code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = (DDPMScheduler,) def __magic_name__ ( self , **__snake_case ) -> Optional[int]: '''simple docstring''' __a ={ 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**__snake_case ) return config def __magic_name__ ( self ) -> Tuple: '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__snake_case , beta_end=__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__snake_case ) def __magic_name__ ( self ) -> int: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' self.check_over_configs(thresholding=__snake_case ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__snake_case , prediction_type=__snake_case , sample_max_value=__snake_case , ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__snake_case ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=__snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config() __a =scheduler_class(**__snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config() __a =scheduler_class(**__snake_case ) __a =len(__snake_case ) __a =self.dummy_model() __a =self.dummy_sample_deter __a =torch.manual_seed(0 ) for t in reversed(range(__snake_case ) ): # 1. predict noise residual __a =model(__snake_case , __snake_case ) # 2. predict previous mean of sample x_t-1 __a =scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a =pred_prev_sample __a =torch.sum(torch.abs(__snake_case ) ) __a =torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config(prediction_type='v_prediction' ) __a =scheduler_class(**__snake_case ) __a =len(__snake_case ) __a =self.dummy_model() __a =self.dummy_sample_deter __a =torch.manual_seed(0 ) for t in reversed(range(__snake_case ) ): # 1. predict noise residual __a =model(__snake_case , __snake_case ) # 2. predict previous mean of sample x_t-1 __a =scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a =pred_prev_sample __a =torch.sum(torch.abs(__snake_case ) ) __a =torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config() __a =scheduler_class(**__snake_case ) __a =[100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__snake_case ) __a =scheduler.timesteps for i, timestep in enumerate(__snake_case ): if i == len(__snake_case ) - 1: __a =-1 else: __a =timesteps[i + 1] __a =scheduler.previous_timestep(__snake_case ) __a =prev_t.item() self.assertEqual(__snake_case , __snake_case ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config() __a =scheduler_class(**__snake_case ) __a =[100, 87, 50, 51, 0] with self.assertRaises(__snake_case , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=__snake_case ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config() __a =scheduler_class(**__snake_case ) __a =[100, 87, 50, 1, 0] __a =len(__snake_case ) with self.assertRaises(__snake_case , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=__snake_case , timesteps=__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config() __a =scheduler_class(**__snake_case ) __a =[scheduler.config.num_train_timesteps] with self.assertRaises( __snake_case , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=__snake_case )
218
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" __a =[False] * len(_snake_case ) __a =[-1] * len(_snake_case ) def dfs(_snake_case : Dict , _snake_case : Any ): __a =True __a =c for u in graph[v]: if not visited[u]: dfs(_snake_case , 1 - c ) for i in range(len(_snake_case ) ): if not visited[i]: dfs(_snake_case , 0 ) for i in range(len(_snake_case ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph _lowerCAmelCase : int = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
218
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = ["""image_processor""", """tokenizer"""] __lowerCAmelCase = """BlipImageProcessor""" __lowerCAmelCase = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = False super().__init__(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = self.image_processor def __call__( self : str , lowerCamelCase_ : ImageInput = None , lowerCamelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCamelCase_ : bool = True , lowerCamelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : int = 0 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , **lowerCamelCase_ : List[str] , ): """simple docstring""" if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: UpperCamelCase = self.tokenizer UpperCamelCase = self.tokenizer( text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) return text_encoding # add pixel_values UpperCamelCase = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ ) if text is not None: UpperCamelCase = self.tokenizer( text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) else: UpperCamelCase = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase_ ) return encoding_image_processor def lowerCamelCase_ ( self : Dict , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Optional[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[Any] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Dict ): """simple docstring""" return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.tokenizer.model_input_names UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
355
from __future__ import annotations def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> tuple[float, list[float]]: '''simple docstring''' UpperCamelCase = list(range(len(UpperCamelCase_ ) ) ) UpperCamelCase = [v / w for v, w in zip(UpperCamelCase_ , UpperCamelCase_ )] index.sort(key=lambda UpperCamelCase_ : ratio[i] , reverse=UpperCamelCase_ ) UpperCamelCase = 0 UpperCamelCase = [0] * len(UpperCamelCase_ ) for i in index: if weight[i] <= capacity: UpperCamelCase = 1 max_value += value[i] capacity -= weight[i] else: UpperCamelCase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
165
0
'''simple docstring''' def A__ ( UpperCAmelCase_ ): if num < 0: return False _UpperCamelCase : int = num _UpperCamelCase : int = 0 while num > 0: _UpperCamelCase : str = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
83
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') snake_case_ : Any = logging.getLogger(__name__) @dataclass class lowercase__ : lowercase__ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) lowercase__ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowercase__ = field( default=lowercase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class lowercase__ : lowercase__ = field(default=lowercase , metadata={"""help""": """The input training data file (a text file)."""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) lowercase__ = field( default=lowercase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowercase__ = field( default=lowercase , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) lowercase__ = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowercase__ = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def UpperCamelCase_ ( self : str ): '''simple docstring''' if self.train_file is not None: _UpperCamelCase : List[Any] = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCamelCase : Union[str, Any] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowercase__ : lowercase__ = 42 lowercase__ = True lowercase__ = None lowercase__ = None def __call__( self : Optional[Any] ,lowerCamelCase__ : Dict ): '''simple docstring''' _UpperCamelCase : List[str] = 'label' if 'label' in features[0].keys() else 'labels' _UpperCamelCase : List[Any] = [feature.pop(lowerCamelCase__ ) for feature in features] _UpperCamelCase : Dict = len(lowerCamelCase__ ) _UpperCamelCase : List[str] = len(features[0]['input_ids'] ) _UpperCamelCase : List[Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCamelCase__ )] for feature in features ] _UpperCamelCase : str = list(chain(*lowerCamelCase__ ) ) _UpperCamelCase : Tuple = self.tokenizer.pad( lowerCamelCase__ ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors='pt' ,) # Un-flatten _UpperCamelCase : str = {k: v.view(lowerCamelCase__ ,lowerCamelCase__ ,-1 ) for k, v in batch.items()} # Add back labels _UpperCamelCase : Optional[int] = torch.tensor(lowerCamelCase__ ,dtype=torch.intaa ) return batch def A__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , UpperCAmelCase_ , UpperCAmelCase_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCamelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase_ ) datasets.utils.logging.set_verbosity(UpperCAmelCase_ ) transformers.utils.logging.set_verbosity(UpperCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. _UpperCamelCase : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCamelCase : Optional[int] = {} if data_args.train_file is not None: _UpperCamelCase : Tuple = data_args.train_file if data_args.validation_file is not None: _UpperCamelCase : Tuple = data_args.validation_file _UpperCamelCase : Any = data_args.train_file.split('.' )[-1] _UpperCamelCase : Union[str, Any] = load_dataset( UpperCAmelCase_ , data_files=UpperCAmelCase_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _UpperCamelCase : List[str] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCamelCase : int = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCamelCase : Dict = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCamelCase : Any = [f'ending{i}' for i in range(4 )] _UpperCamelCase : int = 'sent1' _UpperCamelCase : List[str] = 'sent2' if data_args.max_seq_length is None: _UpperCamelCase : int = tokenizer.model_max_length if max_seq_length > 1_0_2_4: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) _UpperCamelCase : int = 1_0_2_4 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) _UpperCamelCase : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(UpperCAmelCase_ ): _UpperCamelCase : str = [[context] * 4 for context in examples[context_name]] _UpperCamelCase : Optional[Any] = examples[question_header_name] _UpperCamelCase : Tuple = [ [f'{header} {examples[end][i]}' for end in ending_names] for i, header in enumerate(UpperCAmelCase_ ) ] # Flatten out _UpperCamelCase : Optional[int] = list(chain(*UpperCAmelCase_ ) ) _UpperCamelCase : Optional[Any] = list(chain(*UpperCAmelCase_ ) ) # Tokenize _UpperCamelCase : Tuple = tokenizer( UpperCAmelCase_ , UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(UpperCAmelCase_ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) _UpperCamelCase : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: _UpperCamelCase : Tuple = min(len(UpperCAmelCase_ ) , data_args.max_train_samples ) _UpperCamelCase : Tuple = train_dataset.select(range(UpperCAmelCase_ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): _UpperCamelCase : Union[str, Any] = train_dataset.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) _UpperCamelCase : str = raw_datasets['validation'] if data_args.max_eval_samples is not None: _UpperCamelCase : Union[str, Any] = min(len(UpperCAmelCase_ ) , data_args.max_eval_samples ) _UpperCamelCase : str = eval_dataset.select(range(UpperCAmelCase_ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): _UpperCamelCase : Dict = eval_dataset.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _UpperCamelCase : List[Any] = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=UpperCAmelCase_ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(UpperCAmelCase_ ): _UpperCamelCase , _UpperCamelCase : Union[str, Any] = eval_predictions _UpperCamelCase : List[str] = np.argmax(UpperCAmelCase_ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCamelCase : Optional[int] = Trainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCAmelCase_ , data_collator=UpperCAmelCase_ , compute_metrics=UpperCAmelCase_ , ) # Training if training_args.do_train: _UpperCamelCase : Optional[int] = None if training_args.resume_from_checkpoint is not None: _UpperCamelCase : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCamelCase : int = last_checkpoint _UpperCamelCase : List[str] = trainer.train(resume_from_checkpoint=UpperCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCamelCase : Union[str, Any] = train_result.metrics _UpperCamelCase : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCAmelCase_ ) ) _UpperCamelCase : Optional[Any] = min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) trainer.log_metrics('train' , UpperCAmelCase_ ) trainer.save_metrics('train' , UpperCAmelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCamelCase : List[Any] = trainer.evaluate() _UpperCamelCase : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCAmelCase_ ) _UpperCamelCase : int = min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) trainer.log_metrics('eval' , UpperCAmelCase_ ) trainer.save_metrics('eval' , UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase_ ) else: trainer.create_model_card(**UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
83
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase: str = logging.get_logger(__name__) lowerCAmelCase: Optional[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def lowerCamelCase__ ( _A , _A , _A , _A , _A ): for attribute in key.split('.' ): a : Optional[int] = getattr(_A , _A ) if weight_type is not None: a : str = getattr(_A , _A ).shape else: a : str = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a : Optional[Any] = value elif weight_type == "weight_g": a : Union[str, Any] = value elif weight_type == "weight_v": a : str = value elif weight_type == "bias": a : Optional[int] = value else: a : Optional[int] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCamelCase__ ( _A , _A , _A ): a : str = [] a : int = fairseq_model.state_dict() a : int = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): a : Tuple = False if "conv_layers" in name: load_conv_layer( _A , _A , _A , _A , hf_model.config.feat_extract_norm == 'group' , ) a : Any = True else: for key, mapped_key in MAPPING.items(): a : Optional[Any] = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): a : Tuple = True if "*" in mapped_key: a : Optional[int] = name.split(_A )[0].split('.' )[-2] a : List[Any] = mapped_key.replace('*' , _A ) if "weight_g" in name: a : Dict = 'weight_g' elif "weight_v" in name: a : str = 'weight_v' elif "weight" in name: a : int = 'weight' elif "bias" in name: a : Optional[Any] = 'bias' else: a : Union[str, Any] = None set_recursively(_A , _A , _A , _A , _A ) continue if not is_used: unused_weights.append(_A ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCamelCase__ ( _A , _A , _A , _A , _A ): a : int = full_name.split('conv_layers.' )[-1] a : Tuple = name.split('.' ) a : List[str] = int(items[0] ) a : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) a : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) a : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_A ) @torch.no_grad() def lowerCamelCase__ ( _A , _A , _A=None , _A=None , _A=True ): if config_path is not None: a : Optional[int] = HubertConfig.from_pretrained(_A ) else: a : int = HubertConfig() if is_finetuned: if dict_path: a : str = Dictionary.load(_A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a : Any = target_dict.pad_index a : List[str] = target_dict.bos_index a : str = target_dict.eos_index a : Optional[int] = len(target_dict.symbols ) a : Union[str, Any] = os.path.join(_A , 'vocab.json' ) if not os.path.isdir(_A ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_A ) ) return os.makedirs(_A , exist_ok=_A ) with open(_A , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , _A ) a : Tuple = WavaVecaCTCTokenizer( _A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_A , ) a : List[str] = True if config.feat_extract_norm == 'layer' else False a : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_A , return_attention_mask=_A , ) a : Optional[Any] = WavaVecaProcessor(feature_extractor=_A , tokenizer=_A ) processor.save_pretrained(_A ) a : Optional[int] = HubertForCTC(_A ) else: a : Union[str, Any] = HubertModel(_A ) if is_finetuned: a , a , a : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: a , a , a : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) a : Union[str, Any] = model[0].eval() recursively_load_weights(_A , _A , _A ) hf_wavavec.save_pretrained(_A ) if __name__ == "__main__": lowerCAmelCase: Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase: Tuple = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
96
'''simple docstring''' import argparse import os import re import packaging.version lowerCAmelCase: List[str] = 'examples/' lowerCAmelCase: List[Any] = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } lowerCAmelCase: str = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } lowerCAmelCase: str = 'README.md' def lowerCamelCase__ ( _A , _A , _A ): with open(_A , 'r' , encoding='utf-8' , newline='\n' ) as f: a : Tuple = f.read() a , a : Tuple = REPLACE_PATTERNS[pattern] a : Dict = replace.replace('VERSION' , _A ) a : Dict = re_pattern.sub(_A , _A ) with open(_A , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(_A ) def lowerCamelCase__ ( _A ): for folder, directories, fnames in os.walk(_A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(_A , _A ) , _A , pattern='examples' ) def lowerCamelCase__ ( _A , _A=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_A , _A , _A ) if not patch: update_version_in_examples(_A ) def lowerCamelCase__ ( ): a : Tuple = '🤗 Transformers currently provides the following architectures' a : Any = '1. Want to contribute a new model?' with open(_A , 'r' , encoding='utf-8' , newline='\n' ) as f: a : Tuple = f.readlines() # Find the start of the list. a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 a : Optional[int] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): a : List[Any] = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(_A , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_A ) def lowerCamelCase__ ( ): with open(REPLACE_FILES['init'] , 'r' ) as f: a : Union[str, Any] = f.read() a : Tuple = REPLACE_PATTERNS['init'][0].search(_A ).groups()[0] return packaging.version.parse(_A ) def lowerCamelCase__ ( _A=False ): a : int = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: a : Any = default_version.base_version elif patch: a : Dict = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: a : Union[str, Any] = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. a : List[Any] = input(f"""Which version are you releasing? [{default_version}]""" ) if len(_A ) == 0: a : Union[str, Any] = default_version print(f"""Updating version to {version}.""" ) global_version_update(_A , patch=_A ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): a : int = get_version() a : Any = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" a : int = current_version.base_version # Check with the user we got that right. a : Tuple = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(_A ) == 0: a : Optional[int] = dev_version print(f"""Updating version to {version}.""" ) global_version_update(_A ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": lowerCAmelCase: Tuple = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') lowerCAmelCase: Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
96
1
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _A : Optional[Any] =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ (UpperCamelCase=None , UpperCamelCase=None ) -> Tuple: return field(default_factory=lambda: default , metadata=UpperCamelCase ) @dataclass class _lowercase : a = list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) a = list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) a = list_field( default=[8, 32, 128, 512] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) a = field( default=_lowercase , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) a = field( default=_lowercase , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) a = field( default=_lowercase , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) a = field(default=_lowercase , metadata={"""help""": """Use FP16 to accelerate inference."""} ) a = field(default=_lowercase , metadata={"""help""": """Benchmark training of model"""} ) a = field(default=_lowercase , metadata={"""help""": """Verbose memory tracing"""} ) a = field( default=_lowercase , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) a = field( default=_lowercase , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) a = field(default=_lowercase , metadata={"""help""": """Trace memory line by line"""} ) a = field(default=_lowercase , metadata={"""help""": """Save result to a CSV file"""} ) a = field(default=_lowercase , metadata={"""help""": """Save all print statements in a log file"""} ) a = field(default=_lowercase , metadata={"""help""": """Whether to print environment information"""} ) a = field( default=_lowercase , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) a = field( default=F"""inference_time_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) a = field( default=F"""inference_memory_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) a = field( default=F"""train_time_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) a = field( default=F"""train_memory_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) a = field( default=F"""env_info_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving environment information."""} , ) a = field( default=F"""log_{round(time() )}.csv""" , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) a = field(default=3 , metadata={"""help""": """Times an experiment will be run."""} ) a = field( default=_lowercase , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def lowerCamelCase_ ( self: List[Any] ): warnings.warn( F'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils''' """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , UpperCamelCase__ , ) def lowerCamelCase_ ( self: List[str] ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def lowerCamelCase_ ( self: Union[str, Any] ): if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def lowerCamelCase_ ( self: int ): if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
41
A : Union[str, Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A : List[Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def UpperCamelCase ( __magic_name__ : dict[int, list[int]] , __magic_name__ : int , __magic_name__ : list[bool] ) -> list[int]: """simple docstring""" lowercase__ = True lowercase__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def UpperCamelCase ( __magic_name__ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" lowercase__ = len(__magic_name__ ) * [False] lowercase__ = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) lowercase__ = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = [] lowercase__ = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): lowercase__ = order[len(__magic_name__ ) - i - 1] if not visited[vert]: lowercase__ = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
305
0
import heapq as hq import math from collections.abc import Iterator class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase ): UpperCamelCase_: Dict = str(id_ ) UpperCamelCase_: Union[str, Any] = None UpperCamelCase_: Tuple = None UpperCamelCase_: int = [] UpperCamelCase_: Dict = {} # {vertex:distance} def __lt__( self , _lowerCamelCase ): return self.key < other.key def __repr__( self ): return self.id def _a ( self , _lowerCamelCase ): self.neighbors.append(_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Any = weight def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Tuple: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , UpperCAmelCase__ ) graph[b - 1].add_edge(graph[a - 1] , UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> list: UpperCamelCase_: Optional[int] = [] for u in graph: UpperCamelCase_: str = math.inf UpperCamelCase_: Dict = None UpperCamelCase_: Union[str, Any] = 0 UpperCamelCase_: List[Any] = graph[:] while q: UpperCamelCase_: Tuple = min(UpperCAmelCase__ ) q.remove(UpperCAmelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCamelCase_: int = u UpperCamelCase_: Any = u.edges[v.id] for i in range(1 , len(UpperCAmelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Iterator[tuple]: for u in graph: UpperCamelCase_: Optional[int] = math.inf UpperCamelCase_: Union[str, Any] = None UpperCamelCase_: Optional[Any] = 0 UpperCamelCase_: Optional[int] = list(UpperCAmelCase__ ) hq.heapify(UpperCAmelCase__ ) while h: UpperCamelCase_: Optional[Any] = hq.heappop(UpperCAmelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCamelCase_: str = u UpperCamelCase_: Dict = u.edges[v.id] hq.heapify(UpperCAmelCase__ ) for i in range(1 , len(UpperCAmelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def snake_case () -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
369
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> np.array: UpperCamelCase_: Dict = F'''{sampling_rate}''' UpperCamelCase_: Any = '1' UpperCamelCase_: Any = 'f32le' UpperCamelCase_: Union[str, Any] = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(UpperCAmelCase__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: UpperCamelCase_: Optional[Any] = ffmpeg_process.communicate(UpperCAmelCase__ ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error UpperCamelCase_: Union[str, Any] = output_stream[0] UpperCamelCase_: List[str] = np.frombuffer(UpperCAmelCase__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = "f32le" , ) -> Tuple: UpperCamelCase_: Any = F'''{sampling_rate}''' UpperCamelCase_: Union[str, Any] = '1' if format_for_conversion == "s16le": UpperCamelCase_: Optional[Any] = 2 elif format_for_conversion == "f32le": UpperCamelCase_: Any = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) UpperCamelCase_: int = platform.system() if system == "Linux": UpperCamelCase_: Tuple = 'alsa' UpperCamelCase_: List[str] = 'default' elif system == "Darwin": UpperCamelCase_: int = 'avfoundation' UpperCamelCase_: Union[str, Any] = ':0' elif system == "Windows": UpperCamelCase_: Tuple = 'dshow' UpperCamelCase_: Dict = 'default' UpperCamelCase_: Any = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] UpperCamelCase_: Tuple = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample UpperCamelCase_: Optional[int] = _ffmpeg_stream(UpperCAmelCase__ , UpperCAmelCase__ ) for item in iterator: yield item def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = "f32le" , ) -> Any: if stream_chunk_s is not None: UpperCamelCase_: List[Any] = stream_chunk_s else: UpperCamelCase_: Dict = chunk_length_s UpperCamelCase_: List[str] = ffmpeg_microphone(UpperCAmelCase__ , UpperCAmelCase__ , format_for_conversion=UpperCAmelCase__ ) if format_for_conversion == "s16le": UpperCamelCase_: Union[str, Any] = np.intaa UpperCamelCase_: List[Any] = 2 elif format_for_conversion == "f32le": UpperCamelCase_: str = np.floataa UpperCamelCase_: Tuple = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: UpperCamelCase_: int = chunk_length_s / 6 UpperCamelCase_: Tuple = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(UpperCAmelCase__ , (int, float) ): UpperCamelCase_: Union[str, Any] = [stride_length_s, stride_length_s] UpperCamelCase_: Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample UpperCamelCase_: Dict = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample UpperCamelCase_: Optional[int] = datetime.datetime.now() UpperCamelCase_: Optional[int] = datetime.timedelta(seconds=UpperCAmelCase__ ) for item in chunk_bytes_iter(UpperCAmelCase__ , UpperCAmelCase__ , stride=(stride_left, stride_right) , stream=UpperCAmelCase__ ): # Put everything back in numpy scale UpperCamelCase_: Tuple = np.frombuffer(item['raw'] , dtype=UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) UpperCamelCase_: int = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 1_0 * delta: # We're late !! SKIP continue yield item def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = False ) -> int: UpperCamelCase_: str = b'' UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) UpperCamelCase_: List[str] = 0 for raw in iterator: acc += raw if stream and len(UpperCAmelCase__ ) < chunk_len: UpperCamelCase_: Optional[Any] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(UpperCAmelCase__ ) >= chunk_len: # We are flushing the accumulator UpperCamelCase_: int = (_stride_left, stride_right) UpperCamelCase_: Optional[Any] = {'raw': acc[:chunk_len], 'stride': stride} if stream: UpperCamelCase_: Any = False yield item UpperCamelCase_: Optional[int] = stride_left UpperCamelCase_: Optional[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(UpperCAmelCase__ ) > stride_left: UpperCamelCase_: int = {'raw': acc, 'stride': (_stride_left, 0)} if stream: UpperCamelCase_: Optional[Any] = False yield item def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> int: UpperCamelCase_: Any = 2**2_4 # 16Mo try: with subprocess.Popen(UpperCAmelCase__ , stdout=subprocess.PIPE , bufsize=UpperCAmelCase__ ) as ffmpeg_process: while True: UpperCamelCase_: Any = ffmpeg_process.stdout.read(UpperCAmelCase__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
292
0
def lowerCAmelCase_ ( __UpperCAmelCase: int | float | str ) -> tuple[int, int]: try: UpperCamelCase__ : Optional[Any] = float(__UpperCAmelCase ) except ValueError: raise ValueError('''Please enter a valid number''' ) UpperCamelCase__ : int = decimal - int(__UpperCAmelCase ) if fractional_part == 0: return int(__UpperCAmelCase ), 1 else: UpperCamelCase__ : Dict = len(str(__UpperCAmelCase ).split('''.''' )[1] ) UpperCamelCase__ : Any = int(decimal * (10**number_of_frac_digits) ) UpperCamelCase__ : int = 10**number_of_frac_digits UpperCamelCase__ ,UpperCamelCase__ : Any = denominator, numerator while True: UpperCamelCase__ : Any = dividend % divisor if remainder == 0: break UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = divisor, remainder UpperCamelCase__ ,UpperCamelCase__ : Tuple = numerator / divisor, denominator / divisor return int(__UpperCAmelCase ), int(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
201
def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> bool: return str(__UpperCAmelCase ) == str(__UpperCAmelCase )[::-1] def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> int: return int(__UpperCAmelCase ) + int(str(__UpperCAmelCase )[::-1] ) def lowerCAmelCase_ ( __UpperCAmelCase: int = 1_0000 ) -> int: UpperCamelCase__ : Optional[Any] = [] for num in range(1 , __UpperCAmelCase ): UpperCamelCase__ : str = 0 UpperCamelCase__ : Any = num while iterations < 50: UpperCamelCase__ : List[Any] = sum_reverse(__UpperCAmelCase ) iterations += 1 if is_palindrome(__UpperCAmelCase ): break else: lychrel_nums.append(__UpperCAmelCase ) return len(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
201
1
"""simple docstring""" import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Dict = KandinskyVaaPriorPipeline lowerCAmelCase : Any = ["prompt"] lowerCAmelCase : Optional[Any] = ["prompt", "negative_prompt"] lowerCAmelCase : Optional[int] = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowerCAmelCase : Union[str, Any] = False @property def UpperCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" return 32 @property def UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" return 32 @property def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" return self.time_input_dim @property def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" return self.time_input_dim * 4 @property def UpperCAmelCase ( self : List[str] ) -> Any: """simple docstring""" return 100 @property def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModelWithProjection(_snake_case ) @property def UpperCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ : List[Any] = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } lowercase__ : Dict = PriorTransformer(**_snake_case ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowercase__ : List[str] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowercase__ : Tuple = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,image_size=224 ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_channels=3 ,num_hidden_layers=5 ,patch_size=14 ,) lowercase__ : Optional[Any] = CLIPVisionModelWithProjection(_snake_case ) return model @property def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowercase__ : Union[str, Any] = CLIPImageProcessor( crop_size=224 ,do_center_crop=_snake_case ,do_normalize=_snake_case ,do_resize=_snake_case ,image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] ,image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] ,resample=3 ,size=224 ,) return image_processor def UpperCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ : int = self.dummy_prior lowercase__ : Union[str, Any] = self.dummy_image_encoder lowercase__ : Optional[int] = self.dummy_text_encoder lowercase__ : Optional[Any] = self.dummy_tokenizer lowercase__ : Union[str, Any] = self.dummy_image_processor lowercase__ : Tuple = UnCLIPScheduler( variance_type='''fixed_small_log''' ,prediction_type='''sample''' ,num_train_timesteps=1_000 ,clip_sample=_snake_case ,clip_sample_range=10.0 ,) lowercase__ : Dict = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ,_snake_case : Tuple=0 ) -> int: """simple docstring""" if str(_snake_case ).startswith('''mps''' ): lowercase__ : Optional[int] = torch.manual_seed(_snake_case ) else: lowercase__ : Any = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : Tuple = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def UpperCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = '''cpu''' lowercase__ : Optional[Any] = self.get_dummy_components() lowercase__ : List[Any] = self.pipeline_class(**_snake_case ) lowercase__ : Union[str, Any] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Optional[int] = pipe(**self.get_dummy_inputs(_snake_case ) ) lowercase__ : Any = output.image_embeds lowercase__ : List[str] = pipe( **self.get_dummy_inputs(_snake_case ) ,return_dict=_snake_case ,)[0] lowercase__ : str = image[0, -10:] lowercase__ : int = image_from_tuple[0, -10:] assert image.shape == (1, 32) lowercase__ : int = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" lowercase__ : int = torch_device == '''cpu''' lowercase__ : Any = True lowercase__ : str = False self._test_inference_batch_single_identical( test_max_difference=_snake_case ,relax_max_difference=_snake_case ,test_mean_pixel_difference=_snake_case ,) @skip_mps def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Tuple = torch_device == '''cpu''' lowercase__ : Optional[int] = False self._test_attention_slicing_forward_pass( test_max_difference=_snake_case ,test_mean_pixel_difference=_snake_case ,)
302
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowercase__ : Dict = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__ : Dict = [3, 3, 3, 3] lowercase__ : str = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__ : List[str] = [4, 4, 4, 4] lowercase__ : Any = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] if "lrf" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] else: lowercase__ : Optional[Any] = [2, 2, 2, 2] if "tiny" in model_name: lowercase__ : Optional[int] = 96 elif "small" in model_name: lowercase__ : Union[str, Any] = 96 elif "base" in model_name: lowercase__ : Tuple = 1_28 elif "large" in model_name: lowercase__ : Any = 1_92 elif "xlarge" in model_name: lowercase__ : Any = 2_56 elif "huge" in model_name: lowercase__ : Union[str, Any] = 3_52 # set label information lowercase__ : List[Any] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowercase__ : Optional[int] = '''imagenet-22k-id2label.json''' else: lowercase__ : Optional[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Dict = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase__ : int = FocalNetConfig( embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , ) return config def __UpperCAmelCase ( __lowerCamelCase ) -> Any: if "patch_embed.proj" in name: lowercase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__ : Dict = '''encoder.''' + name if "encoder.layers" in name: lowercase__ : Tuple = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__ : Union[str, Any] = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__ : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__ : Dict = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__ : Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__ : Optional[Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__ : Dict = '''layernorm.weight''' if name == "norm.bias": lowercase__ : Dict = '''layernorm.bias''' if "head" in name: lowercase__ : Dict = name.replace('''head''' , '''classifier''' ) else: lowercase__ : List[Any] = '''focalnet.''' + name return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> List[str]: # fmt: off lowercase__ : Any = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowercase__ : Optional[int] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , __lowerCamelCase ) lowercase__ : str = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowercase__ : int = state_dict.pop(__lowerCamelCase ) lowercase__ : Any = val lowercase__ : List[Any] = get_focalnet_config(__lowerCamelCase ) lowercase__ : Optional[int] = FocalNetForImageClassification(__lowerCamelCase ) model.eval() # load state dict model.load_state_dict(__lowerCamelCase ) # verify conversion lowercase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : int = BitImageProcessor( do_resize=__lowerCamelCase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=2_24 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , ) lowercase__ : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) lowercase__ : List[str] = processor(images=__lowerCamelCase , return_tensors='''pt''' ) lowercase__ : List[str] = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowercase__ : Optional[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 ) lowercase__ : Optional[Any] = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowercase__ : Union[str, Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowercase__ : Optional[int] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowercase__ : Dict = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowercase__ : List[str] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowercase__ : List[str] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) lowerCAmelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
1
