = 'LayoutLMv3ImageProcessor' __UpperCAmelCase : Optional[int] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self , _a=None , _a=None , **_a ): __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) def __call__( self , _a , _a = None , _a = None , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor __a = self.image_processor(images=_a , return_tensors=_a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_a , _a ): __a = [text] # add batch dimension (as the image processor always adds a batch dimension) __a = features['''words'''] __a = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel values __a = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __a = self.get_overflowing_images(_a , encoded_inputs['''overflow_to_sample_mapping'''] ) __a = images return encoded_inputs def __UpperCAmelCase ( self , _a , _a ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_a ) != len(_a ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(_a )} and {len(_a )}''' ) return images_with_overflow def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.batch_decode(*_a , **_a ) def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.decode(*_a , **_a ) @property def __UpperCAmelCase ( self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
11
0
'''simple docstring''' from __future__ import annotations def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : List[str] = [] __UpperCamelCase , __UpperCamelCase : Union[str, Any] = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) __UpperCamelCase : List[str] = result + left + right return input_list def __lowerCAmelCase ( snake_case__ ): if len(snake_case__ ) <= 1: return input_list __UpperCamelCase : Optional[int] = list(snake_case__ ) # iteration for two-way merging __UpperCamelCase : Dict = 2 while p <= len(snake_case__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(snake_case__ ) , snake_case__ ): __UpperCamelCase : str = i __UpperCamelCase : Optional[Any] = i + p - 1 __UpperCamelCase : Dict = (low + high + 1) // 2 __UpperCamelCase : Dict = merge(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # final merge of last two parts if p * 2 >= len(snake_case__ ): __UpperCamelCase : Union[str, Any] = i __UpperCamelCase : List[Any] = merge(snake_case__ , 0 , snake_case__ , len(snake_case__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _lowerCAmelCase = input('''Enter numbers separated by a comma:\n''').strip() if user_input == "": _lowerCAmelCase = [] else: _lowerCAmelCase = [int(item.strip()) for item in user_input.split(''',''')] print(iter_merge_sort(unsorted))
298
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = '''Hello, World!''' _lowerCAmelCase = '''en_XX''' def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : Union[str, Any] = Path("data_bin" ) __UpperCamelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(snake_case__ ).parent ) , checkpoint_file=Path(snake_case__ ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(snake_case__ ) , bpe="sentencepiece" , sentencepiece_model=str(Path(snake_case__ ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , ) xmod.eval() # disable dropout print(snake_case__ ) __UpperCamelCase : List[str] = xmod.model.encoder.sentence_encoder __UpperCamelCase : Optional[int] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __UpperCamelCase : Any = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our X-MOD config:" , snake_case__ ) __UpperCamelCase : Dict = XmodForSequenceClassification(snake_case__ ) if classification_head else XmodForMaskedLM(snake_case__ ) model.eval() # Now let's copy all the weights. # Embeddings __UpperCamelCase : List[Any] = xmod_sent_encoder.embed_tokens.weight __UpperCamelCase : List[Any] = xmod_sent_encoder.embed_positions.weight __UpperCamelCase : str = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __UpperCamelCase : Any = xmod_sent_encoder.layernorm_embedding.weight __UpperCamelCase : str = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __UpperCamelCase : int = model.roberta.encoder.layer[i] __UpperCamelCase : Any = xmod_sent_encoder.layers[i] # self attention __UpperCamelCase : List[str] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) __UpperCamelCase : Dict = xmod_layer.self_attn.q_proj.weight __UpperCamelCase : Optional[Any] = xmod_layer.self_attn.q_proj.bias __UpperCamelCase : Any = xmod_layer.self_attn.k_proj.weight __UpperCamelCase : Tuple = xmod_layer.self_attn.k_proj.bias __UpperCamelCase : Union[str, Any] = xmod_layer.self_attn.v_proj.weight __UpperCamelCase : Any = xmod_layer.self_attn.v_proj.bias # self-attention output __UpperCamelCase : Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) __UpperCamelCase : Union[str, Any] = xmod_layer.self_attn.out_proj.weight __UpperCamelCase : str = xmod_layer.self_attn.out_proj.bias __UpperCamelCase : Dict = xmod_layer.self_attn_layer_norm.weight __UpperCamelCase : Any = xmod_layer.self_attn_layer_norm.bias # intermediate __UpperCamelCase : Dict = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) __UpperCamelCase : List[Any] = xmod_layer.fca.weight __UpperCamelCase : Optional[int] = xmod_layer.fca.bias # output __UpperCamelCase : List[Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) __UpperCamelCase : Tuple = xmod_layer.fca.weight __UpperCamelCase : int = xmod_layer.fca.bias __UpperCamelCase : Dict = xmod_layer.final_layer_norm.weight __UpperCamelCase : int = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __UpperCamelCase : Any = xmod_layer.adapter_layer_norm.weight __UpperCamelCase : int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __UpperCamelCase : Any = bert_output.adapter_modules[lang_code] __UpperCamelCase : Dict = xmod_layer.adapter_modules[lang_code] __UpperCamelCase : int = from_adapter.fca.weight __UpperCamelCase : Dict = from_adapter.fca.bias __UpperCamelCase : List[Any] = from_adapter.fca.weight __UpperCamelCase : int = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __UpperCamelCase : Tuple = xmod_sent_encoder.layer_norm.weight __UpperCamelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: __UpperCamelCase : Optional[Any] = xmod.model.classification_heads["mnli"].dense.weight __UpperCamelCase : Any = xmod.model.classification_heads["mnli"].dense.bias __UpperCamelCase : Tuple = xmod.model.classification_heads["mnli"].out_proj.weight __UpperCamelCase : List[Any] = xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head __UpperCamelCase : Any = xmod.model.encoder.lm_head.dense.weight __UpperCamelCase : Optional[Any] = xmod.model.encoder.lm_head.dense.bias __UpperCamelCase : Tuple = xmod.model.encoder.lm_head.layer_norm.weight __UpperCamelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias __UpperCamelCase : Tuple = xmod.model.encoder.lm_head.weight __UpperCamelCase : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __UpperCamelCase : Any = xmod.encode(snake_case__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(snake_case__ ) __UpperCamelCase : Optional[Any] = model(snake_case__ )[0] if classification_head: __UpperCamelCase : int = xmod.model.classification_heads["mnli"](xmod.extract_features(snake_case__ ) ) else: __UpperCamelCase : Optional[Any] = xmod.model(snake_case__ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __UpperCamelCase : Dict = torch.max(torch.abs(our_output - their_output ) ).item() print(F"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 __UpperCamelCase : Union[str, Any] = torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(snake_case__ ).mkdir(parents=snake_case__ , exist_ok=snake_case__ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) _lowerCAmelCase = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
298
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a_ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
360
a_ = [ 'DownloadConfig', 'DownloadManager', 'DownloadMode', 'StreamingDownloadManager', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
50
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = {"""configuration_sew""": ["""SEW_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SEWConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """SEW_PRETRAINED_MODEL_ARCHIVE_LIST""", """SEWForCTC""", """SEWForSequenceClassification""", """SEWModel""", """SEWPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
126
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __magic_name__( lowerCamelCase=None, lowerCamelCase=None): return field(default_factory=lambda: default, metadata=lowerCamelCase) @dataclass class a__ : """simple docstring""" __UpperCamelCase : str = field( metadata={'help': 'The csv file to plot.'} , ) __UpperCamelCase : bool = field( default=__A , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) __UpperCamelCase : bool = field( default=__A , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) __UpperCamelCase : bool = field( default=__A , metadata={'help': 'Disable logarithmic scale when plotting'} , ) __UpperCamelCase : bool = field( default=__A , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) __UpperCamelCase : Optional[str] = field( default=__A , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) __UpperCamelCase : Optional[List[str]] = list_field( default=__A , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def __magic_name__( lowerCamelCase): try: int(lowerCamelCase) return True except ValueError: return False def __magic_name__( lowerCamelCase): try: float(lowerCamelCase) return True except ValueError: return False class a__ : """simple docstring""" def __init__(self , __lowercase ): __lowerCAmelCase = args __lowerCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: __lowerCAmelCase = csv.DictReader(__lowercase ) for row in reader: __lowerCAmelCase = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None __lowerCAmelCase = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None __lowerCAmelCase = float(row['''result'''] ) def _snake_case (self ): __lowerCAmelCase , __lowerCAmelCase = plt.subplots() __lowerCAmelCase = '''Time usage''' if self.args.is_time else '''Memory usage''' __lowerCAmelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __lowerCAmelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) __lowerCAmelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) __lowerCAmelCase = self.result_dict[model_name]['''result'''] ((__lowerCAmelCase) , (__lowerCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __lowerCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __lowerCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__lowercase , ) else: __lowerCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) __lowerCAmelCase = np.asarray(__lowercase , __lowercase )[: len(__lowercase )] plt.scatter( __lowercase , __lowercase , label=F"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(__lowercase , __lowercase , '''--''' ) title_str += F""" {label_model_name} vs.""" __lowerCAmelCase = title_str[:-4] __lowerCAmelCase = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(__lowercase ) plt.xlabel(__lowercase ) plt.ylabel(__lowercase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __magic_name__( ): __lowerCAmelCase = HfArgumentParser(lowerCamelCase) __lowerCAmelCase = parser.parse_args_into_dataclasses()[0] __lowerCAmelCase = Plot(args=lowerCamelCase) plot.plot() if __name__ == "__main__": main()
174
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) UpperCAmelCase_ : int = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "ctrl" __UpperCamelCase = ["past_key_values"] __UpperCamelCase = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[Any] , lowercase_ : List[Any]=246534 , lowercase_ : List[str]=256 , lowercase_ : int=1280 , lowercase_ : int=8192 , lowercase_ : Any=48 , lowercase_ : Dict=16 , lowercase_ : Tuple=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=1e-6 , lowercase_ : Any=0.02 , lowercase_ : Dict=True , **lowercase_ : Optional[int] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE_ : str = n_positions SCREAMING_SNAKE_CASE_ : List[Any] = n_embd SCREAMING_SNAKE_CASE_ : Optional[Any] = n_layer SCREAMING_SNAKE_CASE_ : Dict = n_head SCREAMING_SNAKE_CASE_ : Any = dff SCREAMING_SNAKE_CASE_ : Optional[int] = resid_pdrop SCREAMING_SNAKE_CASE_ : Dict = embd_pdrop SCREAMING_SNAKE_CASE_ : Any = layer_norm_epsilon SCREAMING_SNAKE_CASE_ : Dict = initializer_range SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_cache super().__init__(**lowercase_)
318
"""simple docstring""" from __future__ import annotations UpperCAmelCase_ : List[str] = list[list[int]] # assigning initial values to the grid UpperCAmelCase_ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase_ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _A (__a , __a , __a , __a ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _A (__a ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _A (__a ) -> Matrix | None: """simple docstring""" if location := find_empty_location(__a ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__a , __a , __a , __a ): SCREAMING_SNAKE_CASE_ : Tuple = digit if sudoku(__a ) is not None: return grid SCREAMING_SNAKE_CASE_ : Any = 0 return None def _A (__a ) -> None: """simple docstring""" for row in grid: for cell in row: print(__a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") UpperCAmelCase_ : str = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
318
1
# flake8: noqa # Lint as: python3 lowerCamelCase : Optional[Any] = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
233
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowerCAmelCase ( self : int , __a : List[Any]=0 ) -> Optional[int]: """simple docstring""" __lowercase : Any = floats_tensor((1, 3, 128, 128) , rng=random.Random(__a ) ) __lowercase : Any = np.random.RandomState(__a ) __lowercase : Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Optional[Any] = self.get_dummy_inputs() __lowercase : str = pipe(**__a ).images __lowercase : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __lowercase : List[Any] = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" __lowercase : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : Union[str, Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__a ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Dict = self.get_dummy_inputs() __lowercase : Optional[int] = pipe(**__a ).images __lowercase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : Any = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : int ) -> str: """simple docstring""" __lowercase : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : Union[str, Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) # warmup pass to apply optimizations __lowercase : Optional[int] = pipe(**self.get_dummy_inputs() ) __lowercase : Dict = self.get_dummy_inputs() __lowercase : str = pipe(**__a ).images __lowercase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : Any = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Any = self.get_dummy_inputs() __lowercase : int = pipe(**__a ).images __lowercase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : Optional[int] = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" __lowercase : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : Dict = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Tuple = self.get_dummy_inputs() __lowercase : Union[str, Any] = pipe(**__a ).images __lowercase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : Union[str, Any] = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__a ) __lowercase : str = self.get_dummy_inputs() __lowercase : Dict = pipe(**__a ).images __lowercase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : Dict = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = ort.SessionOptions() __lowercase : Dict = False return options def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" __lowercase : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __lowercase : Union[str, Any] = init_image.resize((768, 512) ) # using the PNDM scheduler by default __lowercase : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__a ) __lowercase : int = """A fantasy landscape, trending on artstation""" __lowercase : int = np.random.RandomState(0 ) __lowercase : List[str] = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=__a , output_type="""np""" , ) __lowercase : Any = output.images __lowercase : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowercase : Optional[int] = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __lowercase : Any = init_image.resize((768, 512) ) __lowercase : int = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=__a , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Union[str, Any] = """A fantasy landscape, trending on artstation""" __lowercase : Any = np.random.RandomState(0 ) __lowercase : Optional[Any] = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=__a , output_type="""np""" , ) __lowercase : str = output.images __lowercase : Dict = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowercase : Union[str, Any] = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
233
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = 1 UpperCAmelCase__ : int = 3 UpperCAmelCase__ : Dict = (3_2, 3_2) UpperCAmelCase__ : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case__ ) return image @property def __a ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : int = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=snake_case__ , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , ) return model @property def __a ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : str = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def __a ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) return CLIPTextModel(snake_case__ ) def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : str = self.dummy_cond_unet_upscale UpperCAmelCase__ : List[str] = DDPMScheduler() UpperCAmelCase__ : Dict = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase__ : List[str] = self.dummy_vae UpperCAmelCase__ : Optional[Any] = self.dummy_text_encoder UpperCAmelCase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase__ : Union[str, Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : Any = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk UpperCAmelCase__ : Union[str, Any] = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_5_0 , ) UpperCAmelCase__ : Union[str, Any] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase__ : int = "A painting of a squirrel eating a burger" UpperCAmelCase__ : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase__ : Optional[int] = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : int = output.images UpperCAmelCase__ : List[str] = torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase__ : int = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , return_dict=snake_case__ , )[0] UpperCAmelCase__ : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase__ : int = image_from_tuple[0, -3:, -3:, -1] UpperCAmelCase__ : Optional[Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) UpperCAmelCase__ : Optional[int] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : int = self.dummy_cond_unet_upscale UpperCAmelCase__ : int = DDPMScheduler() UpperCAmelCase__ : str = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase__ : Dict = self.dummy_vae UpperCAmelCase__ : List[str] = self.dummy_text_encoder UpperCAmelCase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase__ : Any = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : List[Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk UpperCAmelCase__ : Dict = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_5_0 , ) UpperCAmelCase__ : Tuple = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase__ : Union[str, Any] = "A painting of a squirrel eating a burger" UpperCAmelCase__ : Tuple = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : List[Any] = output.images assert image.shape[0] == 2 UpperCAmelCase__ : Any = torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase__ : List[Any] = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : str = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : int = self.dummy_cond_unet_upscale UpperCAmelCase__ : List[Any] = DDPMScheduler() UpperCAmelCase__ : Any = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase__ : Optional[Any] = self.dummy_vae UpperCAmelCase__ : List[str] = self.dummy_text_encoder UpperCAmelCase__ : List[str] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase__ : Optional[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((6_4, 6_4) ) # put models in fp16, except vae as it overflows in fp16 UpperCAmelCase__ : Optional[int] = unet.half() UpperCAmelCase__ : Union[str, Any] = text_encoder.half() # make sure here that pndm scheduler skips prk UpperCAmelCase__ : Union[str, Any] = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_5_0 , ) UpperCAmelCase__ : Union[str, Any] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase__ : Optional[Any] = "A painting of a squirrel eating a burger" UpperCAmelCase__ : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase__ : Union[str, Any] = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ).images UpperCAmelCase__ : Any = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : int ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase__ : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) UpperCAmelCase__ : Any = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase__ : Tuple = StableDiffusionUpscalePipeline.from_pretrained(snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() UpperCAmelCase__ : int = "a cat sitting on a park bench" UpperCAmelCase__ : Dict = torch.manual_seed(0 ) UpperCAmelCase__ : Tuple = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : int = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-3 def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase__ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) UpperCAmelCase__ : Optional[Any] = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase__ : Union[str, Any] = StableDiffusionUpscalePipeline.from_pretrained( snake_case__ , torch_dtype=torch.floataa , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() UpperCAmelCase__ : Dict = "a cat sitting on a park bench" UpperCAmelCase__ : Dict = torch.manual_seed(0 ) UpperCAmelCase__ : int = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : str = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __a ( self : Optional[int] ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase__ : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase__ : Tuple = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase__ : Any = StableDiffusionUpscalePipeline.from_pretrained( snake_case__ , torch_dtype=torch.floataa , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase__ : Union[str, Any] = "a cat sitting on a park bench" UpperCAmelCase__ : Tuple = torch.manual_seed(0 ) UpperCAmelCase__ : str = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=5 , output_type="np" , ) UpperCAmelCase__ : Dict = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
298
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase : Optional[int] = get_logger(__name__) _lowerCAmelCase : Any = Path(__file__).parent / """model_card_template.md""" _lowerCAmelCase : Dict = uuida().hex _lowerCAmelCase : Optional[int] = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase : Optional[int] = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase : int = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def SCREAMING_SNAKE_CASE__ ( snake_case : Union[Dict, str, None] = None )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'; torch/{_torch_version}' if is_flax_available(): ua += f'; jax/{_jax_version}' ua += f'; flax/{_flax_version}' if is_onnx_available(): ua += f'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(snake_case , snake_case ): ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(snake_case , snake_case ): ua += "; " + user_agent return ua def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> List[str]: '''simple docstring''' if token is None: UpperCAmelCase__ : Optional[Any] = HfFolder.get_token() if organization is None: UpperCAmelCase__ : Tuple = whoami(snake_case )["name"] return f'{username}/{model_id}' else: return f'{organization}/{model_id}' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : List[Any] )-> List[Any]: '''simple docstring''' if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(snake_case , "local_rank" ) and args.local_rank not in [-1, 0]: return UpperCAmelCase__ : int = args.hub_token if hasattr(snake_case , "hub_token" ) else None UpperCAmelCase__ : Optional[Any] = get_full_repo_name(snake_case , token=snake_case ) UpperCAmelCase__ : Tuple = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=snake_case , model_name=snake_case , repo_name=snake_case , dataset_name=args.dataset_name if hasattr(snake_case , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(snake_case , "gradient_accumulation_steps" ) else None ) , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(snake_case , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(snake_case , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(snake_case , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(snake_case , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(snake_case , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(snake_case , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(snake_case , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , ) UpperCAmelCase__ : List[str] = os.path.join(args.output_dir , "README.md" ) model_card.save(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] , snake_case : Optional[str] = None )-> Tuple: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash UpperCAmelCase__ : Dict = str(Path(snake_case ).as_posix() ) UpperCAmelCase__ : Optional[int] = re.search(r"snapshots/([^/]+)/" , snake_case ) if search is None: return None UpperCAmelCase__ : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(snake_case ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase : Dict = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) _lowerCAmelCase : List[Any] = os.path.join(hf_cache_home, """diffusers""") def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> None: '''simple docstring''' if new_cache_dir is None: UpperCAmelCase__ : Union[str, Any] = DIFFUSERS_CACHE if old_cache_dir is None: UpperCAmelCase__ : str = old_diffusers_cache UpperCAmelCase__ : List[str] = Path(snake_case ).expanduser() UpperCAmelCase__ : Any = Path(snake_case ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): UpperCAmelCase__ : Dict = new_cache_dir / old_blob_path.relative_to(snake_case ) new_blob_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) os.replace(snake_case , snake_case ) try: os.symlink(snake_case , snake_case ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase : Tuple = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): _lowerCAmelCase : Any = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase : List[str] = int(f.read()) except ValueError: _lowerCAmelCase : Optional[int] = 0 if cache_version < 1: _lowerCAmelCase : List[str] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: _lowerCAmelCase : Dict = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ """the directory exists and can be written to.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None )-> str: '''simple docstring''' if variant is not None: UpperCAmelCase__ : int = weights_name.split("." ) UpperCAmelCase__ : Optional[Any] = splits[:-1] + [variant] + splits[-1:] UpperCAmelCase__ : Optional[int] = ".".join(snake_case ) return weights_name def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , *, snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : str , snake_case : List[str] , snake_case : Dict , snake_case : Any , snake_case : Any , snake_case : Tuple , snake_case : List[str] , snake_case : Any , snake_case : Optional[int]=None , )-> Tuple: '''simple docstring''' UpperCAmelCase__ : List[str] = str(snake_case ) if os.path.isfile(snake_case ): return pretrained_model_name_or_path elif os.path.isdir(snake_case ): if os.path.isfile(os.path.join(snake_case , snake_case ) ): # Load from a PyTorch checkpoint UpperCAmelCase__ : Any = os.path.join(snake_case , snake_case ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(snake_case , snake_case , snake_case ) ): UpperCAmelCase__ : str = os.path.join(snake_case , snake_case , snake_case ) return model_file else: raise EnvironmentError( f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(snake_case ).base_version ) >= version.parse("0.20.0" ) ): try: UpperCAmelCase__ : List[Any] = hf_hub_download( snake_case , filename=_add_variant(snake_case , snake_case ) , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , ) warnings.warn( f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , snake_case , ) return model_file except: # noqa: E722 warnings.warn( f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(snake_case , snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(snake_case , snake_case )}\' so that the correct variant file can be added.' , snake_case , ) try: # 2. Load model file as usual UpperCAmelCase__ : Dict = hf_hub_download( snake_case , filename=snake_case , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' "this model name. Check the model page at " f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' f' directory containing a file named {weights_name} or' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' f'containing a file named {weights_name}' )
298
1
'''simple docstring''' from datetime import datetime as dt import os from github import Github _lowerCAmelCase = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : str = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCAmelCase__ : Optional[Any] = g.get_repo("""huggingface/transformers""" ) lowerCAmelCase__ : List[str] = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCAmelCase__ : str = sorted([comment for comment in issue.get_comments()] , key=lambda UpperCamelCase : i.created_at , reverse=UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = comments[0] if len(UpperCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
37
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=3 , __lowerCamelCase=1_6 , __lowerCamelCase=[1, 2, 1] , __lowerCamelCase=[2, 2, 4] , __lowerCamelCase=2 , __lowerCamelCase=2.0 , __lowerCamelCase=True , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase="gelu" , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-5 , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=1_0 , __lowerCamelCase=8 , __lowerCamelCase=["stage1", "stage2", "stage3"] , __lowerCamelCase=[1, 2, 3] , ) -> Optional[Any]: _A : int = parent _A : Optional[Any] = batch_size _A : str = image_size _A : Tuple = patch_size _A : Tuple = num_channels _A : Optional[int] = embed_dim _A : Dict = depths _A : Any = num_heads _A : Any = window_size _A : int = mlp_ratio _A : Any = qkv_bias _A : Union[str, Any] = hidden_dropout_prob _A : Optional[Any] = attention_probs_dropout_prob _A : Dict = drop_path_rate _A : List[Any] = hidden_act _A : Any = use_absolute_embeddings _A : Optional[int] = patch_norm _A : Tuple = layer_norm_eps _A : List[str] = initializer_range _A : Optional[int] = is_training _A : Optional[Any] = scope _A : Optional[int] = use_labels _A : Dict = type_sequence_label_size _A : str = encoder_stride _A : Optional[int] = out_features _A : Optional[int] = out_indices def _lowerCamelCase ( self) -> Union[str, Any]: _A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _A : Optional[Any] = None if self.use_labels: _A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : Optional[int] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> List[Any]: _A : Dict = MaskFormerSwinModel(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : int = model(__lowerCamelCase) _A : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) _A : List[str] = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Dict: _A : Optional[Any] = MaskFormerSwinBackbone(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : Dict = model(__lowerCamelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [1_3, 1_6, 1_6, 1_6]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4]) # verify ValueError with self.parent.assertRaises(__lowerCamelCase): _A : Union[str, Any] = ["stem"] _A : Union[str, Any] = MaskFormerSwinBackbone(config=__lowerCamelCase) def _lowerCamelCase ( self) -> Dict: _A : Any = self.prepare_config_and_inputs() _A , _A , _A : List[Any] = config_and_inputs _A : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def _lowerCamelCase ( self) -> str: _A : Union[str, Any] = MaskFormerSwinModelTester(self) _A : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , embed_dim=3_7) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" )) def _lowerCamelCase ( self) -> Union[str, Any]: pass def _lowerCamelCase ( self) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self) -> str: return def _lowerCamelCase ( self) -> List[Any]: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase) def _lowerCamelCase ( self) -> Union[str, Any]: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase) @unittest.skip("Swin does not use inputs_embeds") def _lowerCamelCase ( self) -> str: pass @unittest.skip("Swin does not support feedforward chunking") def _lowerCamelCase ( self) -> List[Any]: pass def _lowerCamelCase ( self) -> Optional[int]: _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Union[str, Any] = model_class(__lowerCamelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _A : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear)) def _lowerCamelCase ( self) -> Any: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(__lowerCamelCase) _A : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : int = [*signature.parameters.keys()] _A : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions") def _lowerCamelCase ( self) -> Tuple: pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone") def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]: _A : Any = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() with torch.no_grad(): _A : str = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)) _A : Tuple = outputs.hidden_states _A : Any = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths) + 1) self.assertEqual(len(__lowerCamelCase) , __lowerCamelCase) # Swin has a different seq_length _A : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCamelCase ( self) -> Dict: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _A : List[Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Optional[int] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> Tuple: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Optional[int] = 3 _A : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) _A : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : int = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _A : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _A : List[Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Union[str, Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width)) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints") def _lowerCamelCase ( self) -> List[str]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _lowerCamelCase ( self) -> List[str]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self) -> Optional[Any]: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__lowerCamelCase): _A : Optional[int] = 0 return t def check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase={}): with torch.no_grad(): _A : Any = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase) _A : int = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase).to_tuple() def recursive_check(__lowerCamelCase , __lowerCamelCase): if isinstance(__lowerCamelCase , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(__lowerCamelCase , __lowerCamelCase): recursive_check(__lowerCamelCase , __lowerCamelCase) elif isinstance(__lowerCamelCase , __lowerCamelCase): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values()): recursive_check(__lowerCamelCase , __lowerCamelCase) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__lowerCamelCase) , set_nan_tensor_to_zero(__lowerCamelCase) , atol=1e-5) , msg=( "Tuple and dict output are not equal. Difference:" F" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" F" {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}. Dict has" F" `nan`: {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}." ) , ) recursive_check(__lowerCamelCase , __lowerCamelCase) for model_class in self.all_model_classes: _A : List[Any] = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True}) _A : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) _A : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True}) @require_torch class lowerCAmelCase__ ( unittest.TestCase , a): '''simple docstring''' __SCREAMING_SNAKE_CASE = (MaskFormerSwinBackbone,) if is_torch_available() else () __SCREAMING_SNAKE_CASE = MaskFormerSwinConfig def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = MaskFormerSwinModelTester(self) def _lowerCamelCase ( self) -> Optional[Any]: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A : Union[str, Any] = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: _A : Optional[Any] = backbone_class(__lowerCamelCase) backbone.to(__lowerCamelCase) backbone.eval() _A : List[Any] = backbone(**__lowerCamelCase) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __lowerCamelCase) self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels)) self.assertIsNone(outputs.hidden_states) self.assertIsNone(outputs.attentions) # Test output_hidden_states=True _A : List[str] = backbone(**__lowerCamelCase , output_hidden_states=__lowerCamelCase) self.assertIsNotNone(outputs.hidden_states) self.assertTrue(len(outputs.hidden_states) , len(backbone.stage_names)) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _A , _A , _A : List[str] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels)) # Test output_attentions=True if self.has_attentions: _A : int = backbone(**__lowerCamelCase , output_attentions=__lowerCamelCase) self.assertIsNotNone(outputs.attentions)
11
0
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : List[Any]=2_8123 ) -> List[str]: """simple docstring""" lowerCAmelCase_ : str = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowerCAmelCase_ : Any = set() lowerCAmelCase_ : List[Any] = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(lowerCAmelCase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
289
"""simple docstring""" import re def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> bool: """simple docstring""" lowerCAmelCase_ : str = re.compile( R'^(?:0|94|\+94|0{2}94)' R'7(0|1|2|4|5|6|7|8)' R'(-| |)' R'\d{7}$' ) return bool(re.search(lowerCAmelCase__ , lowerCAmelCase__ ) ) if __name__ == "__main__": lowercase__ : Optional[int] = """0094702343221""" print(is_sri_lankan_phone_number(phone))
289
1
def a ( snake_case__: int , snake_case__: list ): '''simple docstring''' _enforce_args(snake_case__ , snake_case__ ) if n == 0: return 0 lowercase_ = float('''-inf''' ) for i in range(1 , n + 1 ): lowercase_ = max( snake_case__ , prices[i - 1] + naive_cut_rod_recursive(n - i , snake_case__ ) ) return max_revue def a ( snake_case__: int , snake_case__: list ): '''simple docstring''' _enforce_args(snake_case__ , snake_case__ ) lowercase_ = [float('''-inf''' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(snake_case__ , snake_case__ , snake_case__ ) def a ( snake_case__: int , snake_case__: list , snake_case__: list ): '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: lowercase_ = float('''-inf''' ) for i in range(1 , n + 1 ): lowercase_ = max( snake_case__ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , snake_case__ , snake_case__ ) , ) lowercase_ = max_revenue return max_rev[n] def a ( snake_case__: int , snake_case__: list ): '''simple docstring''' _enforce_args(snake_case__ , snake_case__ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. lowercase_ = [float('''-inf''' ) for _ in range(n + 1 )] lowercase_ = 0 for i in range(1 , n + 1 ): lowercase_ = max_rev[i] for j in range(1 , i + 1 ): lowercase_ = max(snake_case__ , prices[j - 1] + max_rev[i - j] ) lowercase_ = max_revenue_i return max_rev[n] def a ( snake_case__: int , snake_case__: list ): '''simple docstring''' if n < 0: lowercase_ = F'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(snake_case__ ) if n > len(snake_case__ ): lowercase_ = ( '''Each integral piece of rod must have a corresponding price. ''' F'''Got n = {n} but length of prices = {len(snake_case__ )}''' ) raise ValueError(snake_case__ ) def a ( ): '''simple docstring''' lowercase_ = [6, 10, 12, 15, 20, 23] lowercase_ = len(snake_case__ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. lowercase_ = 36 lowercase_ = top_down_cut_rod(snake_case__ , snake_case__ ) lowercase_ = bottom_up_cut_rod(snake_case__ , snake_case__ ) lowercase_ = naive_cut_rod_recursive(snake_case__ , snake_case__ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
30
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> list[tuple[int, int]]: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = position lowerCamelCase__ : Optional[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowerCamelCase__ : Dict = [] for position in positions: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_UpperCAmelCase ) return permissible_positions def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: return not any(elem == 0 for row in board for elem in row ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: if is_complete(_UpperCAmelCase ): return True for position in get_valid_pos(_UpperCAmelCase , len(_UpperCAmelCase ) ): lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if board[y][x] == 0: lowerCamelCase__ : List[Any] = curr + 1 if open_knight_tour_helper(_UpperCAmelCase , _UpperCAmelCase , curr + 1 ): return True lowerCamelCase__ : Optional[Any] = 0 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[list[int]]: lowerCamelCase__ : Any = [[0 for i in range(_UpperCAmelCase )] for j in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = 1 if open_knight_tour_helper(_UpperCAmelCase , (i, j) , 1 ): return board lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Any = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
50
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging A_ : int = logging.get_logger(__name__) # pylint: disable=invalid-name class _a (__magic_name__ ): '''simple docstring''' def __init__( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=A__ , speech_processor=A__ , vae=A__ , text_encoder=A__ , tokenizer=A__ , unet=A__ , scheduler=A__ , feature_extractor=A__ , ) def __A ( self , A__ = "auto" ): if slice_size == "auto": A__ : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A__ ) def __A ( self ): self.enable_attention_slicing(A__ ) @torch.no_grad() def __call__( self , A__ , A__=1_6000 , A__ = 512 , A__ = 512 , A__ = 50 , A__ = 7.5 , A__ = None , A__ = 1 , A__ = 0.0 , A__ = None , A__ = None , A__ = "pil" , A__ = True , A__ = None , A__ = 1 , **A__ , ): A__ : Any = self.speech_processor.feature_extractor( A__ , return_tensors="""pt""" , sampling_rate=A__ ).input_features.to(self.device ) A__ : Optional[Any] = self.speech_model.generate(A__ , max_length=48_0000 ) A__ : Union[str, Any] = self.speech_processor.tokenizer.batch_decode(A__ , skip_special_tokens=A__ , normalize=A__ )[ 0 ] if isinstance(A__ , A__ ): A__ : Dict = 1 elif isinstance(A__ , A__ ): A__ : Optional[int] = len(A__ ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(A__ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A__ , A__ ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(A__ )}.""" ) # get prompt text embeddings A__ : Optional[int] = self.tokenizer( A__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) A__ : Any = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A__ : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) A__ : Dict = text_input_ids[:, : self.tokenizer.model_max_length] A__ : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A__ : List[str] = text_embeddings.shape A__ : Dict = text_embeddings.repeat(1 , A__ , 1 ) A__ : Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , A__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A__ : int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A__ : List[str] if negative_prompt is None: A__ : Union[str, Any] = [""""""] * batch_size elif type(A__ ) is not type(A__ ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(A__ )} !=""" F""" {type(A__ )}.""" ) elif isinstance(A__ , A__ ): A__ : Union[str, Any] = [negative_prompt] elif batch_size != len(A__ ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(A__ )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: A__ : int = negative_prompt A__ : Union[str, Any] = text_input_ids.shape[-1] A__ : int = self.tokenizer( A__ , padding="""max_length""" , max_length=A__ , truncation=A__ , return_tensors="""pt""" , ) A__ : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A__ : List[Any] = uncond_embeddings.shape[1] A__ : Any = uncond_embeddings.repeat(1 , A__ , 1 ) A__ : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , A__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A__ : Any = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A__ : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A__ : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A__ : Optional[Any] = torch.randn(A__ , generator=A__ , device="""cpu""" , dtype=A__ ).to( self.device ) else: A__ : str = torch.randn(A__ , generator=A__ , device=self.device , dtype=A__ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) A__ : Any = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(A__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A__ : List[str] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A__ : Tuple = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A__ : Any = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A__ : Tuple = {} if accepts_eta: A__ : str = eta for i, t in enumerate(self.progress_bar(A__ ) ): # expand the latents if we are doing classifier free guidance A__ : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ : Tuple = self.scheduler.scale_model_input(A__ , A__ ) # predict the noise residual A__ : Union[str, Any] = self.unet(A__ , A__ , encoder_hidden_states=A__ ).sample # perform guidance if do_classifier_free_guidance: A__ : List[Any] = noise_pred.chunk(2 ) A__ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A__ : Tuple = self.scheduler.step(A__ , A__ , A__ , **A__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A__ , A__ , A__ ) A__ : str = 1 / 0.1_8_2_1_5 * latents A__ : Optional[Any] = self.vae.decode(A__ ).sample A__ : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A__ : Optional[Any] = self.numpy_to_pil(A__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=A__ , nsfw_content_detected=A__ )
369
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Optional[int] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
141
0
'''simple docstring''' class __lowercase : def __init__(self , A , A , A ): lowerCamelCase_ : Any = None lowerCamelCase_ : List[str] = None lowerCamelCase_ : Optional[Any] = graph self._normalize_graph(A , A ) lowerCamelCase_ : Tuple = len(A ) lowerCamelCase_ : Optional[int] = None def UpperCAmelCase__ (self , A , A ): if sources is int: lowerCamelCase_ : Union[str, Any] = [sources] if sinks is int: lowerCamelCase_ : int = [sinks] if len(A ) == 0 or len(A ) == 0: return lowerCamelCase_ : Any = sources[0] lowerCamelCase_ : Any = sinks[0] # make fake vertex if there are more # than one source or sink if len(A ) > 1 or len(A ) > 1: lowerCamelCase_ : Optional[Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowerCamelCase_ : Optional[int] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowerCamelCase_ : Optional[int] = max_input_flow lowerCamelCase_ : str = 0 lowerCamelCase_ : List[Any] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowerCamelCase_ : Optional[int] = max_input_flow lowerCamelCase_ : int = size - 1 def UpperCAmelCase__ (self ): if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Tuple = algorithm(self ) class __lowercase : def __init__(self , A ): lowerCamelCase_ : Tuple = flow_network lowerCamelCase_ : Union[str, Any] = flow_network.verticesCount lowerCamelCase_ : List[Any] = flow_network.sourceIndex lowerCamelCase_ : Optional[int] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowerCamelCase_ : Tuple = flow_network.graph lowerCamelCase_ : List[Any] = False def UpperCAmelCase__ (self ): if not self.executed: self._algorithm() lowerCamelCase_ : List[Any] = True def UpperCAmelCase__ (self ): pass class __lowercase ( _lowercase ): def __init__(self , A ): super().__init__(A ) # use this to save your result lowerCamelCase_ : Union[str, Any] = -1 def UpperCAmelCase__ (self ): if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class __lowercase ( _lowercase ): def __init__(self , A ): super().__init__(A ) lowerCamelCase_ : str = [[0] * self.verticies_count for i in range(self.verticies_count )] lowerCamelCase_ : Optional[Any] = [0] * self.verticies_count lowerCamelCase_ : Tuple = [0] * self.verticies_count def UpperCAmelCase__ (self ): lowerCamelCase_ : int = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowerCamelCase_ : Optional[Any] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowerCamelCase_ : List[Any] = 0 while i < len(A ): lowerCamelCase_ : List[str] = vertices_list[i] lowerCamelCase_ : Dict = self.heights[vertex_index] self.process_vertex(A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(A ) ) lowerCamelCase_ : List[str] = 0 else: i += 1 lowerCamelCase_ : Dict = sum(self.preflow[self.source_index] ) def UpperCAmelCase__ (self , A ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(A , A ) self.relabel(A ) def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : Any = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def UpperCAmelCase__ (self , A ): lowerCamelCase_ : List[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowerCamelCase_ : List[str] = self.heights[to_index] if min_height is not None: lowerCamelCase_ : int = min_height + 1 if __name__ == "__main__": __lowercase : Union[str, Any] = [0] __lowercase : Optional[int] = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowercase : List[str] = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowercase : str = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowercase : Union[str, Any] = flow_network.find_maximum_flow() print(f'maximum flow is {maximum_flow}')
318
'''simple docstring''' from itertools import permutations def lowercase_ ( _lowercase ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCamelCase_ : int = [7, 11, 13, 17] for i, test in enumerate(_lowercase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase_ ( _lowercase = 10 ) -> int: '''simple docstring''' return sum( int(''''''.join(map(_lowercase , _lowercase ) ) ) for num in permutations(range(_lowercase ) ) if is_substring_divisible(_lowercase ) ) if __name__ == "__main__": print(f'{solution() = }')
318
1
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): __SCREAMING_SNAKE_CASE = 0 def snake_case_ ( self): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""") self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def snake_case_ ( self): with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE) / """preprocessor_config.json""" __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__SCREAMING_SNAKE_CASE , """w""") , ) json.dump({"""model_type""": """clip"""} , open(__SCREAMING_SNAKE_CASE , """w""")) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def snake_case_ ( self): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE) / """preprocessor_config.json""" __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__SCREAMING_SNAKE_CASE , """w""") , ) json.dump({"""model_type""": """clip"""} , open(__SCREAMING_SNAKE_CASE , """w""")) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def snake_case_ ( self): with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = CLIPConfig() # Create a dummy config file with image_proceesor_type __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE) / """preprocessor_config.json""" __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__SCREAMING_SNAKE_CASE , """w""") , ) json.dump({"""model_type""": """clip"""} , open(__SCREAMING_SNAKE_CASE , """w""")) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE).to_dict() config_dict.pop("""image_processor_type""") __SCREAMING_SNAKE_CASE = CLIPImageProcessor(**__SCREAMING_SNAKE_CASE) # save in new folder model_config.save_pretrained(__SCREAMING_SNAKE_CASE) config.save_pretrained(__SCREAMING_SNAKE_CASE) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE) # make sure private variable is not incorrectly saved __SCREAMING_SNAKE_CASE = json.loads(config.to_json_string()) self.assertTrue("""_processor_class""" not in dict_as_saved) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def snake_case_ ( self): with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__SCREAMING_SNAKE_CASE , """w""") , ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def snake_case_ ( self): with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , """clip-base is not a local folder and is not a valid model identifier"""): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""clip-base""") def snake_case_ ( self): with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"""): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , revision="""aaaaaa""") def snake_case_ ( self): with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""") def snake_case_ ( self): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__SCREAMING_SNAKE_CASE): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""") # If remote code is disabled, we can't load this config. with self.assertRaises(__SCREAMING_SNAKE_CASE): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__SCREAMING_SNAKE_CASE) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__SCREAMING_SNAKE_CASE) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""") # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__SCREAMING_SNAKE_CASE) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , trust_remote_code=__SCREAMING_SNAKE_CASE) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""") def snake_case_ ( self): try: AutoConfig.register("""custom""" , __SCREAMING_SNAKE_CASE) AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__SCREAMING_SNAKE_CASE): AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE) / """preprocessor_config.json""" __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__SCREAMING_SNAKE_CASE , """w""") , ) json.dump({"""model_type""": """clip"""} , open(__SCREAMING_SNAKE_CASE , """w""")) __SCREAMING_SNAKE_CASE = CustomImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__SCREAMING_SNAKE_CASE) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def snake_case_ ( self): class SCREAMING_SNAKE_CASE_ ( _A ): """simple docstring""" __lowercase : List[str] = True try: AutoConfig.register("""custom""" , __SCREAMING_SNAKE_CASE) AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # If remote code is not set, the default is to use local __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""") self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""") self.assertTrue(image_processor.is_local) # If remote code is disabled, we load the local one. __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__SCREAMING_SNAKE_CASE) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""") self.assertTrue(image_processor.is_local) # If remote is enabled, we load from the Hub __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__SCREAMING_SNAKE_CASE) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""") self.assertTrue(not hasattr(__SCREAMING_SNAKE_CASE , """is_local""")) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
363
"""simple docstring""" import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 3_2 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_5_5 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , lowerCAmelCase__ = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , lowerCAmelCase__ = True , lowerCAmelCase__=7 , lowerCAmelCase__=3_0 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=3 , ): __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 2_8_8} __SCREAMING_SNAKE_CASE = size_divisor __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = rescale_factor __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = image_mean __SCREAMING_SNAKE_CASE = image_std __SCREAMING_SNAKE_CASE = do_pad __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = min_resolution __SCREAMING_SNAKE_CASE = max_resolution def snake_case_ ( self): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=False): if not batched: __SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] __SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = image.size else: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] __SCREAMING_SNAKE_CASE = size / min(lowerCAmelCase__ , lowerCAmelCase__) if h < w: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = size, scale * w else: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = scale * h, size __SCREAMING_SNAKE_CASE = int((1_3_3_3 / 8_0_0) * size) if max(lowerCAmelCase__ , lowerCAmelCase__) > max_size: __SCREAMING_SNAKE_CASE = max_size / max(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = newh * scale __SCREAMING_SNAKE_CASE = neww * scale __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = int(newh + 0.5), int(neww + 0.5) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __SCREAMING_SNAKE_CASE = [] for image in image_inputs: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) __SCREAMING_SNAKE_CASE = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__: item[0])[0] __SCREAMING_SNAKE_CASE = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__: item[1])[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : Tuple = BridgeTowerImageProcessor if is_vision_available() else None def snake_case_ ( self): __SCREAMING_SNAKE_CASE = BridgeTowerImageProcessingTester(self) @property def snake_case_ ( self): return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""")) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""")) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""")) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase__ , """size""")) self.assertTrue(hasattr(lowerCAmelCase__ , """size_divisor""")) def snake_case_ ( self): pass def snake_case_ ( self): # Initialize image processor __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random PIL images __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCAmelCase__ , return_tensors="""pt""").pixel_values __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self): # Initialize image processor __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCAmelCase__ , return_tensors="""pt""").pixel_values __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self): # Initialize image processor __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCAmelCase__ , return_tensors="""pt""").pixel_values __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
255
0
'''simple docstring''' def __lowerCAmelCase ( snake_case__ ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __UpperCamelCase : Any = gray_code_sequence_string(snake_case__ ) # # convert them to integers for i in range(len(snake_case__ ) ): __UpperCamelCase : List[str] = int(sequence[i] , 2 ) return sequence def __lowerCAmelCase ( snake_case__ ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __UpperCamelCase : Union[str, Any] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __UpperCamelCase : Any = gray_code_sequence_string(bit_count - 1 ) __UpperCamelCase : Optional[int] = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __UpperCamelCase : List[Any] = "0" + smaller_sequence[i] sequence.append(snake_case__ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __UpperCamelCase : Optional[Any] = "1" + smaller_sequence[i] sequence.append(snake_case__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
298
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Tuple = torch.exp(snake_case__ ) __UpperCamelCase : str = torch.sum(snake_case__ , dim=1 ) # sum of exp(x_i) __UpperCamelCase : int = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(snake_case__ ) - B / A class A ( nn.Module ): '''simple docstring''' def __init__(self , _UpperCAmelCase ) -> Union[str, Any]: super().__init__() __UpperCamelCase : Any = config.output_attentions __UpperCamelCase : Dict = config.output_hidden_states __UpperCamelCase : Union[str, Any] = nn.ModuleList([BertLayer(_UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) __UpperCamelCase : Tuple = nn.ModuleList([BertHighway(_UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) __UpperCamelCase : Optional[int] = [-1 for _ in range(config.num_hidden_layers )] def a_ (self , _UpperCAmelCase ) -> int: if (type(_UpperCAmelCase ) is float) or (type(_UpperCAmelCase ) is int): for i in range(len(self.early_exit_entropy ) ): __UpperCamelCase : str = x else: __UpperCamelCase : List[Any] = x def a_ (self , _UpperCAmelCase ) -> str: __UpperCamelCase : Tuple = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ) -> List[Any]: __UpperCamelCase : Optional[Any] = () __UpperCamelCase : Tuple = () __UpperCamelCase : Dict = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __UpperCamelCase : Tuple = all_hidden_states + (hidden_states,) __UpperCamelCase : Optional[int] = layer_module( _UpperCAmelCase , _UpperCAmelCase , head_mask[i] , _UpperCAmelCase , _UpperCAmelCase ) __UpperCamelCase : Tuple = layer_outputs[0] if self.output_attentions: __UpperCamelCase : Optional[Any] = all_attentions + (layer_outputs[1],) __UpperCamelCase : Any = (hidden_states,) if self.output_hidden_states: __UpperCamelCase : Any = current_outputs + (all_hidden_states,) if self.output_attentions: __UpperCamelCase : int = current_outputs + (all_attentions,) __UpperCamelCase : Optional[int] = self.highway[i](_UpperCAmelCase ) # logits, pooled_output if not self.training: __UpperCamelCase : Dict = highway_exit[0] __UpperCamelCase : Any = entropy(_UpperCAmelCase ) __UpperCamelCase : str = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __UpperCamelCase : Optional[Any] = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __UpperCamelCase : str = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(_UpperCAmelCase , i + 1 ) else: __UpperCamelCase : Optional[int] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __UpperCamelCase : int = all_hidden_states + (hidden_states,) __UpperCamelCase : Dict = (hidden_states,) if self.output_hidden_states: __UpperCamelCase : Union[str, Any] = outputs + (all_hidden_states,) if self.output_attentions: __UpperCamelCase : Optional[int] = outputs + (all_attentions,) __UpperCamelCase : List[Any] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__(self , _UpperCAmelCase ) -> Dict: super().__init__(_UpperCAmelCase ) __UpperCamelCase : Union[str, Any] = config __UpperCamelCase : Dict = BertEmbeddings(_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = DeeBertEncoder(_UpperCAmelCase ) __UpperCamelCase : str = BertPooler(_UpperCAmelCase ) self.init_weights() def a_ (self ) -> Any: self.encoder.init_highway_pooler(self.pooler ) def a_ (self ) -> Optional[int]: return self.embeddings.word_embeddings def a_ (self , _UpperCAmelCase ) -> Dict: __UpperCamelCase : int = value def a_ (self , _UpperCAmelCase ) -> Tuple: for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(_UpperCAmelCase ) @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def a_ (self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ) -> Union[str, Any]: if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __UpperCamelCase : Tuple = input_ids.size() elif inputs_embeds is not None: __UpperCamelCase : Optional[int] = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __UpperCamelCase : List[str] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __UpperCamelCase : int = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if encoder_attention_mask is None: __UpperCamelCase : Tuple = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if token_type_ids is None: __UpperCamelCase : Optional[Any] = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __UpperCamelCase : torch.Tensor = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __UpperCamelCase : Tuple = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __UpperCamelCase : Any = encoder_attention_mask[:, None, None, :] __UpperCamelCase : List[Any] = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __UpperCamelCase : Dict = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __UpperCamelCase : Dict = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers ) __UpperCamelCase : Optional[int] = self.embeddings( input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase ) __UpperCamelCase : List[Any] = self.encoder( _UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __UpperCamelCase : Union[str, Any] = encoder_outputs[0] __UpperCamelCase : Any = self.pooler(_UpperCAmelCase ) __UpperCamelCase : Union[str, Any] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: __UpperCamelCase : Tuple = message __UpperCamelCase : Union[str, Any] = exit_layer # start from 1! class A ( nn.Module ): '''simple docstring''' def __init__(self , _UpperCAmelCase ) -> Dict: super().__init__() __UpperCamelCase : Union[str, Any] = BertPooler(_UpperCAmelCase ) __UpperCamelCase : int = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase : Union[str, Any] = nn.Linear(config.hidden_size , config.num_labels ) def a_ (self , _UpperCAmelCase ) -> Any: # Pooler __UpperCamelCase : Optional[int] = encoder_outputs[0] __UpperCamelCase : str = self.pooler(_UpperCAmelCase ) # "return" pooler_output # BertModel __UpperCamelCase : Tuple = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __UpperCamelCase : Dict = bmodel_output[1] __UpperCamelCase : List[Any] = self.dropout(_UpperCAmelCase ) __UpperCamelCase : Any = self.classifier(_UpperCAmelCase ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__(self , _UpperCAmelCase ) -> Any: super().__init__(_UpperCAmelCase ) __UpperCamelCase : List[Any] = config.num_labels __UpperCamelCase : List[Any] = config.num_hidden_layers __UpperCamelCase : Optional[int] = DeeBertModel(_UpperCAmelCase ) __UpperCamelCase : List[str] = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase : str = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def a_ (self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=-1 , _UpperCAmelCase=False , ) -> int: __UpperCamelCase : int = self.num_layers try: __UpperCamelCase : Tuple = self.bert( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __UpperCamelCase : str = outputs[1] __UpperCamelCase : List[Any] = self.dropout(_UpperCAmelCase ) __UpperCamelCase : Dict = self.classifier(_UpperCAmelCase ) __UpperCamelCase : Tuple = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCamelCase : int = e.message __UpperCamelCase : Optional[Any] = e.exit_layer __UpperCamelCase : Optional[int] = outputs[0] if not self.training: __UpperCamelCase : Optional[int] = entropy(_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = [] __UpperCamelCase : Any = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCamelCase : List[str] = MSELoss() __UpperCamelCase : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __UpperCamelCase : Dict = CrossEntropyLoss() __UpperCamelCase : Any = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __UpperCamelCase : List[Any] = [] for highway_exit in outputs[-1]: __UpperCamelCase : Union[str, Any] = highway_exit[0] if not self.training: highway_logits_all.append(_UpperCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCamelCase : Union[str, Any] = MSELoss() __UpperCamelCase : str = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __UpperCamelCase : Optional[Any] = CrossEntropyLoss() __UpperCamelCase : List[str] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_UpperCAmelCase ) if train_highway: __UpperCamelCase : int = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCamelCase : Dict = (loss,) + outputs if not self.training: __UpperCamelCase : Optional[int] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCamelCase : int = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