"""simple docstring""" import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class _SCREAMING_SNAKE_CASE ( A__ ): def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :Any = tempfile.mkdtemp() lowerCAmelCase_ :Union[str, Any] = 8 # DPR tok lowerCAmelCase_ :Any = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase_ :Union[str, Any] = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) lowerCAmelCase_ :Tuple = os.path.join(__UpperCAmelCase , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok lowerCAmelCase_ :Tuple = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowerCAmelCase_ :Tuple = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase_ :Optional[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowerCAmelCase_ :Optional[Any] = {"""unk_token""": """<unk>"""} lowerCAmelCase_ :Dict = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) lowerCAmelCase_ :Any = os.path.join(__UpperCAmelCase , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase_ :int = os.path.join(__UpperCAmelCase , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__UpperCAmelCase ) ) def __lowerCAmelCase ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def __lowerCAmelCase ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def __lowerCAmelCase ( self ) -> List[str]: shutil.rmtree(self.tmpdirname ) @require_tokenizers def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Tuple = os.path.join(self.tmpdirname , """rag_tokenizer""" ) lowerCAmelCase_ :Optional[int] = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) lowerCAmelCase_ :str = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(__UpperCAmelCase ) rag_tokenizer.save_pretrained(__UpperCAmelCase ) lowerCAmelCase_ :Union[str, Any] = RagTokenizer.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase ) self.assertIsInstance(new_rag_tokenizer.question_encoder , __UpperCAmelCase ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , __UpperCAmelCase ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :str = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) lowerCAmelCase_ :Dict = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] lowerCAmelCase_ :Optional[Any] = tokenizer(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @slow def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :Any = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) lowerCAmelCase_ :List[str] = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] lowerCAmelCase_ :Any = tokenizer(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase )
84
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType A_ : Dict = logging.get_logger(__name__) A_ : Any = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class lowerCamelCase (A__ ): lowerCamelCase__ : Tuple = 'deberta-v2' def __init__( self : Any , __UpperCAmelCase : Optional[Any]=1_2_8_1_0_0 , __UpperCAmelCase : Optional[Any]=1_5_3_6 , __UpperCAmelCase : List[Any]=2_4 , __UpperCAmelCase : str=2_4 , __UpperCAmelCase : Optional[int]=6_1_4_4 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Optional[Any]=5_1_2 , __UpperCAmelCase : List[str]=0 , __UpperCAmelCase : int=0.02 , __UpperCAmelCase : Any=1e-7 , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Any=-1 , __UpperCAmelCase : Union[str, Any]=0 , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Optional[Any]=0 , __UpperCAmelCase : Union[str, Any]="gelu" , **__UpperCAmelCase : Any , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = relative_attention SCREAMING_SNAKE_CASE__ = max_relative_positions SCREAMING_SNAKE_CASE__ = pad_token_id SCREAMING_SNAKE_CASE__ = position_biased_input # Backwards compatibility if type(__UpperCAmelCase ) == str: SCREAMING_SNAKE_CASE__ = [x.strip() for x in pos_att_type.lower().split("""|""" )] SCREAMING_SNAKE_CASE__ = pos_att_type SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = kwargs.get("""pooler_hidden_size""" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = pooler_dropout SCREAMING_SNAKE_CASE__ = pooler_hidden_act class lowerCamelCase (A__ ): @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 1_2 def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional["TensorType"] = None , __UpperCAmelCase : int = 3 , __UpperCAmelCase : int = 4_0 , __UpperCAmelCase : int = 4_0 , __UpperCAmelCase : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE__ = super().generate_dummy_inputs(preprocessor=__UpperCAmelCase , framework=__UpperCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
165
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''dpt''' def __init__( self : Dict , __UpperCAmelCase : List[str]=768 , __UpperCAmelCase : Optional[Any]=12 , __UpperCAmelCase : List[str]=12 , __UpperCAmelCase : List[str]=3072 , __UpperCAmelCase : Tuple="gelu" , __UpperCAmelCase : Optional[Any]=0.0 , __UpperCAmelCase : int=0.0 , __UpperCAmelCase : str=0.02 , __UpperCAmelCase : Optional[Any]=1E-12 , __UpperCAmelCase : List[str]=384 , __UpperCAmelCase : Any=16 , __UpperCAmelCase : int=3 , __UpperCAmelCase : str=False , __UpperCAmelCase : int=True , __UpperCAmelCase : int=[2, 5, 8, 11] , __UpperCAmelCase : Union[str, Any]="project" , __UpperCAmelCase : List[Any]=[4, 2, 1, 0.5] , __UpperCAmelCase : List[Any]=[96, 192, 384, 768] , __UpperCAmelCase : Any=256 , __UpperCAmelCase : Optional[int]=-1 , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : str=0.4 , __UpperCAmelCase : Tuple=255 , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : Optional[Any]=[1, 1024, 24, 24] , __UpperCAmelCase : int=[0, 1] , __UpperCAmelCase : int=None , **__UpperCAmelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) _A = hidden_size _A = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) _A = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } _A = BitConfig(**__UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): logger.info("Initializing the config with a `BiT` backbone." ) _A = BitConfig(**__UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) _A = backbone_featmap_shape _A = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." ) else: _A = None _A = None _A = [] _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = layer_norm_eps _A = image_size _A = patch_size _A = num_channels _A = qkv_bias _A = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" ) _A = readout_type _A = reassemble_factors _A = neck_hidden_sizes _A = fusion_hidden_size _A = head_in_index _A = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _A = use_auxiliary_head _A = auxiliary_loss_weight _A = semantic_loss_ignore_index _A = semantic_classifier_dropout def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _A = self.backbone_config.to_dict() _A = self.__class__.model_type return output
174
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : str , __UpperCAmelCase : List[Any] ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): _A = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = "sgugger/tiny-distilbert-classification" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , only_pretrain_model=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = AutoConfig.from_pretrained(__UpperCAmelCase ) _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase , [config] ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = AutoConfig.from_pretrained(__UpperCAmelCase ) _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase , [config] ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = AutoConfig.from_pretrained(__UpperCAmelCase ) _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase , [config] ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCAmelCase ( self : int ): '''simple docstring''' _A = "patrickvonplaten/t5-tiny-random" _A = AutoConfig.from_pretrained(__UpperCAmelCase ) _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase , configs=[config] ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU" ) ) == 0 , "Cannot do xla on CPU." ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__UpperCAmelCase , save_to_csv=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__UpperCAmelCase , "inf_time.csv" ) , inference_memory_csv_file=os.path.join(__UpperCAmelCase , "inf_mem.csv" ) , env_info_csv_file=os.path.join(__UpperCAmelCase , "env.csv" ) , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCAmelCase , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "env.csv" ) ).exists() ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__UpperCAmelCase : Any ): self.assertTrue(hasattr(__UpperCAmelCase , "sequential" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "cumulative" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "current" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__UpperCAmelCase , "log.txt" ) , log_print=__UpperCAmelCase , trace_memory_line_by_line=__UpperCAmelCase , eager_mode=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "log.txt" ) ).exists() )
174
1
"""simple docstring""" import argparse import os import re lowercase__ = """src/transformers""" # Pattern that looks at the indentation in a line. lowercase__ = re.compile(R"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ = re.compile(R"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ = re.compile(R"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ = re.compile(R"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ = re.compile(R"""\[([^\]]+)\]""") def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[Any] = _re_indent.search(lowercase__ ) return "" if search is None else search.groups()[0] def _snake_case ( lowercase__ , lowercase__="" , lowercase__=None , lowercase__=None ): _lowerCamelCase : str = 0 _lowerCamelCase : List[str] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(lowercase__ ): index += 1 _lowerCamelCase : Union[str, Any] = ['\n'.join(lines[:index] )] else: _lowerCamelCase : Optional[Any] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCamelCase : Optional[int] = [lines[index]] index += 1 while index < len(lowercase__ ) and (end_prompt is None or not lines[index].startswith(lowercase__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowercase__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(lowercase__ ) ) if index < len(lowercase__ ) - 1: _lowerCamelCase : List[str] = [lines[index + 1]] index += 1 else: _lowerCamelCase : List[str] = [] else: blocks.append('\n'.join(lowercase__ ) ) _lowerCamelCase : str = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowercase__ ) > 0: blocks.append('\n'.join(lowercase__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowercase__ ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _snake_case ( lowercase__ ): def _inner(lowercase__ ): return key(lowercase__ ).lower().replace('_' , '' ) return _inner def _snake_case ( lowercase__ , lowercase__=None ): # If no key is provided, we use a noop. def noop(lowercase__ ): return x if key is None: _lowerCamelCase : List[str] = noop # Constants are all uppercase, they go first. _lowerCamelCase : List[Any] = [obj for obj in objects if key(lowercase__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCamelCase : Union[str, Any] = [obj for obj in objects if key(lowercase__ )[0].isupper() and not key(lowercase__ ).isupper()] # Functions begin with a lowercase, they go last. _lowerCamelCase : str = [obj for obj in objects if not key(lowercase__ )[0].isupper()] _lowerCamelCase : Any = ignore_underscore(lowercase__ ) return sorted(lowercase__ , key=lowercase__ ) + sorted(lowercase__ , key=lowercase__ ) + sorted(lowercase__ , key=lowercase__ ) def _snake_case ( lowercase__ ): # This inner function sort imports between [ ]. def _replace(lowercase__ ): _lowerCamelCase : Any = match.groups()[0] if "," not in imports: return f'''[{imports}]''' _lowerCamelCase : Any = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCamelCase : Optional[Any] = keys[:-1] return "[" + ", ".join([f'''"{k}"''' for k in sort_objects(lowercase__ )] ) + "]" _lowerCamelCase : Any = import_statement.split('\n' ) if len(lowercase__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCamelCase : str = 2 if lines[1].strip() == '[' else 1 _lowerCamelCase : str = [(i, _re_strip_line.search(lowercase__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCamelCase : int = sort_objects(lowercase__ , key=lambda lowercase__ : x[1] ) _lowerCamelCase : Optional[Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowercase__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCamelCase : List[str] = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCamelCase : Optional[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCamelCase : str = keys[:-1] _lowerCamelCase : str = get_indent(lines[1] ) + ', '.join([f'''"{k}"''' for k in sort_objects(lowercase__ )] ) return "\n".join(lowercase__ ) else: # Finally we have to deal with imports fitting on one line _lowerCamelCase : List[Any] = _re_bracket_content.sub(_replace , lowercase__ ) return import_statement def _snake_case ( lowercase__ , lowercase__=True ): with open(lowercase__ , encoding='utf-8' ) as f: _lowerCamelCase : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCamelCase : Any = split_code_in_indented_blocks( lowercase__ , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowercase__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCamelCase : Optional[Any] = main_blocks[block_idx] _lowerCamelCase : str = block.split('\n' ) # Get to the start of the imports. _lowerCamelCase : Union[str, Any] = 0 while line_idx < len(lowercase__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCamelCase : Any = len(lowercase__ ) else: line_idx += 1 if line_idx >= len(lowercase__ ): continue # Ignore beginning and last line: they don't contain anything. _lowerCamelCase : Optional[int] = '\n'.join(block_lines[line_idx:-1] ) _lowerCamelCase : Any = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCamelCase : int = split_code_in_indented_blocks(lowercase__ , indent_level=lowercase__ ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCamelCase : Union[str, Any] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCamelCase : str = [(pattern.search(lowercase__ ).groups()[0] if pattern.search(lowercase__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCamelCase : Tuple = [(i, key) for i, key in enumerate(lowercase__ ) if key is not None] _lowerCamelCase : Any = [x[0] for x in sorted(lowercase__ , key=lambda lowercase__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCamelCase : Any = 0 _lowerCamelCase : Dict = [] for i in range(len(lowercase__ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowerCamelCase : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowercase__ ) count += 1 # And we put our main block back together with its first and last line. _lowerCamelCase : int = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowercase__ ): if check_only: return True else: print(f'''Overwriting {file}.''' ) with open(lowercase__ , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(lowercase__ ) ) def _snake_case ( lowercase__=True ): _lowerCamelCase : Dict = [] for root, _, files in os.walk(lowercase__ ): if "__init__.py" in files: _lowerCamelCase : Union[str, Any] = sort_imports(os.path.join(lowercase__ , '__init__.py' ) , check_only=lowercase__ ) if result: _lowerCamelCase : Dict = [os.path.join(lowercase__ , '__init__.py' )] if len(lowercase__ ) > 0: raise ValueError(f'''Would overwrite {len(lowercase__ )} files, run `make style`.''' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowercase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
96
"""simple docstring""" import math def _snake_case ( lowercase__ ): return math.sqrt(lowercase__ ) * math.sqrt(lowercase__ ) == num def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[Any] = n while left <= right: _lowerCamelCase : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: _lowerCamelCase : str = mid - 1 else: _lowerCamelCase : Optional[int] = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
96
1
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np SCREAMING_SNAKE_CASE_: str =typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 SCREAMING_SNAKE_CASE_: int =typing.Union[np.floataa, int, float] # noqa: UP007 def lowerCAmelCase_ ( snake_case_ : Vector , snake_case_ : Vector ) -> VectorOut: '''simple docstring''' return np.sqrt(np.sum((np.asarray(_lowercase ) - np.asarray(_lowercase )) ** 2 ) ) def lowerCAmelCase_ ( snake_case_ : Vector , snake_case_ : Vector ) -> VectorOut: '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(_lowercase , _lowercase ) ) ** (1 / 2) if __name__ == "__main__": def lowerCAmelCase_ ( ) -> None: '''simple docstring''' from timeit import timeit print("Without Numpy" ) print( timeit( "euclidean_distance_no_np([1, 2, 3], [4, 5, 6])" , number=1_00_00 , globals=globals() , ) ) print("With Numpy" ) print( timeit( "euclidean_distance([1, 2, 3], [4, 5, 6])" , number=1_00_00 , globals=globals() , ) ) benchmark()
363
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: List[Any] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Tuple ='Hello world! cécé herlolip' def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str , snake_case_ : bool ) -> Any: '''simple docstring''' UpperCAmelCase_ = FairseqRobertaModel.from_pretrained(snake_case_ ) roberta.eval() # disable dropout UpperCAmelCase_ = roberta.model.encoder.sentence_encoder UpperCAmelCase_ = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: UpperCAmelCase_ = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" , snake_case_ ) UpperCAmelCase_ = XLMRobertaXLForSequenceClassification(snake_case_ ) if classification_head else XLMRobertaXLForMaskedLM(snake_case_ ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase_ = roberta_sent_encoder.embed_tokens.weight UpperCAmelCase_ = roberta_sent_encoder.embed_positions.weight UpperCAmelCase_ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. UpperCAmelCase_ = roberta_sent_encoder.layer_norm.weight UpperCAmelCase_ = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase_ = model.roberta.encoder.layer[i] UpperCAmelCase_ = roberta_sent_encoder.layers[i] UpperCAmelCase_ = layer.attention UpperCAmelCase_ = roberta_layer.self_attn_layer_norm.weight UpperCAmelCase_ = roberta_layer.self_attn_layer_norm.bias # self attention UpperCAmelCase_ = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) UpperCAmelCase_ = roberta_layer.self_attn.q_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.q_proj.bias UpperCAmelCase_ = roberta_layer.self_attn.k_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.k_proj.bias UpperCAmelCase_ = roberta_layer.self_attn.v_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase_ = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape UpperCAmelCase_ = roberta_layer.self_attn.out_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.out_proj.bias # this one is final layer norm UpperCAmelCase_ = roberta_layer.final_layer_norm.weight UpperCAmelCase_ = roberta_layer.final_layer_norm.bias # intermediate UpperCAmelCase_ = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape UpperCAmelCase_ = roberta_layer.fca.weight UpperCAmelCase_ = roberta_layer.fca.bias # output UpperCAmelCase_ = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape UpperCAmelCase_ = roberta_layer.fca.weight UpperCAmelCase_ = roberta_layer.fca.bias # end of layer if classification_head: UpperCAmelCase_ = roberta.model.classification_heads["mnli"].dense.weight UpperCAmelCase_ = roberta.model.classification_heads["mnli"].dense.bias UpperCAmelCase_ = roberta.model.classification_heads["mnli"].out_proj.weight UpperCAmelCase_ = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head UpperCAmelCase_ = roberta.model.encoder.lm_head.dense.weight UpperCAmelCase_ = roberta.model.encoder.lm_head.dense.bias UpperCAmelCase_ = roberta.model.encoder.lm_head.layer_norm.weight UpperCAmelCase_ = roberta.model.encoder.lm_head.layer_norm.bias UpperCAmelCase_ = roberta.model.encoder.lm_head.weight UpperCAmelCase_ = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase_ = roberta.encode(snake_case_ ).unsqueeze(0 ) # batch of size 1 UpperCAmelCase_ = model(snake_case_ )[0] if classification_head: UpperCAmelCase_ = roberta.model.classification_heads["mnli"](roberta.extract_features(snake_case_ ) ) else: UpperCAmelCase_ = roberta.model(snake_case_ )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase_ = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 UpperCAmelCase_ = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(snake_case_ ).mkdir(parents=snake_case_ , exist_ok=snake_case_ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) SCREAMING_SNAKE_CASE_: Union[str, Any] =parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
106
0
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def a__ ( A_ ): '''simple docstring''' if isinstance(A_, (list, tuple) ) and isinstance(videos[0], (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(A_, (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(A_ ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class UpperCAmelCase_ ( lowercase_ ): '''simple docstring''' a__ = ["""pixel_values"""] def __init__( self : Optional[Any] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , **UpperCamelCase__ : str , ) -> Tuple: """simple docstring""" super().__init__(**__UpperCamelCase ) __magic_name__ = size if size is not None else {"""shortest_edge""": 256} __magic_name__ = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) __magic_name__ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __magic_name__ = get_size_dict(__UpperCamelCase , param_name="""crop_size""" ) __magic_name__ = do_resize __magic_name__ = size __magic_name__ = do_center_crop __magic_name__ = crop_size __magic_name__ = resample __magic_name__ = do_rescale __magic_name__ = rescale_factor __magic_name__ = offset __magic_name__ = do_normalize __magic_name__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __magic_name__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict , ) -> int: """simple docstring""" __magic_name__ = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" in size: __magic_name__ = get_resize_output_image_size(__UpperCamelCase , size["""shortest_edge"""] , default_to_square=__UpperCamelCase ) elif "height" in size and "width" in size: __magic_name__ = (size["""height"""], size["""width"""]) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def _lowercase ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ) -> List[Any]: """simple docstring""" __magic_name__ = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCamelCase , **__UpperCamelCase ) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[int, float] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : List[str] , ) -> Optional[Any]: """simple docstring""" __magic_name__ = image.astype(np.floataa ) if offset: __magic_name__ = image - (scale / 2) return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def _lowercase ( self : List[str] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : List[str] , ) -> Optional[Any]: """simple docstring""" return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def _lowercase ( self : Optional[Any] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : bool = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : float = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> int: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. __magic_name__ = to_numpy_array(__UpperCamelCase ) if do_resize: __magic_name__ = self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) if do_center_crop: __magic_name__ = self.center_crop(__UpperCamelCase , size=__UpperCamelCase ) if do_rescale: __magic_name__ = self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase , offset=__UpperCamelCase ) if do_normalize: __magic_name__ = self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) __magic_name__ = to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) return image def _lowercase ( self : str , UpperCamelCase__ : ImageInput , UpperCamelCase__ : bool = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : float = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Tuple , ) -> int: """simple docstring""" __magic_name__ = do_resize if do_resize is not None else self.do_resize __magic_name__ = resample if resample is not None else self.resample __magic_name__ = do_center_crop if do_center_crop is not None else self.do_center_crop __magic_name__ = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ = offset if offset is not None else self.offset __magic_name__ = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ = image_mean if image_mean is not None else self.image_mean __magic_name__ = image_std if image_std is not None else self.image_std __magic_name__ = size if size is not None else self.size __magic_name__ = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) __magic_name__ = crop_size if crop_size is not None else self.crop_size __magic_name__ = get_size_dict(__UpperCamelCase , param_name="""crop_size""" ) if not valid_images(__UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) __magic_name__ = make_batched(__UpperCamelCase ) __magic_name__ = [ [ self._preprocess_image( image=__UpperCamelCase , do_resize=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , do_center_crop=__UpperCamelCase , crop_size=__UpperCamelCase , do_rescale=__UpperCamelCase , rescale_factor=__UpperCamelCase , offset=__UpperCamelCase , do_normalize=__UpperCamelCase , image_mean=__UpperCamelCase , image_std=__UpperCamelCase , data_format=__UpperCamelCase , ) for img in video ] for video in videos ] __magic_name__ = {"""pixel_values""": videos} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
88
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _snake_case : Union[str, Any] = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _snake_case : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
292
0
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : """simple docstring""" @staticmethod def snake_case ( *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' pass @is_pipeline_test @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @require_torch def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) lowerCAmelCase__ :List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCAmelCase__ :str = image_classifier(__UpperCAmelCase , candidate_labels=['a', 'b', 'c'] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__UpperCAmelCase ) , [ [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}], [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'c'}, {'score': 0.3_33, 'label': 'b'}], ] , ) lowerCAmelCase__ :str = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [ {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, ], [ {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, ], [ {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, ], [ {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, ], [ {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, ], ] , ) @require_tf def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf' ) lowerCAmelCase__ :int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCAmelCase__ :Optional[int] = image_classifier(__UpperCAmelCase , candidate_labels=['a', 'b', 'c'] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}] , ) lowerCAmelCase__ :Optional[Any] = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [ {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, ], [ {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, ], [ {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, ], [ {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, ], [ {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, {'score': 0.3_33, 'label': ANY(__UpperCAmelCase )}, ], ] , ) @slow @require_torch def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes lowerCAmelCase__ :Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCAmelCase__ :Optional[int] = image_classifier(__UpperCAmelCase , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ] , ) lowerCAmelCase__ :str = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf' ) # This is an image of 2 cats with remotes and no planes lowerCAmelCase__ :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCAmelCase__ :Tuple = image_classifier(__UpperCAmelCase , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ] , ) lowerCAmelCase__ :int = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ], ] * 5 , )
254
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def __A (_SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" lowerCAmelCase__ :Dict = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowerCAmelCase__ :Tuple = [144, 192, 240] lowerCAmelCase__ :List[str] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowerCAmelCase__ :List[str] = [96, 120, 144] lowerCAmelCase__ :List[Any] = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowerCAmelCase__ :Union[str, Any] = [64, 80, 96] lowerCAmelCase__ :int = [16, 16, 24, 48, 64, 80, 320] lowerCAmelCase__ :Optional[Any] = 0.0_5 lowerCAmelCase__ :Tuple = 2.0 if mobilevit_name.startswith('deeplabv3_' ): lowerCAmelCase__ :int = 512 lowerCAmelCase__ :Optional[Any] = 16 lowerCAmelCase__ :int = 21 lowerCAmelCase__ :Tuple = 'pascal-voc-id2label.json' else: lowerCAmelCase__ :int = 1000 lowerCAmelCase__ :Optional[Any] = 'imagenet-1k-id2label.json' lowerCAmelCase__ :Optional[int] = 'huggingface/label-files' lowerCAmelCase__ :List[str] = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase__ :List[Any] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCAmelCase__ :Dict = idalabel lowerCAmelCase__ :List[Any] = {v: k for k, v in idalabel.items()} return config def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) ->Optional[int]: """simple docstring""" for i in range(1 , 6 ): if F"layer_{i}." in name: lowerCAmelCase__ :List[Any] = name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." ) if "conv_1." in name: lowerCAmelCase__ :Dict = name.replace('conv_1.' , 'conv_stem.' ) if ".block." in name: lowerCAmelCase__ :List[str] = name.replace('.block.' , '.' ) if "exp_1x1" in name: lowerCAmelCase__ :str = name.replace('exp_1x1' , 'expand_1x1' ) if "red_1x1" in name: lowerCAmelCase__ :Any = name.replace('red_1x1' , 'reduce_1x1' ) if ".local_rep.conv_3x3." in name: lowerCAmelCase__ :List[Any] = name.replace('.local_rep.conv_3x3.' , '.conv_kxk.' ) if ".local_rep.conv_1x1." in name: lowerCAmelCase__ :Any = name.replace('.local_rep.conv_1x1.' , '.conv_1x1.' ) if ".norm." in name: lowerCAmelCase__ :Union[str, Any] = name.replace('.norm.' , '.normalization.' ) if ".conv." in name: lowerCAmelCase__ :List[str] = name.replace('.conv.' , '.convolution.' ) if ".conv_proj." in name: lowerCAmelCase__ :List[str] = name.replace('.conv_proj.' , '.conv_projection.' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: lowerCAmelCase__ :Optional[int] = name.replace(F".{i}.{j}." , F".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: lowerCAmelCase__ :Dict = name.replace(F".{i}.{j}." , F".{i}." ) if "expand_1x1" in name: lowerCAmelCase__ :Dict = name.replace('expand_1x1' , 'downsampling_layer.expand_1x1' ) if "conv_3x3" in name: lowerCAmelCase__ :Optional[int] = name.replace('conv_3x3' , 'downsampling_layer.conv_3x3' ) if "reduce_1x1" in name: lowerCAmelCase__ :Optional[Any] = name.replace('reduce_1x1' , 'downsampling_layer.reduce_1x1' ) for i in range(2 , 5 ): if F".global_rep.{i}.weight" in name: lowerCAmelCase__ :Tuple = name.replace(F".global_rep.{i}.weight" , '.layernorm.weight' ) if F".global_rep.{i}.bias" in name: lowerCAmelCase__ :Any = name.replace(F".global_rep.{i}.bias" , '.layernorm.bias' ) if ".global_rep." in name: lowerCAmelCase__ :List[str] = name.replace('.global_rep.' , '.transformer.' ) if ".pre_norm_mha.0." in name: lowerCAmelCase__ :int = name.replace('.pre_norm_mha.0.' , '.layernorm_before.' ) if ".pre_norm_mha.1.out_proj." in name: lowerCAmelCase__ :Any = name.replace('.pre_norm_mha.1.out_proj.' , '.attention.output.dense.' ) if ".pre_norm_ffn.0." in name: lowerCAmelCase__ :Optional[Any] = name.replace('.pre_norm_ffn.0.' , '.layernorm_after.' ) if ".pre_norm_ffn.1." in name: lowerCAmelCase__ :Optional[Any] = name.replace('.pre_norm_ffn.1.' , '.intermediate.dense.' ) if ".pre_norm_ffn.4." in name: lowerCAmelCase__ :Tuple = name.replace('.pre_norm_ffn.4.' , '.output.dense.' ) if ".transformer." in name: lowerCAmelCase__ :Any = name.replace('.transformer.' , '.transformer.layer.' ) if ".aspp_layer." in name: lowerCAmelCase__ :str = name.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in name: lowerCAmelCase__ :Optional[int] = name.replace('.aspp_pool.' , '.' ) if "seg_head." in name: lowerCAmelCase__ :Optional[int] = name.replace('seg_head.' , 'segmentation_head.' ) if "segmentation_head.classifier.classifier." in name: lowerCAmelCase__ :int = name.replace('segmentation_head.classifier.classifier.' , 'segmentation_head.classifier.' ) if "classifier.fc." in name: lowerCAmelCase__ :Union[str, Any] = name.replace('classifier.fc.' , 'classifier.' ) elif (not base_model) and ("segmentation_head." not in name): lowerCAmelCase__ :Optional[Any] = 'mobilevit.' + name return name def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) ->Union[str, Any]: """simple docstring""" if base_model: lowerCAmelCase__ :Union[str, Any] = '' else: lowerCAmelCase__ :Tuple = 'mobilevit.' for key in orig_state_dict.copy().keys(): lowerCAmelCase__ :Union[str, Any] = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if key[:8] == "encoder.": lowerCAmelCase__ :Optional[int] = key[8:] if "qkv" in key: lowerCAmelCase__ :Tuple = key.split('.' ) lowerCAmelCase__ :List[Any] = int(key_split[0][6:] ) - 1 lowerCAmelCase__ :Any = int(key_split[3] ) lowerCAmelCase__ :Optional[int] = model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" ) lowerCAmelCase__ :Tuple = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowerCAmelCase__ :List[Any] = ( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: lowerCAmelCase__ :str = val[:dim, :] lowerCAmelCase__ :int = val[dim : dim * 2, :] lowerCAmelCase__ :Optional[int] = val[-dim:, :] else: lowerCAmelCase__ :Union[str, Any] = val[:dim] lowerCAmelCase__ :Any = val[dim : dim * 2] lowerCAmelCase__ :Tuple = val[-dim:] else: lowerCAmelCase__ :List[str] = val return orig_state_dict def __A () ->str: """simple docstring""" lowerCAmelCase__ :Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase__ :Tuple = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) ->List[Any]: """simple docstring""" lowerCAmelCase__ :int = get_mobilevit_config(_SCREAMING_SNAKE_CASE ) # load original state_dict lowerCAmelCase__ :Union[str, Any] = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' ) # load 🤗 model if mobilevit_name.startswith('deeplabv3_' ): lowerCAmelCase__ :Optional[int] = MobileViTForSemanticSegmentation(_SCREAMING_SNAKE_CASE ).eval() else: lowerCAmelCase__ :Optional[int] = MobileViTForImageClassification(_SCREAMING_SNAKE_CASE ).eval() lowerCAmelCase__ :Tuple = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCAmelCase__ :List[Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCAmelCase__ :Optional[int] = image_processor(images=prepare_img() , return_tensors='pt' ) lowerCAmelCase__ :List[Any] = model(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Tuple = outputs.logits if mobilevit_name.startswith('deeplabv3_' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowerCAmelCase__ :Optional[int] = torch.tensor( [ [[6.2_0_6_5, 6.1_2_9_2, 6.2_0_7_0], [6.1_0_7_9, 6.1_2_5_4, 6.1_7_4_7], [6.0_0_4_2, 6.1_0_7_1, 6.1_0_3_4]], [[-6.9_2_5_3, -6.8_6_5_3, -7.0_3_9_8], [-7.3_2_1_8, -7.3_9_8_3, -7.3_6_7_0], [-7.1_9_6_1, -7.2_4_8_2, -7.1_5_6_9]], [[-4.4_7_2_3, -4.4_3_4_8, -4.3_7_6_9], [-5.3_6_2_9, -5.4_6_3_2, -5.4_5_9_8], [-5.1_5_8_7, -5.3_4_0_2, -5.5_0_5_9]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowerCAmelCase__ :Dict = torch.tensor( [ [[5.4_4_4_9, 5.5_7_3_3, 5.6_3_1_4], [5.1_8_1_5, 5.3_9_3_0, 5.5_9_6_3], [5.1_6_5_6, 5.4_3_3_3, 5.4_8_5_3]], [[-9.4_4_2_3, -9.7_7_6_6, -9.6_7_1_4], [-9.1_5_8_1, -9.5_7_2_0, -9.5_5_1_9], [-9.1_0_0_6, -9.6_4_5_8, -9.5_7_0_3]], [[-7.7_7_2_1, -7.3_7_1_6, -7.1_5_8_3], [-8.4_5_9_9, -8.0_6_2_4, -7.7_9_4_4], [-8.4_1_7_2, -7.8_3_6_6, -7.5_0_2_5]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowerCAmelCase__ :Tuple = torch.tensor( [ [[6.9_8_1_1, 6.9_7_4_3, 7.3_1_2_3], [7.1_7_7_7, 7.1_9_3_1, 7.3_9_3_8], [7.5_6_3_3, 7.8_0_5_0, 7.8_9_0_1]], [[-1_0.5_5_3_6, -1_0.2_3_3_2, -1_0.2_9_2_4], [-1_0.2_3_3_6, -9.8_6_2_4, -9.5_9_6_4], [-1_0.8_8_4_0, -1_0.8_1_5_8, -1_0.6_6_5_9]], [[-3.4_9_3_8, -3.0_6_3_1, -2.8_6_2_0], [-3.4_2_0_5, -2.8_1_3_5, -2.6_8_7_5], [-3.4_1_7_9, -2.7_9_4_5, -2.8_7_5_0]], ] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowerCAmelCase__ :Union[str, Any] = torch.tensor([-0.9_8_6_6, 0.2_3_9_2, -1.1_2_4_1] ) elif mobilevit_name == "mobilevit_xs": lowerCAmelCase__ :Any = torch.tensor([-2.4_7_6_1, -0.9_3_9_9, -1.9_5_8_7] ) elif mobilevit_name == "mobilevit_xxs": lowerCAmelCase__ :str = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: lowerCAmelCase__ :Dict = { 'mobilevit_s': 'mobilevit-small', 'mobilevit_xs': 'mobilevit-x-small', 'mobilevit_xxs': 'mobilevit-xx-small', 'deeplabv3_mobilevit_s': 'deeplabv3-mobilevit-small', 'deeplabv3_mobilevit_xs': 'deeplabv3-mobilevit-x-small', 'deeplabv3_mobilevit_xxs': 'deeplabv3-mobilevit-xx-small', } print('Pushing to the hub...' ) lowerCAmelCase__ :str = model_mapping[mobilevit_name] image_processor.push_to_hub(_SCREAMING_SNAKE_CASE , organization='apple' ) model.push_to_hub(_SCREAMING_SNAKE_CASE , organization='apple' ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--mobilevit_name""", default="""mobilevit_s""", type=str, help=( """Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',""" """ 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'.""" ), ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __A = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
254
1
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : set ): """simple docstring""" __a , __a = len(_SCREAMING_SNAKE_CASE ), len(grid[0] ) if ( min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __a = 0 count += depth_first_search(_SCREAMING_SNAKE_CASE , row + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) count += depth_first_search(_SCREAMING_SNAKE_CASE , row - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) count += depth_first_search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , col + 1 , _SCREAMING_SNAKE_CASE ) count += depth_first_search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , col - 1 , _SCREAMING_SNAKE_CASE ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
302
from functools import lru_cache def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = 2 __a = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_SCREAMING_SNAKE_CASE ) if n > 1: factors.add(_SCREAMING_SNAKE_CASE ) return factors @lru_cache def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return len(unique_prime_factors(_SCREAMING_SNAKE_CASE ) ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list ): """simple docstring""" return len(set(_SCREAMING_SNAKE_CASE ) ) in (0, 1) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = 2 while True: # Increment each value of a generated range __a = [base + i for i in range(_SCREAMING_SNAKE_CASE )] # Run elements through out unique_prime_factors function # Append our target number to the end. __a = [upf_len(_SCREAMING_SNAKE_CASE ) for x in group] checker.append(_SCREAMING_SNAKE_CASE ) # If all numbers in the list are equal, return the group variable. if equality(_SCREAMING_SNAKE_CASE ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 4 ): """simple docstring""" __a = run(_SCREAMING_SNAKE_CASE ) return results[0] if len(_SCREAMING_SNAKE_CASE ) else None if __name__ == "__main__": print(solution())
302
1
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : list[int] ) -> bool: return len(set(snake_case_ ) ) == len(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
238
from __future__ import annotations snake_case_ = 'Muhammad Umer Farooq' snake_case_ = 'MIT' snake_case_ = '1.0.0' snake_case_ = 'Muhammad Umer Farooq' snake_case_ = 'contact@muhammadumerfarooq.me' snake_case_ = 'Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Dict , a__ : str ): """simple docstring""" super().__init__() __snake_case = [] __snake_case = domain def a (self : Tuple , a__ : str , a__ : list[tuple[str, str | None]] ): """simple docstring""" if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __snake_case = parse.urljoin(self.domain , a__ ) self.urls.append(a__ ) def lowerCamelCase__ ( snake_case_ : str ) -> str: return ".".join(get_sub_domain_name(snake_case_ ).split('''.''' )[-2:] ) def lowerCamelCase__ ( snake_case_ : str ) -> str: return parse.urlparse(snake_case_ ).netloc def lowerCamelCase__ ( snake_case_ : str = "https://github.com" ) -> list[str]: __snake_case = get_domain_name(snake_case_ ) # Initialize the parser __snake_case = Parser(snake_case_ ) try: # Open URL __snake_case = requests.get(snake_case_ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __snake_case = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __snake_case = requests.get(snake_case_ ) # Get the valid email. __snake_case = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(snake_case_ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(snake_case_ ) if __name__ == "__main__": snake_case_ = emails_from_url('https://github.com') print(F'{len(emails)} emails found:') print('\n'.join(sorted(emails)))