298
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {} class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "llama" lowerCAmelCase_ = ["past_key_values"] def __init__(self , UpperCAmelCase=32000 , UpperCAmelCase=4096 , UpperCAmelCase=11008 , UpperCAmelCase=32 , UpperCAmelCase=32 , UpperCAmelCase=None , UpperCAmelCase="silu" , UpperCAmelCase=2048 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-6 , UpperCAmelCase=True , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=False , UpperCAmelCase=None , **UpperCAmelCase , ) -> int: _snake_case = vocab_size _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = intermediate_size _snake_case = num_hidden_layers _snake_case = num_attention_heads # for backward compatibility if num_key_value_heads is None: _snake_case = num_attention_heads _snake_case = num_key_value_heads _snake_case = hidden_act _snake_case = initializer_range _snake_case = rms_norm_eps _snake_case = pretraining_tp _snake_case = use_cache _snake_case = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase , ) def lowercase (self ) -> Union[str, Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) _snake_case = self.rope_scaling.get("""type""" , UpperCAmelCase ) _snake_case = self.rope_scaling.get("""factor""" , UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(UpperCAmelCase , UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
270
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = StableDiffusionPanoramaPipeline lowerCAmelCase_ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase (self ) -> List[Any]: torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) _snake_case = DDIMScheduler() torch.manual_seed(0 ) _snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _snake_case = CLIPTextModel(UpperCAmelCase ) _snake_case = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _snake_case = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase (self , UpperCAmelCase , UpperCAmelCase=0 ) -> Tuple: _snake_case = torch.manual_seed(UpperCAmelCase ) _snake_case = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowercase (self ) -> Tuple: _snake_case = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionPanoramaPipeline(**UpperCAmelCase ) _snake_case = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = self.get_dummy_inputs(UpperCAmelCase ) _snake_case = sd_pipe(**UpperCAmelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase (self ) -> Tuple: super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase (self ) -> Any: super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def lowercase (self ) -> Any: _snake_case = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionPanoramaPipeline(**UpperCAmelCase ) _snake_case = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = self.get_dummy_inputs(UpperCAmelCase ) _snake_case = """french fries""" _snake_case = sd_pipe(**UpperCAmelCase , negative_prompt=UpperCAmelCase ) _snake_case = output.images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase (self ) -> str: _snake_case = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionPanoramaPipeline(**UpperCAmelCase ) _snake_case = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = self.get_dummy_inputs(UpperCAmelCase ) _snake_case = sd_pipe(**UpperCAmelCase , view_batch_size=2 ) _snake_case = output.images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase (self ) -> Tuple: _snake_case = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) _snake_case = StableDiffusionPanoramaPipeline(**UpperCAmelCase ) _snake_case = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = self.get_dummy_inputs(UpperCAmelCase ) _snake_case = sd_pipe(**UpperCAmelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase (self ) -> str: _snake_case = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=UpperCAmelCase ) _snake_case = StableDiffusionPanoramaPipeline(**UpperCAmelCase ) _snake_case = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = self.get_dummy_inputs(UpperCAmelCase ) _snake_case = sd_pipe(**UpperCAmelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase (self , UpperCAmelCase=0 ) -> List[str]: _snake_case = torch.manual_seed(UpperCAmelCase ) _snake_case = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowercase (self ) -> List[Any]: _snake_case = """stabilityai/stable-diffusion-2-base""" _snake_case = DDIMScheduler.from_pretrained(UpperCAmelCase , subfolder="""scheduler""" ) _snake_case = StableDiffusionPanoramaPipeline.from_pretrained(UpperCAmelCase , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() _snake_case = pipe(**UpperCAmelCase ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _snake_case = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def lowercase (self ) -> str: _snake_case = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=UpperCAmelCase ) _snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() _snake_case = pipe(**UpperCAmelCase ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _snake_case = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase (self ) -> Optional[int]: _snake_case = 0 def callback_fn(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _snake_case = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _snake_case = latents[0, -3:, -3:, -1] _snake_case = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: _snake_case = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _snake_case = latents[0, -3:, -3:, -1] _snake_case = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 _snake_case = False _snake_case = """stabilityai/stable-diffusion-2-base""" _snake_case = DDIMScheduler.from_pretrained(UpperCAmelCase , subfolder="""scheduler""" ) _snake_case = StableDiffusionPanoramaPipeline.from_pretrained(UpperCAmelCase , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase ) _snake_case = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() pipe(**UpperCAmelCase , callback=UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase (self ) -> List[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _snake_case = """stabilityai/stable-diffusion-2-base""" _snake_case = DDIMScheduler.from_pretrained(UpperCAmelCase , subfolder="""scheduler""" ) _snake_case = StableDiffusionPanoramaPipeline.from_pretrained(UpperCAmelCase , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase ) _snake_case = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _snake_case = self.get_inputs() _snake_case = pipe(**UpperCAmelCase ) _snake_case = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
270
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class a ( lowerCAmelCase_ ): _snake_case : Union[str, Any] = 'unispeech' def __init__( self : List[Any] , __lowerCAmelCase : List[Any]=32 , __lowerCAmelCase : List[str]=768 , __lowerCAmelCase : int=12 , __lowerCAmelCase : int=12 , __lowerCAmelCase : str=3072 , __lowerCAmelCase : List[str]="gelu" , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : int=0.02 , __lowerCAmelCase : Any=1e-5 , __lowerCAmelCase : int="group" , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : List[Any]=(512, 512, 512, 512, 512, 512, 512) , __lowerCAmelCase : Dict=(5, 2, 2, 2, 2, 2, 2) , __lowerCAmelCase : Tuple=(10, 3, 3, 3, 3, 2, 2) , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=128 , __lowerCAmelCase : int=16 , __lowerCAmelCase : str=False , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Any=0.05 , __lowerCAmelCase : Any=10 , __lowerCAmelCase : Union[str, Any]=2 , __lowerCAmelCase : Dict=0.0 , __lowerCAmelCase : Union[str, Any]=10 , __lowerCAmelCase : List[str]=0 , __lowerCAmelCase : List[Any]=320 , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Optional[Any]=100 , __lowerCAmelCase : List[str]=256 , __lowerCAmelCase : List[Any]=256 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : List[str]="mean" , __lowerCAmelCase : Dict=False , __lowerCAmelCase : str=False , __lowerCAmelCase : Optional[int]=256 , __lowerCAmelCase : Optional[int]=80 , __lowerCAmelCase : Optional[Any]=0 , __lowerCAmelCase : Any=1 , __lowerCAmelCase : str=2 , __lowerCAmelCase : str=0.5 , **__lowerCAmelCase : List[str] , ): super().__init__(**__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) _UpperCAmelCase = hidden_size _UpperCAmelCase = feat_extract_norm _UpperCAmelCase = feat_extract_activation _UpperCAmelCase = list(__lowerCAmelCase ) _UpperCAmelCase = list(__lowerCAmelCase ) _UpperCAmelCase = list(__lowerCAmelCase ) _UpperCAmelCase = conv_bias _UpperCAmelCase = num_conv_pos_embeddings _UpperCAmelCase = num_conv_pos_embedding_groups _UpperCAmelCase = len(self.conv_dim ) _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = feat_proj_dropout _UpperCAmelCase = final_dropout _UpperCAmelCase = layerdrop _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = num_ctc_classes _UpperCAmelCase = vocab_size _UpperCAmelCase = do_stable_layer_norm _UpperCAmelCase = use_weighted_layer_sum _UpperCAmelCase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCAmelCase = apply_spec_augment _UpperCAmelCase = mask_time_prob _UpperCAmelCase = mask_time_length _UpperCAmelCase = mask_time_min_masks _UpperCAmelCase = mask_feature_prob _UpperCAmelCase = mask_feature_length _UpperCAmelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _UpperCAmelCase = num_codevectors_per_group _UpperCAmelCase = num_codevector_groups _UpperCAmelCase = contrastive_logits_temperature _UpperCAmelCase = feat_quantizer_dropout _UpperCAmelCase = num_negatives _UpperCAmelCase = codevector_dim _UpperCAmelCase = proj_codevector_dim _UpperCAmelCase = diversity_loss_weight # ctc loss _UpperCAmelCase = ctc_loss_reduction _UpperCAmelCase = ctc_zero_infinity # pretraining loss _UpperCAmelCase = replace_prob @property def lowerCAmelCase_ ( self : Tuple ): return functools.reduce(operator.mul , self.conv_stride , 1 )
289
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file _UpperCAmelCase = TapasConfig.from_json_file(lowercase ) # set absolute/relative position embeddings parameter _UpperCAmelCase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": _UpperCAmelCase = TapasForQuestionAnswering(config=lowercase ) elif task == "WTQ": # run_task_main.py hparams _UpperCAmelCase = 4 _UpperCAmelCase = True # hparam_utils.py hparams _UpperCAmelCase = 0.66_46_94 _UpperCAmelCase = 0.20_79_51 _UpperCAmelCase = 0.12_11_94 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = 0.0_35_25_13 _UpperCAmelCase = TapasForQuestionAnswering(config=lowercase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams _UpperCAmelCase = 4 _UpperCAmelCase = False # hparam_utils.py hparams _UpperCAmelCase = 36.45_19 _UpperCAmelCase = 0.90_34_21 _UpperCAmelCase = 2_22.0_88 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = 0.76_31_41 _UpperCAmelCase = TapasForQuestionAnswering(config=lowercase ) elif task == "TABFACT": _UpperCAmelCase = TapasForSequenceClassification(config=lowercase ) elif task == "MLM": _UpperCAmelCase = TapasForMaskedLM(config=lowercase ) elif task == "INTERMEDIATE_PRETRAINING": _UpperCAmelCase = TapasModel(config=lowercase ) else: raise ValueError(f'''Task {task} not supported.''' ) print(f'''Building PyTorch model from configuration: {config}''' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowercase ,lowercase ,lowercase ) # Save pytorch-model (weights and configuration) print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowercase ) # Save tokenizer files print(f'''Save tokenizer files to {pytorch_dump_path}''' ) _UpperCAmelCase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" ,model_max_length=5_12 ) tokenizer.save_pretrained(lowercase ) print("""Used relative position embeddings:""" ,model.config.reset_position_index_per_cell ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
289
1
'''simple docstring''' from __future__ import annotations def UpperCAmelCase_ ( __lowercase : int ) -> str: '''simple docstring''' _UpperCAmelCase = 2 _UpperCAmelCase = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__lowercase ) if n > 1: factors.append(__lowercase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
361
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) def UpperCAmelCase_ ( __lowercase : np.ndarray , __lowercase : Union[int, Iterable[int]] , __lowercase : bool , __lowercase : int ) -> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(__lowercase : Dict , __lowercase : str , __lowercase : Optional[int]=0 , __lowercase : Dict=None ): _UpperCAmelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCAmelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCAmelCase = math.ceil(val / multiple ) * multiple return x _UpperCAmelCase = (output_size, output_size) if isinstance(__lowercase , __lowercase ) else output_size _UpperCAmelCase , _UpperCAmelCase = get_image_size(__lowercase ) _UpperCAmelCase , _UpperCAmelCase = output_size # determine new height and width _UpperCAmelCase = output_height / input_height _UpperCAmelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCAmelCase = scale_width else: # fit height _UpperCAmelCase = scale_height _UpperCAmelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__lowercase ) _UpperCAmelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__lowercase ) return (new_height, new_width) class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Any = ["""pixel_values"""] def __init__( self : str , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : PILImageResampling = PILImageResampling.BILINEAR , snake_case_ : bool = False , snake_case_ : int = 1 , snake_case_ : bool = True , snake_case_ : Union[int, float] = 1 / 2_5_5 , snake_case_ : bool = True , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , **snake_case_ : List[str] , ): super().__init__(**snake_case_ ) _UpperCAmelCase = size if size is not None else {"height": 3_8_4, "width": 3_8_4} _UpperCAmelCase = get_size_dict(snake_case_ ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = keep_aspect_ratio _UpperCAmelCase = ensure_multiple_of _UpperCAmelCase = resample _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase ( self : List[str] , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : bool = False , snake_case_ : int = 1 , snake_case_ : PILImageResampling = PILImageResampling.BICUBIC , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : str , ): _UpperCAmelCase = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) _UpperCAmelCase = get_resize_output_image_size( snake_case_ , output_size=(size["height"], size["width"]) , keep_aspect_ratio=snake_case_ , multiple=snake_case_ , ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowercase ( self : Tuple , snake_case_ : np.ndarray , snake_case_ : Union[int, float] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Any , ): return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowercase ( self : Tuple , snake_case_ : np.ndarray , snake_case_ : Union[float, List[float]] , snake_case_ : Union[float, List[float]] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Tuple , ): return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowercase ( self : Optional[int] , snake_case_ : ImageInput , snake_case_ : bool = None , snake_case_ : int = None , snake_case_ : bool = None , snake_case_ : int = None , snake_case_ : PILImageResampling = None , snake_case_ : bool = None , snake_case_ : float = None , snake_case_ : bool = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : ChannelDimension = ChannelDimension.FIRST , **snake_case_ : str , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(snake_case_ ) _UpperCAmelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCAmelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(snake_case_ ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] _UpperCAmelCase = {"pixel_values": images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ ) def lowercase ( self : int , snake_case_ : str , snake_case_ : List[Tuple] = None ): _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(snake_case_ ) != len(snake_case_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(snake_case_ ): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(snake_case_ ) ): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=snake_case_ ) _UpperCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(snake_case_ ) else: _UpperCAmelCase = logits.argmax(dim=1 ) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
156
0
from ...processing_utils import ProcessorMixin class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =["""image_processor""", """feature_extractor"""] snake_case_ ="""TvltImageProcessor""" snake_case_ ="""TvltFeatureExtractor""" def __init__(self ,__lowerCamelCase ,__lowerCamelCase ) -> Optional[Any]: """simple docstring""" super().__init__(image_processor=__lowercase ,feature_extractor=__lowercase ) lowerCAmelCase__ : List[str] = image_processor lowerCAmelCase__ : Optional[Any] = feature_extractor def __call__(self ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=False ,__lowerCamelCase=False ,*__lowerCamelCase ,**__lowerCamelCase ,) -> Optional[Any]: """simple docstring""" if images is None and audio is None: raise ValueError('''You need to specify either an `images` or `audio` input to process.''' ) lowerCAmelCase__ : List[Any] = None if images is not None: lowerCAmelCase__ : Optional[int] = self.image_processor(__lowercase ,mask_pixel=__lowercase ,*__lowercase ,**__lowercase ) if images_mixed is not None: lowerCAmelCase__ : int = self.image_processor(__lowercase ,is_mixed=__lowercase ,*__lowercase ,**__lowercase ) if audio is not None: lowerCAmelCase__ : Optional[Any] = self.feature_extractor( __lowercase ,*__lowercase ,sampling_rate=__lowercase ,mask_audio=__lowercase ,**__lowercase ) lowerCAmelCase__ : Optional[Any] = {} if audio is not None: output_dict.update(__lowercase ) if images is not None: output_dict.update(__lowercase ) if images_mixed_dict is not None: output_dict.update(__lowercase ) return output_dict @property def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.image_processor.model_input_names lowerCAmelCase__ : Tuple = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
129
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_5_0, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_0_0, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_0_0, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : int ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='utf-8' , check=__lowercase , ) assert hasattr(self , 'env' ) def snake_case ( self : Tuple , __lowercase : List[str] ): """simple docstring""" __lowercase =f'''{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}''' # distributed data settings __lowercase ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__lowercase , instance_count=__lowercase , instance_type=self.instance_type , debugger_hook_config=__lowercase , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__lowercase , py_version='py36' , ) def snake_case ( self : int , __lowercase : List[str] ): """simple docstring""" TrainingJobAnalytics(__lowercase ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def snake_case ( self : Tuple , __lowercase : List[Any] ): """simple docstring""" __lowercase =self.create_estimator(__lowercase ) # run training estimator.fit() # result dataframe __lowercase =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __lowercase =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __lowercase )
141
0
'''simple docstring''' a_ = 'Tobias Carryer' from time import time class __SCREAMING_SNAKE_CASE : def __init__( self : Tuple , __lowercase : Optional[Any] , __lowercase : Tuple , __lowercase : List[Any] , __lowercase : Optional[Any]=int(time() ) ) -> Dict: # noqa: B008 SCREAMING_SNAKE_CASE__ : str =multiplier SCREAMING_SNAKE_CASE__ : List[Any] =increment SCREAMING_SNAKE_CASE__ : str =modulo SCREAMING_SNAKE_CASE__ : Optional[Any] =seed def __magic_name__ ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] =(self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. a_ = LinearCongruentialGenerator(1_6_6_4_5_2_5, 1_0_1_3_9_0_4_2_2_3, 2 << 3_1) while True: print(lcg.next_number())
360
'''simple docstring''' from math import factorial def _a( UpperCamelCase__ : int = 1_0_0 ): '''simple docstring''' return sum(int(UpperCamelCase__ ) for x in str(factorial(UpperCamelCase__ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
222
0
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) snake_case_ : int = logging.getLogger(__name__) snake_case_ : Dict = {"facebook/bart-base": BartForConditionalGeneration} snake_case_ : str = {"facebook/bart-base": BartTokenizer} def A () -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' , type=__A , default=__A , help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' , type=__A , default=5 , help='''The maximum total input sequence length after tokenization.''' , ) parser.add_argument( '''--num_beams''' , type=__A , default=__A , help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) , ) parser.add_argument( '''--model_name_or_path''' , type=__A , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__A , ) parser.add_argument( '''--config_name''' , type=__A , default=__A , help='''Pretrained config name or path if not the same as model_name''' , ) parser.add_argument( '''--device''' , type=__A , default='''cpu''' , help='''Device where the model will be run''' , ) parser.add_argument('''--output_file_path''' , type=__A , default=__A , help='''Where to store the final ONNX file.''' ) UpperCAmelCase_ = parser.parse_args() return args def A (__A : List[str] , __A : Optional[Any]="cpu" ) -> Dict: """simple docstring""" UpperCAmelCase_ = model_dict[model_name].from_pretrained(__A ).to(__A ) UpperCAmelCase_ = tokenizer_dict[model_name].from_pretrained(__A ) if model_name in ["facebook/bart-base"]: UpperCAmelCase_ = 0 UpperCAmelCase_ = None UpperCAmelCase_ = 0 return huggingface_model, tokenizer def A (__A : int , __A : int , __A : Optional[Any] , __A : Any , __A : List[str] ) -> Optional[int]: """simple docstring""" model.eval() UpperCAmelCase_ = None UpperCAmelCase_ = torch.jit.script(BARTBeamSearchGenerator(__A ) ) with torch.no_grad(): UpperCAmelCase_ = '''My friends are cool but they eat too many carbs.''' UpperCAmelCase_ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='''pt''' ).to(model.device ) UpperCAmelCase_ = model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=__A , max_length=__A , early_stopping=__A , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( __A , ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) , __A , opset_version=14 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } , example_outputs=__A , ) logger.info('''Model exported to {}'''.format(__A ) ) UpperCAmelCase_ = remove_dup_initializers(os.path.abspath(__A ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(__A ) ) UpperCAmelCase_ = onnxruntime.InferenceSession(__A ) UpperCAmelCase_ = ort_sess.run( __A , { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(__A ), '''max_length''': np.array(__A ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def A () -> Any: """simple docstring""" UpperCAmelCase_ = parse_args() UpperCAmelCase_ = 5 UpperCAmelCase_ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() UpperCAmelCase_ = torch.device(args.device ) UpperCAmelCase_ , UpperCAmelCase_ = load_model_tokenizer(args.model_name_or_path , __A ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(__A ) if args.max_length: UpperCAmelCase_ = args.max_length if args.num_beams: UpperCAmelCase_ = args.num_beams if args.output_file_path: UpperCAmelCase_ = args.output_file_path else: UpperCAmelCase_ = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(__A , __A , __A , __A , __A ) if __name__ == "__main__": main()
51
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowercase__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase : Any = fname.split(os.path.sep )[-1] return re.search(R'^(.*)_\d+\.jpg$' , _UpperCAmelCase ).groups()[0] class a__ ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Union[str, Any], lowerCAmelCase : Tuple, lowerCAmelCase : Tuple=None, lowerCAmelCase : List[Any]=None ) -> Optional[Any]: lowercase : str = file_names lowercase : Optional[Any] = image_transform lowercase : int = label_to_id def __len__( self : List[Any] ) -> Any: return len(self.file_names ) def __getitem__( self : str, lowerCAmelCase : Optional[int] ) -> Optional[Any]: lowercase : List[Any] = self.file_names[idx] lowercase : Tuple = PIL.Image.open(lowerCAmelCase ) lowercase : Tuple = raw_image.convert('RGB' ) if self.image_transform is not None: lowercase : Optional[Any] = self.image_transform(lowerCAmelCase ) lowercase : Any = extract_label(lowerCAmelCase ) if self.label_to_id is not None: lowercase : List[Any] = self.label_to_id[label] return {"image": image, "label": label} def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: '''simple docstring''' if args.with_tracking: lowercase : Optional[int] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: lowercase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase : Union[str, Any] = config['lr'] lowercase : Any = int(config['num_epochs'] ) lowercase : Union[str, Any] = int(config['seed'] ) lowercase : List[Any] = int(config['batch_size'] ) lowercase : str = config['image_size'] if not isinstance(_UpperCAmelCase , (list, tuple) ): lowercase : Dict = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": lowercase : Dict = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): lowercase : Dict = int(args.checkpointing_steps ) else: raise ValueError( f'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: lowercase : Tuple = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: lowercase : Optional[int] = os.path.split(_UpperCAmelCase )[-1].split('.' )[0] accelerator.init_trackers(_UpperCAmelCase , _UpperCAmelCase ) # Grab all the image filenames lowercase : Optional[Any] = [os.path.join(args.data_dir , _UpperCAmelCase ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences lowercase : str = [extract_label(_UpperCAmelCase ) for fname in file_names] lowercase : List[Any] = list(set(_UpperCAmelCase ) ) id_to_label.sort() lowercase : Optional[Any] = {lbl: i for i, lbl in enumerate(_UpperCAmelCase )} # Set the seed before splitting the data. np.random.seed(_UpperCAmelCase ) torch.manual_seed(_UpperCAmelCase ) torch.cuda.manual_seed_all(_UpperCAmelCase ) # Split our filenames between train and validation lowercase : List[Any] = np.random.permutation(len(_UpperCAmelCase ) ) lowercase : Optional[Any] = int(0.8 * len(_UpperCAmelCase ) ) lowercase : int = random_perm[:cut] lowercase : Any = random_perm[cut:] # For training we use a simple RandomResizedCrop lowercase : Dict = Compose([RandomResizedCrop(_UpperCAmelCase , scale=(0.5, 1.0) ), ToTensor()] ) lowercase : List[Any] = PetsDataset( [file_names[i] for i in train_split] , image_transform=_UpperCAmelCase , label_to_id=_UpperCAmelCase ) # For evaluation, we use a deterministic Resize lowercase : List[Any] = Compose([Resize(_UpperCAmelCase ), ToTensor()] ) lowercase : List[str] = PetsDataset([file_names[i] for i in eval_split] , image_transform=_UpperCAmelCase , label_to_id=_UpperCAmelCase ) # Instantiate dataloaders. lowercase : Dict = DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , batch_size=_UpperCAmelCase , num_workers=4 ) lowercase : Any = DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , batch_size=_UpperCAmelCase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase : List[Any] = create_model('resnet50d' , pretrained=_UpperCAmelCase , num_classes=len(_UpperCAmelCase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase : Union[str, Any] = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): lowercase : Dict = False for param in model.get_classifier().parameters(): lowercase : Dict = True # We normalize the batches of images to be a bit faster. lowercase : int = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) lowercase : Dict = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer lowercase : Any = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler lowercase : List[Any] = OneCycleLR(optimizer=_UpperCAmelCase , max_lr=_UpperCAmelCase , epochs=_UpperCAmelCase , steps_per_epoch=len(_UpperCAmelCase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase , lowercase , lowercase , lowercase , lowercase : Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # We need to keep track of how many total steps we have iterated over lowercase : Tuple = 0 # We also need to keep track of the starting epoch so files are named properly lowercase : List[str] = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) lowercase : Any = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint lowercase : List[str] = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) lowercase : Dict = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` lowercase : Any = os.path.splitext(_UpperCAmelCase )[0] if "epoch" in training_difference: lowercase : List[Any] = int(training_difference.replace('epoch_' , '' ) ) + 1 lowercase : List[Any] = None else: lowercase : Optional[Any] = int(training_difference.replace('step_' , '' ) ) lowercase : int = resume_step // len(_UpperCAmelCase ) resume_step -= starting_epoch * len(_UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase , _UpperCAmelCase ): model.train() if args.with_tracking: lowercase : str = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step lowercase : Any = accelerator.skip_first_batches(_UpperCAmelCase , _UpperCAmelCase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader lowercase : Union[str, Any] = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. lowercase : Any = {k: v.to(accelerator.device ) for k, v in batch.items()} lowercase : List[str] = (batch['image'] - mean) / std lowercase : Union[str, Any] = model(_UpperCAmelCase ) lowercase : Optional[int] = torch.nn.functional.cross_entropy(_UpperCAmelCase , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(_UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase : Union[str, Any] = f'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: lowercase : Optional[Any] = os.path.join(args.output_dir , _UpperCAmelCase ) accelerator.save_state(_UpperCAmelCase ) model.eval() lowercase : int = 0 lowercase : List[Any] = 0 for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. lowercase : List[str] = {k: v.to(accelerator.device ) for k, v in batch.items()} lowercase : Optional[Any] = (batch['image'] - mean) / std with torch.no_grad(): lowercase : int = model(_UpperCAmelCase ) lowercase : Tuple = outputs.argmax(dim=-1 ) lowercase , lowercase : Optional[Any] = accelerator.gather_for_metrics((predictions, batch['label']) ) lowercase : Union[str, Any] = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() lowercase : List[str] = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}: {1_00 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { 'accuracy': 1_00 * eval_metric, 'train_loss': total_loss.item() / len(_UpperCAmelCase ), 'epoch': epoch, } , step=_UpperCAmelCase , ) if checkpointing_steps == "epoch": lowercase : str = f'''epoch_{epoch}''' if args.output_dir is not None: lowercase : Any = os.path.join(args.output_dir , _UpperCAmelCase ) accelerator.save_state(_UpperCAmelCase ) if args.with_tracking: accelerator.end_training() def lowercase__ ( ) -> Tuple: '''simple docstring''' lowercase : str = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=_UpperCAmelCase , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=_UpperCAmelCase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=_UpperCAmelCase , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) lowercase : int = parser.parse_args() lowercase : List[Any] = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 2_24} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
255
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class snake_case_ : def __init__( self : Dict , lowercase_ : Any , lowercase_ : Union[str, Any]=13 , lowercase_ : Optional[int]=7 , lowercase_ : Union[str, Any]=True , lowercase_ : str=True , lowercase_ : str=True , lowercase_ : Union[str, Any]=True , lowercase_ : Any=99 , lowercase_ : Dict=32 , lowercase_ : Tuple=2 , lowercase_ : str=4 , lowercase_ : str=37 , lowercase_ : Any="gelu" , lowercase_ : Dict=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : int=5_12 , lowercase_ : Tuple=16 , lowercase_ : str=2 , lowercase_ : List[str]=0.02 , lowercase_ : List[str]=3 , lowercase_ : Optional[int]=4 , lowercase_ : List[Any]=None , ) -> int: lowercase__ : List[str] = parent lowercase__ : List[str] = 13 lowercase__ : List[str] = 7 lowercase__ : List[Any] = True lowercase__ : Union[str, Any] = True lowercase__ : int = True lowercase__ : str = True lowercase__ : Dict = 99 lowercase__ : int = 3_84 lowercase__ : int = 2 lowercase__ : Dict = 4 lowercase__ : str = 37 lowercase__ : Optional[int] = "gelu" lowercase__ : List[str] = 0.1 lowercase__ : Optional[int] = 0.1 lowercase__ : str = 5_12 lowercase__ : Optional[Any] = 16 lowercase__ : Dict = 2 lowercase__ : Tuple = 0.02 lowercase__ : Any = 3 lowercase__ : str = 4 lowercase__ : Union[str, Any] = 1_28 lowercase__ : str = 2 lowercase__ : Any = 9 lowercase__ : Tuple = 1 lowercase__ : Dict = None def __UpperCamelCase ( self : Optional[int] ) -> int: lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : int = None if self.use_input_mask: lowercase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : str = None if self.use_token_type_ids: lowercase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : Optional[int] = None lowercase__ : int = None lowercase__ : int = None if self.use_labels: lowercase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : List[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_lowercase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : str , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : int , lowercase_ : List[str] ) -> Dict: lowercase__ : Dict = TFConvBertModel(config=_lowercase ) lowercase__ : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowercase__ : Any = [input_ids, input_mask] lowercase__ : List[Any] = model(_lowercase ) lowercase__ : str = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : List[str] ) -> Tuple: lowercase__ : Dict = TFConvBertForMaskedLM(config=_lowercase ) lowercase__ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ : Any = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Any , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : List[Any] ) -> Optional[Any]: lowercase__ : Tuple = self.num_labels lowercase__ : int = TFConvBertForSequenceClassification(config=_lowercase ) lowercase__ : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ : Optional[int] = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : str , lowercase_ : int , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : List[str] ) -> Union[str, Any]: lowercase__ : Tuple = self.num_choices lowercase__ : Tuple = TFConvBertForMultipleChoice(config=_lowercase ) lowercase__ : Any = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) lowercase__ : List[Any] = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) lowercase__ : Any = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) lowercase__ : Union[str, Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowercase__ : Union[str, Any] = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Optional[Any] ) -> str: lowercase__ : Tuple = self.num_labels lowercase__ : Tuple = TFConvBertForTokenClassification(config=_lowercase ) lowercase__ : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ : List[str] = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] , lowercase_ : str , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : Tuple ) -> Union[str, Any]: lowercase__ : int = TFConvBertForQuestionAnswering(config=_lowercase ) lowercase__ : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ : str = model(_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: lowercase__ : List[str] = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Union[str, Any] = config_and_inputs lowercase__ : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class snake_case_ ( _lowerCAmelCase ,_lowerCAmelCase ,unittest.TestCase ): __A : Optional[Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __A : str = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __A : Dict = False __A : List[Any] = False __A : str = False def __UpperCamelCase ( self : Optional[int] ) -> int: lowercase__ : Optional[int] = TFConvBertModelTester(self ) lowercase__ : List[str] = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def __UpperCamelCase ( self : Optional[int] ) -> Any: self.config_tester.run_common_tests() def __UpperCamelCase ( self : Dict ) -> List[Any]: lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def __UpperCamelCase ( self : Dict ) -> Dict: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def __UpperCamelCase ( self : Any ) -> int: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase ) def __UpperCamelCase ( self : List[Any] ) -> int: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def __UpperCamelCase ( self : str ) -> List[Any]: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def __UpperCamelCase ( self : int ) -> List[str]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) @slow def __UpperCamelCase ( self : Dict ) -> Any: lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = True lowercase__ : List[Any] = True if hasattr(_lowercase , "use_cache" ): lowercase__ : Any = True lowercase__ : Any = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) lowercase__ : Optional[Any] = getattr(self.model_tester , "key_length" , _lowercase ) for model_class in self.all_model_classes: lowercase__ : Any = self._prepare_for_class(_lowercase , _lowercase ) lowercase__ : Any = model_class(_lowercase ) lowercase__ : Union[str, Any] = len(model(_lowercase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowercase , saved_model=_lowercase ) lowercase__ : Dict = os.path.join(_lowercase , "saved_model" , "1" ) lowercase__ : Any = tf.keras.models.load_model(_lowercase ) lowercase__ : int = model(_lowercase ) if self.is_encoder_decoder: lowercase__ : Optional[Any] = outputs["encoder_hidden_states"] lowercase__ : Optional[Any] = outputs["encoder_attentions"] else: lowercase__ : Any = outputs["hidden_states"] lowercase__ : Tuple = outputs["attentions"] self.assertEqual(len(_lowercase ) , _lowercase ) lowercase__ : Dict = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __UpperCamelCase ( self : str ) -> str: lowercase__ : Tuple = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(_lowercase ) def __UpperCamelCase ( self : Dict ) -> List[str]: lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Optional[int] = True lowercase__ : Tuple = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) lowercase__ : Union[str, Any] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) lowercase__ : Tuple = getattr(self.model_tester , "key_length" , _lowercase ) lowercase__ : List[Any] = getattr(self.model_tester , "key_length" , _lowercase ) def check_decoder_attentions_output(lowercase_ : Union[str, Any] ): lowercase__ : Optional[Any] = len(_lowercase ) self.assertEqual(out_len % 2 , 0 ) lowercase__ : List[str] = outputs.decoder_attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowercase_ : int ): lowercase__ : int = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowercase__ : int = True lowercase__ : Dict = False lowercase__ : int = model_class(_lowercase ) lowercase__ : Any = model(self._prepare_for_class(_lowercase , _lowercase ) ) lowercase__ : Tuple = len(_lowercase ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) if self.is_encoder_decoder: lowercase__ : int = model_class(_lowercase ) lowercase__ : List[Any] = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_decoder_attentions_output(_lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowercase__ : Tuple = True lowercase__ : List[Any] = model_class(_lowercase ) lowercase__ : str = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) # Check attention is always last and order is fine lowercase__ : int = True lowercase__ : Optional[Any] = True lowercase__ : int = model_class(_lowercase ) lowercase__ : Optional[Any] = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_lowercase ) ) self.assertEqual(model.config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) @require_tf class snake_case_ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Optional[Any] ) -> Any: lowercase__ : Dict = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) lowercase__ : List[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__ : Optional[Any] = model(_lowercase )[0] lowercase__ : int = [1, 6, 7_68] self.assertEqual(output.shape , _lowercase ) lowercase__ : Optional[int] = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowercase , atol=1E-4 )
370
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "): lowercase__ : Union[str, Any] = text.split(_lowerCamelCase) return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)] def lowercase_ ( _lowerCamelCase : dict): lowercase__ , lowercase__ : List[str] = [], [] for title, text in zip(documents["title"] , documents["text"]): if text is not None: for passage in split_text(_lowerCamelCase): titles.append(title if title is not None else "") texts.append(_lowerCamelCase) return {"title": titles, "text": texts} def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast): lowercase__ : Union[str, Any] = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"] lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ): ###################################### logger.info("Step 1 - Create the dataset") ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase__ : str = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"]) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc) # And compute the embeddings lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase) lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name) lowercase__ : List[Any] = Features( {"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space lowercase__ : List[Any] = dataset.map( partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , ) # And finally save your dataset lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset") dataset.save_to_disk(_lowerCamelCase) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset") ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT) dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase) # And save the index lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss") dataset.get_index("embeddings").save(_lowerCamelCase) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class snake_case_ : __A : str = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,) __A : Optional[str] = field( default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,) __A : str = field( default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,) __A : str = field( default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } ,) __A : Optional[str] = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,) @dataclass class snake_case_ : __A : Optional[int] = field( default=__A ,metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } ,) __A : int = field( default=16 ,metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } ,) @dataclass class snake_case_ : __A : int = field( default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,) __A : int = field( default=128 ,metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } ,) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
333
0
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def __magic_name__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : str=[] ) -> Any: __lowerCamelCase = size[0] - overlap_pixels * 2 __lowerCamelCase = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels __lowerCamelCase = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 __lowerCamelCase = np.pad(__lowerCAmelCase , mode='''linear_ramp''' , pad_width=__lowerCAmelCase , end_values=0 ) if "l" in remove_borders: __lowerCamelCase = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: __lowerCamelCase = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: __lowerCamelCase = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: __lowerCamelCase = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] ) -> int: return max(__lowerCAmelCase , min(__lowerCAmelCase , __lowerCAmelCase ) ) def __magic_name__ ( __lowerCAmelCase : [int] , __lowerCAmelCase : [int] , __lowerCAmelCase : [int] ) -> Optional[Any]: return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def __magic_name__ ( __lowerCAmelCase : [int] , __lowerCAmelCase : int , __lowerCAmelCase : [int] ) -> List[str]: __lowerCamelCase = list(__lowerCAmelCase ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap __lowerCamelCase = clamp_rect(__lowerCAmelCase , [0, 0] , [image_size[0], image_size[1]] ) return rect def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int ) -> Any: __lowerCamelCase = Image.new('''RGB''' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(__lowerCAmelCase , (original_slice, 0) ) return result def __magic_name__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] ) -> Union[str, Any]: __lowerCamelCase = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) __lowerCamelCase = tile.crop(__lowerCAmelCase ) return tile def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str ) -> Dict: __lowerCamelCase = n % d return n - divisor class lowerCAmelCase__ ( __lowercase ): def __init__( self : str , SCREAMING_SNAKE_CASE__ : AutoencoderKL , SCREAMING_SNAKE_CASE__ : CLIPTextModel , SCREAMING_SNAKE_CASE__ : CLIPTokenizer , SCREAMING_SNAKE_CASE__ : UNetaDConditionModel , SCREAMING_SNAKE_CASE__ : DDPMScheduler , SCREAMING_SNAKE_CASE__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , SCREAMING_SNAKE_CASE__ : int = 3_50 , ) -> Dict: super().__init__( vae=SCREAMING_SNAKE_CASE__ , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , unet=SCREAMING_SNAKE_CASE__ , low_res_scheduler=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , max_noise_level=SCREAMING_SNAKE_CASE__ , ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : int ) -> List[str]: torch.manual_seed(0 ) __lowerCamelCase = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) __lowerCamelCase = add_overlap_rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , image.size ) __lowerCamelCase = image.crop(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] __lowerCamelCase = translated_slice_x - (original_image_slice / 2) __lowerCamelCase = max(0 , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = squeeze_tile(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = to_input.size __lowerCamelCase = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) __lowerCamelCase = super(SCREAMING_SNAKE_CASE__ , self ).__call__(image=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).images[0] __lowerCamelCase = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) __lowerCamelCase = unsqueeze_tile(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) __lowerCamelCase = [] if x == 0: remove_borders.append('''l''' ) elif crop_rect[2] == image.size[0]: remove_borders.append('''r''' ) if y == 0: remove_borders.append('''t''' ) elif crop_rect[3] == image.size[1]: remove_borders.append('''b''' ) __lowerCamelCase = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=SCREAMING_SNAKE_CASE__ ) , mode='''L''' , ) final_image.paste( SCREAMING_SNAKE_CASE__ , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def __call__( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, List[str]] , SCREAMING_SNAKE_CASE__ : Union[PIL.Image.Image, List[PIL.Image.Image]] , SCREAMING_SNAKE_CASE__ : int = 75 , SCREAMING_SNAKE_CASE__ : float = 9.0 , SCREAMING_SNAKE_CASE__ : int = 50 , SCREAMING_SNAKE_CASE__ : Optional[Union[str, List[str]]] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = 1 , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 1_28 , SCREAMING_SNAKE_CASE__ : int = 32 , SCREAMING_SNAKE_CASE__ : int = 32 , ) -> Union[str, Any]: __lowerCamelCase = Image.new('''RGB''' , (image.size[0] * 4, image.size[1] * 4) ) __lowerCamelCase = math.ceil(image.size[0] / tile_size ) __lowerCamelCase = math.ceil(image.size[1] / tile_size ) __lowerCamelCase = tcx * tcy __lowerCamelCase = 0 for y in range(SCREAMING_SNAKE_CASE__ ): for x in range(SCREAMING_SNAKE_CASE__ ): self._process_tile( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , prompt=SCREAMING_SNAKE_CASE__ , num_inference_steps=SCREAMING_SNAKE_CASE__ , guidance_scale=SCREAMING_SNAKE_CASE__ , noise_level=SCREAMING_SNAKE_CASE__ , negative_prompt=SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , latents=SCREAMING_SNAKE_CASE__ , ) current_count += 1 if callback is not None: callback({'''progress''': current_count / total_tile_count, '''image''': final_image} ) return final_image def __magic_name__ ( ) -> Optional[Any]: # Run a demo __lowerCamelCase = '''stabilityai/stable-diffusion-x4-upscaler''' __lowerCamelCase = StableDiffusionTiledUpscalePipeline.from_pretrained(__lowerCAmelCase , revision='''fp16''' , torch_dtype=torch.floataa ) __lowerCamelCase = pipe.to('''cuda''' ) __lowerCamelCase = Image.open('''../../docs/source/imgs/diffusers_library.jpg''' ) def callback(__lowerCAmelCase : Union[str, Any] ): print(f'''progress: {obj['progress']:.4f}''' ) obj["image"].save('''diffusers_library_progress.jpg''' ) __lowerCamelCase = pipe(image=__lowerCAmelCase , prompt='''Black font, white background, vector''' , noise_level=40 , callback=__lowerCAmelCase ) final_image.save('''diffusers_library.jpg''' ) if __name__ == "__main__": main()
270
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class lowerCAmelCase__ : def __init__( self : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Dict: if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) __lowerCamelCase = img __lowerCamelCase = img.shape[1] __lowerCamelCase = img.shape[0] __lowerCamelCase = dst_width __lowerCamelCase = dst_height __lowerCamelCase = self.src_w / self.dst_w __lowerCamelCase = self.src_h / self.dst_h __lowerCamelCase = __lowerCamelCase = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_55 ) def __A ( self : List[Any] ) -> str: for i in range(self.dst_h ): for j in range(self.dst_w ): __lowerCamelCase = self.img[self.get_y(SCREAMING_SNAKE_CASE__ )][self.get_x(SCREAMING_SNAKE_CASE__ )] def __A ( self : str , SCREAMING_SNAKE_CASE__ : int ) -> int: return int(self.ratio_x * x ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : int ) -> int: return int(self.ratio_y * y ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = 800, 600 SCREAMING_SNAKE_CASE__ : int = imread("image_data/lena.jpg", 1) SCREAMING_SNAKE_CASE__ : Union[str, Any] = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output ) waitKey(0) destroyAllWindows()
270
1
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument a__ : Optional[Any] = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = list(s_dict.keys() ) for key in keys: __SCREAMING_SNAKE_CASE = R".*/layers_(\d+)" __SCREAMING_SNAKE_CASE = key if re.match(lowerCAmelCase_ , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = re.sub(R"layers_(\d+)" , R"block/\1/layer" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = R"(encoder|decoder)\/" if re.match(lowerCAmelCase_ , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = re.match(lowerCAmelCase_ , lowerCAmelCase_ ).groups() if groups[0] == "encoder": __SCREAMING_SNAKE_CASE = re.sub(R"/mlp/" , R"/1/mlp/" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = re.sub(R"/pre_mlp_layer_norm/" , R"/1/layer_norm/" , lowerCAmelCase_ ) elif groups[0] == "decoder": __SCREAMING_SNAKE_CASE = re.sub(R"/mlp/" , R"/2/mlp/" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = re.sub(R"/pre_mlp_layer_norm/" , R"/2/layer_norm/" , lowerCAmelCase_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: __SCREAMING_SNAKE_CASE = new_key.replace(lowerCAmelCase_ , lowerCAmelCase_ ) print(f"""{key} -> {new_key}""" ) __SCREAMING_SNAKE_CASE = s_dict.pop(lowerCAmelCase_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __SCREAMING_SNAKE_CASE = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __SCREAMING_SNAKE_CASE = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: __SCREAMING_SNAKE_CASE = s_dict[key].shape[0] __SCREAMING_SNAKE_CASE = s_dict[key] for idx in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = expert_weihts[idx] print(f"""{key} -> {key.replace('expert/' , 'nested fstring' )}""" ) s_dict.pop(lowerCAmelCase_ ) return s_dict a__ : List[Any] = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' import regex as re with open(lowerCAmelCase_ , "r" ) as f: __SCREAMING_SNAKE_CASE = f.read() __SCREAMING_SNAKE_CASE = re.findall(R"(.*) = ([0-9.]*)" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": __SCREAMING_SNAKE_CASE = float(lowerCAmelCase_ ) if "." in value else int(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = re.findall(R"(.*activations) = \(\'(.*)\',\)" , lowerCAmelCase_ )[0] __SCREAMING_SNAKE_CASE = str(activation[1] ) __SCREAMING_SNAKE_CASE = num_experts __SCREAMING_SNAKE_CASE = SwitchTransformersConfig(**lowerCAmelCase_ ) return config def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_="./" , lowerCAmelCase_=8 ): '''simple docstring''' print(f"""Loading flax weights from : {flax_checkpoint_path}""" ) __SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(lowerCAmelCase_ ) if gin_file is not None: __SCREAMING_SNAKE_CASE = convert_gin_to_config(lowerCAmelCase_ , lowerCAmelCase_ ) else: __SCREAMING_SNAKE_CASE = SwitchTransformersConfig.from_pretrained(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = SwitchTransformersForConditionalGeneration(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = flax_params["target"] __SCREAMING_SNAKE_CASE = flatten_dict(lowerCAmelCase_ , sep="/" ) __SCREAMING_SNAKE_CASE = rename_keys(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = unflatten_dict(lowerCAmelCase_ , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase_ , lowerCAmelCase_ ) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": a__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') a__ : Tuple = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
195
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : str = IFInpaintingSuperResolutionPipeline snake_case__ : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} snake_case__ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"}) snake_case__ : Dict = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: return self._get_superresolution_dummy_components() def UpperCAmelCase_ ( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str]=0 ) -> List[str]: if str(UpperCAmelCase__ ).startswith("mps" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCAmelCase_ ( self : str ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase_ ( self : str ) -> Tuple: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCAmelCase_ ( self : Tuple ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: self._test_save_load_local() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
195
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class A__ ( unittest.TestCase ): def __init__( self , A_ , A_=7 , A_=3 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=True , A_=1 / 255 , A_=True , ): '''simple docstring''' UpperCamelCase : Dict = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} UpperCamelCase : List[str] = parent UpperCamelCase : Dict = batch_size UpperCamelCase : str = num_channels UpperCamelCase : Optional[Any] = min_resolution UpperCamelCase : Dict = max_resolution UpperCamelCase : int = do_resize UpperCamelCase : Any = size UpperCamelCase : Tuple = do_normalize UpperCamelCase : Optional[int] = image_mean UpperCamelCase : Union[str, Any] = image_std UpperCamelCase : Optional[int] = do_rescale UpperCamelCase : str = rescale_factor UpperCamelCase : int = do_pad def __UpperCamelCase( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __UpperCamelCase( self , A_ , A_=False ): '''simple docstring''' if not batched: UpperCamelCase : Optional[int] = image_inputs[0] if isinstance(A_ , Image.Image ): UpperCamelCase , UpperCamelCase : List[str] = image.size else: UpperCamelCase , UpperCamelCase : Tuple = image.shape[1], image.shape[2] if w < h: UpperCamelCase : Dict = int(self.size["shortest_edge"] * h / w ) UpperCamelCase : Dict = self.size["shortest_edge"] elif w > h: UpperCamelCase : Optional[int] = self.size["shortest_edge"] UpperCamelCase : Union[str, Any] = int(self.size["shortest_edge"] * w / h ) else: UpperCamelCase : List[str] = self.size["shortest_edge"] UpperCamelCase : Optional[int] = self.size["shortest_edge"] else: UpperCamelCase : List[Any] = [] for image in image_inputs: UpperCamelCase , UpperCamelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase : List[Any] = max(A_ , key=lambda A_ : item[0] )[0] UpperCamelCase : int = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A__ ( __snake_case , unittest.TestCase ): _UpperCAmelCase :int = DeformableDetrImageProcessor if is_vision_available() else None def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = DeformableDetrImageProcessingTester(self ) @property def __UpperCamelCase( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , "image_mean" ) ) self.assertTrue(hasattr(A_ , "image_std" ) ) self.assertTrue(hasattr(A_ , "do_normalize" ) ) self.assertTrue(hasattr(A_ , "do_resize" ) ) self.assertTrue(hasattr(A_ , "do_rescale" ) ) self.assertTrue(hasattr(A_ , "do_pad" ) ) self.assertTrue(hasattr(A_ , "size" ) ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , A_ ) UpperCamelCase : str = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , A_ ) def __UpperCamelCase( self ): '''simple docstring''' pass def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input UpperCamelCase : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCamelCase , UpperCamelCase : Optional[Any] = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase , UpperCamelCase : int = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) UpperCamelCase : Any = image_processing(A_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input UpperCamelCase : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCamelCase , UpperCamelCase : int = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase : Optional[int] = image_processing(A_ , return_tensors="pt" ).pixel_values UpperCamelCase , UpperCamelCase : Optional[Any] = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input UpperCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCamelCase , UpperCamelCase : Optional[int] = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase : Union[str, Any] = image_processing(A_ , return_tensors="pt" ).pixel_values UpperCamelCase , UpperCamelCase : Dict = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: UpperCamelCase : str = json.loads(f.read() ) UpperCamelCase : Dict = {"image_id": 3_9769, "annotations": target} # encode them UpperCamelCase : str = DeformableDetrImageProcessor() UpperCamelCase : Optional[Any] = image_processing(images=A_ , annotations=A_ , return_tensors="pt" ) # verify pixel values UpperCamelCase : Optional[int] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , A_ ) UpperCamelCase : Any = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , A_ , atol=1e-4 ) ) # verify area UpperCamelCase : Union[str, Any] = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , A_ ) ) # verify boxes UpperCamelCase : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , A_ ) UpperCamelCase : List[Any] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , A_ , atol=1e-3 ) ) # verify image_id UpperCamelCase : Optional[Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , A_ ) ) # verify is_crowd UpperCamelCase : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , A_ ) ) # verify class_labels UpperCamelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , A_ ) ) # verify orig_size UpperCamelCase : Dict = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , A_ ) ) # verify size UpperCamelCase : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , A_ ) ) @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: UpperCamelCase : Optional[int] = json.loads(f.read() ) UpperCamelCase : Any = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} UpperCamelCase : Tuple = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them UpperCamelCase : List[Any] = DeformableDetrImageProcessor(format="coco_panoptic" ) UpperCamelCase : Dict = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors="pt" ) # verify pixel values UpperCamelCase : Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , A_ ) UpperCamelCase : List[Any] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , A_ , atol=1e-4 ) ) # verify area UpperCamelCase : Union[str, Any] = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , A_ ) ) # verify boxes UpperCamelCase : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , A_ ) UpperCamelCase : Any = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , A_ , atol=1e-3 ) ) # verify image_id UpperCamelCase : Union[str, Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , A_ ) ) # verify is_crowd UpperCamelCase : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , A_ ) ) # verify class_labels UpperCamelCase : Any = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , A_ ) ) # verify masks UpperCamelCase : Dict = 82_2873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , A_ ) # verify orig_size UpperCamelCase : List[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , A_ ) ) # verify size UpperCamelCase : List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , A_ ) )
52
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : torch.FloatTensor A__ : Optional[torch.FloatTensor] = None def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=0.999 , __lowerCAmelCase="cosine" , ) -> Union[str, Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(__lowerCAmelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowerCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __lowercase : Dict = [] for i in range(__lowerCAmelCase ): __lowercase : Optional[Any] = i / num_diffusion_timesteps __lowercase : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCAmelCase ) / alpha_bar_fn(__lowerCAmelCase ) , __lowerCAmelCase ) ) return torch.tensor(__lowerCAmelCase , dtype=torch.floataa ) class __lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" A__ : Tuple = 1 @register_to_config def __init__( self : str , _snake_case : int = 1000 , _snake_case : float = 0.00_01 , _snake_case : float = 0.02 , _snake_case : str = "linear" , _snake_case : Optional[Union[np.ndarray, List[float]]] = None , _snake_case : bool = True , _snake_case : bool = True , _snake_case : int = 0 , _snake_case : str = "epsilon" , _snake_case : float = 1.0 , **_snake_case : Tuple , ): if kwargs.get('''set_alpha_to_one''' , _snake_case ) is not None: __lowercase : str = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , _snake_case , standard_warn=_snake_case ) __lowercase : Dict = kwargs['''set_alpha_to_one'''] if trained_betas is not None: __lowercase : Optional[int] = torch.tensor(_snake_case , dtype=torch.floataa ) elif beta_schedule == "linear": __lowercase : Any = torch.linspace(_snake_case , _snake_case , _snake_case , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowercase : str = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _snake_case , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowercase : Optional[Any] = betas_for_alpha_bar(_snake_case ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) __lowercase : str = 1.0 - self.betas __lowercase : List[str] = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. __lowercase : str = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution __lowercase : Any = 1.0 # setable values __lowercase : Tuple = None __lowercase : Tuple = torch.from_numpy(np.arange(0 , _snake_case ).copy().astype(np.intaa ) ) def snake_case_ ( self : List[str] , _snake_case : torch.FloatTensor , _snake_case : Optional[int] = None ): return sample def snake_case_ ( self : int , _snake_case : int , _snake_case : Union[str, torch.device] = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) __lowercase : Optional[Any] = num_inference_steps __lowercase : Union[str, Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowercase : List[Any] = (np.arange(0 , _snake_case ) * step_ratio).round().copy().astype(np.intaa ) __lowercase : str = torch.from_numpy(_snake_case ).to(_snake_case ) self.timesteps += self.config.steps_offset def snake_case_ ( self : int , _snake_case : torch.FloatTensor , _snake_case : int , _snake_case : torch.FloatTensor , _snake_case : float = 0.0 , _snake_case : bool = False , _snake_case : Optional[torch.FloatTensor] = None , _snake_case : bool = True , ): # 1. get previous step value (=t+1) __lowercase : Union[str, Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process __lowercase : Any = self.alphas_cumprod[timestep] __lowercase : Any = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) __lowercase : Dict = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": __lowercase : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 __lowercase : str = model_output elif self.config.prediction_type == "sample": __lowercase : Any = model_output __lowercase : Optional[int] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": __lowercase : List[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output __lowercase : Tuple = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: __lowercase : Optional[int] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_snake_case , pred_original_sample=_snake_case ) def __len__( self : Any ): return self.config.num_train_timesteps
156
0
import itertools import string from collections.abc import Generator, Iterable def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Generator[tuple[str, ...], None, None]: """simple docstring""" UpperCamelCase_ = iter(SCREAMING_SNAKE_CASE_ ) while True: UpperCamelCase_ = tuple(itertools.islice(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if not chunk: return yield chunk def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> str: """simple docstring""" UpperCamelCase_ = "".join([c.upper() for c in dirty if c in string.ascii_letters] ) UpperCamelCase_ = "" if len(SCREAMING_SNAKE_CASE_ ) < 2: return dirty for i in range(len(SCREAMING_SNAKE_CASE_ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(SCREAMING_SNAKE_CASE_ ) & 1: clean += "X" return clean def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> list[str]: """simple docstring""" UpperCamelCase_ = "ABCDEFGHIKLMNOPQRSTUVWXYZ" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler UpperCamelCase_ = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(SCREAMING_SNAKE_CASE_ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(SCREAMING_SNAKE_CASE_ ) return table def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: """simple docstring""" UpperCamelCase_ = generate_table(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = prepare_input(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(SCREAMING_SNAKE_CASE_ , 2 ): UpperCamelCase_ , UpperCamelCase_ = divmod(table.index(SCREAMING_SNAKE_CASE_ ) , 5 ) UpperCamelCase_ , UpperCamelCase_ = divmod(table.index(SCREAMING_SNAKE_CASE_ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: """simple docstring""" UpperCamelCase_ = generate_table(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(SCREAMING_SNAKE_CASE_ , 2 ): UpperCamelCase_ , UpperCamelCase_ = divmod(table.index(SCREAMING_SNAKE_CASE_ ) , 5 ) UpperCamelCase_ , UpperCamelCase_ = divmod(table.index(SCREAMING_SNAKE_CASE_ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
359