238
1
'''simple docstring''' _UpperCAmelCase : Tuple = { 0: """0""", 1: """1""", 2: """2""", 3: """3""", 4: """4""", 5: """5""", 6: """6""", 7: """7""", 8: """8""", 9: """9""", 1_0: """a""", 1_1: """b""", 1_2: """c""", 1_3: """d""", 1_4: """e""", 1_5: """f""", } def __magic_name__( lowerCamelCase): assert type(lowerCamelCase) in (int, float) and decimal == int(lowerCamelCase) __lowerCAmelCase = int(lowerCamelCase) __lowerCAmelCase = '''''' __lowerCAmelCase = False if decimal < 0: __lowerCAmelCase = True decimal *= -1 while decimal > 0: __lowerCAmelCase , __lowerCAmelCase = divmod(lowerCamelCase, 1_6) __lowerCAmelCase = values[remainder] + hexadecimal __lowerCAmelCase = '''0x''' + hexadecimal if negative: __lowerCAmelCase = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
174
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
174
1
def __lowerCamelCase ( lowerCamelCase__ = 50_000_000 ): """simple docstring""" lowercase__ : List[Any] = set() lowercase__ : Any = int((limit - 24) ** (1 / 2) ) lowercase__ : str = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowerCamelCase__ ) ) ) for primea in primes: lowercase__ : Optional[int] = primea * primea for primea in primes: lowercase__ : Optional[int] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowercase__ : Optional[int] = primea * primea * primea * primea lowercase__ : Dict = square + cube + tetr if total >= limit: break ret.add(lowerCamelCase__ ) return len(lowerCamelCase__ ) if __name__ == "__main__": print(f'''{solution() = }''')
360
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
121
0
def lowerCamelCase__ ( _a , _a): return int((input_a, input_a).count(1) != 0) def lowerCamelCase__ ( ): assert or_gate(0 , 0) == 0 assert or_gate(0 , 1) == 1 assert or_gate(1 , 0) == 1 assert or_gate(1 , 1) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
76
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __UpperCamelCase : Tuple = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') __UpperCamelCase : Optional[int] = F'''https://www.google.com/search?q={query}&num=100''' __UpperCamelCase : Optional[Any] = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: __UpperCamelCase : Union[str, Any] = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: __UpperCamelCase : str = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
106
0
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency __a = { '''E''': 12.70, '''T''': 9.0_6, '''A''': 8.1_7, '''O''': 7.5_1, '''I''': 6.9_7, '''N''': 6.7_5, '''S''': 6.3_3, '''H''': 6.0_9, '''R''': 5.9_9, '''D''': 4.2_5, '''L''': 4.0_3, '''C''': 2.7_8, '''U''': 2.7_6, '''M''': 2.4_1, '''W''': 2.3_6, '''F''': 2.2_3, '''G''': 2.0_2, '''Y''': 1.9_7, '''P''': 1.9_3, '''B''': 1.2_9, '''V''': 0.9_8, '''K''': 0.7_7, '''J''': 0.1_5, '''X''': 0.1_5, '''Q''': 0.1_0, '''Z''': 0.0_7, } __a = '''ETAOINSHRDLCUMWFGYPBVKJXQZ''' __a = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def __lowercase ( _UpperCamelCase ) ->Dict: """simple docstring""" lowercase : Tuple = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __lowercase ( _UpperCamelCase ) ->Optional[int]: """simple docstring""" return x[0] def __lowercase ( _UpperCamelCase ) ->List[str]: """simple docstring""" lowercase : Optional[int] = get_letter_count(_a ) lowercase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_a ) lowercase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find, reverse=_a ) lowercase : List[str] = """""".join(freq_to_letter[freq] ) lowercase : Optional[int] = list(freq_to_letter_str.items() ) freq_pairs.sort(key=_a, reverse=_a ) lowercase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(_a ) def __lowercase ( _UpperCamelCase ) ->Tuple: """simple docstring""" lowercase : Tuple = get_frequency_order(_a ) lowercase : Dict = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
365
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Union[str, Any]: """simple docstring""" lowercase : Any = os.path.abspath(_UpperCamelCase ) logger.info(f"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model lowercase : Optional[int] = tf.train.list_variables(_UpperCamelCase ) lowercase : Optional[int] = [] lowercase : Optional[int] = [] lowercase : Optional[Any] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") lowercase : int = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(f"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' lowercase : List[Any] = name[1:] # figure out how many levels deep the name is lowercase : Optional[int] = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(_UpperCamelCase ) # read data lowercase : Any = tf.train.load_variable(_UpperCamelCase, _UpperCamelCase ) names.append('''/'''.join(_UpperCamelCase ) ) arrays.append(_UpperCamelCase ) logger.info(f"""Read a total of {len(_UpperCamelCase ):,} layers""" ) # Sanity check if len(set(_UpperCamelCase ) ) != 1: raise ValueError(f"""Found layer names with different depths (layer depth {list(set(_UpperCamelCase ) )})""" ) lowercase : List[str] = list(set(_UpperCamelCase ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(_UpperCamelCase, _UpperCamelCase ): lowercase : Optional[int] = full_name.split('''/''' ) lowercase : Tuple = model lowercase : Any = [] for i, m_name in enumerate(_UpperCamelCase ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): lowercase : Tuple = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) lowercase : int = getattr(_UpperCamelCase, '''embeddings''' ) lowercase : Optional[Any] = getattr(_UpperCamelCase, '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) lowercase : int = getattr(_UpperCamelCase, '''encoder''' ) lowercase : Tuple = getattr(_UpperCamelCase, '''layer''' ) lowercase : List[Any] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) lowercase : str = getattr(_UpperCamelCase, '''pooler''' ) lowercase : str = getattr(_UpperCamelCase, '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) lowercase : Optional[int] = getattr(_UpperCamelCase, '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) lowercase : str = getattr(_UpperCamelCase, '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) lowercase : List[Any] = getattr(_UpperCamelCase, '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) lowercase : int = getattr(_UpperCamelCase, '''token_type_embeddings''' ) else: raise ValueError(f"""Unknown embedding layer with name {full_name}""" ) trace.append('''weight''' ) lowercase : Union[str, Any] = getattr(_UpperCamelCase, '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) lowercase : Tuple = getattr(_UpperCamelCase, '''attention''' ) lowercase : str = getattr(_UpperCamelCase, '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) lowercase : Dict = getattr(_UpperCamelCase, '''attention''' ) lowercase : Any = getattr(_UpperCamelCase, '''output''' ) lowercase : Union[str, Any] = getattr(_UpperCamelCase, '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) lowercase : Union[str, Any] = getattr(_UpperCamelCase, '''attention''' ) lowercase : str = getattr(_UpperCamelCase, '''output''' ) lowercase : Optional[int] = getattr(_UpperCamelCase, '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) lowercase : List[str] = getattr(_UpperCamelCase, '''output''' ) lowercase : str = getattr(_UpperCamelCase, '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) lowercase : Dict = getattr(_UpperCamelCase, '''output''' ) lowercase : int = getattr(_UpperCamelCase, '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) lowercase : Optional[Any] = getattr(_UpperCamelCase, '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) lowercase : Dict = getattr(_UpperCamelCase, '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) lowercase : Optional[Any] = getattr(_UpperCamelCase, '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) lowercase : List[str] = getattr(_UpperCamelCase, '''intermediate''' ) lowercase : Optional[int] = getattr(_UpperCamelCase, '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) lowercase : Tuple = getattr(_UpperCamelCase, '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) lowercase : str = getattr(_UpperCamelCase, '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) lowercase : Dict = getattr(_UpperCamelCase, '''weight''' ) else: logger.warning(f"""Ignored {m_name}""" ) # for certain layers reshape is necessary lowercase : Any = '''.'''.join(_UpperCamelCase ) if re.match(R'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''', _UpperCamelCase ) or re.match( R'''(\S+)\.attention\.output\.dense\.weight''', _UpperCamelCase ): lowercase : Any = array.reshape(pointer.data.shape ) if "kernel" in full_name: lowercase : List[str] = array.transpose() if pointer.shape == array.shape: lowercase : Optional[Any] = torch.from_numpy(_UpperCamelCase ) else: raise ValueError( f"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" f""" {array.shape}""" ) logger.info(f"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Tuple: """simple docstring""" logger.info(f"""Loading model based on config from {config_path}...""" ) lowercase : List[Any] = BertConfig.from_json_file(_UpperCamelCase ) lowercase : Dict = BertModel(_UpperCamelCase ) # Load weights from checkpoint logger.info(f"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) # Save pytorch-model logger.info(f"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict(), _UpperCamelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) __a = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
173
0
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["image_processor", "tokenizer"] _SCREAMING_SNAKE_CASE : Dict = "Pix2StructImageProcessor" _SCREAMING_SNAKE_CASE : Optional[int] = ("T5Tokenizer", "T5TokenizerFast") def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __UpperCAmelCase : Any = False super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 2_048 , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> BatchEncoding: '''simple docstring''' if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None and not self.image_processor.is_vqa: __UpperCAmelCase : List[Any] = self.tokenizer __UpperCAmelCase : int = self.tokenizer( text=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values __UpperCAmelCase : Dict = self.image_processor( __UpperCAmelCase , return_tensors=__UpperCAmelCase , max_patches=__UpperCAmelCase , **__UpperCAmelCase ) else: # add pixel_values and bbox __UpperCAmelCase : Dict = self.image_processor( __UpperCAmelCase , return_tensors=__UpperCAmelCase , max_patches=__UpperCAmelCase , header_text=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and not self.image_processor.is_vqa: __UpperCAmelCase : Dict = self.tokenizer( text=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) if "attention_mask" in text_encoding: __UpperCAmelCase : Dict = text_encoding.pop("""attention_mask""" ) if "input_ids" in text_encoding: __UpperCAmelCase : Optional[int] = text_encoding.pop("""input_ids""" ) else: __UpperCAmelCase : Optional[Any] = None if text_encoding is not None: encoding_image_processor.update(__UpperCAmelCase ) return encoding_image_processor def __A ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : int = self.tokenizer.model_input_names __UpperCAmelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
254
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : list[list[int]] = [[0 for _ in range(lowerCAmelCase__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __UpperCAmelCase : str = 1 for n in range(m + 1 ): for k in range(1 , lowerCAmelCase__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _UpperCamelCase = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: _UpperCamelCase = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
254
1
'''simple docstring''' from __future__ import annotations from random import choice def UpperCamelCase_( snake_case : int ): '''simple docstring''' return choice(snake_case ) def UpperCamelCase_( snake_case : list[int] , snake_case : int ): '''simple docstring''' snake_case_ = random_pivot(snake_case ) # partition based on pivot # linear time snake_case_ = [e for e in lst if e < pivot] snake_case_ = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(snake_case ) == k - 1: return pivot # pivot is in elements bigger than k elif len(snake_case ) < k - 1: return kth_number(snake_case , k - len(snake_case ) - 1 ) # pivot is in elements smaller than k else: return kth_number(snake_case , snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
92
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class _snake_case ( lowercase_ ): lowerCAmelCase_ : Union[str, Any] = "mgp-str" def __init__( self , a__=[32, 128] , a__=4 , a__=3 , a__=27 , a__=38 , a__=50_257 , a__=30_522 , a__=768 , a__=12 , a__=12 , a__=4.0 , a__=True , a__=False , a__=1e-5 , a__=0.0 , a__=0.0 , a__=0.0 , a__=False , a__=0.0_2 , **a__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**a__ ) snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = max_token_length snake_case_ = num_character_labels snake_case_ = num_bpe_labels snake_case_ = num_wordpiece_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = mlp_ratio snake_case_ = distilled snake_case_ = layer_norm_eps snake_case_ = drop_rate snake_case_ = qkv_bias snake_case_ = attn_drop_rate snake_case_ = drop_path_rate snake_case_ = output_aa_attentions snake_case_ = initializer_range
92
1
"""simple docstring""" import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __get__( self : Tuple, lowerCamelCase : List[str], lowerCamelCase : Optional[int]=None )-> List[str]: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) lowerCamelCase__ : List[str] ='''__cached_''' + self.fget.__name__ lowerCamelCase__ : List[Any] =getattr(lowerCamelCase, lowerCamelCase, lowerCamelCase ) if cached is None: lowerCamelCase__ : Optional[int] =self.fget(lowerCamelCase ) setattr(lowerCamelCase, lowerCamelCase, lowerCamelCase ) return cached def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" lowerCamelCase__ : Optional[Any] =val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'''invalid truth value {val!r}''' ) def snake_case__ ( __lowerCamelCase : List[Any] ): """simple docstring""" if is_torch_fx_proxy(__lowerCamelCase ): return True if is_torch_available(): import torch if isinstance(__lowerCamelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__lowerCamelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__lowerCamelCase , (jnp.ndarray, Tracer) ): return True return isinstance(__lowerCamelCase , np.ndarray ) def snake_case__ ( __lowerCamelCase : List[Any] ): """simple docstring""" return isinstance(__lowerCamelCase , np.ndarray ) def snake_case__ ( __lowerCamelCase : Union[str, Any] ): """simple docstring""" return _is_numpy(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Any ): """simple docstring""" import torch return isinstance(__lowerCamelCase , torch.Tensor ) def snake_case__ ( __lowerCamelCase : Optional[Any] ): """simple docstring""" return False if not is_torch_available() else _is_torch(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : List[str] ): """simple docstring""" import torch return isinstance(__lowerCamelCase , torch.device ) def snake_case__ ( __lowerCamelCase : Optional[Any] ): """simple docstring""" return False if not is_torch_available() else _is_torch_device(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Tuple ): """simple docstring""" import torch if isinstance(__lowerCamelCase , __lowerCamelCase ): if hasattr(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : Tuple =getattr(__lowerCamelCase , __lowerCamelCase ) else: return False return isinstance(__lowerCamelCase , torch.dtype ) def snake_case__ ( __lowerCamelCase : List[Any] ): """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Optional[Any] ): """simple docstring""" import tensorflow as tf return isinstance(__lowerCamelCase , tf.Tensor ) def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" return False if not is_tf_available() else _is_tensorflow(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__lowerCamelCase , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(__lowerCamelCase ) return type(__lowerCamelCase ) == tf.Tensor def snake_case__ ( __lowerCamelCase : Optional[Any] ): """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(__lowerCamelCase , jnp.ndarray ) def snake_case__ ( __lowerCamelCase : Tuple ): """simple docstring""" return False if not is_flax_available() else _is_jax(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : List[str] ): """simple docstring""" if isinstance(__lowerCamelCase , (dict, UserDict) ): return {k: to_py_obj(__lowerCamelCase ) for k, v in obj.items()} elif isinstance(__lowerCamelCase , (list, tuple) ): return [to_py_obj(__lowerCamelCase ) for o in obj] elif is_tf_tensor(__lowerCamelCase ): return obj.numpy().tolist() elif is_torch_tensor(__lowerCamelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(__lowerCamelCase ): return np.asarray(__lowerCamelCase ).tolist() elif isinstance(__lowerCamelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def snake_case__ ( __lowerCamelCase : List[Any] ): """simple docstring""" if isinstance(__lowerCamelCase , (dict, UserDict) ): return {k: to_numpy(__lowerCamelCase ) for k, v in obj.items()} elif isinstance(__lowerCamelCase , (list, tuple) ): return np.array(__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): return obj.numpy() elif is_torch_tensor(__lowerCamelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(__lowerCamelCase ): return np.asarray(__lowerCamelCase ) else: return obj class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def snake_case ( self : int )-> Optional[int]: lowerCamelCase__ : Union[str, Any] =fields(self ) # Safety and consistency checks if not len(lowerCamelCase ): raise ValueError(F'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' ) lowerCamelCase__ : List[Any] =getattr(self, class_fields[0].name ) lowerCamelCase__ : Union[str, Any] =all(getattr(self, field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(lowerCamelCase ): if isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : Optional[int] =first_field.items() lowerCamelCase__ : Union[str, Any] =True else: try: lowerCamelCase__ : int =iter(lowerCamelCase ) lowerCamelCase__ : List[Any] =True except TypeError: lowerCamelCase__ : List[Any] =False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(lowerCamelCase ): if ( not isinstance(lowerCamelCase, (list, tuple) ) or not len(lowerCamelCase ) == 2 or not isinstance(element[0], lowerCamelCase ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute lowerCamelCase__ : Optional[int] =first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self, element[0], element[1] ) if element[1] is not None: lowerCamelCase__ : str =element[1] elif first_field is not None: lowerCamelCase__ : Dict =first_field else: for field in class_fields: lowerCamelCase__ : Union[str, Any] =getattr(self, field.name ) if v is not None: lowerCamelCase__ : Optional[int] =v def __delitem__( self : int, *lowerCamelCase : List[str], **lowerCamelCase : Optional[int] )-> str: raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def snake_case ( self : Optional[int], *lowerCamelCase : int, **lowerCamelCase : List[str] )-> Optional[Any]: raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def snake_case ( self : Dict, *lowerCamelCase : Optional[int], **lowerCamelCase : Optional[Any] )-> int: raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def snake_case ( self : List[Any], *lowerCamelCase : Tuple, **lowerCamelCase : List[Any] )-> Optional[int]: raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self : Optional[Any], lowerCamelCase : Optional[int] )-> List[Any]: if isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : Union[str, Any] =dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Union[str, Any], lowerCamelCase : List[str], lowerCamelCase : List[str] )-> Dict: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(lowerCamelCase, lowerCamelCase ) super().__setattr__(lowerCamelCase, lowerCamelCase ) def __setitem__( self : Optional[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : int )-> List[Any]: # Will raise a KeyException if needed super().__setitem__(lowerCamelCase, lowerCamelCase ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(lowerCamelCase, lowerCamelCase ) def snake_case ( self : str )-> Tuple[Any]: return tuple(self[k] for k in self.keys() ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' @classmethod def snake_case ( cls : Optional[Any], lowerCamelCase : int )-> str: raise ValueError( F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'longest' _a = 'max_length' _a = 'do_not_pad' class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'pt' _a = 'tf' _a = 'np' _a = 'jax' class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int], lowerCamelCase : List[ContextManager] )-> str: lowerCamelCase__ : List[str] =context_managers lowerCamelCase__ : int =ExitStack() def __enter__( self : List[str] )-> Union[str, Any]: for context_manager in self.context_managers: self.stack.enter_context(lowerCamelCase ) def __exit__( self : Tuple, *lowerCamelCase : Union[str, Any], **lowerCamelCase : Tuple )-> List[Any]: self.stack.__exit__(*lowerCamelCase, **lowerCamelCase ) def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : Tuple =infer_framework(__lowerCamelCase ) if framework == "tf": lowerCamelCase__ : Any =inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCamelCase__ : Tuple =inspect.signature(model_class.forward ) # PyTorch models else: lowerCamelCase__ : List[str] =inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" lowerCamelCase__ : Optional[Any] =model_class.__name__ lowerCamelCase__ : Tuple =infer_framework(__lowerCamelCase ) if framework == "tf": lowerCamelCase__ : int =inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCamelCase__ : Any =inspect.signature(model_class.forward ) # PyTorch models else: lowerCamelCase__ : Union[str, Any] =inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def snake_case__ ( __lowerCamelCase : MutableMapping , __lowerCamelCase : str = "" , __lowerCamelCase : str = "." ): """simple docstring""" def _flatten_dict(__lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int]="" , __lowerCamelCase : str="." ): for k, v in d.items(): lowerCamelCase__ : List[str] =str(__lowerCamelCase ) + delimiter + str(__lowerCamelCase ) if parent_key else k if v and isinstance(__lowerCamelCase , __lowerCamelCase ): yield from flatten_dict(__lowerCamelCase , __lowerCamelCase , delimiter=__lowerCamelCase ).items() else: yield key, v return dict(_flatten_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ) @contextmanager def snake_case__ ( __lowerCamelCase : Tuple , __lowerCamelCase : bool = False ): """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def snake_case__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=None ): """simple docstring""" if is_numpy_array(__lowerCamelCase ): return np.transpose(__lowerCamelCase , axes=__lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.T if axes is None else array.permute(*__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.transpose(__lowerCamelCase , perm=__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.transpose(__lowerCamelCase , axes=__lowerCamelCase ) else: raise ValueError(f'''Type not supported for transpose: {type(__lowerCamelCase )}.''' ) def snake_case__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] ): """simple docstring""" if is_numpy_array(__lowerCamelCase ): return np.reshape(__lowerCamelCase , __lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.reshape(*__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.reshape(__lowerCamelCase , __lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.reshape(__lowerCamelCase , __lowerCamelCase ) else: raise ValueError(f'''Type not supported for reshape: {type(__lowerCamelCase )}.''' ) def snake_case__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str]=None ): """simple docstring""" if is_numpy_array(__lowerCamelCase ): return np.squeeze(__lowerCamelCase , axis=__lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.squeeze() if axis is None else array.squeeze(dim=__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.squeeze(__lowerCamelCase , axis=__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.squeeze(__lowerCamelCase , axis=__lowerCamelCase ) else: raise ValueError(f'''Type not supported for squeeze: {type(__lowerCamelCase )}.''' ) def snake_case__ ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ): """simple docstring""" if is_numpy_array(__lowerCamelCase ): return np.expand_dims(__lowerCamelCase , __lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.unsqueeze(dim=__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.expand_dims(__lowerCamelCase , axis=__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.expand_dims(__lowerCamelCase , axis=__lowerCamelCase ) else: raise ValueError(f'''Type not supported for expand_dims: {type(__lowerCamelCase )}.''' ) def snake_case__ ( __lowerCamelCase : List[Any] ): """simple docstring""" if is_numpy_array(__lowerCamelCase ): return np.size(__lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.numel() elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.size(__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return array.size else: raise ValueError(f'''Type not supported for expand_dims: {type(__lowerCamelCase )}.''' ) def snake_case__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple ): """simple docstring""" for key, value in auto_map.items(): if isinstance(__lowerCamelCase , (tuple, list) ): lowerCamelCase__ : Optional[int] =[f'''{repo_id}--{v}''' if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: lowerCamelCase__ : Tuple =f'''{repo_id}--{value}''' return auto_map def snake_case__ ( __lowerCamelCase : Optional[int] ): """simple docstring""" for base_class in inspect.getmro(__lowerCamelCase ): lowerCamelCase__ : Tuple =base_class.__module__ lowerCamelCase__ : Tuple =base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'''Could not infer framework from class {model_class}.''' )
238
"""simple docstring""" from functools import lru_cache def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : Optional[Any] =2 lowerCamelCase__ : Optional[int] =set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__lowerCamelCase ) if n > 1: factors.add(__lowerCamelCase ) return factors @lru_cache def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" return len(unique_prime_factors(__lowerCamelCase ) ) def snake_case__ ( __lowerCamelCase : list ): """simple docstring""" return len(set(__lowerCamelCase ) ) in (0, 1) def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : Tuple =2 while True: # Increment each value of a generated range lowerCamelCase__ : Tuple =[base + i for i in range(__lowerCamelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowerCamelCase__ : Optional[Any] =[upf_len(__lowerCamelCase ) for x in group] checker.append(__lowerCamelCase ) # If all numbers in the list are equal, return the group variable. if equality(__lowerCamelCase ): return group # Increment our base variable by 1 base += 1 def snake_case__ ( __lowerCamelCase : int = 4 ): """simple docstring""" lowerCamelCase__ : List[Any] =run(__lowerCamelCase ) return results[0] if len(__lowerCamelCase ) else None if __name__ == "__main__": print(solution())
238
1
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCamelCase__ : """simple docstring""" def __init__( self , _A , ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = 13 SCREAMING_SNAKE_CASE_ = 7 SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = 99 SCREAMING_SNAKE_CASE_ = 32 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 37 SCREAMING_SNAKE_CASE_ = '''gelu''' SCREAMING_SNAKE_CASE_ = 0.1 SCREAMING_SNAKE_CASE_ = 0.1 SCREAMING_SNAKE_CASE_ = 512 SCREAMING_SNAKE_CASE_ = 16 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 0.02 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = None def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self , _A , _A , _A , _A , _A , _A ) -> int: SCREAMING_SNAKE_CASE_ = TFDistilBertModel(config=_A ) SCREAMING_SNAKE_CASE_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} SCREAMING_SNAKE_CASE_ = model(_A ) SCREAMING_SNAKE_CASE_ = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , _A , _A , _A , _A , _A , _A ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = TFDistilBertForMaskedLM(config=_A ) SCREAMING_SNAKE_CASE_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self , _A , _A , _A , _A , _A , _A ) -> str: SCREAMING_SNAKE_CASE_ = TFDistilBertForQuestionAnswering(config=_A ) SCREAMING_SNAKE_CASE_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self , _A , _A , _A , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = TFDistilBertForSequenceClassification(_A ) SCREAMING_SNAKE_CASE_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self , _A , _A , _A , _A , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.num_choices SCREAMING_SNAKE_CASE_ = TFDistilBertForMultipleChoice(_A ) SCREAMING_SNAKE_CASE_ = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self , _A , _A , _A , _A , _A , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = TFDistilBertForTokenClassification(_A ) SCREAMING_SNAKE_CASE_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCAmelCase_ =( { "feature-extraction": TFDistilBertModel, "fill-mask": TFDistilBertForMaskedLM, "question-answering": TFDistilBertForQuestionAnswering, "text-classification": TFDistilBertForSequenceClassification, "token-classification": TFDistilBertForTokenClassification, "zero-shot": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = TFDistilBertModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A , dim=37 ) def _UpperCamelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_A ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_A ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_A ) @slow def _UpperCamelCase ( self ) -> List[str]: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): SCREAMING_SNAKE_CASE_ = TFDistilBertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) SCREAMING_SNAKE_CASE_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ = model(_A )[0] SCREAMING_SNAKE_CASE_ = [1, 6, 768] self.assertEqual(output.shape , _A ) SCREAMING_SNAKE_CASE_ = tf.constant( [ [ [0.1926_1885, -0.1373_2955, 0.411_9799], [0.2215_0156, -0.0742_2661, 0.3903_7204], [0.2275_6018, -0.089_6414, 0.370_1467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1E-4 )
257
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('''google/mt5-small''' ) SCREAMING_SNAKE_CASE_ = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids SCREAMING_SNAKE_CASE_ = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids SCREAMING_SNAKE_CASE_ = shift_tokens_right(_A , model.config.pad_token_id , model.config.decoder_start_token_id ) SCREAMING_SNAKE_CASE_ = model(_A , decoder_input_ids=_A ).logits SCREAMING_SNAKE_CASE_ = optax.softmax_cross_entropy(_A , onehot(_A , logits.shape[-1] ) ).mean() SCREAMING_SNAKE_CASE_ = -(labels.shape[-1] * loss.item()) SCREAMING_SNAKE_CASE_ = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
257
1
from math import isqrt def _lowerCAmelCase ( __lowerCAmelCase ) -> bool: """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(__lowerCAmelCase ) + 1 ) ) def _lowerCAmelCase ( __lowerCAmelCase = 10**6 ) -> int: """simple docstring""" snake_case__ : Tuple = 0 snake_case__ : List[Any] = 1 snake_case__ : List[Any] = 7 while prime_candidate < max_prime: primes_count += is_prime(__lowerCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f"""{solution() = }""")
230
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def lowerCamelCase__ ( a = True , *a , **a ) -> Optional[Any]: if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) _A: Optional[Any] = False if main_process_only: _A: Union[str, Any] = PartialState().local_process_index == 0 return _tqdm(*a , **a , disable=a )
121
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowerCAmelCase__ : Any =None lowerCAmelCase__ : Union[str, Any] =logging.get_logger(__name__) lowerCAmelCase__ : Tuple ={'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ : Any ={ 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } lowerCAmelCase__ : Union[str, Any] ={ 'google/rembert': 2_56, } lowerCAmelCase__ : Optional[Any] ='▁' class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = RemBertTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__="[CLS]" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="[CLS]" , lowerCAmelCase__="[MASK]" , **lowerCAmelCase__ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ : int = do_lower_case SCREAMING_SNAKE_CASE_ : Dict = remove_space SCREAMING_SNAKE_CASE_ : Optional[int] = keep_accents SCREAMING_SNAKE_CASE_ : Optional[int] = vocab_file SCREAMING_SNAKE_CASE_ : List[Any] = False if not self.vocab_file else True def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error('Vocabulary path ({}) should be a directory'.format(lowerCAmelCase__ ) ) return SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
162
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowercase (unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=1_8 , lowerCAmelCase__=3_0 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = size if size is not None else {'shortest_edge': 1_8} SCREAMING_SNAKE_CASE_ : Optional[Any] = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} SCREAMING_SNAKE_CASE_ : int = parent SCREAMING_SNAKE_CASE_ : str = batch_size SCREAMING_SNAKE_CASE_ : str = num_channels SCREAMING_SNAKE_CASE_ : List[Any] = image_size SCREAMING_SNAKE_CASE_ : str = min_resolution SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_resolution SCREAMING_SNAKE_CASE_ : int = do_resize SCREAMING_SNAKE_CASE_ : List[Any] = size SCREAMING_SNAKE_CASE_ : Optional[int] = do_center_crop SCREAMING_SNAKE_CASE_ : Any = crop_size SCREAMING_SNAKE_CASE_ : List[Any] = do_normalize SCREAMING_SNAKE_CASE_ : List[str] = image_mean SCREAMING_SNAKE_CASE_ : Optional[int] = image_std def UpperCamelCase__ ( self ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __lowercase (__SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = LevitImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = LevitImageProcessingTester(self ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'image_std' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_center_crop' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'size' ) ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 1_8} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ : str = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
162
1
'''simple docstring''' import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class a ( _lowerCamelCase ): def A_ ( self : Union[str, Any] ): snake_case_ = tempfile.mkdtemp() snake_case_ = 8 # DPR tok snake_case_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] snake_case_ = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) snake_case_ = os.path.join(lowercase_ , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok snake_case_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] snake_case_ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) snake_case_ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] snake_case_ = {'''unk_token''': '''<unk>'''} snake_case_ = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) snake_case_ = os.path.join(lowercase_ , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case_ = os.path.join(lowercase_ , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase_ ) ) def A_ ( self : Any ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def A_ ( self : Dict ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def A_ ( self : Optional[Any] ): shutil.rmtree(self.tmpdirname ) @require_tokenizers def A_ ( self : Union[str, Any] ): snake_case_ = os.path.join(self.tmpdirname , '''rag_tokenizer''' ) snake_case_ = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) snake_case_ = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(lowercase_ ) rag_tokenizer.save_pretrained(lowercase_ ) snake_case_ = RagTokenizer.from_pretrained(lowercase_ , config=lowercase_ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , lowercase_ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , lowercase_ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def A_ ( self : List[Any] ): snake_case_ = RagTokenizer.from_pretrained('''facebook/rag-token-nq''' ) snake_case_ = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] snake_case_ = tokenizer(lowercase_ ) self.assertIsNotNone(lowercase_ ) @slow def A_ ( self : Dict ): snake_case_ = RagTokenizer.from_pretrained('''facebook/rag-sequence-nq''' ) snake_case_ = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] snake_case_ = tokenizer(lowercase_ ) self.assertIsNotNone(lowercase_ )
56
"""simple docstring""" def __magic_name__ ( lowercase , lowercase ): if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) SCREAMING_SNAKE_CASE_: Optional[int] =str(bin(lowercase ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE_: Any =str(bin(lowercase ) )[2:] SCREAMING_SNAKE_CASE_: Dict =max(len(lowercase ) , len(lowercase ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase ) , b_binary.zfill(lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
173
0
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self , snake_case__ ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 2_50 UpperCAmelCase = ids_tensor((batch_size, length) , snake_case__ ) UpperCAmelCase = torch.ones((batch_size, length) , device=snake_case__ , dtype=torch.float ) / length return input_ids, scores def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(snake_case__ , snake_case__ ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(snake_case__ , snake_case__ ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(snake_case__ , snake_case__ ) ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(snake_case__ , snake_case__ ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(snake_case__ , snake_case__ ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(snake_case__ , snake_case__ ) ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(snake_case__ , snake_case__ ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(snake_case__ , snake_case__ ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(snake_case__ , snake_case__ ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(snake_case__ , snake_case__ ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(snake_case__ , snake_case__ ) ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(snake_case__ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(snake_case__ ) , 1 )
248
"""simple docstring""" def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(lowerCAmelCase ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
248
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str]=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any]=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = "" else: __lowerCAmelCase = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def _a ( SCREAMING_SNAKE_CASE_ : str ): __lowerCAmelCase = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): __lowerCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = val def _a ( ): __lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int=True ): __lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": __lowerCAmelCase = 8 # set labels if required if not base_model: __lowerCAmelCase = 10_00 __lowerCAmelCase = "huggingface/label-files" __lowerCAmelCase = "imagenet-1k-id2label.json" __lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowerCAmelCase = 3_84 __lowerCAmelCase = 15_36 __lowerCAmelCase = 12 __lowerCAmelCase = 6 # load original model from torch hub __lowerCAmelCase = torch.hub.load("facebookresearch/dino:main" , SCREAMING_SNAKE_CASE_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load HuggingFace model if base_model: __lowerCAmelCase = ViTModel(SCREAMING_SNAKE_CASE_ , add_pooling_layer=SCREAMING_SNAKE_CASE_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by ViTImageProcessor __lowerCAmelCase = ViTImageProcessor() __lowerCAmelCase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowerCAmelCase = encoding["pixel_values"] __lowerCAmelCase = model(SCREAMING_SNAKE_CASE_ ) if base_model: __lowerCAmelCase = original_model(SCREAMING_SNAKE_CASE_ ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: __lowerCAmelCase = original_model(SCREAMING_SNAKE_CASE_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.logits , atol=1E-3 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) UpperCamelCase__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
92
from random import randint from tempfile import TemporaryFile import numpy as np def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] ): __lowerCAmelCase = 0 if start < end: __lowerCAmelCase = randint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = a[end] __lowerCAmelCase = a[pivot] __lowerCAmelCase = temp __lowerCAmelCase , __lowerCAmelCase = _in_place_partition(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE_ , p + 1 , SCREAMING_SNAKE_CASE_ ) return count def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ): __lowerCAmelCase = 0 __lowerCAmelCase = randint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = a[end] __lowerCAmelCase = a[pivot] __lowerCAmelCase = temp __lowerCAmelCase = start - 1 for index in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value __lowerCAmelCase = new_pivot_index + 1 __lowerCAmelCase = a[new_pivot_index] __lowerCAmelCase = a[index] __lowerCAmelCase = temp __lowerCAmelCase = a[new_pivot_index + 1] __lowerCAmelCase = a[end] __lowerCAmelCase = temp return new_pivot_index + 1, count UpperCamelCase__ = TemporaryFile() UpperCamelCase__ = 100 # 1000 elements are to be sorted UpperCamelCase__ , UpperCamelCase__ = 0, 1 # mean and standard deviation UpperCamelCase__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print("""The array is""") print(X) outfile.seek(0) # using the same array UpperCamelCase__ = np.load(outfile) UpperCamelCase__ = len(M) - 1 UpperCamelCase__ = _in_place_quick_sort(M, 0, r) print( """No of Comparisons for 100 elements selected from a standard normal distribution""" """is :""" ) print(z)
92
1
"""simple docstring""" from collections import deque def _snake_case ( UpperCAmelCase_ : List[Any] ): A__ = len(UpperCAmelCase_ ) A__ = deque() A__ = [False for _ in range(UpperCAmelCase_ )] A__ = [-1 for _ in range(UpperCAmelCase_ )] A__ = index_of[:] def strong_connect(UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict ): A__ = index # the number when this node is seen A__ = index # lowest rank node reachable from here index += 1 stack.append(UpperCAmelCase_ ) A__ = True for w in g[v]: if index_of[w] == -1: A__ = strong_connect(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) A__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: A__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: A__ = [] A__ = stack.pop() A__ = False component.append(UpperCAmelCase_ ) while w != v: A__ = stack.pop() A__ = False component.append(UpperCAmelCase_ ) components.append(UpperCAmelCase_ ) return index A__ = [] for v in range(UpperCAmelCase_ ): if index_of[v] == -1: strong_connect(UpperCAmelCase_ , 0 , UpperCAmelCase_ ) return components def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): A__ = [[] for _ in range(UpperCAmelCase_ )] for u, v in edges: g[u].append(UpperCAmelCase_ ) return g if __name__ == "__main__": # Test SCREAMING_SNAKE_CASE_ : str = 7 SCREAMING_SNAKE_CASE_ : List[Any] = [0, 0, 1, 2, 3, 3, 4, 4, 6] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1, 3, 2, 0, 1, 4, 5, 6, 5] SCREAMING_SNAKE_CASE_ : Any = [(u, v) for u, v in zip(source, target)] SCREAMING_SNAKE_CASE_ : List[Any] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
69
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE_ : int = logging.get_logger(__name__) class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: Optional[int] , *UpperCamelCase: Optional[int] , **UpperCamelCase: Optional[int] ): """simple docstring""" warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
69
1
from __future__ import annotations def __lowercase ( a__ , a__ = None , a__ = None , a__ = False , ) -> tuple[int, float, str]: __SCREAMING_SNAKE_CASE = cipher_alphabet or [chr(a__ ) for i in range(97 , 1_23 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) __SCREAMING_SNAKE_CASE = { 'a': 0.08497, 'b': 0.01492, 'c': 0.02202, 'd': 0.04253, 'e': 0.11162, 'f': 0.02228, 'g': 0.02015, 'h': 0.06094, 'i': 0.07546, 'j': 0.00153, 'k': 0.01292, 'l': 0.04025, 'm': 0.02406, 'n': 0.06749, 'o': 0.07507, 'p': 0.01929, 'q': 0.00095, 'r': 0.07587, 's': 0.06327, 't': 0.09356, 'u': 0.02758, 'v': 0.00978, 'w': 0.02560, 'x': 0.00150, 'y': 0.01994, 'z': 0.00077, } else: # Custom frequencies dictionary __SCREAMING_SNAKE_CASE = frequencies_dict if not case_sensitive: __SCREAMING_SNAKE_CASE = ciphertext.lower() # Chi squared statistic values __SCREAMING_SNAKE_CASE = {} # cycle through all of the shifts for shift in range(len(a__ ) ): __SCREAMING_SNAKE_CASE = '' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet __SCREAMING_SNAKE_CASE = (alphabet_letters.index(letter.lower() ) - shift) % len( a__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter __SCREAMING_SNAKE_CASE = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: __SCREAMING_SNAKE_CASE = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message __SCREAMING_SNAKE_CASE = decrypted_with_shift.lower().count(a__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __SCREAMING_SNAKE_CASE = frequencies[letter] * occurrences # Complete the chi squared statistic formula __SCREAMING_SNAKE_CASE = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message __SCREAMING_SNAKE_CASE = decrypted_with_shift.count(a__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __SCREAMING_SNAKE_CASE = frequencies[letter] * occurrences # Complete the chi squared statistic formula __SCREAMING_SNAKE_CASE = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary __SCREAMING_SNAKE_CASE = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(a__ ) -> tuple[float, str]: return chi_squared_statistic_values[key] __SCREAMING_SNAKE_CASE = min( a__ , key=a__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
257
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def __init__( self , _A , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = dataset __SCREAMING_SNAKE_CASE = process __SCREAMING_SNAKE_CASE = params def __len__( self ): '''simple docstring''' return len(self.dataset ) def __getitem__( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.dataset[i] __SCREAMING_SNAKE_CASE = self.process(_A , **self.params ) return processed class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def __init__( self , _A , _A , _A , _A=None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = loader __SCREAMING_SNAKE_CASE = infer __SCREAMING_SNAKE_CASE = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = loader_batch_size # Internal bookkeeping __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def __len__( self ): '''simple docstring''' return len(self.loader ) def __iter__( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = iter(self.loader ) return self def _A ( self ): '''simple docstring''' if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice __SCREAMING_SNAKE_CASE = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) __SCREAMING_SNAKE_CASE = {} for k, element in self._loader_batch_data.items(): if isinstance(_A , _A ): # Convert ModelOutput to tuple first __SCREAMING_SNAKE_CASE = element.to_tuple() if isinstance(element[0] , torch.Tensor ): __SCREAMING_SNAKE_CASE = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __SCREAMING_SNAKE_CASE = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_A , _A ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): __SCREAMING_SNAKE_CASE = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __SCREAMING_SNAKE_CASE = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around __SCREAMING_SNAKE_CASE = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __SCREAMING_SNAKE_CASE = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __SCREAMING_SNAKE_CASE = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. __SCREAMING_SNAKE_CASE = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 __SCREAMING_SNAKE_CASE = self._loader_batch_data.__class__(_A ) self._loader_batch_index += 1 return result def _A ( self ): '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch __SCREAMING_SNAKE_CASE = next(self.iterator ) __SCREAMING_SNAKE_CASE = self.infer(_A , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_A , torch.Tensor ): __SCREAMING_SNAKE_CASE = processed else: __SCREAMING_SNAKE_CASE = list(processed.keys() )[0] __SCREAMING_SNAKE_CASE = processed[key] if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE = len(_A ) else: __SCREAMING_SNAKE_CASE = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __SCREAMING_SNAKE_CASE = observed_batch_size # Setting internal index to unwrap the batch __SCREAMING_SNAKE_CASE = processed __SCREAMING_SNAKE_CASE = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def __init__( self , _A , _A , _A , _A=None ): '''simple docstring''' super().__init__(_A , _A , _A ) def __iter__( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = iter(self.loader ) __SCREAMING_SNAKE_CASE = None return self def _A ( self ): '''simple docstring''' if self.subiterator is None: __SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item __SCREAMING_SNAKE_CASE = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators __SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) __SCREAMING_SNAKE_CASE = next(self.subiterator ) return processed class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def __iter__( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = iter(self.loader ) return self def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: __SCREAMING_SNAKE_CASE = self.loader_batch_item() __SCREAMING_SNAKE_CASE = item.pop('is_last' ) accumulator.append(_A ) if is_last: return accumulator while not is_last: __SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_A , torch.Tensor ): __SCREAMING_SNAKE_CASE = processed else: __SCREAMING_SNAKE_CASE = list(processed.keys() )[0] __SCREAMING_SNAKE_CASE = processed[key] if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE = len(_A ) else: __SCREAMING_SNAKE_CASE = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __SCREAMING_SNAKE_CASE = observed_batch_size __SCREAMING_SNAKE_CASE = processed __SCREAMING_SNAKE_CASE = 0 while self._loader_batch_index < self.loader_batch_size: __SCREAMING_SNAKE_CASE = self.loader_batch_item() __SCREAMING_SNAKE_CASE = item.pop('is_last' ) accumulator.append(_A ) if is_last: return accumulator else: __SCREAMING_SNAKE_CASE = processed __SCREAMING_SNAKE_CASE = item.pop('is_last' ) accumulator.append(_A ) return accumulator class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def __init__( self , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = dataset __SCREAMING_SNAKE_CASE = key def __len__( self ): '''simple docstring''' return len(self.dataset ) def __getitem__( self , _A ): '''simple docstring''' return self.dataset[i][self.key] class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def __init__( self , _A , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = dataset __SCREAMING_SNAKE_CASE = keya __SCREAMING_SNAKE_CASE = keya def __len__( self ): '''simple docstring''' return len(self.dataset ) def __getitem__( self , _A ): '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
257
1
'''simple docstring''' import math import qiskit def __lowerCAmelCase (__lowerCAmelCase = 1 , __lowerCAmelCase = 1 , __lowerCAmelCase = 1 ): if ( isinstance(lowercase__ , lowercase__ ) or isinstance(lowercase__ , lowercase__ ) or isinstance(lowercase__ , lowercase__ ) ): raise TypeError("inputs must be integers." ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("inputs must be positive." ) if ( (math.floor(lowercase__ ) != input_a) or (math.floor(lowercase__ ) != input_a) or (math.floor(lowercase__ ) != carry_in) ): raise ValueError("inputs must be exact integers." ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2." ) # build registers _UpperCAmelCase : Union[str, Any] = qiskit.QuantumRegister(4 , "qr" ) _UpperCAmelCase : Optional[Any] = qiskit.ClassicalRegister(2 , "cr" ) # list the entries _UpperCAmelCase : str = [input_a, input_a, carry_in] _UpperCAmelCase : Optional[Any] = qiskit.QuantumCircuit(lowercase__ , lowercase__ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(lowercase__ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(lowercase__ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(lowercase__ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , lowercase__ ) # measure the last two qbits _UpperCAmelCase : List[Any] = qiskit.Aer.get_backend("aer_simulator" ) _UpperCAmelCase : Optional[Any] = qiskit.execute(lowercase__ , lowercase__ , shots=1_000 ) return job.result().get_counts(lowercase__ ) if __name__ == "__main__": print(F'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
356
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Tuple=4 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : Dict = use_attention_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Dict = num_choices def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_attention_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = config_and_inputs _UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] = model_class_name.from_pretrained("albert-base-v2" ) _UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _UpperCAmelCase : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] _UpperCAmelCase : List[Any] = (1, 11, 7_68) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : str = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1E-4 ) )
322
0
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __lowerCamelCase = logging.getLogger(__name__) class A__ ( _snake_case ): lowercase = "summarization" lowercase = ["loss"] lowercase = ROUGE_KEYS lowercase = "rouge2" def __init__( self , UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' if hparams.sortish_sampler and hparams.gpus > 1: A_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(UpperCamelCase__ , num_labels=UpperCamelCase__ , mode=self.mode , **UpperCamelCase__ ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) A_ = Path(self.output_dir ) / """metrics.json""" A_ = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) A_ = 0 A_ = defaultdict(UpperCamelCase__ ) A_ = self.config.model_type A_ = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size A_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } A_ = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } A_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} A_ = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], f'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) A_ = get_git_info()["""repo_sha"""] A_ = hparams.num_workers A_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , UpperCamelCase__ ): A_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] A_ = self.decoder_start_token_id A_ = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) A_ = False A_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: A_ = self.hparams.eval_max_gen_length else: A_ = self.model.config.max_length A_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def snake_case_ ( self , UpperCamelCase__ ) -> Dict[str, List[str]]: '''simple docstring''' A_ = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(UpperCamelCase__ , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) A_ = True return readable_batch def snake_case_ ( self , UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' return self.model(UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = self.tokenizer.batch_decode( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) return lmap(str.strip , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.tokenizer.pad_token_id A_ , A_ = batch["""input_ids"""], batch["""attention_mask"""] A_ = batch["""labels"""] if isinstance(self.model , UpperCamelCase__ ): A_ = self.model._shift_right(UpperCamelCase__ ) else: A_ = shift_tokens_right(UpperCamelCase__ , UpperCamelCase__ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero A_ = decoder_input_ids self.save_readable_batch(UpperCamelCase__ ) A_ = self(UpperCamelCase__ , attention_mask=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ , use_cache=UpperCamelCase__ ) A_ = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id A_ = nn.CrossEntropyLoss(ignore_index=UpperCamelCase__ ) assert lm_logits.shape[-1] == self.vocab_size A_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: A_ = nn.functional.log_softmax(UpperCamelCase__ , dim=-1 ) A_ , A_ = label_smoothed_nll_loss( UpperCamelCase__ , UpperCamelCase__ , self.hparams.label_smoothing , ignore_index=UpperCamelCase__ ) return (loss,) @property def snake_case_ ( self ) -> int: '''simple docstring''' return self.tokenizer.pad_token_id def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = self._step(UpperCamelCase__ ) A_ = dict(zip(self.loss_names , UpperCamelCase__ ) ) # tokens per batch A_ = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() A_ = batch["""input_ids"""].shape[0] A_ = batch["""input_ids"""].eq(self.pad ).sum() A_ = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' return self._generative_step(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__="val" ) -> Dict: '''simple docstring''' self.step_count += 1 A_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} A_ = losses["""loss"""] A_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } A_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) A_ = torch.tensor(UpperCamelCase__ ).type_as(UpperCamelCase__ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(UpperCamelCase__ ) A_ = {f'''{prefix}_avg_{k}''': x for k, x in losses.items()} A_ = self.step_count self.metrics[prefix].append(UpperCamelCase__ ) # callback writes this to self.metrics_save_path A_ = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, f'''{prefix}_loss''': loss, f'''{prefix}_{self.val_metric}''': metric_tensor, } def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' return calculate_rouge(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> dict: '''simple docstring''' A_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') A_ = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=UpperCamelCase__ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) A_ = (time.time() - ta) / batch["""input_ids"""].shape[0] A_ = self.ids_to_clean_text(UpperCamelCase__ ) A_ = self.ids_to_clean_text(batch["""labels"""] ) A_ = self._step(UpperCamelCase__ ) A_ = dict(zip(self.loss_names , UpperCamelCase__ ) ) A_ = self.calc_generative_metrics(UpperCamelCase__ , UpperCamelCase__ ) A_ = np.mean(lmap(UpperCamelCase__ , UpperCamelCase__ ) ) base_metrics.update(gen_time=UpperCamelCase__ , gen_len=UpperCamelCase__ , preds=UpperCamelCase__ , target=UpperCamelCase__ , **UpperCamelCase__ ) return base_metrics def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' return self._generative_step(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' return self.validation_epoch_end(UpperCamelCase__ , prefix="""test""" ) def snake_case_ ( self , UpperCamelCase__ ) -> SeqaSeqDataset: '''simple docstring''' A_ = self.n_obs[type_path] A_ = self.target_lens[type_path] A_ = self.dataset_class( self.tokenizer , type_path=UpperCamelCase__ , n_obs=UpperCamelCase__ , max_target_length=UpperCamelCase__ , **self.dataset_kwargs , ) return dataset def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> DataLoader: '''simple docstring''' A_ = self.get_dataset(UpperCamelCase__ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": A_ = dataset.make_sortish_sampler(UpperCamelCase__ , distributed=self.hparams.gpus > 1 ) return DataLoader( UpperCamelCase__ , batch_size=UpperCamelCase__ , collate_fn=dataset.collate_fn , shuffle=UpperCamelCase__ , num_workers=self.num_workers , sampler=UpperCamelCase__ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": A_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( UpperCamelCase__ , batch_sampler=UpperCamelCase__ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( UpperCamelCase__ , batch_size=UpperCamelCase__ , collate_fn=dataset.collate_fn , shuffle=UpperCamelCase__ , num_workers=self.num_workers , sampler=UpperCamelCase__ , ) def snake_case_ ( self ) -> DataLoader: '''simple docstring''' A_ = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=UpperCamelCase__ ) return dataloader def snake_case_ ( self ) -> DataLoader: '''simple docstring''' return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def snake_case_ ( self ) -> DataLoader: '''simple docstring''' return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' BaseTransformer.add_model_specific_args(UpperCamelCase__ , UpperCamelCase__ ) add_generic_args(UpperCamelCase__ , UpperCamelCase__ ) parser.add_argument( """--max_source_length""" , default=1024 , type=UpperCamelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=56 , type=UpperCamelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=142 , type=UpperCamelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=142 , type=UpperCamelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=UpperCamelCase__ ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=UpperCamelCase__ ) parser.add_argument("""--max_tokens_per_batch""" , type=UpperCamelCase__ , default=UpperCamelCase__ ) parser.add_argument("""--logger_name""" , type=UpperCamelCase__ , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=UpperCamelCase__ , default=-1 , required=UpperCamelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=UpperCamelCase__ , default=500 , required=UpperCamelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=UpperCamelCase__ , default=-1 , required=UpperCamelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=UpperCamelCase__ , default="""summarization""" , required=UpperCamelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=UpperCamelCase__ , default=0.0 , required=UpperCamelCase__ ) parser.add_argument("""--src_lang""" , type=UpperCamelCase__ , default="""""" , required=UpperCamelCase__ ) parser.add_argument("""--tgt_lang""" , type=UpperCamelCase__ , default="""""" , required=UpperCamelCase__ ) parser.add_argument("""--eval_beams""" , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ ) parser.add_argument( """--val_metric""" , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=UpperCamelCase__ , default=UpperCamelCase__ , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=UpperCamelCase__ , default=1 , required=UpperCamelCase__ , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=UpperCamelCase__ , default=-1 , required=UpperCamelCase__ , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class A__ ( _snake_case ): lowercase = "translation" lowercase = ["loss"] lowercase = ["bleu"] lowercase = "bleu" def __init__( self , UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' super().__init__(UpperCamelCase__ , **UpperCamelCase__ ) A_ = hparams.src_lang A_ = hparams.tgt_lang def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> dict: '''simple docstring''' return calculate_bleu(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__=None ) -> SummarizationModule: Path(args.output_dir ).mkdir(exist_ok=UpperCAmelCase__ ) check_output_dir(UpperCAmelCase__, expected_items=3 ) if model is None: if "summarization" in args.task: A_ = SummarizationModule(UpperCAmelCase__ ) else: A_ = TranslationModule(UpperCAmelCase__ ) A_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): A_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger A_ = os.environ.get("""WANDB_PROJECT""", UpperCAmelCase__ ) A_ = WandbLogger(name=model.output_dir.name, project=UpperCAmelCase__ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger A_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: A_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: A_ = False A_ = args.val_metric == """loss""" A_ = generic_train( UpperCAmelCase__, UpperCAmelCase__, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, UpperCAmelCase__ ), early_stopping_callback=UpperCAmelCase__, logger=UpperCAmelCase__, ) pickle_save(model.hparams, model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model A_ = """""" A_ = sorted(glob.glob(os.path.join(args.output_dir, """*.ckpt""" ), recursive=UpperCAmelCase__ ) ) if checkpoints: A_ = checkpoints[-1] A_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() __lowerCamelCase = pl.Trainer.add_argparse_args(parser) __lowerCamelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __lowerCamelCase = parser.parse_args() main(args)
162
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=True, UpperCAmelCase__="pt" ) -> str: A_ = {"""add_prefix_space""": True} if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and not line.startswith(""" """ ) else {} A_ = padding_side return tokenizer( [line], max_length=UpperCAmelCase__, padding="""max_length""" if pad_to_max_length else None, truncation=UpperCAmelCase__, return_tensors=UpperCAmelCase__, add_special_tokens=UpperCAmelCase__, **UpperCAmelCase__, ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, ) -> List[str]: A_ = input_ids.ne(UpperCAmelCase__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__="train" , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="" , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = Path(UpperCamelCase__ ).joinpath(type_path + """.source""" ) A_ = Path(UpperCamelCase__ ).joinpath(type_path + """.target""" ) A_ = self.get_char_lens(self.src_file ) A_ = max_source_length A_ = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' A_ = tokenizer A_ = prefix if n_obs is not None: A_ = self.src_lens[:n_obs] A_ = src_lang A_ = tgt_lang def __len__( self ) -> Dict: '''simple docstring''' return len(self.src_lens ) def __getitem__( self , UpperCamelCase__ ) -> Dict[str, torch.Tensor]: '''simple docstring''' A_ = index + 1 # linecache starts at 1 A_ = self.prefix + linecache.getline(str(self.src_file ) , UpperCamelCase__ ).rstrip("""\n""" ) A_ = linecache.getline(str(self.tgt_file ) , UpperCamelCase__ ).rstrip("""\n""" ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , UpperCamelCase__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , UpperCamelCase__ ) else self.tokenizer ) A_ = self.tokenizer.generator if isinstance(self.tokenizer , UpperCamelCase__ ) else self.tokenizer A_ = encode_line(UpperCamelCase__ , UpperCamelCase__ , self.max_source_length , """right""" ) A_ = encode_line(UpperCamelCase__ , UpperCamelCase__ , self.max_target_length , """right""" ) A_ = source_inputs["""input_ids"""].squeeze() A_ = target_inputs["""input_ids"""].squeeze() A_ = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Any: '''simple docstring''' return [len(UpperCamelCase__ ) for x in Path(UpperCamelCase__ ).open().readlines()] def snake_case_ ( self , UpperCamelCase__ ) -> Dict[str, torch.Tensor]: '''simple docstring''' A_ = torch.stack([x["""input_ids"""] for x in batch] ) A_ = torch.stack([x["""attention_mask"""] for x in batch] ) A_ = torch.stack([x["""decoder_input_ids"""] for x in batch] ) A_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , UpperCamelCase__ ) else self.tokenizer.pad_token_id ) A_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , UpperCamelCase__ ) else self.tokenizer.pad_token_id ) A_ = trim_batch(UpperCamelCase__ , UpperCamelCase__ ) A_ , A_ = trim_batch(UpperCamelCase__ , UpperCamelCase__ , attention_mask=UpperCamelCase__ ) A_ = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __lowerCamelCase = getLogger(__name__) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: return list(itertools.chain.from_iterable(UpperCAmelCase__ ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: A_ = get_git_info() save_json(UpperCAmelCase__, os.path.join(UpperCAmelCase__, """git_log.json""" ) ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=4, **UpperCAmelCase__ ) -> Dict: with open(UpperCAmelCase__, """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__, indent=UpperCAmelCase__, **UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: with open(UpperCAmelCase__ ) as f: return json.load(UpperCAmelCase__ ) def UpperCAmelCase__ ( ) -> Any: A_ = git.Repo(search_parent_directories=UpperCAmelCase__ ) A_ = { """repo_id""": str(UpperCAmelCase__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List: return list(map(UpperCAmelCase__, UpperCAmelCase__ ) ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: with open(UpperCAmelCase__, """wb""" ) as f: return pickle.dump(UpperCAmelCase__, UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]: def remove_articles(UpperCAmelCase__ ): return re.sub(r"""\b(a|an|the)\b""", """ """, UpperCAmelCase__ ) def white_space_fix(UpperCAmelCase__ ): return " ".join(text.split() ) def remove_punc(UpperCAmelCase__ ): A_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCAmelCase__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCAmelCase__ ) ) ) ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: A_ = normalize_answer(UpperCAmelCase__ ).split() A_ = normalize_answer(UpperCAmelCase__ ).split() A_ = Counter(UpperCAmelCase__ ) & Counter(UpperCAmelCase__ ) A_ = sum(common.values() ) if num_same == 0: return 0 A_ = 1.0 * num_same / len(UpperCAmelCase__ ) A_ = 1.0 * num_same / len(UpperCAmelCase__ ) A_ = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[Any]: return normalize_answer(UpperCAmelCase__ ) == normalize_answer(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = 0 for hypo, pred in zip(UpperCAmelCase__, UpperCAmelCase__ ): em += exact_match_score(UpperCAmelCase__, UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: em /= len(UpperCAmelCase__ ) return {"em": em} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: return model_prefix.startswith("""rag""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[str]: A_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A_ = """dropout_rate""" for p in extra_params: if getattr(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ): if not hasattr(UpperCAmelCase__, UpperCAmelCase__ ) and not hasattr(UpperCAmelCase__, equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(UpperCAmelCase__ ) ) delattr(UpperCAmelCase__, UpperCAmelCase__ ) continue A_ = p if hasattr(UpperCAmelCase__, UpperCAmelCase__ ) else equivalent_param[p] setattr(UpperCAmelCase__, UpperCAmelCase__, getattr(UpperCAmelCase__, UpperCAmelCase__ ) ) delattr(UpperCAmelCase__, UpperCAmelCase__ ) return hparams, config
162
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING _SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING def __A ( self ) -> Any: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""}, ] , ) __UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser""", }, ] , ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() __UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow @require_torch def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(__UpperCAmelCase ) @slow @require_tf def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12_790, """token_str""": """ Lyon""", }, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) __UpperCAmelCase : Tuple = None __UpperCAmelCase : int = None self.run_pipeline_test(__UpperCAmelCase , [] ) @require_tf def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : str = None self.run_pipeline_test(__UpperCAmelCase , [] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) __UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = [ f'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = fill_masker.tokenizer __UpperCAmelCase : Union[str, Any] = fill_masker.model __UpperCAmelCase : Tuple = fill_masker( f'This is a {tokenizer.mask_token}' , ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , ) with self.assertRaises(__UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__UpperCAmelCase ): fill_masker("""This is""" ) self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Dict = tokenizer.get_vocab() __UpperCAmelCase : Dict = sorted(vocab.keys() )[:2] # Pipeline argument __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase ) __UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Any = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Call argument __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Score equivalence __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs] __UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ) == set(__UpperCAmelCase ): __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] ) with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 ) __UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : int = tokenizer.get_vocab() __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) # top_k=2, ntargets=3 __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results __UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]] __UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__UpperCAmelCase ) , 3 ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Dict = fill_masker( f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , )
16
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class A__(unittest.TestCase ): """simple docstring""" _A : List[str] = StableDiffusionLDMaDPipeline _A : int = TEXT_TO_IMAGE_PARAMS _A : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _A : str = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) a_ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) a_ : List[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) a_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) a_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) a_ : Tuple = CLIPTextModel(_lowercase ) a_ : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) a_ : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase__ ( self , _lowercase , _lowercase=0 ) -> Any: if str(_lowercase ).startswith("""mps""" ): a_ : Optional[Any] = torch.manual_seed(_lowercase ) else: a_ : Optional[Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) a_ : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCamelCase__ ( self ) -> List[Any]: a_ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator a_ : Any = self.get_dummy_components() a_ : List[str] = StableDiffusionLDMaDPipeline(**_lowercase ) a_ : Union[str, Any] = ldmad_pipe.to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : int = self.get_dummy_inputs(_lowercase ) a_ : List[Any] = ldmad_pipe(**_lowercase ) a_ , a_ : Tuple = output.rgb, output.depth a_ : Union[str, Any] = rgb[0, -3:, -3:, -1] a_ : Any = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) a_ : Optional[Any] = np.array( [0.3_7_3_3_8_1_7_6, 0.7_0_2_4_7, 0.7_4_2_0_3_1_9_3, 0.5_1_6_4_3_6_0_4, 0.5_8_2_5_6_7_9_3, 0.6_0_9_3_2_1_3_6, 0.4_1_8_1_0_9_5, 0.4_8_3_5_5_8_7_7, 0.4_6_5_3_5_2_6_2] ) a_ : int = np.array([1_0_3.4_6_7_2_7, 8_5.8_1_2_0_0_4, 8_7.8_4_9_2_3_6] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def UpperCamelCase__ ( self ) -> Optional[Any]: a_ : Tuple = self.get_dummy_components() a_ : Optional[int] = StableDiffusionLDMaDPipeline(**_lowercase ) a_ : Optional[Any] = ldmad_pipe.to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : Dict = self.get_dummy_inputs(_lowercase ) a_ : List[str] = 3 * [inputs["""prompt"""]] # forward a_ : Optional[int] = ldmad_pipe(**_lowercase ) a_ , a_ : Any = output.rgb, output.depth a_ : Union[str, Any] = rgb_slice_a[0, -3:, -3:, -1] a_ : Union[str, Any] = depth_slice_a[0, -3:, -1] a_ : Dict = self.get_dummy_inputs(_lowercase ) a_ : List[str] = 3 * [inputs.pop("""prompt""" )] a_ : List[Any] = ldmad_pipe.tokenizer( _lowercase , padding="""max_length""" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=_lowercase , return_tensors="""pt""" , ) a_ : int = text_inputs["""input_ids"""].to(_lowercase ) a_ : Any = ldmad_pipe.text_encoder(_lowercase )[0] a_ : Dict = prompt_embeds # forward a_ : int = ldmad_pipe(**_lowercase ) a_ , a_ : Optional[int] = output.rgb, output.depth a_ : List[str] = rgb_slice_a[0, -3:, -3:, -1] a_ : Tuple = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def UpperCamelCase__ ( self ) -> Dict: a_ : int = """cpu""" # ensure determinism for the device-dependent torch.Generator a_ : Dict = self.get_dummy_components() a_ : Any = PNDMScheduler(skip_prk_steps=_lowercase ) a_ : List[str] = StableDiffusionLDMaDPipeline(**_lowercase ) a_ : str = ldmad_pipe.to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : List[Any] = self.get_dummy_inputs(_lowercase ) a_ : int = """french fries""" a_ : Any = ldmad_pipe(**_lowercase , negative_prompt=_lowercase ) a_ , a_ : Optional[Any] = output.rgb, output.depth a_ : Tuple = rgb[0, -3:, -3:, -1] a_ : Union[str, Any] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) a_ : Optional[int] = np.array( [0.3_7_0_4_4, 0.7_1_8_1_1_5_0_3, 0.7_2_2_3_2_5_1, 0.4_8_6_0_3_6_7_5, 0.5_6_3_8_3_9_1, 0.6_3_6_4_9_4_8, 0.4_2_8_3_3_7_0_4, 0.4_9_0_1_3_1_5, 0.4_7_9_2_6_2_1_7] ) a_ : Union[str, Any] = np.array([1_0_7.8_4_7_3_8, 8_4.6_2_8_0_2, 8_9.9_6_2_1_3_5] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class A__(unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self , _lowercase , _lowercase="cpu" , _lowercase=torch.floataa , _lowercase=0 ) -> List[str]: a_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) a_ : Dict = np.random.RandomState(_lowercase ).standard_normal((1, 4, 64, 64) ) a_ : Tuple = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) a_ : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCamelCase__ ( self ) -> Any: a_ : Tuple = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ) a_ : str = ldmad_pipe.to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : Dict = self.get_inputs(_lowercase ) a_ : Optional[Any] = ldmad_pipe(**_lowercase ) a_ , a_ : int = output.rgb, output.depth a_ : str = rgb[0, -3:, -3:, -1].flatten() a_ : Tuple = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) a_ : Optional[int] = np.array( [0.5_3_8_0_5_4_6_5, 0.5_6_7_0_7_3_0_5, 0.5_4_8_6_5_1_5, 0.5_7_0_1_2_2_3_6, 0.5_8_1_4_5_1_1, 0.5_6_2_5_3_4_8_7, 0.5_4_8_4_3_0_1_4, 0.5_5_0_9_2_2_6_3, 0.6_4_5_9_7_0_6] ) a_ : Optional[int] = np.array( [0.9_2_6_3_7_8_1, 0.6_6_7_8_6_7_2, 0.5_4_8_6_5_1_5, 0.9_2_2_0_2_1_4_5, 0.6_7_8_3_1_1_3_5, 0.5_6_2_5_3_4_8_7, 0.9_2_4_1_6_9_4, 0.7_5_5_1_4_7_8, 0.6_4_5_9_7_0_6] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class A__(unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self , _lowercase , _lowercase="cpu" , _lowercase=torch.floataa , _lowercase=0 ) -> str: a_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) a_ : Tuple = np.random.RandomState(_lowercase ).standard_normal((1, 4, 64, 64) ) a_ : Any = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) a_ : Dict = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: a_ : Tuple = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ).to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : List[str] = self.get_inputs(_lowercase ) a_ : Union[str, Any] = ldmad_pipe(**_lowercase ) a_ , a_ : str = output.rgb, output.depth a_ : List[str] = 0.4_9_5_5_8_6 a_ : int = 0.3_3_7_9_5_5_1_5 a_ : int = 1_1_2.4_8_5_1_8 a_ : Optional[int] = 9_8.4_8_9_7_4_6 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def UpperCamelCase__ ( self ) -> Optional[int]: a_ : Optional[Any] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d-4c""" ).to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : List[str] = self.get_inputs(_lowercase ) a_ : List[Any] = ldmad_pipe(**_lowercase ) a_ , a_ : List[Any] = output.rgb, output.depth a_ : int = 0.4_1_9_4_1_2_7 a_ : List[str] = 0.3_5_3_7_5_5_8_6 a_ : Optional[int] = 0.5_6_3_8_5_0_2 a_ : str = 0.3_4_6_8_6_1_0_3 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