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __magic_name__ ( snake_case , snake_case , snake_case , unittest.TestCase ): UpperCamelCase_ :int = AltDiffusionPipeline UpperCamelCase_ :int = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ :List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase_ :Any = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ :List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self )-> int: torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) UpperCamelCase_ = CLIPTextModel(_lowercase ) UpperCamelCase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) UpperCamelCase_ = 77 UpperCamelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCAmelCase_ ( self , _lowercase , _lowercase=0 )-> Optional[Any]: if str(_lowercase ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_lowercase ) else: UpperCamelCase_ = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self )-> Optional[Any]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def UpperCAmelCase_ ( self )-> str: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def UpperCAmelCase_ ( self )-> str: UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase_ = RobertaSeriesModelWithTransformation(_lowercase ) UpperCamelCase_ = text_encoder UpperCamelCase_ = AltDiffusionPipeline(**_lowercase ) UpperCamelCase_ = alt_pipe.to(_lowercase ) alt_pipe.set_progress_bar_config(disable=_lowercase ) UpperCamelCase_ = self.get_dummy_inputs(_lowercase ) UpperCamelCase_ = "A photo of an astronaut" UpperCamelCase_ = alt_pipe(**_lowercase ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = PNDMScheduler(skip_prk_steps=_lowercase ) torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase_ = RobertaSeriesModelWithTransformation(_lowercase ) UpperCamelCase_ = text_encoder UpperCamelCase_ = AltDiffusionPipeline(**_lowercase ) UpperCamelCase_ = alt_pipe.to(_lowercase ) alt_pipe.set_progress_bar_config(disable=_lowercase ) UpperCamelCase_ = self.get_dummy_inputs(_lowercase ) UpperCamelCase_ = alt_pipe(**_lowercase ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def UpperCAmelCase_ ( self )-> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self )-> str: # make sure here that pndm scheduler skips prk UpperCamelCase_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , safety_checker=_lowercase ) UpperCamelCase_ = alt_pipe.to(_lowercase ) alt_pipe.set_progress_bar_config(disable=_lowercase ) UpperCamelCase_ = "A painting of a squirrel eating a burger" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe([prompt] , generator=_lowercase , guidance_scale=6.0 , num_inference_steps=20 , output_type="np" ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" , subfolder="scheduler" ) UpperCamelCase_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , scheduler=_lowercase , safety_checker=_lowercase ) UpperCamelCase_ = alt_pipe.to(_lowercase ) alt_pipe.set_progress_bar_config(disable=_lowercase ) UpperCamelCase_ = "A painting of a squirrel eating a burger" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="numpy" ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
60
0
'''simple docstring''' _lowercase : Tuple = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def snake_case_ ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def snake_case_ ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
93
def A ( lowercase ) -> str: '''simple docstring''' return " ".join( ''.join(word[::-1] ) if len(lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
222
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Optional[int] = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[Any] = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[Any] = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys lowerCamelCase__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
363
import cva import numpy as np class lowerCamelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : float , _lowerCAmelCase : int ): if k in (0.04, 0.06): SCREAMING_SNAKE_CASE_ = k SCREAMING_SNAKE_CASE_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : Tuple ): return str(self.k ) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_ = cva.imread(_lowerCAmelCase , 0 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = img.copy() SCREAMING_SNAKE_CASE_ = cva.cvtColor(_lowerCAmelCase , cva.COLOR_GRAY2RGB ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.gradient(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = dx**2 SCREAMING_SNAKE_CASE_ = dy**2 SCREAMING_SNAKE_CASE_ = dx * dy SCREAMING_SNAKE_CASE_ = 0.04 SCREAMING_SNAKE_CASE_ = self.window_size // 2 for y in range(_lowerCAmelCase , h - offset ): for x in range(_lowerCAmelCase , w - offset ): SCREAMING_SNAKE_CASE_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = (wxx * wyy) - (wxy**2) SCREAMING_SNAKE_CASE_ = wxx + wyy SCREAMING_SNAKE_CASE_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase__ : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase__ , lowerCamelCase__ : str = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
210
0
"""simple docstring""" print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
86
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : int = logging.get_logger(__name__) A_ : str = {'tokenizer_file': 'tokenizer.json'} A_ : List[str] = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class A_ ( _a ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = ["input_ids", "attention_mask"] a__ = None def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__=False , lowercase__=False , **lowercase__ , ) -> Dict: super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , add_prefix_space=lowercase__ , clean_up_tokenization_spaces=lowercase__ , **lowercase__ , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: __UpperCAmelCase = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = pre_tok_class(**lowercase__ ) __UpperCAmelCase = add_prefix_space def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]: __UpperCAmelCase = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> List[int]: __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: __UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
333
0
A_ : List[Any] = {str(digit): digit**5 for digit in range(10)} def snake_case (UpperCAmelCase__ ) -> int: return sum(DIGITS_FIFTH_POWER[digit] for digit in str(UpperCAmelCase__ ) ) def snake_case () -> int: return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(UpperCAmelCase__ ) ) if __name__ == "__main__": print(solution())
292
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): # A mock response for an HTTP head request to emulate server down UpperCamelCase_: Any = mock.Mock() UpperCamelCase_: Dict = 5_0_0 UpperCamelCase_: Any = {} UpperCamelCase_: Tuple = HTTPError UpperCamelCase_: List[str] = {} # Download this model to make sure it's in the cache. UpperCamelCase_: int = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_lowerCamelCase ) as mock_head: UpperCamelCase_: Optional[int] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _a ( self ): # A mock response for an HTTP head request to emulate server down UpperCamelCase_: Union[str, Any] = mock.Mock() UpperCamelCase_: Union[str, Any] = 5_0_0 UpperCamelCase_: str = {} UpperCamelCase_: List[str] = HTTPError UpperCamelCase_: Optional[int] = {} # Download this model to make sure it's in the cache. UpperCamelCase_: List[str] = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_lowerCamelCase ) as mock_head: UpperCamelCase_: str = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def _a ( self ): # This test is for deprecated behavior and can be removed in v5 try: UpperCamelCase_: Optional[int] = tempfile.mktemp() with open(_lowerCamelCase , 'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , _lowerCamelCase ) UpperCamelCase_: Tuple = AlbertTokenizer.from_pretrained(_lowerCamelCase ) finally: os.remove(_lowerCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , _lowerCamelCase ) UpperCamelCase_: List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_0_0_0 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def _a ( self ): # This test is for deprecated behavior and can be removed in v5 UpperCamelCase_: Any = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" a : Dict =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def _a ( cls ): UpperCamelCase_: Optional[int] = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def _a ( cls ): try: delete_repo(token=cls._token , repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def _a ( self ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_: List[Any] = os.path.join(_lowerCamelCase , 'vocab.txt' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase_: int = BertTokenizer(_lowerCamelCase ) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token ) UpperCamelCase_: Union[str, Any] = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCamelCase , repo_id='test-tokenizer' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) UpperCamelCase_: List[str] = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def _a ( self ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_: Optional[Any] = os.path.join(_lowerCamelCase , 'vocab.txt' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase_: Union[str, Any] = BertTokenizer(_lowerCamelCase ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token ) UpperCamelCase_: Dict = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( _lowerCamelCase , repo_id='valid_org/test-tokenizer-org' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) UpperCamelCase_: Optional[Any] = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def _a ( self ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_: Optional[Any] = os.path.join(_lowerCamelCase , 'vocab.txt' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase_: Optional[int] = CustomTokenizer(_lowerCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCamelCase_: str = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_: Optional[Any] = os.path.join(_lowerCamelCase , 'vocab.txt' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase_: Dict = BertTokenizerFast.from_pretrained(_lowerCamelCase ) bert_tokenizer.save_pretrained(_lowerCamelCase ) UpperCamelCase_: List[str] = CustomTokenizerFast.from_pretrained(_lowerCamelCase ) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCamelCase_: Tuple = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' ) UpperCamelCase_: int = AutoTokenizer.from_pretrained( f'''{USER}/test-dynamic-tokenizer''' , use_fast=_lowerCamelCase , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Dict = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def _a ( self ): UpperCamelCase_: Optional[int] = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] ) def _a ( self ): UpperCamelCase_: int = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] ) def _a ( self ): UpperCamelCase_: str = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def _a ( self ): UpperCamelCase_: Union[str, Any] = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def _a ( self ): UpperCamelCase_: List[str] = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] ) def _a ( self ): UpperCamelCase_: List[str] = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] ) def _a ( self ): # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCamelCase_: Union[str, Any] = Trie() UpperCamelCase_: Any = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(_lowerCamelCase , ['AB', 'C'] )
292
1
from math import factorial def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE = 100 ): return sum(map(__SCREAMING_SNAKE_CASE , str(factorial(__SCREAMING_SNAKE_CASE ) ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
195
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = tempfile.mkdtemp() lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) lowercase = { 'do_resize': True, 'size': {'height': 224, 'width': 224}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], 'do_convert_rgb': True, } lowercase = os.path.join(self.tmpdirname , snake_case ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_tokenizer() lowercase = self.get_rust_tokenizer() lowercase = self.get_image_processor() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) processor_slow.save_pretrained(self.tmpdirname ) lowercase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case ) lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) processor_fast.save_pretrained(self.tmpdirname ) lowercase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , snake_case ) self.assertIsInstance(processor_fast.tokenizer , snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , snake_case ) self.assertIsInstance(processor_fast.image_processor , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) lowercase = self.get_image_processor(do_normalize=snake_case ) lowercase = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=snake_case ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) lowercase = self.prepare_image_inputs() lowercase = image_processor(snake_case , return_tensors='np' ) lowercase = processor(images=snake_case , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) lowercase = 'Alexandra,T-shirt的价格是15便士。' lowercase = processor(text=snake_case ) lowercase = tokenizer(snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) lowercase = 'Alexandra,T-shirt的价格是15便士。' lowercase = self.prepare_image_inputs() lowercase = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(snake_case ): processor() def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase = processor.batch_decode(snake_case ) lowercase = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) lowercase = 'Alexandra,T-shirt的价格是15便士。' lowercase = self.prepare_image_inputs() lowercase = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
195
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) class __lowerCamelCase ( __lowercase ): __UpperCamelCase = '''timm_backbone''' def __init__(self , lowerCamelCase=None , lowerCamelCase=3 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ): '''simple docstring''' super().__init__(**lowerCamelCase ) _lowerCAmelCase = backbone _lowerCAmelCase = num_channels _lowerCAmelCase = features_only _lowerCAmelCase = use_pretrained_backbone _lowerCAmelCase = True _lowerCAmelCase = out_indices if out_indices is not None else (-1,)
363
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE : Dict = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> List[str]: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> int: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _lowerCAmelCase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
317
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( a__ ): '''simple docstring''' A : Optional[Any] = ['''pixel_values'''] def __init__( self, A = True, A = None, A = PILImageResampling.BILINEAR, A = True, A = None, A = True, A = 1 / 255, A = True, A = None, A = None, **A, ): '''simple docstring''' super().__init__(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE : Any = size if size is not None else {'''shortest_edge''': 256} SCREAMING_SNAKE_CASE : List[str] = get_size_dict(UpperCamelCase_, default_to_square=UpperCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(UpperCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = do_resize SCREAMING_SNAKE_CASE : List[Any] = size SCREAMING_SNAKE_CASE : Optional[Any] = resample SCREAMING_SNAKE_CASE : List[str] = do_center_crop SCREAMING_SNAKE_CASE : Dict = crop_size SCREAMING_SNAKE_CASE : Optional[Any] = do_rescale SCREAMING_SNAKE_CASE : List[str] = rescale_factor SCREAMING_SNAKE_CASE : List[Any] = do_normalize SCREAMING_SNAKE_CASE : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self, A, A, A = PILImageResampling.BICUBIC, A = None, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = get_size_dict(UpperCamelCase_, default_to_square=UpperCamelCase_ ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) SCREAMING_SNAKE_CASE : List[str] = get_resize_output_image_size(UpperCamelCase_, size=size['shortest_edge'], default_to_square=UpperCamelCase_ ) return resize(UpperCamelCase_, size=UpperCamelCase_, resample=UpperCamelCase_, data_format=UpperCamelCase_, **UpperCamelCase_ ) def UpperCamelCase_ ( self, A, A, A = None, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = get_size_dict(UpperCamelCase_ ) return center_crop(UpperCamelCase_, size=(size['height'], size['width']), data_format=UpperCamelCase_, **UpperCamelCase_ ) def UpperCamelCase_ ( self, A, A, A = None, **A ): '''simple docstring''' return rescale(UpperCamelCase_, scale=UpperCamelCase_, data_format=UpperCamelCase_, **UpperCamelCase_ ) def UpperCamelCase_ ( self, A, A, A, A = None, **A, ): '''simple docstring''' return normalize(UpperCamelCase_, mean=UpperCamelCase_, std=UpperCamelCase_, data_format=UpperCamelCase_, **UpperCamelCase_ ) def UpperCamelCase_ ( self, A, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = ChannelDimension.FIRST, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : Dict = size if size is not None else self.size SCREAMING_SNAKE_CASE : List[str] = get_size_dict(UpperCamelCase_, default_to_square=UpperCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : int = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE : List[str] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE : List[str] = get_size_dict(UpperCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : List[str] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : Union[str, Any] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : str = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : Union[str, Any] = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : str = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE : Any = [self.resize(image=UpperCamelCase_, size=UpperCamelCase_, resample=UpperCamelCase_ ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE : int = [self.center_crop(image=UpperCamelCase_, size=UpperCamelCase_ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : Optional[Any] = [self.rescale(image=UpperCamelCase_, scale=UpperCamelCase_ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE : Tuple = [self.normalize(image=UpperCamelCase_, mean=UpperCamelCase_, std=UpperCamelCase_ ) for image in images] SCREAMING_SNAKE_CASE : Union[str, Any] = [to_channel_dimension_format(UpperCamelCase_, UpperCamelCase_ ) for image in images] SCREAMING_SNAKE_CASE : Union[str, Any] = {'''pixel_values''': images} return BatchFeature(data=UpperCamelCase_, tensor_type=UpperCamelCase_ )
251
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL snake_case__ : List[Any] = logging.get_logger(__name__) def _snake_case ( _snake_case : Tuple ): if isinstance(_snake_case , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_snake_case , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_snake_case ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class snake_case_( a__ ): __UpperCamelCase = ['''pixel_values'''] def __init__( self : Optional[int] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , **UpperCamelCase_ : Tuple , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = size if size is not None else {'''shortest_edge''': 2_5_6} lowerCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) lowerCAmelCase : Tuple = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowerCAmelCase : Dict = get_size_dict(UpperCamelCase_ , param_name='''crop_size''' ) lowerCAmelCase : Any = do_resize lowerCAmelCase : Union[str, Any] = size lowerCAmelCase : List[str] = do_center_crop lowerCAmelCase : int = crop_size lowerCAmelCase : Dict = resample lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Any = rescale_factor lowerCAmelCase : List[Any] = offset lowerCAmelCase : Tuple = do_normalize lowerCAmelCase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Optional[Any] , ): lowerCAmelCase : Optional[int] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) if "shortest_edge" in size: lowerCAmelCase : List[str] = get_resize_output_image_size(UpperCamelCase_ , size['''shortest_edge'''] , default_to_square=UpperCamelCase_ ) elif "height" in size and "width" in size: lowerCAmelCase : Any = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Union[str, Any] , ): lowerCAmelCase : Tuple = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(UpperCamelCase_ , size=(size['''height'''], size['''width''']) , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[int, float] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Optional[Any] , ): lowerCAmelCase : List[str] = image.astype(np.floataa ) if offset: lowerCAmelCase : Union[str, Any] = image - (scale / 2) return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[float, List[float]] , UpperCamelCase_ : Union[float, List[float]] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Any , ): return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : ImageInput , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : float = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. lowerCAmelCase : List[str] = to_numpy_array(UpperCamelCase_ ) if do_resize: lowerCAmelCase : Optional[int] = self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) if do_center_crop: lowerCAmelCase : List[str] = self.center_crop(UpperCamelCase_ , size=UpperCamelCase_ ) if do_rescale: lowerCAmelCase : str = self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ , offset=UpperCamelCase_ ) if do_normalize: lowerCAmelCase : Optional[int] = self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) lowerCAmelCase : str = to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) return image def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : ImageInput , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : float = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , UpperCamelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase_ : List[str] , ): lowerCAmelCase : str = do_resize if do_resize is not None else self.do_resize lowerCAmelCase : Any = resample if resample is not None else self.resample lowerCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase : str = offset if offset is not None else self.offset lowerCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean lowerCAmelCase : Any = image_std if image_std is not None else self.image_std lowerCAmelCase : List[str] = size if size is not None else self.size lowerCAmelCase : Tuple = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase : Any = get_size_dict(UpperCamelCase_ , param_name='''crop_size''' ) if not valid_images(UpperCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowerCAmelCase : List[str] = make_batched(UpperCamelCase_ ) lowerCAmelCase : Dict = [ [ self._preprocess_image( image=UpperCamelCase_ , do_resize=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , do_center_crop=UpperCamelCase_ , crop_size=UpperCamelCase_ , do_rescale=UpperCamelCase_ , rescale_factor=UpperCamelCase_ , offset=UpperCamelCase_ , do_normalize=UpperCamelCase_ , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ , data_format=UpperCamelCase_ , ) for img in video ] for video in videos ] lowerCAmelCase : Optional[Any] = {'''pixel_values''': videos} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
60
0
"""simple docstring""" import os import numpy import onnx def _snake_case ( lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Any: '''simple docstring''' lowerCAmelCase_ :str = a.name lowerCAmelCase_ :Tuple = b.name lowerCAmelCase_ :Union[str, Any] = '''''' lowerCAmelCase_ :int = '''''' lowerCAmelCase_ :str = a == b lowerCAmelCase_ :Optional[Any] = name_a lowerCAmelCase_ :Union[str, Any] = name_b return res def _snake_case ( lowercase__ : Dict , lowercase__ : Any , lowercase__ : Dict ) -> Optional[Any]: '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(__lowerCAmelCase , __lowerCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , __lowerCAmelCase , __lowerCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , __lowerCAmelCase , __lowerCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , __lowerCAmelCase , __lowerCAmelCase ) def _snake_case ( lowercase__ : Optional[int] , lowercase__ : str , lowercase__ : List[Any] ) -> Dict: '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _snake_case ( lowercase__ : Optional[Any] , lowercase__ : Dict , lowercase__ : Any ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ :str = list(model.graph.initializer ) lowerCAmelCase_ :List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowerCAmelCase_ :Tuple = inits[i].name lowerCAmelCase_ :Any = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , __lowerCAmelCase , __lowerCAmelCase ) def _snake_case ( lowercase__ : Tuple ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ :Optional[int] = os.path.dirname(__lowerCAmelCase ) lowerCAmelCase_ :int = os.path.basename(__lowerCAmelCase ) lowerCAmelCase_ :Optional[int] = onnx.load(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) lowerCAmelCase_ :List[Any] = list(model.graph.initializer ) lowerCAmelCase_ :Any = set() lowerCAmelCase_ :Tuple = {} lowerCAmelCase_ :Optional[Any] = [] lowerCAmelCase_ :str = 0 for i in range(len(__lowerCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(__lowerCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(__lowerCAmelCase ) dup_set.add(__lowerCAmelCase ) lowerCAmelCase_ :Optional[Any] = inits[j].data_type lowerCAmelCase_ :str = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print("""unexpected data type: """ , __lowerCAmelCase ) total_reduced_size += mem_size lowerCAmelCase_ :Optional[int] = inits[i].name lowerCAmelCase_ :int = inits[j].name if name_i in dup_map: dup_map[name_i].append(__lowerCAmelCase ) else: lowerCAmelCase_ :Any = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , """GB""" ) lowerCAmelCase_ :Tuple = sorted(__lowerCAmelCase ) _remove_dup_initializers_from_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase_ :Dict = '''optimized_''' + model_file_name lowerCAmelCase_ :Dict = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) onnx.save(__lowerCAmelCase , __lowerCAmelCase ) return new_model
361
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Any = """laion/clap-htsat-unfused""" lowerCAmelCase_ :Optional[Any] = tempfile.mkdtemp() def __lowerCAmelCase ( self , **__A ) -> List[Any]: return RobertaTokenizer.from_pretrained(self.checkpoint , **__A ) def __lowerCAmelCase ( self , **__A ) -> Tuple: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **__A ) def __lowerCAmelCase ( self ) -> int: shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :Optional[Any] = self.get_tokenizer() lowerCAmelCase_ :Optional[Any] = self.get_feature_extractor() lowerCAmelCase_ :Optional[int] = ClapProcessor(tokenizer=__A , feature_extractor=__A ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ :Optional[Any] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __A ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Dict = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ :str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase_ :Dict = self.get_feature_extractor(do_normalize=__A , padding_value=1.0 ) lowerCAmelCase_ :Union[str, Any] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __A ) def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Dict = self.get_feature_extractor() lowerCAmelCase_ :str = self.get_tokenizer() lowerCAmelCase_ :List[Any] = ClapProcessor(tokenizer=__A , feature_extractor=__A ) lowerCAmelCase_ :Optional[Any] = floats_list((3, 1000) ) lowerCAmelCase_ :Optional[Any] = feature_extractor(__A , return_tensors="""np""" ) lowerCAmelCase_ :str = processor(audios=__A , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :List[Any] = self.get_feature_extractor() lowerCAmelCase_ :Any = self.get_tokenizer() lowerCAmelCase_ :Optional[int] = ClapProcessor(tokenizer=__A , feature_extractor=__A ) lowerCAmelCase_ :List[Any] = """This is a test string""" lowerCAmelCase_ :Dict = processor(text=__A ) lowerCAmelCase_ :List[str] = tokenizer(__A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :int = self.get_feature_extractor() lowerCAmelCase_ :Tuple = self.get_tokenizer() lowerCAmelCase_ :Optional[Any] = ClapProcessor(tokenizer=__A , feature_extractor=__A ) lowerCAmelCase_ :int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase_ :Tuple = processor.batch_decode(__A ) lowerCAmelCase_ :Optional[Any] = tokenizer.batch_decode(__A ) self.assertListEqual(__A , __A ) def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Optional[Any] = self.get_feature_extractor() lowerCAmelCase_ :Any = self.get_tokenizer() lowerCAmelCase_ :Optional[int] = ClapProcessor(tokenizer=__A , feature_extractor=__A ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
1
0
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class lowercase__( UpperCAmelCase ): """simple docstring""" a :List[str] = 'encodec' def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=[1.5, 3.0, 6.0, 12.0, 24.0] , SCREAMING_SNAKE_CASE_ : Dict=2_4_0_0_0 , SCREAMING_SNAKE_CASE_ : List[Any]=1 , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : List[str]=1_2_8 , SCREAMING_SNAKE_CASE_ : str=3_2 , SCREAMING_SNAKE_CASE_ : str=1 , SCREAMING_SNAKE_CASE_ : Dict=[8, 5, 4, 2] , SCREAMING_SNAKE_CASE_ : Optional[Any]="weight_norm" , SCREAMING_SNAKE_CASE_ : str=7 , SCREAMING_SNAKE_CASE_ : Tuple=7 , SCREAMING_SNAKE_CASE_ : Tuple=3 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : str="reflect" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : str=1.0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1_0_2_4 , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , **SCREAMING_SNAKE_CASE_ : Dict , ) -> int: lowercase_ = target_bandwidths lowercase_ = sampling_rate lowercase_ = audio_channels lowercase_ = normalize lowercase_ = chunk_length_s lowercase_ = overlap lowercase_ = hidden_size lowercase_ = num_filters lowercase_ = num_residual_layers lowercase_ = upsampling_ratios lowercase_ = norm_type lowercase_ = kernel_size lowercase_ = last_kernel_size lowercase_ = residual_kernel_size lowercase_ = dilation_growth_rate lowercase_ = use_causal_conv lowercase_ = pad_mode lowercase_ = compress lowercase_ = num_lstm_layers lowercase_ = trim_right_ratio lowercase_ = codebook_size lowercase_ = codebook_dim if codebook_dim is not None else hidden_size lowercase_ = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**SCREAMING_SNAKE_CASE_ ) @property def _lowercase ( self : List[str] ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase ( self : str ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def _lowercase ( self : Optional[int] ) -> int: lowercase_ = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def _lowercase ( self : str ) -> int: return int(1_0_0_0 * self.target_bandwidths[-1] // (self.frame_rate * 1_0) )
30
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __a : Optional[Any] = logging.get_logger(__name__) __a : List[str] = TypeVar("""DatasetType""", Dataset, IterableDataset) def UpperCAmelCase ( lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = "first_exhausted" , ): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(lowercase ): if not isinstance(lowercase , (Dataset, IterableDataset) ): if isinstance(lowercase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(lowercase )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowercase ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowercase ).__name__}." ) if i == 0: __lowercase , __lowercase = ( (Dataset, IterableDataset) if isinstance(lowercase , lowercase ) else (IterableDataset, Dataset) ) elif not isinstance(lowercase , lowercase ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowercase , lowercase , lowercase , info=lowercase , split=lowercase , stopping_strategy=lowercase ) else: return _interleave_iterable_datasets( lowercase , lowercase , lowercase , info=lowercase , split=lowercase , stopping_strategy=lowercase ) def UpperCAmelCase ( lowercase , lowercase = None , lowercase = None , lowercase = 0 , ): """simple docstring""" if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(lowercase ): if not isinstance(lowercase , (Dataset, IterableDataset) ): if isinstance(lowercase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(lowercase )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowercase ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowercase ).__name__}." ) if i == 0: __lowercase , __lowercase = ( (Dataset, IterableDataset) if isinstance(lowercase , lowercase ) else (IterableDataset, Dataset) ) elif not isinstance(lowercase , lowercase ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowercase , info=lowercase , split=lowercase , axis=lowercase ) else: return _concatenate_iterable_datasets(lowercase , info=lowercase , split=lowercase , axis=lowercase )
210