248
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __snake_case : Dict = """<<<<<<< This should probably be modified because it mentions: """ __snake_case : Any = """======= >>>>>>> """ __snake_case : Any = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] __snake_case : Dict = [ # (pattern, replacement) # Order is important here for some replacements (r"""tfds\.core""", r"""datasets"""), (r"""tf\.io\.gfile\.GFile""", r"""open"""), (r"""tf\.([\w\d]+)""", r"""datasets.Value('\1')"""), (r"""tfds\.features\.Text\(\)""", r"""datasets.Value('string')"""), (r"""tfds\.features\.Text\(""", r"""datasets.Value('string'),"""), (r"""features\s*=\s*tfds.features.FeaturesDict\(""", r"""features=datasets.Features("""), (r"""tfds\.features\.FeaturesDict\(""", r"""dict("""), (r"""The TensorFlow Datasets Authors""", r"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (r"""tfds\.""", r"""datasets."""), (r"""dl_manager\.manual_dir""", r"""self.config.data_dir"""), (r"""self\.builder_config""", r"""self.config"""), ] def _UpperCAmelCase ( a__): '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory) class A__(a_ ): """simple docstring""" @staticmethod def UpperCamelCase__ ( _lowercase ) -> Dict: a_ : Optional[Any] = parser.add_parser( """convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , ) train_parser.add_argument( """--tfds_path""" , type=_lowercase , required=_lowercase , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , ) train_parser.add_argument( """--datasets_directory""" , type=_lowercase , required=_lowercase , help="""Path to the HuggingFace Datasets folder.""" ) train_parser.set_defaults(func=_lowercase ) def __init__( self , _lowercase , _lowercase , *_lowercase ) -> str: a_ : List[Any] = get_logger("""datasets-cli/converting""" ) a_ : Optional[Any] = tfds_path a_ : List[Any] = datasets_directory def UpperCamelCase__ ( self ) -> Dict: if os.path.isdir(self._tfds_path ): a_ : List[Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): a_ : Dict = os.path.dirname(self._tfds_path ) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" ) a_ : List[Any] = os.path.abspath(self._datasets_directory ) self._logger.info(F'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) a_ : Dict = [] a_ : Tuple = [] a_ : str = {} if os.path.isdir(self._tfds_path ): a_ : str = os.listdir(_lowercase ) else: a_ : int = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F'''Looking at file {f_name}''' ) a_ : List[str] = os.path.join(_lowercase , _lowercase ) a_ : Dict = os.path.join(_lowercase , _lowercase ) if not os.path.isfile(_lowercase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""" ) continue with open(_lowercase , encoding="""utf-8""" ) as f: a_ : Any = f.readlines() a_ : Any = [] a_ : str = False a_ : List[str] = False a_ : List[Any] = [] for line in lines: a_ : Union[str, Any] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: a_ : List[Any] = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here a_ : Optional[int] = """""" continue elif "from absl import logging" in out_line: a_ : List[str] = """from datasets import logging\n""" elif "getLogger" in out_line: a_ : List[str] = out_line.replace("""getLogger""" , """get_logger""" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): a_ : Dict = True a_ : Optional[Any] = list(filter(lambda _lowercase : e in out_line , _lowercase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowercase ) + """\n""" ) out_lines.append(_lowercase ) out_lines.append(_lowercase ) continue else: for pattern, replacement in TO_CONVERT: a_ : List[str] = re.sub(_lowercase , _lowercase , _lowercase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: a_ : Tuple = re.match(r"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , _lowercase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) ) a_ : Optional[int] = """from . import """ + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: a_ : Optional[Any] = True out_lines.append(_lowercase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset a_ : List[str] = f_name.replace(""".py""" , """""" ) a_ : Optional[int] = os.path.join(_lowercase , _lowercase ) a_ : Dict = os.path.join(_lowercase , _lowercase ) os.makedirs(_lowercase , exist_ok=_lowercase ) self._logger.info(F'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_lowercase ) if needs_manual_update: with_manual_update.append(_lowercase ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.writelines(_lowercase ) self._logger.info(F'''Converted in {output_file}''' ) for utils_file in utils_files: try: a_ : Optional[int] = os.path.basename(_lowercase ) a_ : List[Any] = imports_to_builder_map[f_name.replace(""".py""" , """""" )] self._logger.info(F'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(_lowercase , _lowercase ) except KeyError: self._logger.error(F'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
248
1
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration __snake_case = { """tiny.en""": """https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt""", """tiny""": """https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt""", """base.en""": """https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt""", """base""": """https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt""", """small.en""": """https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt""", """small""": """https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt""", """medium.en""": """https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt""", """medium""": """https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt""", """large""": """https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt""", """large-v2""": """https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt""", } def __lowerCAmelCase ( lowercase : Tuple ) -> List[Any]: """simple docstring""" snake_case : Optional[int] = ["layers", "blocks"] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) __snake_case = { """blocks""": """layers""", """mlp.0""": """fc1""", """mlp.2""": """fc2""", """mlp_ln""": """final_layer_norm""", """.attn.query""": """.self_attn.q_proj""", """.attn.key""": """.self_attn.k_proj""", """.attn.value""": """.self_attn.v_proj""", """.attn_ln""": """.self_attn_layer_norm""", """.attn.out""": """.self_attn.out_proj""", """.cross_attn.query""": """.encoder_attn.q_proj""", """.cross_attn.key""": """.encoder_attn.k_proj""", """.cross_attn.value""": """.encoder_attn.v_proj""", """.cross_attn_ln""": """.encoder_attn_layer_norm""", """.cross_attn.out""": """.encoder_attn.out_proj""", """decoder.ln.""": """decoder.layer_norm.""", """encoder.ln.""": """encoder.layer_norm.""", """token_embedding""": """embed_tokens""", """encoder.positional_embedding""": """encoder.embed_positions.weight""", """decoder.positional_embedding""": """decoder.embed_positions.weight""", """ln_post""": """layer_norm""", } def __lowerCAmelCase ( lowercase : Any ) -> Union[str, Any]: """simple docstring""" snake_case : Union[str, Any] = list(s_dict.keys() ) for key in keys: snake_case : List[str] = key for k, v in WHISPER_MAPPING.items(): if k in key: snake_case : int = new_key.replace(lowercase , lowercase ) print(F'{key} -> {new_key}' ) snake_case : str = s_dict.pop(lowercase ) return s_dict def __lowerCAmelCase ( lowercase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" snake_case ,snake_case : List[str] = emb.weight.shape snake_case : Any = nn.Linear(lowercase , lowercase , bias=lowercase ) snake_case : Dict = emb.weight.data return lin_layer def __lowerCAmelCase ( lowercase : str , lowercase : str ) -> bytes: """simple docstring""" os.makedirs(lowercase , exist_ok=lowercase ) snake_case : Any = os.path.basename(lowercase ) snake_case : List[Any] = url.split("/" )[-2] snake_case : Union[str, Any] = os.path.join(lowercase , lowercase ) if os.path.exists(lowercase ) and not os.path.isfile(lowercase ): raise RuntimeError(F'{download_target} exists and is not a regular file' ) if os.path.isfile(lowercase ): snake_case : str = open(lowercase , "rb" ).read() if hashlib.shaaaa(lowercase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'{download_target} exists, but the SHA256 checksum does not match; re-downloading the file' ) with urllib.request.urlopen(lowercase ) as source, open(lowercase , "wb" ) as output: with tqdm( total=int(source.info().get("Content-Length" ) ) , ncols=80 , unit="iB" , unit_scale=lowercase , unit_divisor=1024 ) as loop: while True: snake_case : Optional[Any] = source.read(8192 ) if not buffer: break output.write(lowercase ) loop.update(len(lowercase ) ) snake_case : Optional[int] = open(lowercase , "rb" ).read() if hashlib.shaaaa(lowercase ).hexdigest() != expected_shaaaa: raise RuntimeError( "Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." ) return model_bytes def __lowerCAmelCase ( lowercase : List[str] , lowercase : Dict ) -> Tuple: """simple docstring""" if ".pt" not in checkpoint_path: snake_case : Dict = _download(_MODELS[checkpoint_path] ) else: snake_case : str = torch.load(lowercase , map_location="cpu" ) snake_case : List[str] = original_checkpoint["dims"] snake_case : int = original_checkpoint["model_state_dict"] snake_case : Any = state_dict["decoder.token_embedding.weight"] remove_ignore_keys_(lowercase ) rename_keys(lowercase ) snake_case : Any = True snake_case : int = state_dict["decoder.layers.0.fc1.weight"].shape[0] snake_case : List[str] = WhisperConfig( vocab_size=dimensions["n_vocab"] , encoder_ffn_dim=lowercase , decoder_ffn_dim=lowercase , num_mel_bins=dimensions["n_mels"] , d_model=dimensions["n_audio_state"] , max_target_positions=dimensions["n_text_ctx"] , encoder_layers=dimensions["n_audio_layer"] , encoder_attention_heads=dimensions["n_audio_head"] , decoder_layers=dimensions["n_text_layer"] , decoder_attention_heads=dimensions["n_text_state"] , max_source_positions=dimensions["n_audio_ctx"] , ) snake_case : List[str] = WhisperForConditionalGeneration(lowercase ) snake_case ,snake_case : Dict = model.model.load_state_dict(lowercase , strict=lowercase ) if len(lowercase ) > 0 and not set(lowercase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F' but all the following weights are missing {missing}' ) if tie_embeds: snake_case : str = make_linear_from_emb(model.model.decoder.embed_tokens ) else: snake_case : str = proj_out_weights model.save_pretrained(lowercase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Patht to the downloaded checkpoints""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") __snake_case = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
112
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) __snake_case = logging.getLogger(__name__) if __name__ == "__main__": __snake_case = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=30522, type=int) __snake_case = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, """rb""") as fp: __snake_case = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") __snake_case = Counter() for tk_ids in data: counter.update(tk_ids) __snake_case = [0] * args.vocab_size for k, v in counter.items(): __snake_case = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
112
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __UpperCamelCase = (3, 9, -11, 0, 7, 5, 1, -1) __UpperCamelCase = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 class UpperCamelCase : def __init__( self, lowerCAmelCase__) -> None: snake_case_ = None for i in sorted(lowerCAmelCase__, reverse=lowerCAmelCase__): snake_case_ = Node(lowerCAmelCase__, self.head) def __iter__( self) -> Iterator[int]: snake_case_ = self.head while node: yield node.data snake_case_ = node.next_node def __len__( self) -> int: return sum(1 for _ in self) def __str__( self) -> str: return " -> ".join([str(lowerCAmelCase__) for node in self]) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> SortedLinkedList: return SortedLinkedList(list(UpperCAmelCase ) + list(UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
69
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = (DPMSolverSinglestepScheduler,) SCREAMING_SNAKE_CASE_ = (("num_inference_steps", 2_5),) def a_ ( self, **lowerCAmelCase__) -> int: snake_case_ = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf'), 'variance_type': None, } config.update(**lowerCAmelCase__) return config def a_ ( self, lowerCAmelCase__=0, **lowerCAmelCase__) -> List[Any]: snake_case_ = dict(self.forward_default_kwargs) snake_case_ = kwargs.pop('num_inference_steps', lowerCAmelCase__) snake_case_ = self.dummy_sample snake_case_ = 0.1 * sample snake_case_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: snake_case_ = self.get_scheduler_config(**lowerCAmelCase__) snake_case_ = scheduler_class(**lowerCAmelCase__) scheduler.set_timesteps(lowerCAmelCase__) # copy over dummy past residuals snake_case_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__) snake_case_ = scheduler_class.from_pretrained(lowerCAmelCase__) new_scheduler.set_timesteps(lowerCAmelCase__) # copy over dummy past residuals snake_case_ = dummy_past_residuals[: new_scheduler.config.solver_order] snake_case_ , snake_case_ = sample, sample for t in range(lowerCAmelCase__, time_step + scheduler.config.solver_order + 1): snake_case_ = scheduler.step(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__).prev_sample snake_case_ = new_scheduler.step(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def a_ ( self) -> Union[str, Any]: pass def a_ ( self, lowerCAmelCase__=0, **lowerCAmelCase__) -> int: snake_case_ = dict(self.forward_default_kwargs) snake_case_ = kwargs.pop('num_inference_steps', lowerCAmelCase__) snake_case_ = self.dummy_sample snake_case_ = 0.1 * sample snake_case_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowerCAmelCase__) scheduler.set_timesteps(lowerCAmelCase__) # copy over dummy past residuals (must be after setting timesteps) snake_case_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__) snake_case_ = scheduler_class.from_pretrained(lowerCAmelCase__) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase__) # copy over dummy past residual (must be after setting timesteps) snake_case_ = dummy_past_residuals[: new_scheduler.config.solver_order] snake_case_ = scheduler.step(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__).prev_sample snake_case_ = new_scheduler.step(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def a_ ( self, lowerCAmelCase__=None, **lowerCAmelCase__) -> Union[str, Any]: if scheduler is None: snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(**lowerCAmelCase__) snake_case_ = scheduler_class(**lowerCAmelCase__) snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(**lowerCAmelCase__) snake_case_ = scheduler_class(**lowerCAmelCase__) snake_case_ = 10 snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase__) for i, t in enumerate(scheduler.timesteps): snake_case_ = model(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = scheduler.step(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__).prev_sample return sample def a_ ( self) -> List[Any]: snake_case_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) snake_case_ = 50 snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase__) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): snake_case_ = model(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = scheduler.step(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__).prev_sample snake_case_ = torch.mean(torch.abs(lowerCAmelCase__)) assert abs(result_mean.item() - 0.2574) < 1e-3 def a_ ( self) -> Dict: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__) def a_ ( self) -> Optional[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults snake_case_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) snake_case_ = self.full_loop(scheduler=lowerCAmelCase__) snake_case_ = torch.mean(torch.abs(lowerCAmelCase__)) assert abs(result_mean.item() - 0.2791) < 1e-3 snake_case_ = DEISMultistepScheduler.from_config(scheduler.config) snake_case_ = DPMSolverMultistepScheduler.from_config(scheduler.config) snake_case_ = UniPCMultistepScheduler.from_config(scheduler.config) snake_case_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) snake_case_ = self.full_loop(scheduler=lowerCAmelCase__) snake_case_ = torch.mean(torch.abs(lowerCAmelCase__)) assert abs(result_mean.item() - 0.2791) < 1e-3 def a_ ( self) -> str: self.check_over_configs(thresholding=lowerCAmelCase__) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCAmelCase__, prediction_type=lowerCAmelCase__, sample_max_value=lowerCAmelCase__, algorithm_type='dpmsolver++', solver_order=lowerCAmelCase__, solver_type=lowerCAmelCase__, ) def a_ ( self) -> Tuple: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__) def a_ ( self) -> Optional[int]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCAmelCase__, solver_type=lowerCAmelCase__, prediction_type=lowerCAmelCase__, algorithm_type=lowerCAmelCase__, ) snake_case_ = self.full_loop( solver_order=lowerCAmelCase__, solver_type=lowerCAmelCase__, prediction_type=lowerCAmelCase__, algorithm_type=lowerCAmelCase__, ) assert not torch.isnan(lowerCAmelCase__).any(), "Samples have nan numbers" def a_ ( self) -> Optional[Any]: self.check_over_configs(lower_order_final=lowerCAmelCase__) self.check_over_configs(lower_order_final=lowerCAmelCase__) def a_ ( self) -> Any: self.check_over_configs(lambda_min_clipped=-float('inf')) self.check_over_configs(lambda_min_clipped=-5.1) def a_ ( self) -> Any: self.check_over_configs(variance_type=lowerCAmelCase__) self.check_over_configs(variance_type='learned_range') def a_ ( self) -> List[Any]: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=lowerCAmelCase__, time_step=0) def a_ ( self) -> int: snake_case_ = self.full_loop() snake_case_ = torch.mean(torch.abs(lowerCAmelCase__)) assert abs(result_mean.item() - 0.2791) < 1e-3 def a_ ( self) -> Dict: snake_case_ = self.full_loop(use_karras_sigmas=lowerCAmelCase__) snake_case_ = torch.mean(torch.abs(lowerCAmelCase__)) assert abs(result_mean.item() - 0.2248) < 1e-3 def a_ ( self) -> Union[str, Any]: snake_case_ = self.full_loop(prediction_type='v_prediction') snake_case_ = torch.mean(torch.abs(lowerCAmelCase__)) assert abs(result_mean.item() - 0.1453) < 1e-3 def a_ ( self) -> Optional[Any]: snake_case_ = self.full_loop(prediction_type='v_prediction', use_karras_sigmas=lowerCAmelCase__) snake_case_ = torch.mean(torch.abs(lowerCAmelCase__)) assert abs(result_mean.item() - 0.0649) < 1e-3 def a_ ( self) -> Optional[int]: snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(thresholding=lowerCAmelCase__, dynamic_thresholding_ratio=0) snake_case_ = scheduler_class(**lowerCAmelCase__) snake_case_ = 10 snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCAmelCase__) for i, t in enumerate(scheduler.timesteps): snake_case_ = model(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = scheduler.step(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__).prev_sample assert sample.dtype == torch.floataa
69
1
'''simple docstring''' from math import ceil def _a( UpperCamelCase__ : List[str], UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =list(range(0, UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE__ : Dict =[item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check SCREAMING_SNAKE_CASE__ : Union[str, Any] =[] for i in device_map_blocks: if device_map_blocks.count(UpperCamelCase__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(UpperCamelCase__ ) # Missing blocks SCREAMING_SNAKE_CASE__ : str =[i for i in blocks if i not in device_map_blocks] SCREAMING_SNAKE_CASE__ : Tuple =[i for i in device_map_blocks if i not in blocks] if len(UpperCamelCase__ ) != 0: raise ValueError( '''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.''' ''' These attention blocks were specified more than once: ''' + str(UpperCamelCase__ ) ) if len(UpperCamelCase__ ) != 0: raise ValueError( '''There are attention blocks for this model that are not specified in the device_map. Add these attention ''' '''blocks to a device on the device_map: ''' + str(UpperCamelCase__ ) ) if len(UpperCamelCase__ ) != 0: raise ValueError( '''The device_map contains more attention blocks than this model has. Remove these from the device_map:''' + str(UpperCamelCase__ ) ) def _a( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict =list(range(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE__ : Dict =int(ceil(n_layers / len(UpperCamelCase__ ) ) ) SCREAMING_SNAKE_CASE__ : Optional[int] =[layers[i : i + n_blocks] for i in range(0, UpperCamelCase__, UpperCamelCase__ )] return dict(zip(UpperCamelCase__, UpperCamelCase__ ) )
222
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping a_ = tuple[int, int] class __SCREAMING_SNAKE_CASE : def __init__( self : Any , __lowercase : set[int] , __lowercase : Mapping[EdgeT, int] ) -> None: SCREAMING_SNAKE_CASE__ : set[int] =vertices SCREAMING_SNAKE_CASE__ : dict[EdgeT, int] ={ (min(__lowercase ), max(__lowercase )): weight for edge, weight in edges.items() } def __magic_name__ ( self : Union[str, Any] , __lowercase : EdgeT , __lowercase : int ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) SCREAMING_SNAKE_CASE__ : List[str] =weight def __magic_name__ ( self : Optional[Any] ) -> Graph: SCREAMING_SNAKE_CASE__ : Graph =Graph({min(self.vertices )} , {} ) SCREAMING_SNAKE_CASE__ : EdgeT SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : EdgeT SCREAMING_SNAKE_CASE__ : int while len(subgraph.vertices ) < len(self.vertices ): SCREAMING_SNAKE_CASE__ : Any =max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: SCREAMING_SNAKE_CASE__ : List[str] =edge SCREAMING_SNAKE_CASE__ : Any =weight subgraph.add_edge(__lowercase , __lowercase ) return subgraph def _a( UpperCamelCase__ : str = "p107_network.txt" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str =os.path.abspath(os.path.dirname(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE__ : str =os.path.join(UpperCamelCase__, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : dict[EdgeT, int] ={} SCREAMING_SNAKE_CASE__ : list[str] SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int with open(UpperCamelCase__ ) as f: SCREAMING_SNAKE_CASE__ : Any =f.read().strip().split('''\n''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =[line.split(''',''' ) for line in data] for edgea in range(1, len(UpperCamelCase__ ) ): for edgea in range(UpperCamelCase__ ): if adjaceny_matrix[edgea][edgea] != "-": SCREAMING_SNAKE_CASE__ : List[Any] =int(adjaceny_matrix[edgea][edgea] ) SCREAMING_SNAKE_CASE__ : Graph =Graph(set(range(len(UpperCamelCase__ ) ) ), UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Graph =graph.prims_algorithm() SCREAMING_SNAKE_CASE__ : int =sum(graph.edges.values() ) SCREAMING_SNAKE_CASE__ : int =sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'''{solution() = }''')
222
1
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> str: # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) lowercase : int = max(SCREAMING_SNAKE_CASE__ ) lowercase : int = min(SCREAMING_SNAKE_CASE__ ) # create the counting array lowercase : Dict = coll_max + 1 - coll_min lowercase : Tuple = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection lowercase : Union[str, Any] = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , SCREAMING_SNAKE_CASE__ ) ): lowercase : Tuple = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: return "".join([chr(SCREAMING_SNAKE_CASE__ ) for i in counting_sort([ord(SCREAMING_SNAKE_CASE__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase : List[Any] = input("""Enter numbers separated by a comma:\n""").strip() lowercase : List[str] = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
20
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : def __init__( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str=1_3 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : str=True , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : int=False , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Any=9_9 , UpperCAmelCase : str=0 , UpperCAmelCase : Dict=3_2 , UpperCAmelCase : int=5 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : int=5_1_2 , UpperCAmelCase : str=2 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Dict="last" , UpperCAmelCase : int=True , UpperCAmelCase : Dict=None , UpperCAmelCase : Union[str, Any]=0 , ) -> Dict: __lowerCAmelCase: Optional[int] = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Tuple = seq_length __lowerCAmelCase: Tuple = is_training __lowerCAmelCase: Optional[Any] = use_input_lengths __lowerCAmelCase: List[str] = use_token_type_ids __lowerCAmelCase: Dict = use_labels __lowerCAmelCase: int = gelu_activation __lowerCAmelCase: Optional[int] = sinusoidal_embeddings __lowerCAmelCase: Tuple = causal __lowerCAmelCase: Optional[Any] = asm __lowerCAmelCase: int = n_langs __lowerCAmelCase: Tuple = vocab_size __lowerCAmelCase: List[Any] = n_special __lowerCAmelCase: List[Any] = hidden_size __lowerCAmelCase: Union[str, Any] = num_hidden_layers __lowerCAmelCase: Dict = num_attention_heads __lowerCAmelCase: int = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Dict = max_position_embeddings __lowerCAmelCase: List[str] = type_sequence_label_size __lowerCAmelCase: str = initializer_range __lowerCAmelCase: List[str] = num_labels __lowerCAmelCase: List[str] = num_choices __lowerCAmelCase: Optional[int] = summary_type __lowerCAmelCase: Any = use_proj __lowerCAmelCase: Optional[Any] = scope __lowerCAmelCase: Dict = bos_token_id def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: str = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Any = None if self.use_input_lengths: __lowerCAmelCase: Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowerCAmelCase: str = None if self.use_token_type_ids: __lowerCAmelCase: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: Optional[int] = None if self.use_labels: __lowerCAmelCase: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size] , 2 ).float() __lowerCAmelCase: str = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase: Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def UpperCAmelCase ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[str] , ) -> Optional[int]: __lowerCAmelCase: List[str] = XLMModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Any = model(UpperCAmelCase , lengths=UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , ) -> int: __lowerCAmelCase: str = XLMWithLMHeadModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Dict , ) -> List[str]: __lowerCAmelCase: Dict = XLMForQuestionAnsweringSimple(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: str = model(UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase: Union[str, Any] = XLMForQuestionAnswering(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[str] = model(UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , p_mask=UpperCAmelCase , ) __lowerCAmelCase: Any = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , ) ((__lowerCAmelCase) , ): List[str] = result_with_labels.to_tuple() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) ((__lowerCAmelCase) , ): List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , ) -> List[Any]: __lowerCAmelCase: Optional[Any] = XLMForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = model(UpperCAmelCase ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: Tuple = XLMForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Optional[int] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , ) -> Union[str, Any]: __lowerCAmelCase: List[Any] = self.num_choices __lowerCAmelCase: Optional[Any] = XLMForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Any = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self : Tuple ) -> int: __lowerCAmelCase: Optional[Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = config_and_inputs __lowerCAmelCase: Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A_ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowercase : Any = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowercase : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str ) -> int: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=False ) -> Dict: __lowerCAmelCase: Optional[Any] = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowerCAmelCase: str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) return inputs_dict def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: int = XLMModelTester(self ) __lowerCAmelCase: Optional[int] = ConfigTester(self , config_class=UpperCAmelCase , emb_dim=3_7 ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self : Dict ) -> List[Any]: __lowerCAmelCase: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] ) -> int: __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: __lowerCAmelCase: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Dict=1 ) -> Dict: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(UpperCAmelCase ) ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: int = min_length + idx + 1 __lowerCAmelCase: Union[str, Any] = min_length + idx + 1 __lowerCAmelCase: Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase ) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=1 ) -> Union[str, Any]: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase ) , ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: Any = min_length + idx + 1 __lowerCAmelCase: str = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase ) , ) pass @slow def UpperCAmelCase ( self : int ) -> Tuple: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: List[Any] = XLMModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(UpperCAmelCase ) __lowerCAmelCase: Optional[int] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase ) # the president __lowerCAmelCase: Union[str, Any] = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowerCAmelCase: str = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase )
322
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __a: int = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ["pixel_values"] def __init__( self , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = 1 / 255 , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , **__lowerCAmelCase , ) -> None: super().__init__(**__lowerCAmelCase ) lowercase__ : int = size if size is not None else {'''shortest_edge''': 224} lowercase__ : Union[str, Any] = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) lowercase__ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ : List[str] = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase , param_name='''crop_size''' ) lowercase__ : List[Any] = do_resize lowercase__ : Any = size lowercase__ : Dict = resample lowercase__ : List[Any] = do_center_crop lowercase__ : int = crop_size lowercase__ : Any = do_rescale lowercase__ : List[str] = rescale_factor lowercase__ : Tuple = do_normalize lowercase__ : int = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase__ : int = image_std if image_std is not None else OPENAI_CLIP_STD lowercase__ : Tuple = do_convert_rgb def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> np.ndarray: lowercase__ : Union[str, Any] = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowercase__ : List[str] = get_resize_output_image_size(__lowerCAmelCase , size=size['''shortest_edge'''] , default_to_square=__lowerCAmelCase ) return resize(__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> np.ndarray: lowercase__ : Dict = get_size_dict(__lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__lowerCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> Optional[int]: return rescale(__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> np.ndarray: return normalize(__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = ChannelDimension.FIRST , **__lowerCAmelCase , ) -> PIL.Image.Image: lowercase__ : Tuple = do_resize if do_resize is not None else self.do_resize lowercase__ : Optional[Any] = size if size is not None else self.size lowercase__ : Dict = get_size_dict(__lowerCAmelCase , param_name='''size''' , default_to_square=__lowerCAmelCase ) lowercase__ : Union[str, Any] = resample if resample is not None else self.resample lowercase__ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Union[str, Any] = crop_size if crop_size is not None else self.crop_size lowercase__ : str = get_size_dict(__lowerCAmelCase , param_name='''crop_size''' , default_to_square=__lowerCAmelCase ) lowercase__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : str = image_mean if image_mean is not None else self.image_mean lowercase__ : int = image_std if image_std is not None else self.image_std lowercase__ : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase__ : List[Any] = make_list_of_images(__lowerCAmelCase ) if not valid_images(__lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase__ : List[str] = [convert_to_rgb(__lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. lowercase__ : List[str] = [to_numpy_array(__lowerCAmelCase ) for image in images] if do_resize: lowercase__ : Any = [self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase ) for image in images] if do_center_crop: lowercase__ : int = [self.center_crop(image=__lowerCAmelCase , size=__lowerCAmelCase ) for image in images] if do_rescale: lowercase__ : Optional[Any] = [self.rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase ) for image in images] if do_normalize: lowercase__ : Tuple = [self.normalize(image=__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase ) for image in images] lowercase__ : List[str] = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase ) for image in images] lowercase__ : Dict = {'''pixel_values''': images} return BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase )
214
'''simple docstring''' from manim import * class UpperCAmelCase ( a__ ): '''simple docstring''' def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : int = Rectangle(height=0.5 , width=0.5 ) lowercase__ : Optional[int] = Rectangle(height=0.2_5 , width=0.2_5 ) lowercase__ : Tuple = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) lowercase__ : str = [mem.copy() for i in range(6 )] lowercase__ : Dict = [mem.copy() for i in range(6 )] lowercase__ : Tuple = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase__ : List[str] = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase__ : str = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase__ : str = Text('''CPU''' , font_size=24 ) lowercase__ : List[Any] = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCAmelCase ) lowercase__ : Any = [mem.copy() for i in range(4 )] lowercase__ : int = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase__ : Optional[int] = Text('''GPU''' , font_size=24 ) lowercase__ : Tuple = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCAmelCase ) lowercase__ : int = [mem.copy() for i in range(6 )] lowercase__ : Optional[int] = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase__ : Any = Text('''Model''' , font_size=24 ) lowercase__ : Optional[Any] = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCAmelCase ) lowercase__ : int = [] lowercase__ : int = [] lowercase__ : Any = [] for i, rect in enumerate(__lowerCAmelCase ): rect.set_stroke(__lowerCAmelCase ) lowercase__ : Optional[int] = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCAmelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=__lowerCAmelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=__lowerCAmelCase , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=__lowerCAmelCase , buff=0.0 ) self.add(__lowerCAmelCase ) model_cpu_arr.append(__lowerCAmelCase ) self.add(*__lowerCAmelCase , *__lowerCAmelCase , *__lowerCAmelCase ) lowercase__ : Optional[int] = [mem.copy() for i in range(6 )] lowercase__ : List[Any] = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase__ : Optional[Any] = Text('''Loaded Checkpoint''' , font_size=24 ) lowercase__ : Dict = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) checkpoint.move_to([3, 0.5, 0] ) self.add(__lowerCAmelCase ) lowercase__ : str = [] lowercase__ : List[str] = [] for i, rect in enumerate(__lowerCAmelCase ): lowercase__ : List[str] = fill.copy().set_fill(__lowerCAmelCase , opacity=0.7 ) target.move_to(__lowerCAmelCase ) ckpt_arr.append(__lowerCAmelCase ) lowercase__ : Any = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__lowerCAmelCase ) self.add(*__lowerCAmelCase , *__lowerCAmelCase ) lowercase__ : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase__ : Optional[Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : str = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(__lowerCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__lowerCAmelCase ) lowercase__ : Union[str, Any] = MarkupText( F"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) lowercase__ : Tuple = [meta_mem.copy() for i in range(6 )] lowercase__ : Any = [meta_mem.copy() for i in range(6 )] lowercase__ : str = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase__ : Any = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase__ : Union[str, Any] = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase__ : Union[str, Any] = Text('''Disk''' , font_size=24 ) lowercase__ : Tuple = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) disk.move_to([-4.0, -1.2_5, 0] ) self.play(Write(__lowerCAmelCase , run_time=3 ) , Write(__lowerCAmelCase , run_time=1 ) , Create(__lowerCAmelCase , run_time=1 ) ) lowercase__ : Tuple = [] for i, rect in enumerate(__lowerCAmelCase ): lowercase__ : Dict = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__lowerCAmelCase , run_time=1.5 ) ) self.play(*__lowerCAmelCase ) self.play(FadeOut(__lowerCAmelCase ) ) lowercase__ : Dict = MarkupText(F"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCAmelCase , run_time=3 ) ) self.play( FadeOut(__lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase , *__lowerCAmelCase ) , ) self.wait()
214
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : str ,_snake_case : List[Any] ,_snake_case : Optional[int]=3 ,_snake_case : Optional[int]=32 ,_snake_case : Union[str, Any]=3 ,_snake_case : int=10 ,_snake_case : List[str]=[10, 20, 30, 40] ,_snake_case : Any=[1, 1, 2, 1] ,_snake_case : int=True ,_snake_case : Optional[Any]=True ,_snake_case : Union[str, Any]="relu" ,_snake_case : Dict=3 ,_snake_case : Any=None ,) -> str: """simple docstring""" lowercase__ : int = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Optional[Any] = embeddings_size lowercase__ : Optional[Any] = hidden_sizes lowercase__ : str = depths lowercase__ : Tuple = is_training lowercase__ : List[Any] = use_labels lowercase__ : Union[str, Any] = hidden_act lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Optional[Any] = len(_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Tuple = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] ,self.num_labels ) lowercase__ : int = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ,_snake_case : int ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = TFResNetModel(config=_snake_case ) lowercase__ : List[str] = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : int ,_snake_case : Any ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.num_labels lowercase__ : Union[str, Any] = TFResNetForImageClassification(_snake_case ) lowercase__ : List[str] = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase : Any = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : List[Any] = False lowerCAmelCase : int = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : List[str] = False def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = TFResNetModelTester(self ) lowercase__ : int = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" def check_hidden_states_output(_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Optional[Any] ): lowercase__ : str = model_class(_snake_case ) lowercase__ : Union[str, Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : Tuple = self.model_tester.num_stages self.assertEqual(len(_snake_case ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ : List[Any] = layer_type lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[Any] = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> Dict: lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ : Any = self.default_image_processor lowercase__ : int = prepare_img() lowercase__ : Tuple = image_processor(images=_snake_case ,return_tensors='''tf''' ) # forward pass lowercase__ : Dict = model(**_snake_case ) # verify the logits lowercase__ : List[str] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Any = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_snake_case ,atol=1e-4 ) )
16
1
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features A : Optional[Any] = logging.get_logger(__name__) A : Optional[int] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) A : Union[str, Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(SCREAMING_SNAKE_CASE__ )} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) lowerCamelCase__ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowerCamelCase__ = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) lowerCamelCase__ = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) lowerCamelCase__ = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) lowerCamelCase__ = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) lowerCamelCase__ = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) lowerCamelCase__ = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) lowerCamelCase__ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''train''' lowerCamelCase__ = '''dev''' class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self : Tuple , __magic_name__ : SquadDataTrainingArguments , __magic_name__ : PreTrainedTokenizer , __magic_name__ : Optional[int] = None , __magic_name__ : Union[str, Split] = Split.train , __magic_name__ : Optional[bool] = False , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[str] = "pt" , ) -> Tuple: SCREAMING_SNAKE_CASE_ = args SCREAMING_SNAKE_CASE_ = is_language_sensitive SCREAMING_SNAKE_CASE_ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__magic_name__ , __magic_name__ ): try: SCREAMING_SNAKE_CASE_ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) SCREAMING_SNAKE_CASE_ = mode # Load data features from cache or dataset file SCREAMING_SNAKE_CASE_ = "v2" if args.version_2_with_negative else "v1" SCREAMING_SNAKE_CASE_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE_ = cached_features_file + ".lock" with FileLock(__magic_name__ ): if os.path.exists(__magic_name__ ) and not args.overwrite_cache: SCREAMING_SNAKE_CASE_ = time.time() SCREAMING_SNAKE_CASE_ = torch.load(__magic_name__ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. SCREAMING_SNAKE_CASE_ = self.old_features["features"] SCREAMING_SNAKE_CASE_ = self.old_features.get("dataset" , __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.old_features.get("examples" , __magic_name__ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' " future run" ) else: if mode == Split.dev: SCREAMING_SNAKE_CASE_ = self.processor.get_dev_examples(args.data_dir ) else: SCREAMING_SNAKE_CASE_ = self.processor.get_train_examples(args.data_dir ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = squad_convert_examples_to_features( examples=self.examples , tokenizer=__magic_name__ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__magic_name__ , ) SCREAMING_SNAKE_CASE_ = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , __magic_name__ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : Any ) -> Union[str, Any]: return len(self.features ) def __getitem__( self : int , __magic_name__ : int ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset SCREAMING_SNAKE_CASE_ = self.features[i] SCREAMING_SNAKE_CASE_ = torch.tensor(feature.input_ids , dtype=torch.long ) SCREAMING_SNAKE_CASE_ = torch.tensor(feature.attention_mask , dtype=torch.long ) SCREAMING_SNAKE_CASE_ = torch.tensor(feature.token_type_ids , dtype=torch.long ) SCREAMING_SNAKE_CASE_ = torch.tensor(feature.cls_index , dtype=torch.long ) SCREAMING_SNAKE_CASE_ = torch.tensor(feature.p_mask , dtype=torch.float ) SCREAMING_SNAKE_CASE_ = torch.tensor(feature.is_impossible , dtype=torch.float ) SCREAMING_SNAKE_CASE_ = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: SCREAMING_SNAKE_CASE_ = torch.tensor(feature.start_position , dtype=torch.long ) SCREAMING_SNAKE_CASE_ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
305
from math import pi, sqrt, tan def a__ ( __UpperCamelCase ): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values" ) return 6 * side_length**2 def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def a__ ( __UpperCamelCase ): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values" ) return 4 * pi * radius**2 def a__ ( __UpperCamelCase ): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values" ) return 3 * pi * radius**2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) SCREAMING_SNAKE_CASE_ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def a__ ( __UpperCamelCase , __UpperCamelCase ): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values" ) return 2 * pi * radius * (height + radius) def a__ ( __UpperCamelCase , __UpperCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values" ) if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(__UpperCamelCase , 2 ) * torus_radius * tube_radius def a__ ( __UpperCamelCase , __UpperCamelCase ): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values" ) return length * width def a__ ( __UpperCamelCase ): if side_length < 0: raise ValueError("area_square() only accepts non-negative values" ) return side_length**2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values" ) return (base * height) / 2 def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle" ) SCREAMING_SNAKE_CASE_ = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE_ = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def a__ ( __UpperCamelCase , __UpperCamelCase ): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values" ) return base * height def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values" ) return 1 / 2 * (basea + basea) * height def a__ ( __UpperCamelCase ): if radius < 0: raise ValueError("area_circle() only accepts non-negative values" ) return pi * radius**2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values" ) return pi * radius_x * radius_y def a__ ( __UpperCamelCase , __UpperCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values" ) return 1 / 2 * diagonal_a * diagonal_a def a__ ( __UpperCamelCase , __UpperCamelCase ): if not isinstance(__UpperCamelCase , __UpperCamelCase ) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides" ) elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
305
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase__ : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = ['''BartphoTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
112
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder UpperCamelCase__ : List[Any] = '''base_with_context''' def lowerCAmelCase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: Dict ): __SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): __SCREAMING_SNAKE_CASE : Tuple = weights[F"layers_{lyr_num}"] __SCREAMING_SNAKE_CASE : str = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Optional[int] = ly_weight["""attention"""] __SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowerCAmelCase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: List[str] ): __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): __SCREAMING_SNAKE_CASE : Tuple = weights[F"layers_{lyr_num}"] __SCREAMING_SNAKE_CASE : Optional[int] = ly_weight["""attention"""] __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowerCAmelCase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: Any ): __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): __SCREAMING_SNAKE_CASE : str = weights[F"layers_{lyr_num}"] __SCREAMING_SNAKE_CASE : int = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : List[Any] = ly_weight["""self_attention"""] __SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Optional[int] = ly_weight["""MultiHeadDotProductAttention_0"""] __SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : int = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def lowerCAmelCase_ ( _lowerCamelCase: Any ): __SCREAMING_SNAKE_CASE : int = checkpoints.load_tax_checkpoint(args.checkpoint_path ) __SCREAMING_SNAKE_CASE : Optional[Any] = jnp.tree_util.tree_map(onp.array , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] __SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(args.checkpoint_path , """..""" , """config.gin""" ) __SCREAMING_SNAKE_CASE : Any = inference.parse_training_gin_file(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = inference.InferenceModel(args.checkpoint_path , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" ) __SCREAMING_SNAKE_CASE : List[Any] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) __SCREAMING_SNAKE_CASE : int = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) __SCREAMING_SNAKE_CASE : Tuple = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) __SCREAMING_SNAKE_CASE : int = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = SpectrogramDiffusionPipeline( notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": UpperCamelCase__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=f"{MODEL}/checkpoint_500000", type=str, required=False, help='''Path to the original jax model checkpoint.''', ) UpperCamelCase__ : List[str] = parser.parse_args() main(args)
112
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Any = logging.get_logger(__name__) __A : Optional[Any] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class __UpperCamelCase ( _A ): SCREAMING_SNAKE_CASE = "distilbert" SCREAMING_SNAKE_CASE = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__(self : Dict , __SCREAMING_SNAKE_CASE : str=3_0_5_2_2 , __SCREAMING_SNAKE_CASE : Tuple=5_1_2 , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Any=6 , __SCREAMING_SNAKE_CASE : Optional[int]=1_2 , __SCREAMING_SNAKE_CASE : List[str]=7_6_8 , __SCREAMING_SNAKE_CASE : Optional[int]=4 * 7_6_8 , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.0_2 , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.2 , __SCREAMING_SNAKE_CASE : Dict=0 , **__SCREAMING_SNAKE_CASE : List[Any] , ): A = vocab_size A = max_position_embeddings A = sinusoidal_pos_embds A = n_layers A = n_heads A = dim A = hidden_dim A = dropout A = attention_dropout A = activation A = initializer_range A = qa_dropout A = seq_classif_dropout super().__init__(**__SCREAMING_SNAKE_CASE , pad_token_id=__SCREAMING_SNAKE_CASE) class __UpperCamelCase ( _A ): @property def SCREAMING_SNAKE_CASE__ (self : Optional[int]): if self.task == "multiple-choice": A = {0: "batch", 1: "choice", 2: "sequence"} else: A = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
355
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( lowercase__ = 600_851_475_143 ): """simple docstring""" try: A = int(lowercase__ ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) A = 2 A = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A = i while n % i == 0: A = n // i i += 1 return int(lowercase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
57
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _UpperCAmelCase : str = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def A ( lowercase ) -> Any: '''simple docstring''' config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule' ) def A ( lowercase ) -> Union[str, Any]: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase ) def A ( lowercase ) -> Dict: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main UpperCamelCase = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(lowercase , id=lowercase ) def A ( lowercase , lowercase ) -> List[Any]: '''simple docstring''' if exitstatus == 5: UpperCamelCase = 0 # Doctest custom flag to ignore output. _UpperCAmelCase : Any = doctest.register_optionflag("IGNORE_RESULT") _UpperCAmelCase : List[str] = doctest.OutputChecker class lowercase ( _SCREAMING_SNAKE_CASE ): def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , A_ , A_ , A_ ) _UpperCAmelCase : Any = CustomOutputChecker _UpperCAmelCase : str = HfDoctestModule _UpperCAmelCase : Optional[Any] = HfDocTestParser
222
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def A ( lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) def A ( lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: UpperCamelCase = s_dict.pop(lowercase ) elif "subsample" in key: UpperCamelCase = s_dict.pop(lowercase ) def A ( lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase , UpperCamelCase = emb.weight.shape UpperCamelCase = nn.Linear(lowercase , lowercase , bias=lowercase ) UpperCamelCase = emb.weight.data return lin_layer def A ( lowercase , lowercase ) -> Dict: '''simple docstring''' UpperCamelCase = torch.load(lowercase , map_location='cpu' ) UpperCamelCase = mam_aaa['args'] UpperCamelCase = mam_aaa['model'] UpperCamelCase = state_dict['decoder.output_projection.weight'] remove_ignore_keys_(lowercase ) rename_keys(lowercase ) UpperCamelCase = state_dict['decoder.embed_tokens.weight'].shape[0] UpperCamelCase = args.share_decoder_input_output_embed UpperCamelCase = [int(lowercase ) for i in args.conv_kernel_sizes.split(',' )] UpperCamelCase = SpeechaTextConfig( vocab_size=lowercase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , num_conv_layers=len(lowercase ) , conv_channels=args.conv_channels , conv_kernel_sizes=lowercase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=lowercase , num_beams=5 , max_length=200 , use_cache=lowercase , decoder_start_token_id=2 , early_stopping=lowercase , ) UpperCamelCase = SpeechaTextForConditionalGeneration(lowercase ) UpperCamelCase , UpperCamelCase = model.model.load_state_dict(lowercase , strict=lowercase ) if len(lowercase ) > 0 and not set(lowercase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' f''' but all the following weights are missing {missing}''' ) if tie_embeds: UpperCamelCase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: UpperCamelCase = lm_head_weights model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") _UpperCAmelCase : Dict = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
222
1
'''simple docstring''' import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase : Any = logging.get_logger(__name__) class lowerCAmelCase__ ( enum.Enum ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 @add_end_docstrings(_UpperCamelCase ) class lowerCAmelCase__ ( _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = 'generated' def __init__( self : List[Any] , *__SCREAMING_SNAKE_CASE : Any , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: """simple docstring""" super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Optional[int]=None , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if truncation is not None: __SCREAMING_SNAKE_CASE = truncation __SCREAMING_SNAKE_CASE = generate_kwargs __SCREAMING_SNAKE_CASE = {} if return_tensors is not None and return_type is None: __SCREAMING_SNAKE_CASE = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: __SCREAMING_SNAKE_CASE = return_type if clean_up_tokenization_spaces is not None: __SCREAMING_SNAKE_CASE = clean_up_tokenization_spaces if stop_sequence is not None: __SCREAMING_SNAKE_CASE = self.tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) __SCREAMING_SNAKE_CASE = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> List[str]: """simple docstring""" return True def UpperCAmelCase__ ( self : str , *__SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model.config.prefix if self.model.config.prefix is not None else '' if isinstance(args[0] , _UpperCAmelCase ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) __SCREAMING_SNAKE_CASE = ([prefix + arg for arg in args[0]],) __SCREAMING_SNAKE_CASE = True elif isinstance(args[0] , _UpperCAmelCase ): __SCREAMING_SNAKE_CASE = (prefix + args[0],) __SCREAMING_SNAKE_CASE = False else: raise ValueError( f' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`' ) __SCREAMING_SNAKE_CASE = self.tokenizer(*_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Optional[int] , *__SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : Any ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = super().__call__(*_UpperCAmelCase , **_UpperCAmelCase ) if ( isinstance(args[0] , _UpperCAmelCase ) and all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for el in args[0] ) and all(len(_UpperCAmelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=TruncationStrategy.DO_NOT_TRUNCATE , **__SCREAMING_SNAKE_CASE : int ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self._parse_and_tokenize(_UpperCAmelCase , truncation=_UpperCAmelCase , **_UpperCAmelCase ) return inputs def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: """simple docstring""" if self.framework == "pt": __SCREAMING_SNAKE_CASE = model_inputs['input_ids'].shape elif self.framework == "tf": __SCREAMING_SNAKE_CASE = tf.shape(model_inputs["""input_ids"""] ).numpy() __SCREAMING_SNAKE_CASE = generate_kwargs.get("""min_length""" , self.model.config.min_length ) __SCREAMING_SNAKE_CASE = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(_UpperCAmelCase , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) __SCREAMING_SNAKE_CASE = self.model.generate(**_UpperCAmelCase , **_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = output_ids.shape[0] if self.framework == "pt": __SCREAMING_SNAKE_CASE = output_ids.reshape(_UpperCAmelCase , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": __SCREAMING_SNAKE_CASE = tf.reshape(_UpperCAmelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any=ReturnType.TEXT , __SCREAMING_SNAKE_CASE : Dict=False ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: __SCREAMING_SNAKE_CASE = {f'{self.return_name}_token_ids': output_ids} elif return_type == ReturnType.TEXT: __SCREAMING_SNAKE_CASE = { f'{self.return_name}_text': self.tokenizer.decode( _UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase , ) } records.append(_UpperCAmelCase ) return records @add_end_docstrings(_UpperCamelCase ) class lowerCAmelCase__ ( _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = 'summary' def __call__( self : Any , *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : List[str] ) -> Dict: """simple docstring""" return super().__call__(*_UpperCAmelCase , **_UpperCAmelCase ) def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> List[str]: """simple docstring""" if max_length < min_length: logger.warning(f'Your min_length={min_length} must be inferior than your max_length={max_length}.' ) if input_length < max_length: logger.warning( f'Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ' """a summarization task, where outputs shorter than the input are typically wanted, you might """ f'consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})' ) @add_end_docstrings(_UpperCamelCase ) class lowerCAmelCase__ ( _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = 'translation' def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> List[Any]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f'Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ' """increasing your max_length manually, e.g. translator(\'...\', max_length=400)""" ) return True def UpperCAmelCase__ ( self : Any , *__SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str]=TruncationStrategy.DO_NOT_TRUNCATE , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : Any=None ) -> List[str]: """simple docstring""" if getattr(self.tokenizer , """_build_translation_inputs""" , _UpperCAmelCase ): return self.tokenizer._build_translation_inputs( *_UpperCAmelCase , return_tensors=self.framework , truncation=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase ) else: return super()._parse_and_tokenize(*_UpperCAmelCase , truncation=_UpperCAmelCase ) def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : Dict ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = super()._sanitize_parameters(**_UpperCAmelCase ) if src_lang is not None: __SCREAMING_SNAKE_CASE = src_lang if tgt_lang is not None: __SCREAMING_SNAKE_CASE = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. __SCREAMING_SNAKE_CASE = kwargs.get("""task""" , self.task ) __SCREAMING_SNAKE_CASE = task.split("""_""" ) if task and len(_UpperCAmelCase ) == 4: # translation, XX, to YY __SCREAMING_SNAKE_CASE = items[1] __SCREAMING_SNAKE_CASE = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[Any] , *__SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: """simple docstring""" return super().__call__(*_UpperCAmelCase , **_UpperCAmelCase )
369
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase : int = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = os.path.dirname(os.path.realpath(a__ ) ) __SCREAMING_SNAKE_CASE = os.path.join(a__ , """words.txt""" ) __SCREAMING_SNAKE_CASE = """""" with open(a__ ) as f: __SCREAMING_SNAKE_CASE = f.readline() __SCREAMING_SNAKE_CASE = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] __SCREAMING_SNAKE_CASE = [ word for word in [sum(ord(a__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(a__ ) if __name__ == "__main__": print(solution())
331
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : int = """switch_transformers""" __lowerCamelCase : Optional[Any] = ["""past_key_values"""] __lowerCamelCase : Any = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self , a=3_2128 , a=768 , a=64 , a=2048 , a=64 , a=12 , a=3 , a=12 , a=3 , a=12 , a=8 , a=False , a=0.01 , a="float32" , a=False , a=32 , a=128 , a=0.1 , a=1e-6 , a=0.001 , a=0.001 , a=1.0 , a="relu" , a=True , a=False , a=True , a=0 , a=1 , **a , ): lowercase__ : Optional[int] = vocab_size lowercase__ : List[Any] = d_model lowercase__ : List[Any] = d_kv lowercase__ : Any = d_ff lowercase__ : Optional[int] = num_sparse_encoder_layers lowercase__ : Tuple = num_layers lowercase__ : Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ : str = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: lowercase__ : Optional[Any] = self.num_layers // self.num_sparse_encoder_layers else: lowercase__ : Optional[int] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: lowercase__ : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: lowercase__ : int = self.num_decoder_layers # HACK: this will create 0 sparse layers lowercase__ : List[Any] = num_heads lowercase__ : Union[str, Any] = num_experts lowercase__ : str = expert_capacity lowercase__ : List[Any] = router_bias lowercase__ : Optional[int] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""") lowercase__ : str = router_dtype lowercase__ : Optional[int] = router_ignore_padding_tokens lowercase__ : int = relative_attention_num_buckets lowercase__ : Optional[Any] = relative_attention_max_distance lowercase__ : List[str] = dropout_rate lowercase__ : str = layer_norm_epsilon lowercase__ : int = initializer_factor lowercase__ : int = feed_forward_proj lowercase__ : Dict = use_cache lowercase__ : int = add_router_probs lowercase__ : int = router_z_loss_coef lowercase__ : List[Any] = router_aux_loss_coef lowercase__ : int = self.feed_forward_proj.split('-') lowercase__ : Optional[int] = act_info[-1] lowercase__ : Dict = act_info[0] == 'gated' if len(a) > 1 and act_info[0] != "gated" or len(a) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') # for backwards compatibility if feed_forward_proj == "gated-gelu": lowercase__ : Optional[int] = 'gelu_new' super().__init__( pad_token_id=a , eos_token_id=a , is_encoder_decoder=a , **a , )
214
def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) lowercase__ : Optional[int] = sorted(string.lower() ) return len(SCREAMING_SNAKE_CASE_ ) == len(set(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": snake_case_ = input('''Enter a string ''').strip() snake_case_ = is_isogram(input_str) print(F'''{input_str} is {'an' if isogram else 'not an'} isogram.''')
214
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Union[str, Any] ={'''configuration_glpn''': ['''GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GLPNConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str =['''GLPNFeatureExtractor'''] lowerCamelCase : Optional[Any] =['''GLPNImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] =[ '''GLPN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GLPNForDepthEstimation''', '''GLPNLayer''', '''GLPNModel''', '''GLPNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
371
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> list: UpperCamelCase__ : Tuple = False while is_sorted is False: # Until all the indices are traversed keep looping UpperCamelCase__ : Tuple = True for i in range(0 , len(__lowerCAmelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: UpperCamelCase__ , UpperCamelCase__ : Dict = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCamelCase__ : List[str] = False for i in range(1 , len(__lowerCAmelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: UpperCamelCase__ , UpperCamelCase__ : Optional[int] = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCamelCase__ : List[Any] = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') lowerCamelCase : Any =[int(x) for x in input().split()] # inputing elements of the list in one line lowerCamelCase : Optional[int] =odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
196
0
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def UpperCamelCase ( __magic_name__ : Tuple ) -> int: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A ( nn.Module ): '''simple docstring''' def __init__(self : List[Any] , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ = module lowercase__ = nn.Sequential( nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , ) lowercase__ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Dict , *_UpperCAmelCase : int , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A ( unittest.TestCase ): '''simple docstring''' A__ = '''bigscience/bloom-1b7''' # Constant values A__ = 2.1_09_65_95_52_69_25_74 A__ = '''Hello my name is''' A__ = set() EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' ) EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' ) EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' ) A__ = 10 def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained(self.model_name ) class A ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" super().setUp() # Models and tokenizer lowercase__ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) lowercase__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Any ) -> Tuple: """simple docstring""" lowercase__ = self.model_abit.config self.assertTrue(hasattr(_UpperCAmelCase , """quantization_config""" ) ) lowercase__ = config.to_dict() lowercase__ = config.to_diff_dict() lowercase__ = config.to_json_string() def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" from bitsandbytes.nn import Paramsabit lowercase__ = self.model_fpaa.get_memory_footprint() lowercase__ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) lowercase__ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowerCamelCase__ (self : List[Any] ) -> int: """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) lowercase__ = self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowerCamelCase__ (self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = BitsAndBytesConfig() lowercase__ = True lowercase__ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , device_map="""auto""" ) lowercase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) lowercase__ = model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowerCamelCase__ (self : Dict ) -> str: """simple docstring""" with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = BitsAndBytesConfig() with self.assertRaises(_UpperCAmelCase ): lowercase__ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" with self.assertRaises(_UpperCAmelCase ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything lowercase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) lowercase__ = self.model_fpaa.to(torch.floataa ) lowercase__ = self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error lowercase__ = self.model_fpaa.to("""cpu""" ) # Check this does not throw an error lowercase__ = self.model_fpaa.half() # Check this does not throw an error lowercase__ = self.model_fpaa.float() def lowerCamelCase__ (self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCamelCase__ (cls : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = """t5-small""" lowercase__ = """google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense lowercase__ = AutoTokenizer.from_pretrained(cls.model_name ) lowercase__ = """Translate in German: Hello, my dog is cute""" def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" from transformers import TaForConditionalGeneration lowercase__ = TaForConditionalGeneration._keep_in_fpaa_modules lowercase__ = None # test with `t5-small` lowercase__ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) lowercase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) lowercase__ = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` lowercase__ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) lowercase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) lowercase__ = model.generate(**_UpperCAmelCase ) lowercase__ = modules def lowerCamelCase__ (self : Dict ) -> Dict: """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` lowercase__ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) lowercase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) lowercase__ = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` lowercase__ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) lowercase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) lowercase__ = model.generate(**_UpperCAmelCase ) class A ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase__ (self : List[Any] ) -> Any: """simple docstring""" super().setUp() # model_name lowercase__ = """bigscience/bloom-560m""" lowercase__ = """t5-small""" # Different types of model lowercase__ = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) # Sequence classification model lowercase__ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) # CausalLM model lowercase__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) # Seq2seq model lowercase__ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) def lowerCamelCase__ (self : str ) -> List[Any]: """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Optional[int] ) -> int: """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" super().setUp() def lowerCamelCase__ (self : str ) -> Optional[int]: """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass lowercase__ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" super().setUp() def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model lowercase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch lowercase__ = model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class A ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = """facebook/opt-350m""" super().setUp() def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters lowercase__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): lowercase__ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability lowercase__ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_UpperCAmelCase ) ): lowercase__ = LoRALayer(module.q_proj , rank=16 ) lowercase__ = LoRALayer(module.k_proj , rank=16 ) lowercase__ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch lowercase__ = self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): lowercase__ = model.forward(**_UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''gpt2-xl''' A__ = 3.31_91_85_48_54_15_21_87
305
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ = tmp_path / """file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : str ) -> Tuple: """simple docstring""" lowercase__ = tmp_path / """malformed_file.csv""" lowercase__ = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" lowercase__ = tmp_path / """csv_with_image.csv""" lowercase__ = textwrap.dedent( f'''\ image {image_file} ''' ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_label.csv""" lowercase__ = textwrap.dedent( """\ label good bad good """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) @pytest.fixture def UpperCamelCase ( __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / """csv_with_int_list.csv""" lowercase__ = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = Csv() lowercase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__magic_name__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(__magic_name__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase__ = csv._generate_tables([[csv_file_with_image]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase__ = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" ) as f: lowercase__ = f.read().splitlines()[1:] lowercase__ = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase__ = csv._generate_tables([[csv_file_with_label]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase__ = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(__magic_name__ ) for label in labels] def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda __magic_name__ : [int(__magic_name__ ) for i in x.split()]} ) lowercase__ = csv._generate_tables([[csv_file_with_int_list]] ) lowercase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase__ = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
305
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def UpperCamelCase ( _A : Tuple )-> Dict: """simple docstring""" A__ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_A , _A ) def UpperCamelCase ( _A : int )-> Optional[Any]: """simple docstring""" A__ , A__ = emb.weight.shape A__ = nn.Linear(_A , _A , bias=_A ) A__ = emb.weight.data return lin_layer def UpperCamelCase ( _A : str , _A : Optional[Any]=None )-> str: """simple docstring""" A__ = {} for old_key in state_dict.keys(): A__ = old_key if "moe_layer.experts." in key: if expert_idx is not None: A__ = key.replace("moe_layer.experts.0" , f"""ffn.experts.expert_{expert_idx}""" ) else: A__ = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: A__ = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: A__ = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: A__ = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: A__ = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: A__ = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: A__ = key.replace("final_layer_norm" , "ff_layer_norm" ) A__ = state_dict[old_key] return new_dict def UpperCamelCase ( _A : Tuple , _A : Tuple , _A : int , _A : str , _A : str = WEIGHTS_NAME )-> List[str]: """simple docstring""" A__ = [] A__ = 0 os.makedirs(_A , exist_ok=_A ) for expert in range(_A ): A__ = switch_checkpoint_path + f"""-rank-{expert}.pt""" if os.path.isfile(_A ): A__ = torch.load(_A )["model"] remove_ignore_keys_(_A ) A__ = rename_fairseq_keys(_A , _A ) A__ = os.path.join( _A , weights_name.replace(".bin" , f"""-{len(_A )+1:05d}-of-???.bin""" ) ) torch.save(_A , _A ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_A )[0]].dtype ) # Add the last block A__ = os.path.join(_A , weights_name.replace(".bin" , f"""-{len(_A )+1:05d}-of-???.bin""" ) ) A__ = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(_A ) A__ = rename_fairseq_keys(_A , _A ) A__ = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_A ) == 1: A__ = os.path.join(_A , _A ) torch.save(_A , _A ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_A , _A ) # Otherwise, let's build the index A__ = {} for idx, shard in enumerate(_A ): A__ = weights_name.replace(".bin" , f"""-{idx+1:05d}-of-{len(_A ):05d}.bin""" ) A__ = os.path.join(_A , weights_name.replace(".bin" , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(_A , os.path.join(_A , _A ) ) for key in shard: A__ = shard_file # Add the metadata A__ = {"total_size": total_size} A__ = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_A , _A ) , "w" , encoding="utf-8" ) as f: A__ = json.dumps(_A , indent=2 , sort_keys=_A ) + "\n" f.write(_A ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) UpperCAmelCase_ : Any = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) UpperCAmelCase_ : Tuple = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
198