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self : Any ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[Any]=13 ,lowerCamelCase__ : Dict=32 ,lowerCamelCase__ : Optional[Any]=3 ,lowerCamelCase__ : Optional[int]=4 ,lowerCamelCase__ : List[Any]=[10, 20, 30, 40] ,lowerCamelCase__ : Tuple=[2, 2, 3, 2] ,lowerCamelCase__ : int=True ,lowerCamelCase__ : List[str]=True ,lowerCamelCase__ : Optional[Any]=37 ,lowerCamelCase__ : List[str]="gelu" ,lowerCamelCase__ : Optional[Any]=10 ,lowerCamelCase__ : int=0.02 ,lowerCamelCase__ : int=["stage2", "stage3", "stage4"] ,lowerCamelCase__ : Optional[int]=[2, 3, 4] ,lowerCamelCase__ : int=None ,) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = num_stages SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = out_features SCREAMING_SNAKE_CASE = out_indices SCREAMING_SNAKE_CASE = scope def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] ,self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_stages=self.num_stages ,hidden_act=self.hidden_act ,is_decoder=lowerCamelCase__ ,initializer_range=self.initializer_range ,out_features=self.out_features ,out_indices=self.out_indices ,num_labels=self.num_labels ,) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = ConvNextModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : str ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = ConvNextForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : int ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = ConvNextBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = ConvNextBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : Optional[int] = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) __snake_case : Optional[Any] = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) __snake_case : Any = True __snake_case : Optional[Any] = False __snake_case : Union[str, Any] = False __snake_case : Optional[int] = False __snake_case : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self : str ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = ConvNextModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ,hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Tuple: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[Any]: '''simple docstring''' return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : int ): SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) ,expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict: '''simple docstring''' for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = ConvNextModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __lowercase ( ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self : int ) -> str: '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=lowerCamelCase__ ,return_tensors="""pt""" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**lowerCamelCase__ ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase__ ,atol=1e-4 ) ) @require_torch class UpperCamelCase__ ( unittest.TestCase , lowerCAmelCase_ ): '''simple docstring''' __snake_case : Union[str, Any] = (ConvNextBackbone,) if is_torch_available() else () __snake_case : str = ConvNextConfig __snake_case : int = False def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = ConvNextModelTester(self )
193
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) class UpperCamelCase__ : '''simple docstring''' def __init__( self : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : int ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Tuple ) -> Optional[Any]: '''simple docstring''' if not self.initialized: SCREAMING_SNAKE_CASE = RagRetriever( lowerCamelCase__ ,question_encoder_tokenizer=lowerCamelCase__ ,generator_tokenizer=lowerCamelCase__ ,index=lowerCamelCase__ ,init_retrieval=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = True def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Any: '''simple docstring''' self.retriever.index.init_index() def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.retriever._main_retrieve(lowerCamelCase__ ,lowerCamelCase__ ) return doc_ids, retrieved_doc_embeds class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : int ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Dict=None ) -> Any: '''simple docstring''' if index is not None and index.is_initialized() and len(lowerCamelCase__ ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( lowerCamelCase__ ,question_encoder_tokenizer=lowerCamelCase__ ,generator_tokenizer=lowerCamelCase__ ,index=lowerCamelCase__ ,init_retrieval=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) for worker in self.retrieval_workers ] ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : Any ,lowerCamelCase__ : int ) -> Dict: '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. SCREAMING_SNAKE_CASE = self.retrieval_workers[random.randint(0 ,len(self.retrieval_workers ) - 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = ray.get(random_worker.retrieve.remote(lowerCamelCase__ ,lowerCamelCase__ ) ) else: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self._main_retrieve(lowerCamelCase__ ,lowerCamelCase__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCamelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Union[str, Any]=None ,**lowerCamelCase__ : Optional[Any] ) -> Any: '''simple docstring''' return super(lowerCamelCase__ ,cls ).get_tokenizers(lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : List[Any]=None ,**lowerCamelCase__ : Any ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = kwargs.pop("""config""" ,lowerCamelCase__ ) or RagConfig.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = RagTokenizer.from_pretrained(lowerCamelCase__ ,config=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rag_tokenizer.question_encoder SCREAMING_SNAKE_CASE = rag_tokenizer.generator if indexed_dataset is not None: SCREAMING_SNAKE_CASE = """custom""" SCREAMING_SNAKE_CASE = CustomHFIndex(config.retrieval_vector_size ,lowerCamelCase__ ) else: SCREAMING_SNAKE_CASE = cls._build_index(lowerCamelCase__ ) return cls( lowerCamelCase__ ,question_encoder_tokenizer=lowerCamelCase__ ,generator_tokenizer=lowerCamelCase__ ,retrieval_workers=lowerCamelCase__ ,index=lowerCamelCase__ ,)
193
1
"""simple docstring""" import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class _UpperCAmelCase ( lowercase_ , unittest.TestCase ): UpperCamelCase = FlaxAutoencoderKL @property def lowerCamelCase ( self :Any ): A = 4 A = 3 A = (32, 32) A = jax.random.PRNGKey(0 ) A = jax.random.uniform(__UpperCamelCase , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def lowerCamelCase ( self :int ): A = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } A = self.dummy_input return init_dict, inputs_dict
292
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class _UpperCAmelCase : @staticmethod def lowerCamelCase ( *__UpperCamelCase :List[Any] , **__UpperCamelCase :List[Any] ): pass def A__ ( UpperCamelCase ): A = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCAmelCase ( unittest.TestCase ): UpperCamelCase = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowerCamelCase ( self :Optional[Any] , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :List[str] , __UpperCamelCase :Optional[int] ): A = DepthEstimationPipeline(model=__UpperCamelCase , image_processor=__UpperCamelCase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase ( self :Dict , __UpperCamelCase :Optional[int] , __UpperCamelCase :Optional[Any] ): A = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , __UpperCamelCase ) import datasets A = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) A = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , __UpperCamelCase , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def lowerCamelCase ( self :Optional[Any] ): pass @slow @require_torch def lowerCamelCase ( self :Optional[Any] ): A = "Intel/dpt-large" A = pipeline("depth-estimation" , model=__UpperCamelCase ) A = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) A = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.662 ) @require_torch def lowerCamelCase ( self :Optional[Any] ): # This is highly irregular to have no small tests. self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
292
1
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __lowercase ( ) -> Tuple: '''simple docstring''' _A = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } _A = Dataset.from_dict(__lowercase ) return dataset class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def lowerCAmelCase ( self : str ): '''simple docstring''' _A = get_dataset() _A = make_duplicate_clusters(__UpperCAmelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = get_dataset() _A , _A = deduplicate_dataset(__UpperCAmelCase ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) print(__UpperCAmelCase ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , __UpperCAmelCase )
174
'''simple docstring''' import fire from utils import calculate_rouge, save_json def __lowercase ( __lowercase , __lowercase , __lowercase=None , **__lowercase ) -> Optional[int]: '''simple docstring''' _A = [x.strip() for x in open(__lowercase ).readlines()] _A = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] _A = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
174
1
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase__ ( lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE__ = False def __A (self ) -> Any: super().setUp() _lowercase =['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] _lowercase =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) _lowercase =['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] _lowercase ={'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} _lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase ) ) def __A (self , **UpperCAmelCase ) -> List[str]: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def __A (self , UpperCAmelCase ) -> Optional[int]: _lowercase ='''adapt act apte''' _lowercase ='''adapt act apte''' return input_text, output_text def __A (self ) -> str: _lowercase =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowercase ='''adapt act apte''' _lowercase =['''adapt''', '''act''', '''ap@@''', '''te'''] _lowercase =tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _lowercase =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] _lowercase =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase ) def __A (self ) -> Dict: _lowercase =BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1_3_8_4] _lowercase ='''I am a small frog.''' _lowercase =tok([src_text] , padding=UpperCAmelCase , truncation=UpperCAmelCase )['''input_ids'''] _lowercase =tok.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __A (self ) -> Dict: _lowercase =BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) _lowercase ='''I am a small frog .''' _lowercase ='''.''' _lowercase =tok(UpperCAmelCase )['''input_ids'''] _lowercase =tok(UpperCAmelCase )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
5
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a__ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: _snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: _snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: _snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert list(infos.keys() ) == expected_configs _snake_case : Optional[int] = expected_configs[0] assert expected_config in infos _snake_case : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: _snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert expected_config in infos _snake_case : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
317
0
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowercase ( )-> Dict: '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join a : List[Any] = "__test_patch_submodule_mock__" with patch_submodule(_test_patching , "os.path.join" , UpperCAmelCase__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowercase ( )-> Union[str, Any]: '''simple docstring''' assert _test_patching.open is open a : Optional[int] = "__test_patch_submodule_builtin_mock__" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , "open" , UpperCAmelCase__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowercase ( )-> List[Any]: '''simple docstring''' a : List[Any] = "__test_patch_submodule_missing_mock__" with patch_submodule(_test_patching , "pandas.read_csv" , UpperCAmelCase__ ): pass def lowercase ( )-> Dict: '''simple docstring''' a : List[str] = "__test_patch_submodule_missing_builtin_mock__" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , "len" , UpperCAmelCase__ ) is None with patch_submodule(_test_patching , "len" , UpperCAmelCase__ ): assert _test_patching.len is mock assert _test_patching.len is len def lowercase ( )-> Optional[int]: '''simple docstring''' a : Dict = "__test_patch_submodule_start_and_stop_mock__" a : Union[str, Any] = patch_submodule(_test_patching , "open" , UpperCAmelCase__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowercase ( )-> Optional[int]: '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join a : Union[str, Any] = "__test_patch_submodule_successive_join__" a : List[Any] = "__test_patch_submodule_successive_dirname__" a : str = "__test_patch_submodule_successive_rename__" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , "os.path.join" , UpperCAmelCase__ ): with patch_submodule(_test_patching , "os.rename" , UpperCAmelCase__ ): with patch_submodule(_test_patching , "os.path.dirname" , UpperCAmelCase__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , "os.rename" , UpperCAmelCase__ ): with patch_submodule(_test_patching , "os.path.join" , UpperCAmelCase__ ): with patch_submodule(_test_patching , "os.path.dirname" , UpperCAmelCase__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowercase ( )-> Dict: '''simple docstring''' a : Union[str, Any] = "__test_patch_submodule_doesnt_exist_mock__" with patch_submodule(_test_patching , "__module_that_doesn_exist__.__attribute_that_doesn_exist__" , UpperCAmelCase__ ): pass with patch_submodule(_test_patching , "os.__attribute_that_doesn_exist__" , UpperCAmelCase__ ): pass
363
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase ( )-> Union[str, Any]: '''simple docstring''' a : Union[str, Any] = torch.nn.Linear(2 , 4 ) a : Tuple = torch.optim.AdamW(model.parameters() , lr=1.0 ) a : Union[str, Any] = torch.optim.lr_scheduler.OneCycleLR(A_ , max_lr=0.0_1 , steps_per_epoch=2 , epochs=1 ) a : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) a : int = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowercase ( A_ )-> List[Any]: '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase ( A_ )-> Tuple: '''simple docstring''' a : Optional[int] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(A_ ) class _A ( _a ): """simple docstring""" @require_cuda def __snake_case ( self : Any): a : List[str] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(__UpperCAmelCase): a : Any = Accelerator(cpu=__UpperCAmelCase) def __snake_case ( self : List[Any]): a : str = Accelerator() a : Optional[Any] = GradientState() assert state.num_steps == 1 a : Dict = 4 assert state.num_steps == 4 assert state.sync_gradients is True a : Optional[int] = False assert state.sync_gradients is False GradientState._reset_state() def __snake_case ( self : str): a : int = Accelerator() a , a , a , a , a : Tuple = create_components() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Tuple = accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) self.assertTrue(prepared_model in accelerator._models) self.assertTrue(prepared_optimizer in accelerator._optimizers) self.assertTrue(prepared_scheduler in accelerator._schedulers) self.assertTrue(prepared_train_dl in accelerator._dataloaders) self.assertTrue(prepared_valid_dl in accelerator._dataloaders) def __snake_case ( self : Dict): a : Dict = Accelerator() a , a , a , a , a : Any = create_components() accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) accelerator.free_memory() self.assertTrue(len(accelerator._models) == 0) self.assertTrue(len(accelerator._optimizers) == 0) self.assertTrue(len(accelerator._schedulers) == 0) self.assertTrue(len(accelerator._dataloaders) == 0) def __snake_case ( self : int): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Any): pass with patch("torch.cuda.set_device" , __UpperCAmelCase), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64"): a : int = Accelerator() self.assertEqual(str(accelerator.state.device) , "cuda:64") def __snake_case ( self : List[str]): a : Tuple = Accelerator() a , a , a , a , a : Optional[Any] = create_components() accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a : Dict = get_signature(__UpperCAmelCase) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__UpperCAmelCase) # make sure random weights don't match load_random_weights(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) > 1e-3) # make sure loaded weights match accelerator.load_state(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) < 1e-3) def __snake_case ( self : Optional[int]): a : str = Accelerator() a , a , a , a , a : Dict = create_components() accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a : Union[str, Any] = get_signature(__UpperCAmelCase) # saving hook def save_config(__UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any]): a : Tuple = {"class_name": models[0].__class__.__name__} with open(os.path.join(__UpperCAmelCase , "data.json") , "w") as f: json.dump(__UpperCAmelCase , __UpperCAmelCase) # loading hook def load_config(__UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]): with open(os.path.join(__UpperCAmelCase , "data.json") , "r") as f: a : Optional[Any] = json.load(__UpperCAmelCase) a : Tuple = config["class_name"] a : Optional[int] = accelerator.register_save_state_pre_hook(__UpperCAmelCase) a : Tuple = accelerator.register_load_state_pre_hook(__UpperCAmelCase) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__UpperCAmelCase) # make sure random weights don't match with hooks load_random_weights(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) > 1e-3) # random class name to verify correct one is loaded a : int = "random" # make sure loaded weights match with hooks accelerator.load_state(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) < 1e-3) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__UpperCAmelCase) # make sure random weights don't match with hooks removed load_random_weights(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) > 1e-3) # random class name to verify correct one is loaded a : Dict = "random" # make sure loaded weights match with hooks removed accelerator.load_state(__UpperCAmelCase) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase)) < 1e-3) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__) def __snake_case ( self : Optional[Any]): a : List[str] = Accelerator() a , a , a , a , a : int = create_components() a : Tuple = None # This should work a , a , a , a , a , a : Any = accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) self.assertTrue(dummy_obj is None) def __snake_case ( self : List[str]): a : str = Accelerator() a , a , a , a , a : List[Any] = create_components() a : Union[str, Any] = [1, 2, 3] # This should work a , a , a , a , a , a : str = accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__UpperCAmelCase , "_is_accelerate_prepared" , __UpperCAmelCase) , __UpperCAmelCase , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def __snake_case ( self : Optional[int]): from transformers import AutoModelForCausalLM a : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=__UpperCAmelCase , device_map={"": 0} , ) a : Tuple = Accelerator() # This should work a : List[Any] = accelerator.prepare(__UpperCAmelCase) @slow @require_bnb def __snake_case ( self : Optional[int]): from transformers import AutoModelForCausalLM a : Dict = Accelerator() with init_empty_weights(): a : Any = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() a : Union[str, Any] = infer_auto_device_map(__UpperCAmelCase) a : str = "cpu" a : int = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=__UpperCAmelCase , load_in_abit=__UpperCAmelCase , llm_inta_enable_fpaa_cpu_offload=__UpperCAmelCase) # This should not work and get value error with self.assertRaises(__UpperCAmelCase): a : Optional[int] = accelerator.prepare(__UpperCAmelCase) @slow @require_bnb @require_multi_gpu def __snake_case ( self : Optional[int]): from transformers import AutoModelForCausalLM a : Union[str, Any] = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): a : List[str] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() a : Any = infer_auto_device_map(__UpperCAmelCase) a : Dict = 1 a : Any = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=__UpperCAmelCase , device_map=__UpperCAmelCase , ) a : int = Accelerator() # This should not work and get value error with self.assertRaises(__UpperCAmelCase): a : Optional[int] = accelerator.prepare(__UpperCAmelCase) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __snake_case ( self : Tuple): from transformers import AutoModelForCausalLM with init_empty_weights(): a : List[str] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) a : Tuple = infer_auto_device_map(__UpperCAmelCase) a : str = 1 a : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=__UpperCAmelCase , device_map=__UpperCAmelCase , ) a : str = Accelerator() # This should work a : Any = accelerator.prepare(__UpperCAmelCase) @require_cuda def __snake_case ( self : List[Any]): a : Tuple = torch.nn.Linear(10 , 10) a : int = torch.optim.SGD(model.parameters() , lr=0.01) a : Optional[Any] = Accelerator(cpu=__UpperCAmelCase) a : List[str] = accelerator.prepare(__UpperCAmelCase)
226
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = """dpr""" def __init__( self :Optional[Any] , lowercase_ :Tuple=3_05_22 , lowercase_ :Optional[int]=7_68 , lowercase_ :List[str]=12 , lowercase_ :Optional[int]=12 , lowercase_ :Union[str, Any]=30_72 , lowercase_ :int="gelu" , lowercase_ :int=0.1 , lowercase_ :int=0.1 , lowercase_ :int=5_12 , lowercase_ :Union[str, Any]=2 , lowercase_ :str=0.02 , lowercase_ :Optional[int]=1E-12 , lowercase_ :List[str]=0 , lowercase_ :Any="absolute" , lowercase_ :int = 0 , **lowercase_ :Dict , ) -> int: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = projection_dim UpperCAmelCase = position_embedding_type
78
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __A ( UpperCamelCase__ ): a__ : Optional[Any] = DistilBertTokenizer a__ : Any = DistilBertTokenizerFast a__ : str = True @slow def _lowercase (self : int ): UpperCAmelCase_ = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
1
0
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __lowerCamelCase : Tuple = logging.get_logger(__name__) __lowerCamelCase : Optional[int] = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __lowerCamelCase : Union[str, Any] = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } __lowerCamelCase : Dict = { '''facebook/blenderbot_small-90M''': 512, } class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = BlenderbotSmallTokenizer def __init__( self : Optional[int] , _lowercase : List[str]=None , _lowercase : List[Any]=None , _lowercase : Dict="<|endoftext|>" , _lowercase : Dict="<|endoftext|>" , _lowercase : str="<|endoftext|>" , _lowercase : List[Any]=False , _lowercase : Optional[Any]=True , **_lowercase : Optional[Any] , ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=_lowercase , merges=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase , ) , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ = add_prefix_space def __a ( self : List[str] , _lowercase : List[str] , _lowercase : Tuple=None ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __a ( self : int , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
204
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Optional[int] = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys __lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
204
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__: List[str] = logging.get_logger(__name__) a__: Tuple = { 'shi-labs/dinat-mini-in1k-224': 'https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json', # See all Dinat models at https://huggingface.co/models?filter=dinat } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = '''dinat''' __SCREAMING_SNAKE_CASE = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self,__lowerCamelCase=4,__lowerCamelCase=3,__lowerCamelCase=64,__lowerCamelCase=[3, 4, 6, 5],__lowerCamelCase=[2, 4, 8, 16],__lowerCamelCase=7,__lowerCamelCase=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]],__lowerCamelCase=3.0,__lowerCamelCase=True,__lowerCamelCase=0.0,__lowerCamelCase=0.0,__lowerCamelCase=0.1,__lowerCamelCase="gelu",__lowerCamelCase=0.02,__lowerCamelCase=1E-5,__lowerCamelCase=0.0,__lowerCamelCase=None,__lowerCamelCase=None,**__lowerCamelCase,): super().__init__(**__lowerCamelCase ) A__ = patch_size A__ = num_channels A__ = embed_dim A__ = depths A__ = len(__lowerCamelCase ) A__ = num_heads A__ = kernel_size A__ = dilations A__ = mlp_ratio A__ = qkv_bias A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = drop_path_rate A__ = hidden_act A__ = layer_norm_eps A__ = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A__ = int(embed_dim * 2 ** (len(__lowerCamelCase ) - 1) ) A__ = layer_scale_init_value A__ = ['''stem'''] + [f"stage{idx}" for idx in range(1,len(__lowerCamelCase ) + 1 )] A__ , A__ = get_aligned_output_features_output_indices( out_features=__lowerCamelCase,out_indices=__lowerCamelCase,stage_names=self.stage_names )
193
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = (DDIMParallelScheduler,) __SCREAMING_SNAKE_CASE = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def UpperCamelCase ( self,**__lowerCamelCase ): A__ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**__lowerCamelCase ) return config def UpperCamelCase ( self,**__lowerCamelCase ): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**__lowerCamelCase ) A__ = scheduler_class(**__lowerCamelCase ) A__ , A__ = 10, 0.0 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) for t in scheduler.timesteps: A__ = model(__lowerCamelCase,__lowerCamelCase ) A__ = scheduler.step(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ).prev_sample return sample def UpperCamelCase ( self ): for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def UpperCamelCase ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCamelCase ) A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(steps_offset=1 ) A__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps,torch.LongTensor([801, 601, 401, 201, 1] ) ) def UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1],[0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCamelCase,beta_end=__lowerCamelCase ) def UpperCamelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def UpperCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def UpperCamelCase ( self ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCamelCase ) def UpperCamelCase ( self ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCamelCase ) def UpperCamelCase ( self ): self.check_over_configs(thresholding=__lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCamelCase,prediction_type=__lowerCamelCase,sample_max_value=__lowerCamelCase,) def UpperCamelCase ( self ): for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCamelCase ) def UpperCamelCase ( self ): for t, num_inference_steps in zip([1, 10, 50],[10, 50, 500] ): self.check_over_forward(time_step=__lowerCamelCase,num_inference_steps=__lowerCamelCase ) def UpperCamelCase ( self ): for t, eta in zip([1, 10, 49],[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCamelCase,eta=__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0,0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420,400 ) - 0.14771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980,960 ) - 0.32460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0,0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487,486 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999,998 ) - 0.02 ) ) < 1E-5 def UpperCamelCase ( self ): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**__lowerCamelCase ) A__ , A__ = 10, 0.0 scheduler.set_timesteps(__lowerCamelCase ) A__ = self.dummy_model() A__ = self.dummy_sample_deter A__ = self.dummy_sample_deter + 0.1 A__ = self.dummy_sample_deter - 0.1 A__ = samplea.shape[0] A__ = torch.stack([samplea, samplea, samplea],dim=0 ) A__ = torch.arange(__lowerCamelCase )[0:3, None].repeat(1,__lowerCamelCase ) A__ = model(samples.flatten(0,1 ),timesteps.flatten(0,1 ) ) A__ = scheduler.batch_step_no_noise(__lowerCamelCase,timesteps.flatten(0,1 ),samples.flatten(0,1 ),__lowerCamelCase ) A__ = torch.sum(torch.abs(__lowerCamelCase ) ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def UpperCamelCase ( self ): A__ = self.full_loop() A__ = torch.sum(torch.abs(__lowerCamelCase ) ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.223967 ) < 1E-3 def UpperCamelCase ( self ): A__ = self.full_loop(prediction_type='''v_prediction''' ) A__ = torch.sum(torch.abs(__lowerCamelCase ) ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def UpperCamelCase ( self ): # We specify different beta, so that the first alpha is 0.99 A__ = self.full_loop(set_alpha_to_one=__lowerCamelCase,beta_start=0.01 ) A__ = torch.sum(torch.abs(__lowerCamelCase ) ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def UpperCamelCase ( self ): # We specify different beta, so that the first alpha is 0.99 A__ = self.full_loop(set_alpha_to_one=__lowerCamelCase,beta_start=0.01 ) A__ = torch.sum(torch.abs(__lowerCamelCase ) ) A__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
193
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class A_ ( __UpperCamelCase ): '''simple docstring''' def __init__( self: List[str] , a: AutoencoderKL , a: CLIPTextModel , a: CLIPTokenizer , a: UNetaDConditionModel , a: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , a: StableDiffusionSafetyChecker , a: CLIPImageProcessor , ): super().__init__() self.register_modules( vae=a , text_encoder=a , tokenizer=a , unet=a , scheduler=a , safety_checker=a , feature_extractor=a , ) def _snake_case ( self: Any , a: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowerCamelCase : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a ) def _snake_case ( self: List[str] ): self.enable_attention_slicing(a ) @torch.no_grad() def __call__( self: str , a: Union[str, List[str]] , a: int = 512 , a: int = 512 , a: int = 50 , a: float = 7.5 , a: Optional[Union[str, List[str]]] = None , a: Optional[int] = 1 , a: float = 0.0 , a: Optional[torch.Generator] = None , a: Optional[torch.FloatTensor] = None , a: Optional[str] = "pil" , a: bool = True , a: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , a: int = 1 , a: Optional[torch.FloatTensor] = None , **a: int , ): if isinstance(a , a ): __lowerCamelCase : List[str] = 1 elif isinstance(a , a ): __lowerCamelCase : List[Any] = len(a ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(a )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(a , a ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(a )}.' ) # get prompt text embeddings __lowerCamelCase : Union[str, Any] = self.tokenizer( a , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __lowerCamelCase : Any = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowerCamelCase : List[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __lowerCamelCase : List[Any] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __lowerCamelCase : Optional[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[str] = text_embeddings.shape __lowerCamelCase : Any = text_embeddings.repeat(1 , a , 1 ) __lowerCamelCase : Dict = text_embeddings.view(bs_embed * num_images_per_prompt , a , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowerCamelCase : int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowerCamelCase : List[str] if negative_prompt is None: __lowerCamelCase : List[str] = [''] elif type(a ) is not type(a ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(a )} !=' F' {type(a )}.' ) elif isinstance(a , a ): __lowerCamelCase : List[Any] = [negative_prompt] elif batch_size != len(a ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(a )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ' the batch size of `prompt`.' ) else: __lowerCamelCase : Optional[Any] = negative_prompt __lowerCamelCase : Optional[int] = text_input_ids.shape[-1] __lowerCamelCase : Any = self.tokenizer( a , padding='max_length' , max_length=a , truncation=a , return_tensors='pt' , ) __lowerCamelCase : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowerCamelCase : Union[str, Any] = uncond_embeddings.shape[1] __lowerCamelCase : int = uncond_embeddings.repeat(a , a , 1 ) __lowerCamelCase : List[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , a , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowerCamelCase : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __lowerCamelCase : Optional[int] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __lowerCamelCase : int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __lowerCamelCase : Dict = torch.randn( a , generator=a , device='cpu' , dtype=a ).to(self.device ) __lowerCamelCase : Optional[Any] = torch.randn(a , generator=a , device='cpu' , dtype=a ).to( self.device ) else: __lowerCamelCase : str = torch.randn( a , generator=a , device=self.device , dtype=a ) __lowerCamelCase : Dict = torch.randn(a , generator=a , device=self.device , dtype=a ) else: if latents_reference.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) __lowerCamelCase : Optional[int] = latents_reference.to(self.device ) __lowerCamelCase : int = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __lowerCamelCase : Tuple = (latents_shape[3] - latents_shape_reference[3]) // 2 __lowerCamelCase : Dict = (latents_shape[2] - latents_shape_reference[2]) // 2 __lowerCamelCase : Dict = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __lowerCamelCase : List[str] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __lowerCamelCase : str = 0 if dx < 0 else dx __lowerCamelCase : Tuple = 0 if dy < 0 else dy __lowerCamelCase : str = max(-dx , 0 ) __lowerCamelCase : Optional[int] = max(-dy , 0 ) # import pdb # pdb.set_trace() __lowerCamelCase : Optional[int] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __lowerCamelCase : str = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowerCamelCase : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowerCamelCase : int = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowerCamelCase : List[str] = {} if accepts_eta: __lowerCamelCase : List[str] = eta for i, t in enumerate(self.progress_bar(a ) ): # expand the latents if we are doing classifier free guidance __lowerCamelCase : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase : List[str] = self.scheduler.scale_model_input(a , a ) # predict the noise residual __lowerCamelCase : Any = self.unet(a , a , encoder_hidden_states=a ).sample # perform guidance if do_classifier_free_guidance: __lowerCamelCase , __lowerCamelCase : str = noise_pred.chunk(2 ) __lowerCamelCase : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase : List[Any] = self.scheduler.step(a , a , a , **a ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(a , a , a ) __lowerCamelCase : Dict = 1 / 0.1_8_2_1_5 * latents __lowerCamelCase : Union[str, Any] = self.vae.decode(a ).sample __lowerCamelCase : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowerCamelCase : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: __lowerCamelCase : str = self.feature_extractor(self.numpy_to_pil(a ) , return_tensors='pt' ).to( self.device ) __lowerCamelCase , __lowerCamelCase : Optional[int] = self.safety_checker( images=a , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __lowerCamelCase : Tuple = None if output_type == "pil": __lowerCamelCase : Tuple = self.numpy_to_pil(a ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=a , nsfw_content_detected=a )