import argparse import struct import unittest class UpperCamelCase : def __init__( self , UpperCAmelCase__ ): A__ = data # Initialize hash values A__ = [ 0x6A_09E_667, 0xBB_67A_E85, 0x3C_6EF_372, 0xA5_4FF_53A, 0x51_0E5_27F, 0x9B_056_88C, 0x1F_83D_9AB, 0x5B_E0C_D19, ] # Initialize round constants A__ = [ 0x42_8A2_F98, 0x71_374_491, 0xB5_C0F_BCF, 0xE9_B5D_BA5, 0x39_56C_25B, 0x59_F11_1F1, 0x92_3F8_2A4, 0xAB_1C5_ED5, 0xD8_07A_A98, 0x12_835_B01, 0x24_318_5BE, 0x55_0C7_DC3, 0x72_BE5_D74, 0x80_DEB_1FE, 0x9B_DC0_6A7, 0xC1_9BF_174, 0xE4_9B6_9C1, 0xEF_BE4_786, 0x0F_C19_DC6, 0x24_0CA_1CC, 0x2D_E92_C6F, 0x4A_748_4AA, 0x5C_B0A_9DC, 0x76_F98_8DA, 0x98_3E5_152, 0xA8_31C_66D, 0xB0_032_7C8, 0xBF_597_FC7, 0xC6_E00_BF3, 0xD5_A79_147, 0x06_CA6_351, 0x14_292_967, 0x27_B70_A85, 0x2E_1B2_138, 0x4D_2C6_DFC, 0x53_380_D13, 0x65_0A7_354, 0x76_6A0_ABB, 0x81_C2C_92E, 0x92_722_C85, 0xA2_BFE_8A1, 0xA8_1A6_64B, 0xC2_4B8_B70, 0xC7_6C5_1A3, 0xD1_92E_819, 0xD6_990_624, 0xF4_0E3_585, 0x10_6AA_070, 0x19_A4C_116, 0x1E_376_C08, 0x27_487_74C, 0x34_B0B_CB5, 0x39_1C0_CB3, 0x4E_D8A_A4A, 0x5B_9CC_A4F, 0x68_2E6_FF3, 0x74_8F8_2EE, 0x78_A56_36F, 0x84_C87_814, 0x8C_C70_208, 0x90_BEF_FFA, 0xA4_506_CEB, 0xBE_F9A_3F7, 0xC6_717_8F2, ] A__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def __A ( UpperCAmelCase__ ): A__ = b"\x80" + (b"\x00" * (63 - (len(UpperCAmelCase__ ) + 8) % 64)) A__ = struct.pack(">Q" , (len(UpperCAmelCase__ ) * 8) ) return data + padding + big_endian_integer def __A ( self ): # Convert into blocks of 64 bytes A__ = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A__ = list(struct.unpack(">16L" , UpperCAmelCase__ ) ) # add 48 0-ed integers words += [0] * 48 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array A__ = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) A__ = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) A__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100_000_000 # Compression A__ = self.ror(UpperCAmelCase__ , 6 ) ^ self.ror(UpperCAmelCase__ , 11 ) ^ self.ror(UpperCAmelCase__ , 25 ) A__ = (e & f) ^ ((~e & 0xFF_FFF_FFF) & g) A__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100_000_000 A__ = self.ror(UpperCAmelCase__ , 2 ) ^ self.ror(UpperCAmelCase__ , 13 ) ^ self.ror(UpperCAmelCase__ , 22 ) A__ = (a & b) ^ (a & c) ^ (b & c) A__ = (sa + maj) % 0x100_000_000 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = ( g, f, e, ((d + tempa) % 0x100_000_000), c, b, a, ((tempa + tempa) % 0x100_000_000), ) A__ = [a, b, c, d, e, f, g, h] # Modify final values A__ = [ ((element + mutated_hash_values[index]) % 0x100_000_000) for index, element in enumerate(self.hashes ) ] A__ = "".join([hex(UpperCAmelCase__ )[2:].zfill(8 ) for value in self.hashes] ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): return 0xFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase ( unittest.TestCase ): def __A ( self ): import hashlib A__ = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(UpperCAmelCase__ ).hash , hashlib.shaaaa(UpperCAmelCase__ ).hexdigest() ) def UpperCamelCase ( )-> None: """simple docstring""" import doctest doctest.testmod() A__ = argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file" ) A__ = parser.parse_args() A__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: A__ = f.read() else: A__ = bytes(_A , "utf-8" ) print(SHAaaa(_A ).hash ) if __name__ == "__main__": main()
198
1
"""simple docstring""" from __future__ import annotations def _lowercase ( __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : Dict = 0.00 SCREAMING_SNAKE_CASE__ : Any = 0 for resistor in resistors: if resistor <= 0: SCREAMING_SNAKE_CASE__ : str = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(_UpperCamelCase ) first_sum += 1 / float(_UpperCamelCase ) index += 1 return 1 / first_sum def _lowercase ( __lowerCAmelCase ) -> Any: SCREAMING_SNAKE_CASE__ : Tuple = 0.00 SCREAMING_SNAKE_CASE__ : Optional[int] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = F'''Resistor at index {index} has a negative value!''' raise ValueError(_UpperCamelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
132
"""simple docstring""" import sys from collections import defaultdict class _UpperCamelCase : '''simple docstring''' def __init__( self ): __lowerCAmelCase = [] def snake_case ( self , __a ): return self.node_position[vertex] def snake_case ( self , __a , __a ): __lowerCAmelCase = pos def snake_case ( self , __a , __a , __a , __a ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCAmelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCAmelCase = 2 * start + 1 else: __lowerCAmelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCAmelCase , __lowerCAmelCase = heap[smallest_child], positions[smallest_child] __lowerCAmelCase , __lowerCAmelCase = ( heap[start], positions[start], ) __lowerCAmelCase , __lowerCAmelCase = temp, tempa __lowerCAmelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __a ) self.top_to_bottom(__a , __a , __a , __a ) def snake_case ( self , __a , __a , __a , __a ): __lowerCAmelCase = position[index] while index != 0: __lowerCAmelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCAmelCase = heap[parent] __lowerCAmelCase = position[parent] self.set_position(position[parent] , __a ) else: __lowerCAmelCase = val __lowerCAmelCase = temp self.set_position(__a , __a ) break __lowerCAmelCase = parent else: __lowerCAmelCase = val __lowerCAmelCase = temp self.set_position(__a , 0 ) def snake_case ( self , __a , __a ): __lowerCAmelCase = len(__a ) // 2 - 1 for i in range(__a , -1 , -1 ): self.top_to_bottom(__a , __a , len(__a ) , __a ) def snake_case ( self , __a , __a ): __lowerCAmelCase = positions[0] __lowerCAmelCase = sys.maxsize self.top_to_bottom(__a , 0 , len(__a ) , __a ) return temp def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = Heap() __lowerCAmelCase = [0] * len(_UpperCamelCase ) __lowerCAmelCase = [-1] * len(_UpperCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex __lowerCAmelCase = [] for vertex in range(len(_UpperCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_UpperCamelCase ) heap.node_position.append(_UpperCamelCase ) __lowerCAmelCase = [] __lowerCAmelCase = 1 __lowerCAmelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCAmelCase = 0 __lowerCAmelCase = distance heap.heapify(_UpperCamelCase , _UpperCamelCase ) for _ in range(1 , len(_UpperCamelCase ) ): __lowerCAmelCase = heap.delete_minimum(_UpperCamelCase , _UpperCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCAmelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_UpperCamelCase )] ): __lowerCAmelCase = distance heap.bottom_to_top( _UpperCamelCase , heap.get_position(_UpperCamelCase ) , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A : Optional[Any] = int(input("Enter number of edges: ").strip()) A : Dict = defaultdict(list) for _ in range(edges_number): A : str = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
57
0
"""simple docstring""" def a__ ( snake_case__ ) -> List[Any]: lowerCamelCase = [0] * len(snake_case__ ) lowerCamelCase = [] lowerCamelCase = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: lowerCamelCase = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowerCamelCase = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph lowerCAmelCase : List[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
168
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = False, False, False @dataclass class __magic_name__ : '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = None # Automatically constructed __UpperCamelCase = "dict" __UpperCamelCase = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) __UpperCamelCase = field(default="Audio" , init=UpperCAmelCase__ , repr=UpperCAmelCase__ ) def __call__( self ): """simple docstring""" return self.pa_type def _lowerCAmelCase ( self , _a ): """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(_a , _a ): return {"bytes": None, "path": value} elif isinstance(_a , _a ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowerCamelCase = BytesIO() sf.write(_a , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowerCamelCase = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 32_767 else: lowerCamelCase = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 32_767 lowerCamelCase = BytesIO(bytes() ) sf.write(_a , _a , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) lowerCamelCase , lowerCamelCase = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err lowerCamelCase = xsplitext(_a )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: lowerCamelCase = token_per_repo_id or {} lowerCamelCase = path.split("""::""" )[-1] try: lowerCamelCase = string_to_dict(_a , config.HUB_DATASETS_URL )["""repo_id"""] lowerCamelCase = token_per_repo_id[repo_id] except (ValueError, KeyError): lowerCamelCase = None with xopen(_a , """rb""" , use_auth_token=_a ) as f: lowerCamelCase , lowerCamelCase = sf.read(_a ) else: lowerCamelCase , lowerCamelCase = sf.read(_a ) lowerCamelCase = array.T if self.mono: lowerCamelCase = librosa.to_mono(_a ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowerCamelCase = librosa.resample(_a , orig_sr=_a , target_sr=self.sampling_rate ) lowerCamelCase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _lowerCAmelCase ( self ): """simple docstring""" from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def _lowerCAmelCase ( self , _a ): """simple docstring""" if pa.types.is_string(storage.type ): lowerCamelCase = pa.array([None] * len(_a ) , type=pa.binary() ) lowerCamelCase = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCamelCase = pa.array([None] * len(_a ) , type=pa.string() ) lowerCamelCase = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): lowerCamelCase = pa.array([Audio().encode_example(_a ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowerCamelCase = storage.field("""bytes""" ) else: lowerCamelCase = pa.array([None] * len(_a ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowerCamelCase = storage.field("""path""" ) else: lowerCamelCase = pa.array([None] * len(_a ) , type=pa.string() ) lowerCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(_a , self.pa_type ) def _lowerCAmelCase ( self , _a ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(_a ): with xopen(_a , """rb""" ) as f: lowerCamelCase = f.read() return bytes_ lowerCamelCase = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCamelCase = pa.array( [os.path.basename(_a ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowerCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_a , self.pa_type )
168
1
import argparse import collections import json import os import re import string import sys import numpy as np lowercase : Union[str, Any] = re.compile(r"""\b(a|an|the)\b""", re.UNICODE) lowercase : Union[str, Any] = None def A_ ( ) -> Dict: a__ : Dict = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=A__ , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=A__ , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def A_ ( A__ ) -> int: a__ : Any = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a__ : Optional[int] = bool(qa['answers']['text'] ) return qid_to_has_ans def A_ ( A__ ) -> List[Any]: def remove_articles(A__ ): return ARTICLES_REGEX.sub(' ' , A__ ) def white_space_fix(A__ ): return " ".join(text.split() ) def remove_punc(A__ ): a__ : Optional[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(A__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(A__ ) ) ) ) def A_ ( A__ ) -> Union[str, Any]: if not s: return [] return normalize_answer(A__ ).split() def A_ ( A__ , A__ ) -> Optional[Any]: return int(normalize_answer(A__ ) == normalize_answer(A__ ) ) def A_ ( A__ , A__ ) -> Any: a__ : Tuple = get_tokens(A__ ) a__ : Optional[int] = get_tokens(A__ ) a__ : int = collections.Counter(A__ ) & collections.Counter(A__ ) a__ : Optional[Any] = sum(common.values() ) if len(A__ ) == 0 or len(A__ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 a__ : int = 1.0 * num_same / len(A__ ) a__ : List[Any] = 1.0 * num_same / len(A__ ) a__ : Tuple = (2 * precision * recall) / (precision + recall) return fa def A_ ( A__ , A__ ) -> Any: a__ : Tuple = {} a__ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a__ : Optional[int] = qa['id'] a__ : Any = [t for t in qa['answers']['text'] if normalize_answer(A__ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string a__ : List[str] = [''] if qid not in preds: print(F'Missing prediction for {qid}' ) continue a__ : Union[str, Any] = preds[qid] # Take max over all gold answers a__ : Tuple = max(compute_exact(A__ , A__ ) for a in gold_answers ) a__ : List[Any] = max(compute_fa(A__ , A__ ) for a in gold_answers ) return exact_scores, fa_scores def A_ ( A__ , A__ , A__ , A__ ) -> Tuple: a__ : List[Any] = {} for qid, s in scores.items(): a__ : Tuple = na_probs[qid] > na_prob_thresh if pred_na: a__ : str = float(not qid_to_has_ans[qid] ) else: a__ : int = s return new_scores def A_ ( A__ , A__ , A__=None ) -> List[Any]: if not qid_list: a__ : str = len(A__ ) return collections.OrderedDict( [ ('exact', 1_00.0 * sum(exact_scores.values() ) / total), ('f1', 1_00.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: a__ : int = len(A__ ) return collections.OrderedDict( [ ('exact', 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def A_ ( A__ , A__ , A__ ) -> Optional[int]: for k in new_eval: a__ : Optional[int] = new_eval[k] def A_ ( A__ , A__ , A__ , A__ ) -> Union[str, Any]: plt.step(A__ , A__ , color='b' , alpha=0.2 , where='post' ) plt.fill_between(A__ , A__ , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(A__ ) plt.savefig(A__ ) plt.clf() def A_ ( A__ , A__ , A__ , A__ , A__=None , A__=None ) -> Any: a__ : str = sorted(A__ , key=lambda A__ : na_probs[k] ) a__ : Tuple = 0.0 a__ : List[str] = 1.0 a__ : Optional[int] = 0.0 a__ : Any = [1.0] a__ : Optional[int] = [0.0] a__ : Tuple = 0.0 for i, qid in enumerate(A__ ): if qid_to_has_ans[qid]: true_pos += scores[qid] a__ : Union[str, Any] = true_pos / float(i + 1 ) a__ : List[Any] = true_pos / float(A__ ) if i == len(A__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(A__ ) recalls.append(A__ ) if out_image: plot_pr_curve(A__ , A__ , A__ , A__ ) return {"ap": 1_00.0 * avg_prec} def A_ ( A__ , A__ , A__ , A__ , A__ , A__ ) -> str: if out_image_dir and not os.path.exists(A__ ): os.makedirs(A__ ) a__ : List[str] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return a__ : Optional[int] = make_precision_recall_eval( A__ , A__ , A__ , A__ , out_image=os.path.join(A__ , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) a__ : Optional[int] = make_precision_recall_eval( A__ , A__ , A__ , A__ , out_image=os.path.join(A__ , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) a__ : int = {k: float(A__ ) for k, v in qid_to_has_ans.items()} a__ : Optional[Any] = make_precision_recall_eval( A__ , A__ , A__ , A__ , out_image=os.path.join(A__ , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(A__ , A__ , 'pr_exact' ) merge_eval(A__ , A__ , 'pr_f1' ) merge_eval(A__ , A__ , 'pr_oracle' ) def A_ ( A__ , A__ , A__ , A__ ) -> List[Any]: if not qid_list: return a__ : List[str] = [na_probs[k] for k in qid_list] a__ : Dict = np.ones_like(A__ ) / float(len(A__ ) ) plt.hist(A__ , weights=A__ , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(F'Histogram of no-answer probability: {name}' ) plt.savefig(os.path.join(A__ , F'na_prob_hist_{name}.png' ) ) plt.clf() def A_ ( A__ , A__ , A__ , A__ ) -> Optional[int]: a__ : Any = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) a__ : List[str] = num_no_ans a__ : Tuple = cur_score a__ : Tuple = 0.0 a__ : str = sorted(A__ , key=lambda A__ : na_probs[k] ) for i, qid in enumerate(A__ ): if qid not in scores: continue if qid_to_has_ans[qid]: a__ : str = scores[qid] else: if preds[qid]: a__ : int = -1 else: a__ : Tuple = 0 cur_score += diff if cur_score > best_score: a__ : Dict = cur_score a__ : Tuple = na_probs[qid] return 1_00.0 * best_score / len(A__ ), best_thresh def A_ ( A__ , A__ , A__ , A__ , A__ , A__ ) -> Optional[Any]: a__ , a__ : str = find_best_thresh(A__ , A__ , A__ , A__ ) a__ , a__ : Tuple = find_best_thresh(A__ , A__ , A__ , A__ ) a__ : Optional[Any] = best_exact a__ : Optional[Any] = exact_thresh a__ : Tuple = best_fa a__ : int = fa_thresh def A_ ( ) -> Union[str, Any]: with open(OPTS.data_file ) as f: a__ : Optional[int] = json.load(A__ ) a__ : Any = dataset_json['data'] with open(OPTS.pred_file ) as f: a__ : Optional[Any] = json.load(A__ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: a__ : int = json.load(A__ ) else: a__ : Union[str, Any] = {k: 0.0 for k in preds} a__ : str = make_qid_to_has_ans(A__ ) # maps qid to True/False a__ : int = [k for k, v in qid_to_has_ans.items() if v] a__ : Tuple = [k for k, v in qid_to_has_ans.items() if not v] a__ , a__ : str = get_raw_scores(A__ , A__ ) a__ : str = apply_no_ans_threshold(A__ , A__ , A__ , OPTS.na_prob_thresh ) a__ : Union[str, Any] = apply_no_ans_threshold(A__ , A__ , A__ , OPTS.na_prob_thresh ) a__ : List[Any] = make_eval_dict(A__ , A__ ) if has_ans_qids: a__ : str = make_eval_dict(A__ , A__ , qid_list=A__ ) merge_eval(A__ , A__ , 'HasAns' ) if no_ans_qids: a__ : int = make_eval_dict(A__ , A__ , qid_list=A__ ) merge_eval(A__ , A__ , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(A__ , A__ , A__ , A__ , A__ , A__ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(A__ , A__ , A__ , A__ , A__ , OPTS.out_image_dir ) histogram_na_prob(A__ , A__ , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(A__ , A__ , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(A__ , A__ ) else: print(json.dumps(A__ , indent=2 ) ) if __name__ == "__main__": lowercase : List[Any] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
99
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase :Tuple = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase :List[Any] = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase :Optional[Any] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase :Union[str, Any] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase :Tuple = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ , __magic_name__ : Union[str, Any] = randrange(len(lowerCAmelCase ) ), randrange(len(lowerCAmelCase ) ) __magic_name__ : Optional[int] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] __magic_name__ , __magic_name__ : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase ( lowerCAmelCase : int = 100 ): """simple docstring""" return (generate_random_hand() for _ in range(lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Any = PokerHand(lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : str ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): """simple docstring""" assert PokerHand(lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Tuple ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = [PokerHand(lowerCAmelCase ) for hand in SORTED_HANDS] __magic_name__ : Tuple = poker_hands.copy() shuffle(lowerCAmelCase ) __magic_name__ : Union[str, Any] = chain(sorted(lowerCAmelCase ) ) for index, hand in enumerate(lowerCAmelCase ): assert hand == poker_hands[index] def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = PokerHand('2C 4S AS 3D 5C' ) __magic_name__ : Optional[Any] = True __magic_name__ : Union[str, Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = 0 __magic_name__ : Dict = os.path.abspath(os.path.dirname(lowerCAmelCase ) ) __magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , 'poker_hands.txt' ) with open(lowerCAmelCase ) as file_hand: for line in file_hand: __magic_name__ : Optional[int] = line[:14].strip() __magic_name__ : List[Any] = line[15:].strip() __magic_name__ , __magic_name__ : Tuple = PokerHand(lowerCAmelCase ), PokerHand(lowerCAmelCase ) __magic_name__ : List[Any] = player.compare_with(lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 376
331
0
import requests from bsa import BeautifulSoup def UpperCamelCase_( _snake_case : Tuple = "https://www.worldometers.info/coronavirus" ): """simple docstring""" __a =BeautifulSoup(requests.get(__lowerCAmelCase ).text , 'html.parser' ) __a =soup.findAll('h1' ) __a =soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCAmelCase , __lowerCAmelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
362
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
0
import math import sys def __A ( __lowerCAmelCase )-> str: """simple docstring""" _UpperCAmelCase = '' try: with open(__lowerCAmelCase , 'rb' ) as binary_file: _UpperCAmelCase = binary_file.read() for dat in data: _UpperCAmelCase = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def __A ( __lowerCAmelCase )-> str: """simple docstring""" _UpperCAmelCase = {'0': '0', '1': '1'} _UpperCAmelCase , _UpperCAmelCase = '', '' _UpperCAmelCase = len(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _UpperCAmelCase = lexicon[curr_string] result += last_match_id _UpperCAmelCase = last_match_id + '0' if math.loga(__lowerCAmelCase ).is_integer(): _UpperCAmelCase = {} for curr_key in list(__lowerCAmelCase ): _UpperCAmelCase = lexicon.pop(__lowerCAmelCase ) _UpperCAmelCase = new_lex _UpperCAmelCase = last_match_id + '1' index += 1 _UpperCAmelCase = '' return result def __A ( __lowerCAmelCase , __lowerCAmelCase )-> None: """simple docstring""" _UpperCAmelCase = 8 try: with open(__lowerCAmelCase , 'wb' ) as opened_file: _UpperCAmelCase = [ to_write[i : i + byte_length] for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__lowerCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def __A ( __lowerCAmelCase )-> str: """simple docstring""" _UpperCAmelCase = 0 for letter in data_bits: if letter == "1": break counter += 1 _UpperCAmelCase = data_bits[counter:] _UpperCAmelCase = data_bits[counter + 1 :] return data_bits def __A ( __lowerCAmelCase , __lowerCAmelCase )-> None: """simple docstring""" _UpperCAmelCase = read_file_binary(__lowerCAmelCase ) _UpperCAmelCase = remove_prefix(__lowerCAmelCase ) _UpperCAmelCase = decompress_data(__lowerCAmelCase ) write_file_binary(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
39
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def snake_case_ ( snake_case=32 , snake_case=10 , snake_case=1_00 , snake_case=10_26 , snake_case=True , snake_case="data/tokenized_stories_train_wikitext103.jbl" , snake_case="igf_context_pairs.jbl" , ) -> Union[str, Any]: set_seed(3 ) # generate train_data and objective_set lowercase__ , lowercase__: List[str] = generate_datasets( snake_case , snake_case , number=snake_case , min_len=10_26 , trim=snake_case ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowercase__: Optional[Any] = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model lowercase__: str = load_gpta('gpt2' ).to(snake_case ) print('computing perplexity on objective set' ) lowercase__: int = compute_perplexity(snake_case , snake_case , snake_case ).item() print('perplexity on objective set:' , snake_case ) # collect igf pairs and save to file demo.jbl collect_objective_set(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def snake_case_ ( snake_case , snake_case=15 , snake_case=1_28 , snake_case=1_00 , snake_case="igf_model.pt" , ) -> Optional[Any]: set_seed(42 ) # Load pre-trained model lowercase__: Any = GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model lowercase__: Any = SecondaryLearner(snake_case ) # Train secondary learner lowercase__: Tuple = train_secondary_learner( snake_case , snake_case , max_epochs=snake_case , batch_size=snake_case , eval_freq=1_00 , igf_model_path=snake_case , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def snake_case_ ( snake_case , snake_case , snake_case , snake_case=32 , snake_case=10_00 , snake_case=16 , snake_case=1.0 , snake_case=recopy_gpta , snake_case=None , snake_case=10 , snake_case="gpt2_finetuned.pt" , ) -> Tuple: lowercase__: Dict = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) lowercase__: Optional[int] = RandomSampler(snake_case ) lowercase__: Optional[int] = DataLoader(snake_case , sampler=snake_case ) lowercase__: int = max_steps // (len(snake_case )) + 1 lowercase__: Union[str, Any] = 0 lowercase__: Optional[Any] = torch.zeros((1, context_len) , dtype=torch.long , device=snake_case ) lowercase__ , lowercase__ , lowercase__: Union[str, Any] = recopy_model(snake_case , snake_case , snake_case ) model.train() if secondary_learner is not None: secondary_learner.to(snake_case ) secondary_learner.eval() lowercase__: List[Any] = [] lowercase__: str = 0 lowercase__: Tuple = [] lowercase__: Dict = [] # Compute the performance of the transformer model at the beginning lowercase__: Optional[Any] = compute_perplexity(snake_case , snake_case , snake_case ) test_perps.append(snake_case ) print('Test perplexity, step' , snake_case , ':' , snake_case ) for epoch in range(int(snake_case ) ): for step, example in enumerate(snake_case ): torch.cuda.empty_cache() lowercase__: Union[str, Any] = random.randint(0 , example.size(2 ) - context_len - 1 ) lowercase__: Dict = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowercase__: Union[str, Any] = model(snake_case , labels=snake_case ) lowercase__: Tuple = True if secondary_learner is not None: lowercase__: Optional[Any] = secondary_learner.forward( torch.tensor(snake_case , dtype=torch.long , device=snake_case ).unsqueeze(0 ) )[0].item() observed_qs.append(float(snake_case ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: lowercase__: Optional[Any] = -1 if predicted_q < threshold: lowercase__: str = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) lowercase__: List[Any] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowercase__: Any = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowercase__: int = compute_perplexity(snake_case , snake_case , snake_case ) test_perps.append(snake_case ) print('Test perplexity, step' , snake_case , ':' , snake_case ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , snake_case ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def snake_case_ ( ) -> str: lowercase__: Tuple = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir' , default=snake_case , type=snake_case , required=snake_case , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=snake_case , type=snake_case , required=snake_case , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=snake_case , default=snake_case , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=snake_case , default=snake_case , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=snake_case , type=snake_case , required=snake_case , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=snake_case , type=snake_case , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=snake_case , default=snake_case , help='A seed for reproducible training.' ) parser.add_argument( '--context_len' , default=32 , type=snake_case , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=1_00 , type=snake_case , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=1_00 , type=snake_case , help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps' , default=10_00 , type=snake_case , help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size' , default=1_28 , type=snake_case , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=snake_case , help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval' , default=10 , type=snake_case , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=1_00 , type=snake_case , help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len' , default=10_26 , type=snake_case , help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=snake_case , help='number of epochs to train secondary learner' ) parser.add_argument('--trim' , default=snake_case , type=snake_case , help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold' , default=1.0 , type=snake_case , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=snake_case , help='finetuned_model_name' ) parser.add_argument( '--recopy_model' , default=snake_case , type=snake_case , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=snake_case , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner lowercase__: Tuple = joblib.load('data/IGF_values.jbl' ) # Train secondary learner lowercase__: List[str] = training_secondary_learner( snake_case , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model lowercase__: Dict = GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model lowercase__ , lowercase__: Tuple = generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=1_00 , min_len=10_26 , trim=snake_case ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( snake_case , snake_case , snake_case , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=snake_case , secondary_learner=snake_case , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
196
0
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" stooge(_UpperCamelCase , 0 , len(_UpperCamelCase ) - 1 ) return arr def _lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Optional[int] ) -> List[Any]: """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: _SCREAMING_SNAKE_CASE =(int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(_UpperCamelCase , _UpperCamelCase , (h - t) ) # Recursively sort last 2/3 elements stooge(_UpperCamelCase , i + t , (_UpperCamelCase) ) # Recursively sort first 2/3 elements stooge(_UpperCamelCase , _UpperCamelCase , (h - t) ) if __name__ == "__main__": lowerCamelCase : str = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
366
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCamelCase : List[str] = random.Random() def _lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str]=1.0 , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Dict=None ) -> Any: """simple docstring""" if rng is None: _SCREAMING_SNAKE_CASE =global_rng _SCREAMING_SNAKE_CASE =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class A__ ( unittest.TestCase ): def __init__( self : List[Any] , _a : Tuple , _a : Dict=7 , _a : List[Any]=400 , _a : List[str]=2000 , _a : Optional[Any]=10 , _a : Dict=160 , _a : Tuple=8 , _a : Any=0.0 , _a : Optional[Any]=4000 , _a : List[Any]=False , _a : Dict=True , ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =min_seq_length _SCREAMING_SNAKE_CASE =max_seq_length _SCREAMING_SNAKE_CASE =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _SCREAMING_SNAKE_CASE =padding_value _SCREAMING_SNAKE_CASE =sampling_rate _SCREAMING_SNAKE_CASE =return_attention_mask _SCREAMING_SNAKE_CASE =do_normalize _SCREAMING_SNAKE_CASE =feature_size _SCREAMING_SNAKE_CASE =chunk_length _SCREAMING_SNAKE_CASE =hop_length def A ( self : Any ) -> Optional[Any]: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def A ( self : Optional[Any] , _a : Any=False , _a : Union[str, Any]=False ) -> Optional[Any]: '''simple docstring''' def _flatten(_a : Union[str, Any] ): return list(itertools.chain(*_a ) ) if equal_length: _SCREAMING_SNAKE_CASE =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _SCREAMING_SNAKE_CASE =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _SCREAMING_SNAKE_CASE =[np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A__ ( A__ , unittest.TestCase ): A__ = WhisperFeatureExtractor if is_speech_available() else None def A ( self : Union[str, Any] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =WhisperFeatureExtractionTester(self ) def A ( self : str ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE =feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _SCREAMING_SNAKE_CASE =self.feature_extraction_class.from_pretrained(_a ) _SCREAMING_SNAKE_CASE =feat_extract_first.to_dict() _SCREAMING_SNAKE_CASE =feat_extract_second.to_dict() _SCREAMING_SNAKE_CASE =feat_extract_first.mel_filters _SCREAMING_SNAKE_CASE =feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def A ( self : Tuple ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE =os.path.join(_a , 'feat_extract.json' ) feat_extract_first.to_json_file(_a ) _SCREAMING_SNAKE_CASE =self.feature_extraction_class.from_json_file(_a ) _SCREAMING_SNAKE_CASE =feat_extract_first.to_dict() _SCREAMING_SNAKE_CASE =feat_extract_second.to_dict() _SCREAMING_SNAKE_CASE =feat_extract_first.mel_filters _SCREAMING_SNAKE_CASE =feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def A ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _SCREAMING_SNAKE_CASE =[np.asarray(_a ) for speech_input in speech_inputs] # Test feature size _SCREAMING_SNAKE_CASE =feature_extractor(_a , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _SCREAMING_SNAKE_CASE =feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features _SCREAMING_SNAKE_CASE =feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in (800, 800, 800)] _SCREAMING_SNAKE_CASE =np.asarray(_a ) _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test truncation required _SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _SCREAMING_SNAKE_CASE =[np.asarray(_a ) for speech_input in speech_inputs] _SCREAMING_SNAKE_CASE =[x[: feature_extractor.n_samples] for x in speech_inputs] _SCREAMING_SNAKE_CASE =[np.asarray(_a ) for speech_input in speech_inputs_truncated] _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def A ( self : Any ) -> List[Any]: '''simple docstring''' import torch _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _SCREAMING_SNAKE_CASE =np.random.rand(100 , 32 ).astype(np.floataa ) _SCREAMING_SNAKE_CASE =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _SCREAMING_SNAKE_CASE =feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _SCREAMING_SNAKE_CASE =feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def A ( self : Tuple , _a : str ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _SCREAMING_SNAKE_CASE =ds.sort('id' ).select(range(_a ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def A ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on _SCREAMING_SNAKE_CASE =self._load_datasamples(1 ) _SCREAMING_SNAKE_CASE =WhisperFeatureExtractor() _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _a , atol=1e-4 ) ) def A ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _SCREAMING_SNAKE_CASE =self._load_datasamples(1 )[0] _SCREAMING_SNAKE_CASE =((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _SCREAMING_SNAKE_CASE =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1e-3 ) )
114
0
'''simple docstring''' from collections import deque from .hash_table import HashTable class UpperCAmelCase ( a__ ): '''simple docstring''' def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: lowercase__ : List[Any] = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(__lowerCAmelCase ) lowercase__ : int = self.values[key] def _lowerCAmelCase( self ) -> Tuple: return ( sum(self.charge_factor - len(__lowerCAmelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=None ) -> Tuple: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCAmelCase ) == 0 ): return key return super()._collision_resolution(__lowerCAmelCase , __lowerCAmelCase )
198
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="""%(message)s""") def __UpperCamelCase ( UpperCAmelCase ): return input_array.reshape((input_array.size, 1) ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : Dict = np.nan for i in range(UpperCAmelCase ): lowercase__ : Optional[Any] = features[:, labels == i] lowercase__ : Optional[Any] = data.mean(1 ) # Centralize the data of class i lowercase__ : Dict = data - column_reshape(UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) lowercase__ : List[str] = np.dot(UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : Tuple = features.mean(1 ) lowercase__ : Dict = np.nan for i in range(UpperCAmelCase ): lowercase__ : List[str] = features[:, labels == i] lowercase__ : int = data.shape[1] lowercase__ : Optional[int] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase ) , (column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) lowercase__ : Optional[int] = device_data * np.dot( column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase ) , (column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): # Check if the features have been loaded if features.any(): lowercase__ : Optional[Any] = features.mean(1 ) # Center the dataset lowercase__ : List[str] = features - np.reshape(UpperCAmelCase , (data_mean.size, 1) ) lowercase__ : Optional[Any] = np.dot(UpperCAmelCase , centered_data.T ) / features.shape[1] lowercase__ , lowercase__ : Tuple = np.linalg.eigh(UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first lowercase__ : str = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space lowercase__ : Tuple = np.dot(filtered_eigenvectors.T , UpperCAmelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): assert classes > dimensions # Check if features have been already loaded if features.any: lowercase__ , lowercase__ : Any = eigh( covariance_between_classes(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , covariance_within_classes(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) lowercase__ : Optional[int] = eigenvectors[:, ::-1][:, :dimensions] lowercase__ , lowercase__ , lowercase__ : Optional[int] = np.linalg.svd(UpperCAmelCase ) lowercase__ : List[str] = svd_matrix[:, 0:dimensions] lowercase__ : str = np.dot(filtered_svd_matrix.T , UpperCAmelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=UpperCAmelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __UpperCamelCase ( ): # Create dummy dataset with 2 classes and 3 features lowercase__ : List[str] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) lowercase__ : Optional[Any] = np.array([0, 0, 0, 1, 1] ) lowercase__ : str = 2 lowercase__ : Dict = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(UpperCAmelCase ) as error_info: lowercase__ : int = linear_discriminant_analysis( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if isinstance(UpperCAmelCase , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __UpperCamelCase ( ): lowercase__ : Optional[int] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) lowercase__ : int = 2 lowercase__ : Any = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(UpperCAmelCase ) as error_info: lowercase__ : Dict = principal_component_analysis(UpperCAmelCase , UpperCAmelCase ) if not np.allclose(UpperCAmelCase , UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
198
1
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __snake_case ( TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): def __init__( self , lowercase=None , **lowercase) -> Optional[int]: '''simple docstring''' super().__init__(features=lowercase) a__: List[Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def lowerCamelCase_ ( self , lowercase) -> List[str]: '''simple docstring''' import torch if isinstance(lowercase , lowercase) and column: if all( isinstance(lowercase , torch.Tensor) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column): return torch.stack(lowercase) return column def lowerCamelCase_ ( self , lowercase) -> int: '''simple docstring''' import torch if isinstance(lowercase , (str, bytes, type(lowercase))): return value elif isinstance(lowercase , (np.character, np.ndarray)) and np.issubdtype(value.dtype , np.character): return value.tolist() a__: List[Any] = {} if isinstance(lowercase , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.integer): a__: Any = {'dtype': torch.intaa} elif isinstance(lowercase , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.floating): a__: Optional[Any] = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowercase , PIL.Image.Image): a__: Any = np.asarray(lowercase) return torch.tensor(lowercase , **{**default_dtype, **self.torch_tensor_kwargs}) def lowerCamelCase_ ( self , lowercase) -> Optional[Any]: '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(lowercase , '__array__') and not isinstance(lowercase , torch.Tensor): a__: Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowercase , np.ndarray): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowercase) for substruct in data_struct]) elif isinstance(lowercase , (list, tuple)): return self._consolidate([self.recursive_tensorize(lowercase) for substruct in data_struct]) return self._tensorize(lowercase) def lowerCamelCase_ ( self , lowercase) -> Dict: '''simple docstring''' return map_nested(self._recursive_tensorize , lowercase , map_list=lowercase) def lowerCamelCase_ ( self , lowercase) -> Mapping: '''simple docstring''' a__: Dict = self.numpy_arrow_extractor().extract_row(lowercase) a__: Optional[Any] = self.python_features_decoder.decode_row(lowercase) return self.recursive_tensorize(lowercase) def lowerCamelCase_ ( self , lowercase) -> "torch.Tensor": '''simple docstring''' a__: Optional[Any] = self.numpy_arrow_extractor().extract_column(lowercase) a__: List[str] = self.python_features_decoder.decode_column(lowercase , pa_table.column_names[0]) a__: Optional[int] = self.recursive_tensorize(lowercase) a__: str = self._consolidate(lowercase) return column def lowerCamelCase_ ( self , lowercase) -> Mapping: '''simple docstring''' a__: Optional[Any] = self.numpy_arrow_extractor().extract_batch(lowercase) a__: Dict = self.python_features_decoder.decode_batch(lowercase) a__: Union[str, Any] = self.recursive_tensorize(lowercase) for column_name in batch: a__: Optional[int] = self._consolidate(batch[column_name]) return batch