194
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self: Optional[int] , a: int , a: List[Any] , a: Any ): self.assertEqual(len(a ) , len(a ) ) for a, b in zip(a , a ): self.assertAlmostEqual(a , a , delta=a ) def _snake_case ( self: Union[str, Any] ): __lowerCamelCase : Union[str, Any] = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(a ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def _snake_case ( self: str ): __lowerCamelCase : Any = None ops.enable_eager_execution_internal() __lowerCamelCase : List[str] = tf.config.list_physical_devices('CPU' ) if len(a ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __lowerCamelCase : Dict = tf.config.list_logical_devices(device_type='CPU' ) __lowerCamelCase : List[Any] = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __lowerCamelCase : Optional[Any] = GradientAccumulator() __lowerCamelCase : int = tf.Variable([4.0, 3.0] ) __lowerCamelCase , __lowerCamelCase : Any = create_optimizer(5e-5 , 10 , 5 ) __lowerCamelCase : Any = tf.Variable([0.0, 0.0] , trainable=a ) def accumulate_on_replica(a: str ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(a: List[Any] , a: List[str] ): with strategy.scope(): __lowerCamelCase : Optional[int] = strategy.experimental_local_results(a ) local_variables[0].assign(a ) local_variables[1].assign(a ) strategy.run(a , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(a ) def _check_local_values(a: str , a: Union[str, Any] ): __lowerCamelCase : Optional[Any] = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , a , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , a , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
194
1
'''simple docstring''' import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _UpperCAmelCase : Any = { """tiny.en""": """https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt""", """tiny""": """https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt""", """base.en""": """https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt""", """base""": """https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt""", """small.en""": """https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt""", """small""": """https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt""", """medium.en""": """https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt""", """medium""": """https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt""", """large""": """https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt""", """large-v2""": """https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt""", } def __magic_name__( lowerCamelCase): __lowerCAmelCase = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(lowerCamelCase, lowerCamelCase) _UpperCAmelCase : Dict = { """blocks""": """layers""", """mlp.0""": """fc1""", """mlp.2""": """fc2""", """mlp_ln""": """final_layer_norm""", """.attn.query""": """.self_attn.q_proj""", """.attn.key""": """.self_attn.k_proj""", """.attn.value""": """.self_attn.v_proj""", """.attn_ln""": """.self_attn_layer_norm""", """.attn.out""": """.self_attn.out_proj""", """.cross_attn.query""": """.encoder_attn.q_proj""", """.cross_attn.key""": """.encoder_attn.k_proj""", """.cross_attn.value""": """.encoder_attn.v_proj""", """.cross_attn_ln""": """.encoder_attn_layer_norm""", """.cross_attn.out""": """.encoder_attn.out_proj""", """decoder.ln.""": """decoder.layer_norm.""", """encoder.ln.""": """encoder.layer_norm.""", """token_embedding""": """embed_tokens""", """encoder.positional_embedding""": """encoder.embed_positions.weight""", """decoder.positional_embedding""": """decoder.embed_positions.weight""", """ln_post""": """layer_norm""", } def __magic_name__( lowerCamelCase): __lowerCAmelCase = list(s_dict.keys()) for key in keys: __lowerCAmelCase = key for k, v in WHISPER_MAPPING.items(): if k in key: __lowerCAmelCase = new_key.replace(lowerCamelCase, lowerCamelCase) print(F"""{key} -> {new_key}""") __lowerCAmelCase = s_dict.pop(lowerCamelCase) return s_dict def __magic_name__( lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase = emb.weight.shape __lowerCAmelCase = nn.Linear(lowerCamelCase, lowerCamelCase, bias=lowerCamelCase) __lowerCAmelCase = emb.weight.data return lin_layer def __magic_name__( lowerCamelCase, lowerCamelCase): os.makedirs(lowerCamelCase, exist_ok=lowerCamelCase) __lowerCAmelCase = os.path.basename(lowerCamelCase) __lowerCAmelCase = url.split('''/''')[-2] __lowerCAmelCase = os.path.join(lowerCamelCase, lowerCamelCase) if os.path.exists(lowerCamelCase) and not os.path.isfile(lowerCamelCase): raise RuntimeError(F"""{download_target} exists and is not a regular file""") if os.path.isfile(lowerCamelCase): __lowerCAmelCase = open(lowerCamelCase, '''rb''').read() if hashlib.shaaaa(lowerCamelCase).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""") with urllib.request.urlopen(lowerCamelCase) as source, open(lowerCamelCase, '''wb''') as output: with tqdm( total=int(source.info().get('''Content-Length''')), ncols=8_0, unit='''iB''', unit_scale=lowerCamelCase, unit_divisor=1_0_2_4) as loop: while True: __lowerCAmelCase = source.read(8_1_9_2) if not buffer: break output.write(lowerCamelCase) loop.update(len(lowerCamelCase)) __lowerCAmelCase = open(lowerCamelCase, '''rb''').read() if hashlib.shaaaa(lowerCamelCase).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''') return model_bytes def __magic_name__( lowerCamelCase, lowerCamelCase): if ".pt" not in checkpoint_path: __lowerCAmelCase = _download(_MODELS[checkpoint_path]) else: __lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''') __lowerCAmelCase = original_checkpoint['''dims'''] __lowerCAmelCase = original_checkpoint['''model_state_dict'''] __lowerCAmelCase = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(lowerCamelCase) rename_keys(lowerCamelCase) __lowerCAmelCase = True __lowerCAmelCase = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] __lowerCAmelCase = WhisperConfig( vocab_size=dimensions['''n_vocab'''], encoder_ffn_dim=lowerCamelCase, decoder_ffn_dim=lowerCamelCase, num_mel_bins=dimensions['''n_mels'''], d_model=dimensions['''n_audio_state'''], max_target_positions=dimensions['''n_text_ctx'''], encoder_layers=dimensions['''n_audio_layer'''], encoder_attention_heads=dimensions['''n_audio_head'''], decoder_layers=dimensions['''n_text_layer'''], decoder_attention_heads=dimensions['''n_text_state'''], max_source_positions=dimensions['''n_audio_ctx'''], ) __lowerCAmelCase = WhisperForConditionalGeneration(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = model.model.load_state_dict(lowerCamelCase, strict=lowerCamelCase) if len(lowerCamelCase) > 0 and not set(lowerCamelCase) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F""" but all the following weights are missing {missing}""") if tie_embeds: __lowerCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens) else: __lowerCAmelCase = proj_out_weights model.save_pretrained(lowerCamelCase) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() # # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Patht to the downloaded checkpoints""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _UpperCAmelCase : int = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
174
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __magic_name__( lowerCamelCase=None, lowerCamelCase=None): return field(default_factory=lambda: default, metadata=lowerCamelCase) @dataclass class a__ : """simple docstring""" __UpperCamelCase : str = field( metadata={'help': 'The csv file to plot.'} , ) __UpperCamelCase : bool = field( default=__A , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) __UpperCamelCase : bool = field( default=__A , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) __UpperCamelCase : bool = field( default=__A , metadata={'help': 'Disable logarithmic scale when plotting'} , ) __UpperCamelCase : bool = field( default=__A , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) __UpperCamelCase : Optional[str] = field( default=__A , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) __UpperCamelCase : Optional[List[str]] = list_field( default=__A , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def __magic_name__( lowerCamelCase): try: int(lowerCamelCase) return True except ValueError: return False def __magic_name__( lowerCamelCase): try: float(lowerCamelCase) return True except ValueError: return False class a__ : """simple docstring""" def __init__(self , __lowercase ): __lowerCAmelCase = args __lowerCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: __lowerCAmelCase = csv.DictReader(__lowercase ) for row in reader: __lowerCAmelCase = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None __lowerCAmelCase = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None __lowerCAmelCase = float(row['''result'''] ) def _snake_case (self ): __lowerCAmelCase , __lowerCAmelCase = plt.subplots() __lowerCAmelCase = '''Time usage''' if self.args.is_time else '''Memory usage''' __lowerCAmelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __lowerCAmelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) __lowerCAmelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) __lowerCAmelCase = self.result_dict[model_name]['''result'''] ((__lowerCAmelCase) , (__lowerCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __lowerCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __lowerCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__lowercase , ) else: __lowerCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) __lowerCAmelCase = np.asarray(__lowercase , __lowercase )[: len(__lowercase )] plt.scatter( __lowercase , __lowercase , label=F"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(__lowercase , __lowercase , '''--''' ) title_str += F""" {label_model_name} vs.""" __lowerCAmelCase = title_str[:-4] __lowerCAmelCase = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(__lowercase ) plt.xlabel(__lowercase ) plt.ylabel(__lowercase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __magic_name__( ): __lowerCAmelCase = HfArgumentParser(lowerCamelCase) __lowerCAmelCase = parser.parse_args_into_dataclasses()[0] __lowerCAmelCase = Plot(args=lowerCamelCase) plot.plot() if __name__ == "__main__": main()
174
1
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def _snake_case ( lowercase__ , lowercase__=False ): _lowerCamelCase : List[Any] = OmegaConf.load(lowercase__ ) if display: print(yaml.dump(OmegaConf.to_container(lowercase__ ) ) ) return config def _snake_case ( lowercase__ , lowercase__=None , lowercase__=None ): if conf_path is None: _lowerCamelCase : List[Any] = './model_checkpoints/vqgan_only.yaml' _lowerCamelCase : int = load_config(lowercase__ , display=lowercase__ ) _lowerCamelCase : List[Any] = VQModel(**config.model.params ) if ckpt_path is None: _lowerCamelCase : List[str] = './model_checkpoints/vqgan_only.pt' _lowerCamelCase : str = torch.load(lowercase__ , map_location=lowercase__ ) if ".ckpt" in ckpt_path: _lowerCamelCase : Optional[Any] = sd['state_dict'] model.load_state_dict(lowercase__ , strict=lowercase__ ) model.to(lowercase__ ) del sd return model def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = model.encode(lowercase__ ) print(f'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) _lowerCamelCase : int = model.decode(lowercase__ ) return xrec def _snake_case ( lowercase__ , lowercase__=False ): _lowerCamelCase, _lowerCamelCase : Optional[int] = string.rsplit('.' , 1 ) if reload: _lowerCamelCase : str = importlib.import_module(lowercase__ ) importlib.reload(lowercase__ ) return getattr(importlib.import_module(lowercase__ , package=lowercase__ ) , cls ) def _snake_case ( lowercase__ ): if "target" not in config: raise KeyError('Expected key `target` to instantiate.' ) return get_obj_from_str(config['target'] )(**config.get('params' , {} ) ) def _snake_case ( lowercase__ , lowercase__ , lowercase__=True , lowercase__=True ): _lowerCamelCase : Optional[int] = instantiate_from_config(lowercase__ ) if sd is not None: model.load_state_dict(lowercase__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): # load the specified checkpoint if ckpt: _lowerCamelCase : str = torch.load(lowercase__ , map_location='cpu' ) _lowerCamelCase : int = pl_sd['global_step'] print(f'''loaded model from global step {global_step}.''' ) else: _lowerCamelCase : Any = {'state_dict': None} _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : Union[str, Any] = load_model_from_config(config.model , pl_sd['state_dict'] , gpu=lowercase__ , eval_mode=lowercase__ )['model'] return model, global_step
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowercase__ = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """facebook/nllb-200-distilled-600M""" lowerCamelCase__ = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) lowerCamelCase__ = """translator""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ["""text""", """text""", """text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase , lowercase , lowercase ): if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) _lowerCamelCase : str = self.lang_to_code[src_lang] _lowerCamelCase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase ) def A_ ( self , lowercase ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase )
12
1
"""simple docstring""" lowercase__ = tuple[float, float, float] lowercase__ = tuple[float, float, float] def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Dict = end_pointa[0] - end_pointa[0] _lowerCamelCase : List[Any] = end_pointa[1] - end_pointa[1] _lowerCamelCase : List[str] = end_pointa[2] - end_pointa[2] return (x, y, z) def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i _lowerCamelCase : Dict = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _lowerCamelCase : List[str] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _snake_case ( lowercase__ , lowercase__ ): return tuple(round(lowercase__ , lowercase__ ) for x in vector ) == (0, 0, 0) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = 10 ): _lowerCamelCase : Optional[int] = create_vector(lowercase__ , lowercase__ ) _lowerCamelCase : Optional[Any] = create_vector(lowercase__ , lowercase__ ) return is_zero_vector(get_ad_vectors_cross(lowercase__ , lowercase__ ) , lowercase__ )
96
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __A =logging.get_logger(__name__) def a ( _UpperCAmelCase : int ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) __UpperCAmelCase : Optional[int] = DetaConfig( backbone_config=_UpperCAmelCase , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=_UpperCAmelCase , with_box_refine=_UpperCAmelCase , two_stage=_UpperCAmelCase , ) # set labels __UpperCAmelCase : Optional[int] = '''huggingface/label-files''' if "o365" in model_name: __UpperCAmelCase : Tuple = 3_66 __UpperCAmelCase : List[str] = '''object365-id2label.json''' else: __UpperCAmelCase : Any = 91 __UpperCAmelCase : int = '''coco-detection-id2label.json''' __UpperCAmelCase : Optional[int] = num_labels __UpperCAmelCase : List[str] = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) __UpperCAmelCase : str = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def a ( _UpperCAmelCase : Dict ): '''simple docstring''' __UpperCAmelCase : List[str] = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.0.body.layers.{i}.downsample.reduction.weight', f'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.weight', f'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.bias', f'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', f'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', f'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', f'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', f'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.weight', f'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.bias', f'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.weight', f'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.bias', f'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.weight', f'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', f'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', f'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', f'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', f'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', f'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', f'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.weight', f'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.weight', f'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.bias', f'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def a ( _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = dct.pop(_UpperCAmelCase ) __UpperCAmelCase : List[Any] = val def a ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __UpperCAmelCase : str = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __UpperCAmelCase : List[str] = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) __UpperCAmelCase : List[Any] = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : Dict = in_proj_weight[:dim, :] __UpperCAmelCase : List[str] = in_proj_bias[: dim] __UpperCAmelCase : str = in_proj_weight[ dim : dim * 2, : ] __UpperCAmelCase : Any = in_proj_bias[ dim : dim * 2 ] __UpperCAmelCase : Tuple = in_proj_weight[ -dim :, : ] __UpperCAmelCase : int = in_proj_bias[-dim :] # fmt: on def a ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any ): '''simple docstring''' __UpperCAmelCase : int = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __UpperCAmelCase : List[str] = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) __UpperCAmelCase : Tuple = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : Union[str, Any] = in_proj_weight[:hidden_size, :] __UpperCAmelCase : List[Any] = in_proj_bias[:hidden_size] __UpperCAmelCase : int = in_proj_weight[ hidden_size : hidden_size * 2, : ] __UpperCAmelCase : str = in_proj_bias[hidden_size : hidden_size * 2] __UpperCAmelCase : Tuple = in_proj_weight[-hidden_size:, :] __UpperCAmelCase : Optional[Any] = in_proj_bias[-hidden_size:] def a ( ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : int = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def a ( _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ): '''simple docstring''' __UpperCAmelCase : Tuple = get_deta_config(_UpperCAmelCase ) # load original state dict if model_name == "deta-swin-large": __UpperCAmelCase : Dict = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": __UpperCAmelCase : Any = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'Model name {model_name} not supported' ) __UpperCAmelCase : str = torch.load(_UpperCAmelCase , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(_UpperCAmelCase , param.shape ) # rename keys __UpperCAmelCase : int = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_swin_q_k_v(_UpperCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_UpperCAmelCase , _UpperCAmelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __UpperCAmelCase : Optional[Any] = state_dict.pop(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = val if "input_proj" in key: __UpperCAmelCase : Union[str, Any] = state_dict.pop(_UpperCAmelCase ) __UpperCAmelCase : List[str] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __UpperCAmelCase : Union[str, Any] = state_dict.pop(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict __UpperCAmelCase : Union[str, Any] = DetaForObjectDetection(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(_UpperCAmelCase ) # load image processor __UpperCAmelCase : str = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image __UpperCAmelCase : str = prepare_img() __UpperCAmelCase : Optional[int] = processor(images=_UpperCAmelCase , return_tensors='''pt''' ) __UpperCAmelCase : List[Any] = encoding['''pixel_values'''] __UpperCAmelCase : List[str] = model(pixel_values.to(_UpperCAmelCase ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __UpperCAmelCase : str = torch.tensor( [[-7.63_08, -2.84_85, -5.37_37], [-7.20_37, -4.55_05, -4.80_27], [-7.29_43, -4.26_11, -4.66_17]] ) __UpperCAmelCase : Union[str, Any] = torch.tensor([[0.49_87, 0.49_69, 0.99_99], [0.25_49, 0.54_98, 0.48_05], [0.54_98, 0.27_57, 0.05_69]] ) elif model_name == "deta-swin-large-o365": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.01_22, -3.57_20, -4.97_17], [-8.15_47, -3.68_86, -4.63_89], [-7.66_10, -3.61_94, -5.01_34]] ) __UpperCAmelCase : str = torch.tensor([[0.25_23, 0.55_49, 0.48_81], [0.77_15, 0.41_49, 0.46_01], [0.55_03, 0.27_53, 0.05_75]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_UpperCAmelCase ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_UpperCAmelCase ) , atol=1e-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'jozhang97/{model_name}' ) processor.push_to_hub(f'jozhang97/{model_name}' ) if __name__ == "__main__": __A =argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __A =parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
226
0
from __future__ import annotations def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> list[str]: '''simple docstring''' if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) _snake_case = number_of_bytes // partitions _snake_case = [] for i in range(UpperCamelCase__ ): _snake_case = i * bytes_per_partition + 1 _snake_case = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
295
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = LEDTokenizerFast lowerCAmelCase_ = True def lowerCAmelCase ( self ) -> List[str]: super().setUp() _snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase_ ) ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> str: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: return "lower newer", "lower newer" @cached_property def lowerCAmelCase ( self ) -> Optional[Any]: return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def lowerCAmelCase ( self ) -> Union[str, Any]: return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _snake_case = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_torch def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIn('input_ids' , lowerCAmelCase_ ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertNotIn('labels' , lowerCAmelCase_ ) self.assertNotIn('decoder_attention_mask' , lowerCAmelCase_ ) @require_torch def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def lowerCAmelCase ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['A long paragraph for summarization.'] _snake_case = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , return_tensors='pt' ) _snake_case = tokenizer(text_target=lowerCAmelCase_ , return_tensors='pt' ) _snake_case = inputs['input_ids'] _snake_case = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCAmelCase ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = ['Summary of the text.', 'Another summary.'] _snake_case = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _snake_case = [[0] * len(lowerCAmelCase_ ) for x in encoded_output['input_ids']] _snake_case = tokenizer.pad(lowerCAmelCase_ ) self.assertSequenceEqual(outputs['global_attention_mask'] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Tuple: pass def lowerCAmelCase ( self ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = 'A, <mask> AllenNLP sentence.' _snake_case = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) _snake_case = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
295
1
from dataclasses import dataclass, field from typing import Optional @dataclass class A: '''simple docstring''' UpperCamelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} ) UpperCamelCase = field( default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} ) UpperCamelCase = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} ) UpperCamelCase = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) UpperCamelCase = field(default=2 , metadata={'''help''': '''Batch size for training.'''} ) UpperCamelCase = field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} ) UpperCamelCase = field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} ) UpperCamelCase = field( default=1_0000 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} ) UpperCamelCase = field(default=2e-4 , metadata={'''help''': '''Learning rate fo training.'''} ) UpperCamelCase = field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} ) UpperCamelCase = field( default=750 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} ) UpperCamelCase = field( default=16 , metadata={'''help''': '''Number of gradient accumulation steps.'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} ) UpperCamelCase = field(default=5_0000 , metadata={'''help''': '''Maximum number of training steps.'''} ) UpperCamelCase = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) UpperCamelCase = field(default=1024 , metadata={'''help''': '''Sequence lengths used for training.'''} ) UpperCamelCase = field(default=1 , metadata={'''help''': '''Training seed.'''} ) UpperCamelCase = field( default=1024 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} ) UpperCamelCase = field(default=UpperCamelCase , metadata={'''help''': '''If True the data is pretokenized.'''} ) @dataclass class A: '''simple docstring''' UpperCamelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) UpperCamelCase = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) UpperCamelCase = field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} ) UpperCamelCase = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) UpperCamelCase = field(default=1024 , metadata={'''help''': '''Length of sequences to be evaluated.'''} ) UpperCamelCase = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) @dataclass class A: '''simple docstring''' UpperCamelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) UpperCamelCase = field(default=UpperCamelCase , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} ) UpperCamelCase = field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} ) UpperCamelCase = field(default=256 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} ) UpperCamelCase = field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} ) UpperCamelCase = field(default=0.95 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} ) UpperCamelCase = field(default=10 , metadata={'''help''': '''Number of generations to run in parallel.'''} ) UpperCamelCase = field( default=200 , metadata={'''help''': '''Number of completions to generate for each sample.'''} ) UpperCamelCase = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) UpperCamelCase = field( default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} ) UpperCamelCase = field( default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} ) UpperCamelCase = field( default=-1 , metadata={ '''help''': ( '''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive''' ''' number corresponds to which GPU device id to run on.''' ) } , ) @dataclass class A: '''simple docstring''' UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.''' } , ) UpperCamelCase = field( default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} ) UpperCamelCase = field( default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} ) UpperCamelCase = field( default=10_0000 , metadata={'''help''': '''Number of files to save per JSON output file.'''} ) UpperCamelCase = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) UpperCamelCase = field( default=1000 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} ) UpperCamelCase = field( default=100 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} ) UpperCamelCase = field( default=0.25 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} ) UpperCamelCase = field( default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} ) UpperCamelCase = field( default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} ) UpperCamelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} ) UpperCamelCase = field( default=0.85 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} ) @dataclass class A: '''simple docstring''' UpperCamelCase = field( default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} ) UpperCamelCase = field( default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} ) UpperCamelCase = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) UpperCamelCase = field(default=20_0000 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} ) UpperCamelCase = field( default=3_2768 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} ) UpperCamelCase = field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} ) UpperCamelCase = field(default=UpperCamelCase , metadata={'''help''': '''Push saved tokenizer to the hub.'''} ) @dataclass class A: '''simple docstring''' UpperCamelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} ) UpperCamelCase = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} ) UpperCamelCase = field( default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} ) UpperCamelCase = field(default=UpperCamelCase , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) @dataclass class A: '''simple docstring''' UpperCamelCase = field( default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} ) UpperCamelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} ) UpperCamelCase = field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} ) UpperCamelCase = field(default=UpperCamelCase , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
204
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def _SCREAMING_SNAKE_CASE ( lowercase : str = "laptop" ): '''simple docstring''' lowerCamelCase_ = f"""https://www.amazon.in/laptop/s?k={product}""" lowerCamelCase_ = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } lowerCamelCase_ = BeautifulSoup(requests.get(lowercase , headers=lowercase ).text ) # Initialize a Pandas dataframe with the column titles lowerCamelCase_ = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: lowerCamelCase_ = item.ha.text lowerCamelCase_ = 'https://www.amazon.in/' + item.ha.a['href'] lowerCamelCase_ = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: lowerCamelCase_ = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: lowerCamelCase_ = 'Not available' try: lowerCamelCase_ = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: lowerCamelCase_ = '' try: lowerCamelCase_ = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 1_00 ) except ValueError: lowerCamelCase_ = float('nan' ) except AttributeError: pass lowerCamelCase_ = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] lowerCamelCase_ = ' ' lowerCamelCase_ = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": lowerCamelCase : Tuple = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
204
1
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _SCREAMING_SNAKE_CASE : int = get_logger(__name__) def UpperCAmelCase_ ( _A , _A , _A , _A , _A=0 ): '''simple docstring''' os.makedirs(_A , exist_ok=_A ) with FSDP.state_dict_type( _A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): SCREAMING_SNAKE_CASE__ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: SCREAMING_SNAKE_CASE__ = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' SCREAMING_SNAKE_CASE__ = os.path.join(_A , _A ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_A , _A ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: SCREAMING_SNAKE_CASE__ = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) SCREAMING_SNAKE_CASE__ = os.path.join(_A , _A ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_A , _A ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: SCREAMING_SNAKE_CASE__ = os.path.join(_A , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(_A , exist_ok=_A ) logger.info(F'''Saving model to {ckpt_dir}''' ) SCREAMING_SNAKE_CASE__ = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=_A , storage_writer=dist_cp.FileSystemWriter(_A ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def UpperCAmelCase_ ( _A , _A , _A , _A , _A=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( _A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_A ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return SCREAMING_SNAKE_CASE__ = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' SCREAMING_SNAKE_CASE__ = os.path.join(_A , _A ) logger.info(F'''Loading model from {input_model_file}''' ) SCREAMING_SNAKE_CASE__ = torch.load(_A ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: SCREAMING_SNAKE_CASE__ = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) SCREAMING_SNAKE_CASE__ = os.path.join(_A , _A ) logger.info(F'''Loading model from {input_model_file}''' ) SCREAMING_SNAKE_CASE__ = torch.load(_A ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: SCREAMING_SNAKE_CASE__ = ( os.path.join(_A , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) SCREAMING_SNAKE_CASE__ = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=_A , storage_reader=dist_cp.FileSystemReader(_A ) , planner=DefaultLoadPlanner() , ) SCREAMING_SNAKE_CASE__ = state_dict['''model'''] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(_A ) def UpperCAmelCase_ ( _A , _A , _A , _A , _A , _A=0 ): '''simple docstring''' os.makedirs(_A , exist_ok=_A ) with FSDP.state_dict_type( _A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): SCREAMING_SNAKE_CASE__ = FSDP.optim_state_dict(_A , _A ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: SCREAMING_SNAKE_CASE__ = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) SCREAMING_SNAKE_CASE__ = os.path.join(_A , _A ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(_A , _A ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: SCREAMING_SNAKE_CASE__ = os.path.join(_A , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(_A , exist_ok=_A ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(_A ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def UpperCAmelCase_ ( _A , _A , _A , _A , _A , _A=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( _A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: SCREAMING_SNAKE_CASE__ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: SCREAMING_SNAKE_CASE__ = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) SCREAMING_SNAKE_CASE__ = os.path.join(_A , _A ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) SCREAMING_SNAKE_CASE__ = torch.load(_A ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: SCREAMING_SNAKE_CASE__ = ( os.path.join(_A , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) SCREAMING_SNAKE_CASE__ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(_A ) , ) SCREAMING_SNAKE_CASE__ = optim_state['''optimizer'''] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) SCREAMING_SNAKE_CASE__ = FSDP.optim_state_dict_to_load(_A , _A , _A ) optimizer.load_state_dict(_A )
218
import argparse import copy def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} with open(_A ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: SCREAMING_SNAKE_CASE__ = [] _list.append([line.split()[1], line.split()[2]] ) SCREAMING_SNAKE_CASE__ = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: SCREAMING_SNAKE_CASE__ = [] _list.append([line.split()[0], line.split()[2]] ) SCREAMING_SNAKE_CASE__ = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' with open(_A ) as f: SCREAMING_SNAKE_CASE__ = f.read(1 ) SCREAMING_SNAKE_CASE__ = start_node SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = start_node SCREAMING_SNAKE_CASE__ = 0 while visiting not in first_solution: SCREAMING_SNAKE_CASE__ = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_A ) and k[0] not in first_solution: SCREAMING_SNAKE_CASE__ = k[1] SCREAMING_SNAKE_CASE__ = k[0] first_solution.append(_A ) SCREAMING_SNAKE_CASE__ = distance_of_first_solution + int(_A ) SCREAMING_SNAKE_CASE__ = best_node first_solution.append(_A ) SCREAMING_SNAKE_CASE__ = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 SCREAMING_SNAKE_CASE__ = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for n in solution[1:-1]: SCREAMING_SNAKE_CASE__ = solution.index(_A ) for kn in solution[1:-1]: SCREAMING_SNAKE_CASE__ = solution.index(_A ) if n == kn: continue SCREAMING_SNAKE_CASE__ = copy.deepcopy(_A ) SCREAMING_SNAKE_CASE__ = kn SCREAMING_SNAKE_CASE__ = n SCREAMING_SNAKE_CASE__ = 0 for k in _tmp[:-1]: SCREAMING_SNAKE_CASE__ = _tmp[_tmp.index(_A ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: SCREAMING_SNAKE_CASE__ = distance + int(i[1] ) _tmp.append(_A ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) SCREAMING_SNAKE_CASE__ = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _A : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def UpperCAmelCase_ ( _A , _A , _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = first_solution SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = distance_of_first_solution SCREAMING_SNAKE_CASE__ = solution while count <= iters: SCREAMING_SNAKE_CASE__ = find_neighborhood(_A , _A ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = neighborhood[index_of_best_solution] SCREAMING_SNAKE_CASE__ = len(_A ) - 1 SCREAMING_SNAKE_CASE__ = False while not found: SCREAMING_SNAKE_CASE__ = 0 while i < len(_A ): if best_solution[i] != solution[i]: SCREAMING_SNAKE_CASE__ = best_solution[i] SCREAMING_SNAKE_CASE__ = solution[i] break SCREAMING_SNAKE_CASE__ = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = best_solution[:-1] SCREAMING_SNAKE_CASE__ = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: SCREAMING_SNAKE_CASE__ = cost SCREAMING_SNAKE_CASE__ = solution else: SCREAMING_SNAKE_CASE__ = index_of_best_solution + 1 SCREAMING_SNAKE_CASE__ = neighborhood[index_of_best_solution] if len(_A ) >= size: tabu_list.pop(0 ) SCREAMING_SNAKE_CASE__ = count + 1 return best_solution_ever, best_cost def UpperCAmelCase_ ( _A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = generate_neighbours(args.File ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = generate_first_solution( args.File , _A ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = tabu_search( _A , _A , _A , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
218
1
"""simple docstring""" import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _a = get_logger(__name__) class _UpperCAmelCase: def __init__( self , __a = None) -> Tuple: '''simple docstring''' _UpperCamelCase = ( os.path.join(__a , config.EXTRACTED_DATASETS_DIR) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _UpperCamelCase = Extractor def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _UpperCamelCase = os.path.abspath(__a) return os.path.join(self.extract_dir , hash_url_to_filename(__a)) def UpperCAmelCase ( self , __a , __a) -> bool: '''simple docstring''' return force_extract or ( not os.path.isfile(__a) and not (os.path.isdir(__a) and os.listdir(__a)) ) def UpperCAmelCase ( self , __a , __a = False) -> str: '''simple docstring''' _UpperCamelCase = self.extractor.infer_extractor_format(__a) if not extractor_format: return input_path _UpperCamelCase = self._get_output_path(__a) if self._do_extract(__a , __a): self.extractor.extract(__a , __a , __a) return output_path class _UpperCAmelCase( lowerCamelCase ): @classmethod @abstractmethod def UpperCAmelCase ( cls , __a , **__a) -> bool: '''simple docstring''' ... @staticmethod @abstractmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' ... class _UpperCAmelCase( lowerCamelCase , lowerCamelCase ): lowercase__ = [] @staticmethod def UpperCAmelCase ( __a , __a) -> Union[str, Any]: '''simple docstring''' with open(__a , '''rb''') as f: return f.read(__a) @classmethod def UpperCAmelCase ( cls , __a , __a = b"") -> bool: '''simple docstring''' if not magic_number: _UpperCamelCase = max(len(__a) for cls_magic_number in cls.magic_numbers) try: _UpperCamelCase = cls.read_magic_number(__a , __a) except OSError: return False return any(magic_number.startswith(__a) for cls_magic_number in cls.magic_numbers) class _UpperCAmelCase( lowerCamelCase ): @classmethod def UpperCAmelCase ( cls , __a , **__a) -> bool: '''simple docstring''' return tarfile.is_tarfile(__a) @staticmethod def UpperCAmelCase ( __a , __a) -> List[Any]: '''simple docstring''' def resolved(__a) -> str: return os.path.realpath(os.path.abspath(__a)) def badpath(__a , __a) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(__a , __a)).startswith(__a) def badlink(__a , __a) -> bool: # Links are interpreted relative to the directory containing the link _UpperCamelCase = resolved(os.path.join(__a , os.path.dirname(info.name))) return badpath(info.linkname , base=__a) _UpperCamelCase = resolved(__a) for finfo in members: if badpath(finfo.name , __a): logger.error(F'''Extraction of {finfo.name} is blocked (illegal path)''') elif finfo.issym() and badlink(__a , __a): logger.error(F'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''') elif finfo.islnk() and badlink(__a , __a): logger.error(F'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''') else: yield finfo @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' os.makedirs(__a , exist_ok=__a) _UpperCamelCase = tarfile.open(__a) tar_file.extractall(__a , members=TarExtractor.safemembers(__a , __a)) tar_file.close() class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x1F\x8B'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' with gzip.open(__a , '''rb''') as gzip_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [ b'PK\x03\x04', b'PK\x05\x06', # empty archive b'PK\x07\x08', # spanned archive ] @classmethod def UpperCAmelCase ( cls , __a , __a = b"") -> bool: '''simple docstring''' if super().is_extractable(__a , magic_number=__a): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(__a , '''rb''') as fp: _UpperCamelCase = _EndRecData(__a) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET]) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _UpperCamelCase = fp.read(__a) # CD is where we expect it to be if len(__a) == sizeCentralDir: _UpperCamelCase = struct.unpack(__a , __a) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' os.makedirs(__a , exist_ok=__a) with zipfile.ZipFile(__a , '''r''') as zip_file: zip_file.extractall(__a) zip_file.close() class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' with lzma.open(__a) as compressed_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'Rar!\x1a\x07\x00', b'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''') import rarfile os.makedirs(__a , exist_ok=__a) _UpperCamelCase = rarfile.RarFile(__a) rf.extractall(__a) rf.close() class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x28\xb5\x2F\xFD'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''') import zstandard as zstd _UpperCamelCase = zstd.ZstdDecompressor() with open(__a , '''rb''') as ifh, open(__a , '''wb''') as ofh: dctx.copy_stream(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x42\x5A\x68'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' with bza.open(__a , '''rb''') as compressed_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''') import pyazr os.makedirs(__a , exist_ok=__a) with pyazr.SevenZipFile(__a , '''r''') as archive: archive.extractall(__a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x04\x22\x4D\x18'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''') import lza.frame with lza.frame.open(__a , '''rb''') as compressed_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase: # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) lowercase__ = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def UpperCAmelCase ( cls) -> Union[str, Any]: '''simple docstring''' return max( len(__a) for extractor in cls.extractors.values() if issubclass(__a , __a) for extractor_magic_number in extractor.magic_numbers) @staticmethod def UpperCAmelCase ( __a , __a) -> str: '''simple docstring''' try: return MagicNumberBaseExtractor.read_magic_number(__a , magic_number_length=__a) except OSError: return b"" @classmethod def UpperCAmelCase ( cls , __a , __a = False) -> bool: '''simple docstring''' warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=__a , ) _UpperCamelCase = cls.infer_extractor_format(__a) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def UpperCAmelCase ( cls , __a) -> str: # <Added version="2.4.0"/> '''simple docstring''' _UpperCamelCase = cls._get_magic_number_max_length() _UpperCamelCase = cls._read_magic_number(__a , __a) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(__a , magic_number=__a): return extractor_format @classmethod def UpperCAmelCase ( cls , __a , __a , __a = None , __a = "deprecated" , ) -> None: '''simple docstring''' os.makedirs(os.path.dirname(__a) , exist_ok=__a) # Prevent parallel extractions _UpperCamelCase = str(Path(__a).with_suffix('''.lock''')) with FileLock(__a): shutil.rmtree(__a , ignore_errors=__a) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(__a , __a): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=__a , ) _UpperCamelCase = extractor if extractor != '''deprecated''' else extractor_format else: _UpperCamelCase = cls.extractors[extractor_format] return extractor.extract(__a , __a) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=__a , ) for extractor in cls.extractors.values(): if extractor.is_extractable(__a): return extractor.extract(__a , __a)
194
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _a = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _a = parser.parse_args() if args.model_type == "bert": _a = BertForMaskedLM.from_pretrained(args.model_name) _a = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _a = model.state_dict() _a = {} for w in ["word_embeddings", "position_embeddings"]: _a = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _a = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] _a = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _a = state_dict["""cls.predictions.decoder.weight"""] _a = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _a = state_dict[F"""cls.predictions.transform.dense.{w}"""] _a = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
194
1
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> Dict: '''simple docstring''' for param in module.parameters(): snake_case : Optional[int] = False def _UpperCamelCase ( ) -> Any: '''simple docstring''' snake_case : Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): snake_case : Any = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = plt.imshow(SCREAMING_SNAKE_CASE__ ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE__ ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE__ ) plt.show() def _UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' snake_case : int = datetime.now() snake_case : Optional[Any] = current_time.strftime('''%H:%M:%S''' ) return timestamp
83
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case__ : """simple docstring""" def __init__( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int=13 , UpperCamelCase__ : Optional[int]=7 , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : str=99 , UpperCamelCase__ : str=16 , UpperCamelCase__ : Dict=36 , UpperCamelCase__ : List[str]=6 , UpperCamelCase__ : Any=6 , UpperCamelCase__ : Any=6 , UpperCamelCase__ : Union[str, Any]=37 , UpperCamelCase__ : str="gelu" , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Optional[int]=512 , UpperCamelCase__ : List[str]=16 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Tuple=3 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : Optional[int]=None , ) -> Optional[Any]: """simple docstring""" snake_case : Optional[Any] = parent snake_case : str = batch_size snake_case : Optional[Any] = seq_length snake_case : Optional[int] = is_training snake_case : Optional[int] = use_input_mask snake_case : List[Any] = use_token_type_ids snake_case : Tuple = use_labels snake_case : Optional[Any] = vocab_size snake_case : List[Any] = embedding_size snake_case : Any = hidden_size snake_case : Any = num_hidden_layers snake_case : Union[str, Any] = num_hidden_groups snake_case : List[str] = num_attention_heads snake_case : Any = intermediate_size snake_case : List[Any] = hidden_act snake_case : List[str] = hidden_dropout_prob snake_case : Union[str, Any] = attention_probs_dropout_prob snake_case : Dict = max_position_embeddings snake_case : Union[str, Any] = type_vocab_size snake_case : List[Any] = type_sequence_label_size snake_case : List[Any] = initializer_range snake_case : Union[str, Any] = num_labels snake_case : Optional[Any] = num_choices snake_case : Optional[int] = scope def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : List[str] = None if self.use_input_mask: snake_case : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : Optional[int] = None if self.use_token_type_ids: snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : Union[str, Any] = None snake_case : List[Any] = None snake_case : int = None if self.use_labels: snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : Tuple = ids_tensor([self.batch_size] , self.num_choices ) snake_case : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" snake_case : Optional[int] = AlbertModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : List[str] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) snake_case : str = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) snake_case : int = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ) -> Any: """simple docstring""" snake_case : Optional[Any] = AlbertForPreTraining(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : List[Any] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , sentence_order_label=UpperCamelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] ) -> Optional[Any]: """simple docstring""" snake_case : str = AlbertForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Dict = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Dict ) -> Any: """simple docstring""" snake_case : int = AlbertForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : str = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str ) -> Union[str, Any]: """simple docstring""" snake_case : Optional[int] = self.num_labels snake_case : List[str] = AlbertForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Dict = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str ) -> Tuple: """simple docstring""" snake_case : Tuple = self.num_labels snake_case : int = AlbertForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : str = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : str ) -> Tuple: """simple docstring""" snake_case : int = self.num_choices snake_case : List[Any] = AlbertForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Union[str, Any] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" snake_case : Optional[int] = self.prepare_config_and_inputs() ( ( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) , ) : List[str] = config_and_inputs snake_case : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase = True def lowerCAmelCase ( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : int=False ) -> Optional[Any]: """simple docstring""" snake_case : Any = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class in get_values(UpperCamelCase__ ): snake_case : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase__ ) snake_case : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" snake_case : Any = AlbertModelTester(self ) snake_case : Any = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase__ ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case : int = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : List[Any] = AlbertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch class snake_case__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" snake_case : Tuple = AlbertModel.from_pretrained('''albert-base-v2''' ) snake_case : Dict = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) snake_case : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): snake_case : Any = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] snake_case : int = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCamelCase__ ) snake_case : Any = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1e-4 ) )
83
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int]=False ): '''simple docstring''' __lowerCamelCase = OmegaConf.load(A__ ) if display: print(yaml.dump(OmegaConf.to_container(A__ ) ) ) return config def lowerCamelCase__ ( A__ : Optional[int] , A__ : Union[str, Any]=None , A__ : Any=None ): '''simple docstring''' if conf_path is None: __lowerCamelCase = """./model_checkpoints/vqgan_only.yaml""" __lowerCamelCase = load_config(A__ , display=A__ ) __lowerCamelCase = VQModel(**config.model.params ) if ckpt_path is None: __lowerCamelCase = """./model_checkpoints/vqgan_only.pt""" __lowerCamelCase = torch.load(A__ , map_location=A__ ) if ".ckpt" in ckpt_path: __lowerCamelCase = sd["""state_dict"""] model.load_state_dict(A__ , strict=A__ ) model.to(A__ ) del sd return model def lowerCamelCase__ ( A__ : Optional[Any] , A__ : List[Any] ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = model.encode(A__ ) print(f'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' ) __lowerCamelCase = model.decode(A__ ) return xrec def lowerCamelCase__ ( A__ : Tuple , A__ : List[Any]=False ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase = string.rsplit(""".""" , 1 ) if reload: __lowerCamelCase = importlib.import_module(A__ ) importlib.reload(A__ ) return getattr(importlib.import_module(A__ , package=A__ ) , cls ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Optional[Any] , A__ : Dict=True , A__ : int=True ): '''simple docstring''' __lowerCamelCase = instantiate_from_config(A__ ) if sd is not None: model.load_state_dict(A__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCamelCase__ ( A__ : List[Any] , A__ : str , A__ : Dict , A__ : List[Any] ): '''simple docstring''' if ckpt: __lowerCamelCase = torch.load(A__ , map_location="""cpu""" ) __lowerCamelCase = pl_sd["""global_step"""] print(f'loaded model from global step {global_step}.' ) else: __lowerCamelCase = {"""state_dict""": None} __lowerCamelCase = None __lowerCamelCase = load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=A__ , eval_mode=A__ )["""model"""] return model, global_step
12
def lowerCamelCase__ ( A__ : list ): '''simple docstring''' __lowerCamelCase = len(A__ ) for _ in range(A__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __lowerCamelCase, __lowerCamelCase = arr[i + 1], arr[i] return arr if __name__ == "__main__": UpperCAmelCase_ = list(range(10, 0, -1)) print(f"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
12
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : Any = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
354
from __future__ import annotations A : Dict = "#" class lowerCamelCase : """simple docstring""" def __init__( self : Dict ) -> None: SCREAMING_SNAKE_CASE_ = {} def __A ( self : List[Any] , __magic_name__ : str ) -> None: SCREAMING_SNAKE_CASE_ = self._trie for char in text: if char not in trie: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = trie[char] SCREAMING_SNAKE_CASE_ = True def __A ( self : Union[str, Any] , __magic_name__ : str ) -> tuple | list: SCREAMING_SNAKE_CASE_ = self._trie for char in prefix: if char in trie: SCREAMING_SNAKE_CASE_ = trie[char] else: return [] return self._elements(__magic_name__ ) def __A ( self : int , __magic_name__ : dict ) -> tuple: SCREAMING_SNAKE_CASE_ = [] for c, v in d.items(): SCREAMING_SNAKE_CASE_ = [" "] if c == END else [(c + s) for s in self._elements(__magic_name__ )] result.extend(__magic_name__ ) return tuple(__magic_name__ ) A : Union[str, Any] = Trie() A : Optional[int] = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = trie.find_word(__UpperCamelCase ) return tuple(string + word for word in suffixes ) def a__ ( ): print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
305
0
from __future__ import annotations def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) -> None: '''simple docstring''' __lowercase= len(lowercase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowercase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowercase__ , lowercase__ , ) def _lowerCamelCase( lowercase__ ) -> None: '''simple docstring''' __lowercase= [] depth_first_search([] , [] , [] , lowercase__ , lowercase__ ) # Print all the boards for board in boards: for column in board: print(lowercase__ ) print('' ) print(len(lowercase__ ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
295
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class A ( A_ ): def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=9_9 , lowerCAmelCase=3_2 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=3_7 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=1_6 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ): __lowercase= parent __lowercase= batch_size __lowercase= seq_length __lowercase= is_training __lowercase= use_input_mask __lowercase= use_token_type_ids __lowercase= use_labels __lowercase= vocab_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= intermediate_size __lowercase= hidden_act __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_vocab_size __lowercase= type_sequence_label_size __lowercase= initializer_range __lowercase= num_labels __lowercase= num_choices __lowercase= scope def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= None if self.use_input_mask: __lowercase= random_attention_mask([self.batch_size, self.seq_length] ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _A (self ): return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= DistilBertModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , lowerCAmelCase ) __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= DistilBertForMaskedLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= DistilBertForQuestionAnswering(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model( lowerCAmelCase , attention_mask=lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= DistilBertForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= DistilBertForTokenClassification(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_choices __lowercase= DistilBertForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= model( lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ((__lowercase), (__lowercase), (__lowercase), (__lowercase), (__lowercase), (__lowercase))= config_and_inputs __lowercase= {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A ( A_ , A_ , unittest.TestCase ): UpperCamelCase_ : Any =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase_ : Optional[int] =( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : str =True UpperCamelCase_ : str =True UpperCamelCase_ : Union[str, Any] =True UpperCamelCase_ : Optional[int] =True def _A (self ): __lowercase= DistilBertModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , dim=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase ) @slow def _A (self ): for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= DistilBertModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @slow @require_torch_gpu def _A (self ): __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __lowercase= True __lowercase= model_class(config=lowerCAmelCase ) __lowercase= self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) __lowercase= torch.jit.trace( lowerCAmelCase , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase , os.path.join(lowerCAmelCase , 'traced_model.pt' ) ) __lowercase= torch.jit.load(os.path.join(lowerCAmelCase , 'traced_model.pt' ) , map_location=lowerCAmelCase ) loaded(inputs_dict['input_ids'].to(lowerCAmelCase ) , inputs_dict['attention_mask'].to(lowerCAmelCase ) ) @require_torch class A ( unittest.TestCase ): @slow def _A (self ): __lowercase= DistilBertModel.from_pretrained('distilbert-base-uncased' ) __lowercase= torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowercase= torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase )[0] __lowercase= torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase ) __lowercase= torch.tensor( [[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase , atol=1E-4 ) )
295
1
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification _snake_case = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co _snake_case = """main""" # Default branch name _snake_case = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2""" # One particular commit (not the top of `main`) _snake_case = """aaaaaaa""" # This commit does not exist, so we should 404. _snake_case = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684""" # Sha-1 of config.json on the top of `main`, for checking purposes _snake_case = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3""" @contextlib.contextmanager def _A ( ): print("Welcome!" ) yield print("Bye!" ) @contextlib.contextmanager def _A ( ): print("Bonjour!" ) yield print("Au revoir!" ) class lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' assert transformers.__spec__ is not None assert importlib.util.find_spec("transformers" ) is not None class lowerCAmelCase ( unittest.TestCase ): @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def UpperCAmelCase ( self :Optional[int] , _lowercase :List[str] ): '''simple docstring''' with ContextManagers([] ): print("Transformers are awesome!" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , "Transformers are awesome!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def UpperCAmelCase ( self :List[str] , _lowercase :Optional[int] ): '''simple docstring''' with ContextManagers([context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Welcome!\nTransformers are awesome!\nBye!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def UpperCAmelCase ( self :Optional[int] , _lowercase :Optional[int] ): '''simple docstring''' with ContextManagers([context_fr(), context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n" ) @require_torch def UpperCAmelCase ( self :Dict ): '''simple docstring''' self.assertEqual(find_labels(_lowercase ) , ["labels"] ) self.assertEqual(find_labels(_lowercase ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(_lowercase ) , ["start_positions", "end_positions"] ) class lowerCAmelCase ( lowercase_ ): pass self.assertEqual(find_labels(_lowercase ) , ["labels"] ) @require_tf def UpperCAmelCase ( self :Tuple ): '''simple docstring''' self.assertEqual(find_labels(_lowercase ) , ["labels"] ) self.assertEqual(find_labels(_lowercase ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(_lowercase ) , ["start_positions", "end_positions"] ) class lowerCAmelCase ( lowercase_ ): pass self.assertEqual(find_labels(_lowercase ) , ["labels"] ) @require_flax def UpperCAmelCase ( self :List[str] ): '''simple docstring''' self.assertEqual(find_labels(_lowercase ) , [] ) self.assertEqual(find_labels(_lowercase ) , [] ) self.assertEqual(find_labels(_lowercase ) , [] ) class lowerCAmelCase ( lowercase_ ): pass self.assertEqual(find_labels(_lowercase ) , [] )
201
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _A ( __magic_name__ ): # picklable for multiprocessing return x.sum() def _A ( __magic_name__ ): # picklable for multiprocessing return i + 1 @dataclass class lowerCAmelCase : __lowerCamelCase = 42 __lowerCamelCase = 42 class lowerCAmelCase ( lowercase_ ): def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = {} lowercase__ = [] lowercase__ = 1 lowercase__ = [1, 2] lowercase__ = {"a": 1, "b": 2} lowercase__ = {"a": [1, 2], "b": [3, 4]} lowercase__ = {"a": {"1": 1}, "b": 2} lowercase__ = {"a": 1, "b": 2, "c": 3, "d": 4} lowercase__ = {} lowercase__ = [] lowercase__ = 2 lowercase__ = [2, 3] lowercase__ = {"a": 2, "b": 3} lowercase__ = {"a": [2, 3], "b": [4, 5]} lowercase__ = {"a": {"1": 2}, "b": 3} lowercase__ = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) lowercase__ = 2 self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) lowercase__ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} lowercase__ = {"a": 2, "b": 0, "c": 2} lowercase__ = { "a": np.eye(2 ).astype(_lowercase ), "b": np.zeros(3 ).astype(_lowercase ), "c": np.ones(2 ).astype(_lowercase ), } self.assertEqual(map_nested(_lowercase , _lowercase , map_numpy=_lowercase ) , _lowercase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowercase , _lowercase , map_numpy=_lowercase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_lowercase , _lowercase , map_numpy=_lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowercase , _lowercase , map_numpy=_lowercase , num_proc=_lowercase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_lowercase ): # can't pickle a local lambda map_nested(lambda _lowercase : x + 1 , _lowercase , num_proc=_lowercase ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = {"a": 1, "b": 2} lowercase__ = {"a": 3, "b": 4} lowercase__ = {"a": 5, "b": 6} lowercase__ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_lowercase , _lowercase , _lowercase ) ) , _lowercase ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' class lowerCAmelCase : __lowerCamelCase = 'bar' lowercase__ = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(_lowercase , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def _A ( __magic_name__ , __magic_name__ , __magic_name__ ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: lowercase__ = {f'''{i}''': i for i in range(__magic_name__ )} lowercase__ = map_nested(lambda __magic_name__ : x + 10 , __magic_name__ , num_proc=__magic_name__ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class lowerCAmelCase ( lowercase_ ): @require_tf def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' import tensorflow as tf from tensorflow.keras import layers lowercase__ = layers.Dense(2 ) def gen_random_output(): lowercase__ = tf.random.uniform((1, 3) ) return model(_lowercase ).numpy() with temp_seed(42 , set_tensorflow=_lowercase ): lowercase__ = gen_random_output() with temp_seed(42 , set_tensorflow=_lowercase ): lowercase__ = gen_random_output() lowercase__ = gen_random_output() np.testing.assert_equal(_lowercase , _lowercase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' import torch def gen_random_output(): lowercase__ = torch.nn.Linear(3 , 2 ) lowercase__ = torch.rand(1 , 3 ) return model(_lowercase ).detach().numpy() with temp_seed(42 , set_pytorch=_lowercase ): lowercase__ = gen_random_output() with temp_seed(42 , set_pytorch=_lowercase ): lowercase__ = gen_random_output() lowercase__ = gen_random_output() np.testing.assert_equal(_lowercase , _lowercase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def UpperCAmelCase ( self :str ): '''simple docstring''' def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): lowercase__ = gen_random_output() with temp_seed(42 ): lowercase__ = gen_random_output() lowercase__ = gen_random_output() np.testing.assert_equal(_lowercase , _lowercase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def _A ( __magic_name__ ): lowercase__ = NestedDataStructure(__magic_name__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def _A ( __magic_name__ , __magic_name__ ): lowercase__ = NestedDataStructure(__magic_name__ ).flatten() assert output == expected_output def _A ( ): lowercase__ = A(x=1 , y="foobar" ) lowercase__ = {"x": 1, "y": "foobar"} assert asdict(__magic_name__ ) == expected_output lowercase__ = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} lowercase__ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(__magic_name__ ) == expected_output with pytest.raises(__magic_name__ ): asdict([1, A(x=10 , y="foo" )] ) def _A ( __magic_name__ ): return text.split() def _A ( __magic_name__ ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _A ( ): with Pool(2 ) as pool: lowercase__ = list(iflatmap_unordered(__magic_name__ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__magic_name__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: lowercase__ = list(iflatmap_unordered(__magic_name__ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__magic_name__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: lowercase__ = [] for yield_time, content in iflatmap_unordered( __magic_name__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__magic_name__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(__magic_name__ ) == 4
201
1