203
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def __a ( _SCREAMING_SNAKE_CASE ) ->Tuple: a__: Tuple = {} a__: Tuple = job['started_at'] a__: int = job['completed_at'] a__: Any = date_parser.parse(_SCREAMING_SNAKE_CASE ) a__: Tuple = date_parser.parse(_SCREAMING_SNAKE_CASE ) a__: str = round((end_datetime - start_datetime).total_seconds() / 60.0 ) a__: Any = start a__: Dict = end a__: Optional[int] = duration_in_min return job_info def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->Optional[int]: a__: Tuple = None if token is not None: a__: List[str] = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} a__: int = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' a__: Union[str, Any] = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() a__: str = {} try: job_time.update({job['name']: extract_time_from_single_job(_SCREAMING_SNAKE_CASE ) for job in result['jobs']} ) a__: Dict = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_SCREAMING_SNAKE_CASE ): a__: str = requests.get(url + F'&page={i + 2}' , headers=_SCREAMING_SNAKE_CASE ).json() job_time.update({job['name']: extract_time_from_single_job(_SCREAMING_SNAKE_CASE ) for job in result['jobs']} ) return job_time except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') lowercase__ = parser.parse_args() lowercase__ = get_job_time(args.workflow_run_id) lowercase__ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"{k}: {v['duration']}")
203
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class a ( unittest.TestCase ): def __init__( self , __magic_name__ , __magic_name__=7 , __magic_name__=3 , __magic_name__=30 , __magic_name__=4_00 , __magic_name__=True , __magic_name__=None , __magic_name__=0.9 , __magic_name__=None , __magic_name__=True , __magic_name__=[0.5, 0.5, 0.5] , __magic_name__=[0.5, 0.5, 0.5] , ) -> List[Any]: _a = size if size is not None else {'shortest_edge': 30} _a = crop_size if crop_size is not None else {'height': 30, 'width': 30} _a = parent _a = batch_size _a = num_channels _a = min_resolution _a = max_resolution _a = do_resize_and_center_crop _a = size _a = crop_pct _a = crop_size _a = do_normalize _a = image_mean _a = image_std def __UpperCAmelCase ( self ) -> Any: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class a ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowerCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self ) -> str: _a = PoolFormerImageProcessingTester(self ) @property def __UpperCAmelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(__magic_name__ , 'size' ) ) self.assertTrue(hasattr(__magic_name__ , 'crop_pct' ) ) self.assertTrue(hasattr(__magic_name__ , 'do_normalize' ) ) self.assertTrue(hasattr(__magic_name__ , 'image_mean' ) ) self.assertTrue(hasattr(__magic_name__ , 'image_std' ) ) def __UpperCAmelCase ( self ) -> Tuple: _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def __UpperCAmelCase ( self ) -> Dict: pass def __UpperCAmelCase ( self ) -> Dict: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _a = image_processing(__magic_name__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __UpperCAmelCase ( self ) -> int: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _a = image_processing(__magic_name__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __UpperCAmelCase ( self ) -> List[Any]: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _a = image_processing(__magic_name__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
168
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """openai/whisper-base""" _lowerCAmelCase = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _lowerCAmelCase = """transcriber""" _lowerCAmelCase = WhisperProcessor _lowerCAmelCase = WhisperForConditionalGeneration _lowerCAmelCase = ["""audio"""] _lowerCAmelCase = ["""text"""] def __UpperCAmelCase ( self , __magic_name__ ) -> Union[str, Any]: return self.pre_processor(__magic_name__ , return_tensors='pt' ).input_features def __UpperCAmelCase ( self , __magic_name__ ) -> Any: return self.model.generate(inputs=__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> List[str]: return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0]
168
1
import requests from bsa import BeautifulSoup def __snake_case ( __UpperCamelCase : str = "AAPL" ): """simple docstring""" A_ = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' A_ = BeautifulSoup(requests.get(__UpperCamelCase ).text ,"html.parser" ) A_ = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" ,class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
329
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a :Union[str, Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[int] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
329
1
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" return params[f"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase="attention" ): """simple docstring""" _lowerCAmelCase = _lowerCAmelCase = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) _lowerCAmelCase = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) _lowerCAmelCase = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) _lowerCAmelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) _lowerCAmelCase = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) _lowerCAmelCase = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) _lowerCAmelCase = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) _lowerCAmelCase = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): """simple docstring""" if split_mlp_wi: _lowerCAmelCase = params[f"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] _lowerCAmelCase = params[f"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] _lowerCAmelCase = (wi_a, wi_a) else: _lowerCAmelCase = params[f"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] _lowerCAmelCase = params[f"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" return params[f"{prefix}/{prefix}/{layer_name}/scale"][:, i] def UpperCamelCase__ ( lowerCAmelCase , *, lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = False ): """simple docstring""" _lowerCAmelCase = traverse_util.flatten_dict(variables["""target"""] ) _lowerCAmelCase = {"""/""".join(lowerCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _lowerCAmelCase = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowerCAmelCase ) _lowerCAmelCase = collections.OrderedDict() # Shared embeddings. _lowerCAmelCase = old["""token_embedder/embedding"""] # Encoder. for i in range(lowerCAmelCase ): # Block i, layer 0 (Self Attention). _lowerCAmelCase = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , """encoder""" , """pre_attention_layer_norm""" ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = tax_attention_lookup(lowerCAmelCase , lowerCAmelCase , """encoder""" , """attention""" ) _lowerCAmelCase = layer_norm _lowerCAmelCase = k.T _lowerCAmelCase = o.T _lowerCAmelCase = q.T _lowerCAmelCase = v.T # Block i, layer 1 (MLP). _lowerCAmelCase = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , """encoder""" , """pre_mlp_layer_norm""" ) _lowerCAmelCase , _lowerCAmelCase = tax_mlp_lookup(lowerCAmelCase , lowerCAmelCase , """encoder""" , lowerCAmelCase ) _lowerCAmelCase = layer_norm if split_mlp_wi: _lowerCAmelCase = wi[0].T _lowerCAmelCase = wi[1].T else: _lowerCAmelCase = wi.T _lowerCAmelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer _lowerCAmelCase = tax_relpos_bias_lookup( lowerCAmelCase , lowerCAmelCase , """encoder""" ).T _lowerCAmelCase = old["""encoder/encoder_norm/scale"""] if not scalable_attention: _lowerCAmelCase = tax_relpos_bias_lookup( lowerCAmelCase , 0 , """encoder""" ).T _lowerCAmelCase = tax_relpos_bias_lookup( lowerCAmelCase , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(lowerCAmelCase ): # Block i, layer 0 (Self Attention). _lowerCAmelCase = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , """decoder""" , """pre_self_attention_layer_norm""" ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = tax_attention_lookup(lowerCAmelCase , lowerCAmelCase , """decoder""" , """self_attention""" ) _lowerCAmelCase = layer_norm _lowerCAmelCase = k.T _lowerCAmelCase = o.T _lowerCAmelCase = q.T _lowerCAmelCase = v.T # Block i, layer 1 (Cross Attention). _lowerCAmelCase = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , """decoder""" , """pre_cross_attention_layer_norm""" ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = tax_attention_lookup(lowerCAmelCase , lowerCAmelCase , """decoder""" , """encoder_decoder_attention""" ) _lowerCAmelCase = layer_norm _lowerCAmelCase = k.T _lowerCAmelCase = o.T _lowerCAmelCase = q.T _lowerCAmelCase = v.T # Block i, layer 2 (MLP). _lowerCAmelCase = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , """decoder""" , """pre_mlp_layer_norm""" ) _lowerCAmelCase , _lowerCAmelCase = tax_mlp_lookup(lowerCAmelCase , lowerCAmelCase , """decoder""" , lowerCAmelCase ) _lowerCAmelCase = layer_norm if split_mlp_wi: _lowerCAmelCase = wi[0].T _lowerCAmelCase = wi[1].T else: _lowerCAmelCase = wi.T _lowerCAmelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer _lowerCAmelCase = tax_relpos_bias_lookup(lowerCAmelCase , lowerCAmelCase , """decoder""" ).T _lowerCAmelCase = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _lowerCAmelCase = old["""decoder/logits_dense/kernel"""].T return new def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _lowerCAmelCase = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _lowerCAmelCase = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) _lowerCAmelCase = state_dict["""shared.weight"""] return state_dict def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = checkpoints.load_tax_checkpoint(lowerCAmelCase ) _lowerCAmelCase = convert_tax_to_pytorch( lowerCAmelCase , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase , scalable_attention=lowerCAmelCase ) _lowerCAmelCase = make_state_dict(lowerCAmelCase , lowerCAmelCase ) model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = False , lowerCAmelCase = False , ): """simple docstring""" _lowerCAmelCase = MTaConfig.from_json_file(lowerCAmelCase ) print(f"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _lowerCAmelCase = UMTaEncoderModel(lowerCAmelCase ) else: _lowerCAmelCase = UMTaForConditionalGeneration(lowerCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(lowerCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCAmelCase ) print("""Done""" ) if __name__ == "__main__": A__ : Tuple =argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) A__ : Union[str, Any] =parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
70
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def snake_case( __magic_name__ , __magic_name__=False ) -> List[str]: '''simple docstring''' lowercase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def snake_case( __magic_name__ , __magic_name__ , __magic_name__=False ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase : Optional[int] = '''''' else: lowercase : List[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase : Tuple = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) lowercase : List[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase : Tuple = in_proj_weight[ : config.hidden_size, : ] lowercase : str = in_proj_bias[: config.hidden_size] lowercase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase : Optional[int] = in_proj_bias[-config.hidden_size :] def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : str = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Any = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' lowercase : List[Any] = dct.pop(__magic_name__ ) lowercase : Union[str, Any] = val def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = ViTMSNConfig() lowercase : str = 10_00 lowercase : List[str] = '''datasets/huggingface/label-files''' lowercase : List[str] = '''imagenet-1k-id2label.json''' lowercase : Any = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ ) , '''r''' ) ) lowercase : Union[str, Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase : Any = idalabel lowercase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase : int = 3_84 lowercase : Optional[Any] = 15_36 lowercase : Tuple = 6 elif "l16" in checkpoint_url: lowercase : Union[str, Any] = 10_24 lowercase : List[str] = 40_96 lowercase : int = 24 lowercase : Union[str, Any] = 16 lowercase : Tuple = 0.1 elif "b4" in checkpoint_url: lowercase : Union[str, Any] = 4 elif "l7" in checkpoint_url: lowercase : Dict = 7 lowercase : List[Any] = 10_24 lowercase : str = 40_96 lowercase : int = 24 lowercase : Dict = 16 lowercase : Tuple = 0.1 lowercase : int = ViTMSNModel(__magic_name__ ) lowercase : List[str] = torch.hub.load_state_dict_from_url(__magic_name__ , map_location='''cpu''' )['''target_encoder'''] lowercase : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(__magic_name__ ) lowercase : List[str] = create_rename_keys(__magic_name__ , base_model=__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , base_model=__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() lowercase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) lowercase : Dict = ViTImageProcessor( size=config.image_size , image_mean=__magic_name__ , image_std=__magic_name__ ) lowercase : List[str] = image_processor(images=__magic_name__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**__magic_name__ ) lowercase : Optional[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase : List[str] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowercase : Any = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowercase : Dict = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowercase : Tuple = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowercase : Optional[int] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __magic_name__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
308
0
import argparse import json import subprocess def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[int] , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" UpperCamelCase :Optional[Any] = [] UpperCamelCase :Tuple = ( f"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) UpperCamelCase :int = subprocess.run(__magic_name__ , shell=__magic_name__ , stdout=subprocess.PIPE ) UpperCamelCase :Tuple = output.stdout.decode("""utf-8""" ) UpperCamelCase :Optional[int] = json.loads(__magic_name__ ) UpperCamelCase :Tuple = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__magic_name__ ) # save the result so we can report them on Slack with open("""offline_runners.txt""" , """w""" ) as fp: fp.write(json.dumps(__magic_name__ ) ) if len(__magic_name__ ) > 0: UpperCamelCase :List[str] = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" return values.split(""",""" ) UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) UpperCAmelCase_ : Any = parser.parse_args() get_runner_status(args.target_runners, args.token)
62
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : str ): UpperCamelCase :Dict = """hf-internal-testing/tiny-random-t5""" UpperCamelCase :Optional[int] = AutoTokenizer.from_pretrained(__lowerCamelCase ) UpperCamelCase :Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) UpperCamelCase :List[Any] = tokenizer("""This is me""" , return_tensors="""pt""" ) UpperCamelCase :int = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) UpperCamelCase :List[Any] = model.generate(**__lowerCamelCase ) UpperCamelCase :List[Any] = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) UpperCamelCase :List[str] = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) UpperCamelCase :List[Any] = model_reloaded.generate(**__lowerCamelCase ) self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase ) ) def _A ( self : Optional[int] ): UpperCamelCase :Dict = """hf-internal-testing/tiny-random-t5""" UpperCamelCase :Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) UpperCamelCase :List[Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowerCamelCase ): model.save_pretrained(__lowerCamelCase ) UpperCamelCase :int = model.reverse_bettertransformer() model.save_pretrained(__lowerCamelCase )
62
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" __a = """huggingface/label-files""" __a = """imagenet-1k-id2label.json""" __a = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __a = {int(__lowerCamelCase ): v for k, v in idalabel.items()} __a = {v: k for k, v in idalabel.items()} __a = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __a = BitConfig( conv_layer=__lowerCamelCase , num_labels=1000 , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , ) return config def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" if "stem.conv" in name: __a = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: __a = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: __a = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): __a = """bit.""" + name if "bit" not in name and "classifier" not in name: __a = """bit.encoder.""" + name return name def lowerCAmelCase__ ( ): """simple docstring""" __a = """http://images.cocodataset.org/val2017/000000039769.jpg""" __a = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int]=False ): """simple docstring""" __a = get_config(__lowerCamelCase ) # load original model from timm __a = create_model(__lowerCamelCase , pretrained=__lowerCamelCase ) timm_model.eval() # load state_dict of original model __a = timm_model.state_dict() for key in state_dict.copy().keys(): __a = state_dict.pop(__lowerCamelCase ) __a = val.squeeze() if """head""" in key else val # load HuggingFace model __a = BitForImageClassification(__lowerCamelCase ) model.eval() model.load_state_dict(__lowerCamelCase ) # create image processor __a = create_transform(**resolve_data_config({} , model=__lowerCamelCase ) ) __a = transform.transforms __a = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } __a = BitImageProcessor( do_resize=__lowerCamelCase , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__lowerCamelCase , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=__lowerCamelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __a = prepare_img() __a = transform(__lowerCamelCase ).unsqueeze(0 ) __a = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(__lowerCamelCase , __lowerCamelCase ) # verify logits with torch.no_grad(): __a = model(__lowerCamelCase ) __a = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) __a = timm_model(__lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCamelCase , outputs.logits , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f"Saving model {model_name} and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f"Pushing model {model_name} and processor to the hub" ) model.push_to_hub(f"ybelkada/{model_name}" ) processor.push_to_hub(f"ybelkada/{model_name}" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) lowerCamelCase__ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a : List[str] = "src/diffusers" a : str = "." # This is to make sure the diffusers module imported is the one in the repo. a : Tuple = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) a : List[str] = spec.loader.load_module() def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : Tuple ): return line.startswith(__lowerCamelCase ) or len(__lowerCamelCase ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , __lowerCamelCase ) is not None def lowerCamelCase__ ( __lowerCamelCase : Any ): __UpperCAmelCase : Optional[int] = object_name.split(""".""" ) __UpperCAmelCase : List[Any] = 0 # First let's find the module where our object lives. __UpperCAmelCase : Optional[Any] = parts[i] while i < len(__lowerCamelCase ) and not os.path.isfile(os.path.join(__lowerCamelCase , f"""{module}.py""" ) ): i += 1 if i < len(__lowerCamelCase ): __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , parts[i] ) if i >= len(__lowerCamelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(__lowerCamelCase , f"""{module}.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __UpperCAmelCase : Optional[Any] = f.readlines() # Now let's find the class / func in the code! __UpperCAmelCase : List[str] = """""" __UpperCAmelCase : int = 0 for name in parts[i + 1 :]: while ( line_index < len(__lowerCamelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__lowerCamelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). __UpperCAmelCase : List[str] = line_index while line_index < len(__lowerCamelCase ) and _should_continue(lines[line_index] , __lowerCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __UpperCAmelCase : Dict = lines[start_index:line_index] return "".join(__lowerCamelCase ) a : Any = re.compile(r"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") a : Optional[int] = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)") a : Dict = re.compile(r"<FILL\s+[^>]*>") def lowerCamelCase__ ( __lowerCamelCase : List[Any] ): __UpperCAmelCase : Optional[Any] = code.split("""\n""" ) __UpperCAmelCase : str = 0 while idx < len(__lowerCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__lowerCamelCase ): return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def lowerCamelCase__ ( __lowerCamelCase : List[str] ): __UpperCAmelCase : Tuple = len(get_indent(__lowerCamelCase ) ) > 0 if has_indent: __UpperCAmelCase : Optional[Any] = f"""class Bla:\n{code}""" __UpperCAmelCase : Dict = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=__lowerCamelCase ) __UpperCAmelCase : Dict = black.format_str(__lowerCamelCase , mode=__lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Any = style_docstrings_in_code(__lowerCamelCase ) return result[len("""class Bla:\n""" ) :] if has_indent else result def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=False ): with open(__lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __UpperCAmelCase : Optional[Any] = f.readlines() __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__lowerCamelCase ): __UpperCAmelCase : Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = search.groups() __UpperCAmelCase : Any = find_code_in_diffusers(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = get_indent(__lowerCamelCase ) __UpperCAmelCase : Tuple = line_index + 1 if indent == theoretical_indent else line_index + 2 __UpperCAmelCase : Any = theoretical_indent __UpperCAmelCase : Any = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. __UpperCAmelCase : int = True while line_index < len(__lowerCamelCase ) and should_continue: line_index += 1 if line_index >= len(__lowerCamelCase ): break __UpperCAmelCase : List[Any] = lines[line_index] __UpperCAmelCase : str = _should_continue(__lowerCamelCase , __lowerCamelCase ) and re.search(f"""^{indent}# End copy""" , __lowerCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __UpperCAmelCase : Optional[int] = lines[start_index:line_index] __UpperCAmelCase : int = """""".join(__lowerCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies __UpperCAmelCase : Tuple = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(__lowerCamelCase ) is None] __UpperCAmelCase : List[Any] = """\n""".join(__lowerCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__lowerCamelCase ) > 0: __UpperCAmelCase : List[str] = replace_pattern.replace("""with""" , """""" ).split(""",""" ) __UpperCAmelCase : Any = [_re_replace_pattern.search(__lowerCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = pattern.groups() __UpperCAmelCase : List[str] = re.sub(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if option.strip() == "all-casing": __UpperCAmelCase : List[Any] = re.sub(obja.lower() , obja.lower() , __lowerCamelCase ) __UpperCAmelCase : int = re.sub(obja.upper() , obja.upper() , __lowerCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line __UpperCAmelCase : Union[str, Any] = blackify(lines[start_index - 1] + theoretical_code ) __UpperCAmelCase : Optional[Any] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: __UpperCAmelCase : int = lines[:start_index] + [theoretical_code] + lines[line_index:] __UpperCAmelCase : Union[str, Any] = start_index + 1 if overwrite and len(__lowerCamelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__lowerCamelCase ) return diffs def lowerCamelCase__ ( __lowerCamelCase : bool = False ): __UpperCAmelCase : Tuple = glob.glob(os.path.join(__lowerCamelCase , """**/*.py""" ) , recursive=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = [] for filename in all_files: __UpperCAmelCase : str = is_copy_consistent(__lowerCamelCase , __lowerCamelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(__lowerCamelCase ) > 0: __UpperCAmelCase : Union[str, Any] = """\n""".join(__lowerCamelCase ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") a : Optional[int] = parser.parse_args() check_copies(args.fix_and_overwrite)
114
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType lowerCAmelCase__ : Optional[int] =get_logger(__name__) def __lowercase ( a__ , a__ , a__ , a__ , a__=0 ) -> int: os.makedirs(a__ , exist_ok=a__ ) with FSDP.state_dict_type( a__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __SCREAMING_SNAKE_CASE = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __SCREAMING_SNAKE_CASE = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" __SCREAMING_SNAKE_CASE = os.path.join(a__ , a__ ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(a__ , a__ ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __SCREAMING_SNAKE_CASE = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) __SCREAMING_SNAKE_CASE = os.path.join(a__ , a__ ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(a__ , a__ ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __SCREAMING_SNAKE_CASE = os.path.join(a__ , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(a__ , exist_ok=a__ ) logger.info(f"""Saving model to {ckpt_dir}""" ) __SCREAMING_SNAKE_CASE = {'model': state_dict} dist_cp.save_state_dict( state_dict=a__ , storage_writer=dist_cp.FileSystemWriter(a__ ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def __lowercase ( a__ , a__ , a__ , a__ , a__=0 ) -> List[str]: accelerator.wait_for_everyone() with FSDP.state_dict_type( a__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(a__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return __SCREAMING_SNAKE_CASE = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" __SCREAMING_SNAKE_CASE = os.path.join(a__ , a__ ) logger.info(f"""Loading model from {input_model_file}""" ) __SCREAMING_SNAKE_CASE = torch.load(a__ ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __SCREAMING_SNAKE_CASE = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) __SCREAMING_SNAKE_CASE = os.path.join(a__ , a__ ) logger.info(f"""Loading model from {input_model_file}""" ) __SCREAMING_SNAKE_CASE = torch.load(a__ ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __SCREAMING_SNAKE_CASE = ( os.path.join(a__ , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) __SCREAMING_SNAKE_CASE = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=a__ , storage_reader=dist_cp.FileSystemReader(a__ ) , planner=DefaultLoadPlanner() , ) __SCREAMING_SNAKE_CASE = state_dict['model'] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(a__ ) def __lowercase ( a__ , a__ , a__ , a__ , a__ , a__=0 ) -> List[Any]: os.makedirs(a__ , exist_ok=a__ ) with FSDP.state_dict_type( a__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __SCREAMING_SNAKE_CASE = FSDP.optim_state_dict(a__ , a__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __SCREAMING_SNAKE_CASE = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) __SCREAMING_SNAKE_CASE = os.path.join(a__ , a__ ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(a__ , a__ ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: __SCREAMING_SNAKE_CASE = os.path.join(a__ , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(a__ , exist_ok=a__ ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(a__ ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def __lowercase ( a__ , a__ , a__ , a__ , a__ , a__=0 ) -> str: accelerator.wait_for_everyone() with FSDP.state_dict_type( a__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __SCREAMING_SNAKE_CASE = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __SCREAMING_SNAKE_CASE = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) __SCREAMING_SNAKE_CASE = os.path.join(a__ , a__ ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) __SCREAMING_SNAKE_CASE = torch.load(a__ ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: __SCREAMING_SNAKE_CASE = ( os.path.join(a__ , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) __SCREAMING_SNAKE_CASE = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(a__ ) , ) __SCREAMING_SNAKE_CASE = optim_state['optimizer'] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) __SCREAMING_SNAKE_CASE = FSDP.optim_state_dict_to_load(a__ , a__ , a__ ) optimizer.load_state_dict(a__ )
354
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __lowercase ( a__ ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __SCREAMING_SNAKE_CASE = True if 'large' in model_name or 'huge' in model_name else False __SCREAMING_SNAKE_CASE = True if 'large' in model_name or 'huge' in model_name else False __SCREAMING_SNAKE_CASE = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __SCREAMING_SNAKE_CASE = [3, 3, 3, 3] __SCREAMING_SNAKE_CASE = [5, 5, 5, 5] elif "fl4" in model_name: __SCREAMING_SNAKE_CASE = [4, 4, 4, 4] __SCREAMING_SNAKE_CASE = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __SCREAMING_SNAKE_CASE = [3, 3, 3, 3] if "lrf" in model_name: __SCREAMING_SNAKE_CASE = [3, 3, 3, 3] else: __SCREAMING_SNAKE_CASE = [2, 2, 2, 2] if "tiny" in model_name: __SCREAMING_SNAKE_CASE = 96 elif "small" in model_name: __SCREAMING_SNAKE_CASE = 96 elif "base" in model_name: __SCREAMING_SNAKE_CASE = 1_28 elif "large" in model_name: __SCREAMING_SNAKE_CASE = 1_92 elif "xlarge" in model_name: __SCREAMING_SNAKE_CASE = 2_56 elif "huge" in model_name: __SCREAMING_SNAKE_CASE = 3_52 # set label information __SCREAMING_SNAKE_CASE = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __SCREAMING_SNAKE_CASE = 'imagenet-22k-id2label.json' else: __SCREAMING_SNAKE_CASE = 'imagenet-1k-id2label.json' __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) ) __SCREAMING_SNAKE_CASE = {int(a__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = FocalNetConfig( embed_dim=a__ , depths=a__ , focal_levels=a__ , focal_windows=a__ , use_conv_embed=a__ , idalabel=a__ , labelaid=a__ , use_post_layernorm=a__ , use_layerscale=a__ , ) return config def __lowercase ( a__ ) -> Any: if "patch_embed.proj" in name: __SCREAMING_SNAKE_CASE = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __SCREAMING_SNAKE_CASE = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __SCREAMING_SNAKE_CASE = 'encoder.' + name if "encoder.layers" in name: __SCREAMING_SNAKE_CASE = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __SCREAMING_SNAKE_CASE = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __SCREAMING_SNAKE_CASE = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __SCREAMING_SNAKE_CASE = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __SCREAMING_SNAKE_CASE = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __SCREAMING_SNAKE_CASE = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __SCREAMING_SNAKE_CASE = 'layernorm.weight' if name == "norm.bias": __SCREAMING_SNAKE_CASE = 'layernorm.bias' if "head" in name: __SCREAMING_SNAKE_CASE = name.replace('head' , 'classifier' ) else: __SCREAMING_SNAKE_CASE = 'focalnet.' + name return name def __lowercase ( a__ , a__ , a__=False ) -> Dict: # fmt: off __SCREAMING_SNAKE_CASE = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __SCREAMING_SNAKE_CASE = model_name_to_url[model_name] print('Checkpoint URL: ' , a__ ) __SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(a__ , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __SCREAMING_SNAKE_CASE = state_dict.pop(a__ ) __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = get_focalnet_config(a__ ) __SCREAMING_SNAKE_CASE = FocalNetForImageClassification(a__ ) model.eval() # load state dict model.load_state_dict(a__ ) # verify conversion __SCREAMING_SNAKE_CASE = 'http://images.cocodataset.org/val2017/000000039769.jpg' __SCREAMING_SNAKE_CASE = BitImageProcessor( do_resize=a__ , size={'shortest_edge': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=a__ , crop_size=2_24 , do_normalize=a__ , image_mean=a__ , image_std=a__ , ) __SCREAMING_SNAKE_CASE = Image.open(requests.get(a__ , stream=a__ ).raw ) __SCREAMING_SNAKE_CASE = processor(images=a__ , return_tensors='pt' ) __SCREAMING_SNAKE_CASE = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __SCREAMING_SNAKE_CASE = image_transforms(a__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , a__ , atol=1E-4 ) __SCREAMING_SNAKE_CASE = model(**a__ ) __SCREAMING_SNAKE_CASE = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __SCREAMING_SNAKE_CASE = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": __SCREAMING_SNAKE_CASE = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": __SCREAMING_SNAKE_CASE = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": __SCREAMING_SNAKE_CASE = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": __SCREAMING_SNAKE_CASE = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": __SCREAMING_SNAKE_CASE = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) processor.save_pretrained(a__ ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCAmelCase__ : int =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) lowerCAmelCase__ : List[Any] =parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
118
0
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class _lowerCAmelCase : def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=19 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ) -> Any: '''simple docstring''' snake_case : Dict = parent snake_case : List[str] = batch_size snake_case : str = seq_length snake_case : Tuple = is_training snake_case : Tuple = use_input_mask snake_case : int = use_token_type_ids snake_case : str = use_labels snake_case : Optional[int] = vocab_size snake_case : Union[str, Any] = hidden_size snake_case : Optional[int] = num_hidden_layers snake_case : int = num_attention_heads snake_case : Optional[int] = intermediate_size snake_case : Any = hidden_act snake_case : Dict = hidden_dropout_prob snake_case : Any = attention_probs_dropout_prob snake_case : Optional[Any] = max_position_embeddings snake_case : List[Any] = type_vocab_size snake_case : Dict = type_sequence_label_size snake_case : int = initializer_range snake_case : int = num_labels snake_case : Any = num_choices snake_case : Any = scope def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : List[str] = None if self.use_input_mask: snake_case : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : str = None snake_case : int = None snake_case : Union[str, Any] = None if self.use_labels: snake_case : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) snake_case : Tuple = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=UpperCamelCase__ , esmfold_config={"trunk": {"num_blocks": 2}, "fp16_esm": False} , ) return config def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' snake_case : Any = EsmForProteinFolding(config=UpperCamelCase__ ).float() model.to(UpperCamelCase__ ) model.eval() snake_case : List[Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) snake_case : List[str] = model(UpperCamelCase__ ) snake_case : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : Any = self.prepare_config_and_inputs() ( ( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) , ) : Union[str, Any] = config_and_inputs snake_case : str = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[Any] = (EsmForProteinFolding,) if is_torch_available() else () __UpperCAmelCase : Optional[Any] = () __UpperCAmelCase : Dict = {} if is_torch_available() else {} __UpperCAmelCase : Tuple = False def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : Dict = EsmFoldModelTester(self ) snake_case : str = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def lowerCamelCase ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) @unittest.skip("Does not support attention outputs" ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip def lowerCamelCase ( self ) -> Dict: '''simple docstring''' pass @unittest.skip("Esm does not support embedding resizing" ) def lowerCamelCase ( self ) -> str: '''simple docstring''' pass @unittest.skip("Esm does not support embedding resizing" ) def lowerCamelCase ( self ) -> int: '''simple docstring''' pass @unittest.skip("ESMFold does not support passing input embeds!" ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def lowerCamelCase ( self ) -> int: '''simple docstring''' pass @unittest.skip("ESMFold does not output hidden states in the normal way." ) def lowerCamelCase ( self ) -> int: '''simple docstring''' pass @unittest.skip("ESMfold does not output hidden states in the normal way." ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip("ESMFold only has one output format." ) def lowerCamelCase ( self ) -> str: '''simple docstring''' pass @unittest.skip("This test doesn't work for ESMFold and doesn't test core functionality" ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip("ESMFold does not support input chunking." ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments." ) def lowerCamelCase ( self ) -> str: '''simple docstring''' pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' pass @unittest.skip("ESMFold doesn't support data parallel." ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' pass @require_torch class _lowerCAmelCase ( snake_case_ ): @slow def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1" ).float() model.eval() snake_case : Any = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) snake_case : Union[str, Any] = model(UpperCamelCase__ )["positions"] snake_case : Optional[int] = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , UpperCamelCase__ , atol=1e-4 ) )
203
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __snake_case = logging.get_logger(__name__) def __lowerCAmelCase ( ) -> str: """simple docstring""" snake_case : Dict = os.getenv("SM_HP_MP_PARAMETERS" , "{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. snake_case : Optional[int] = json.loads(lowercase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. snake_case : Optional[int] = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". snake_case : Any = json.loads(lowercase ) if not mpi_options.get("sagemaker_mpi_enabled" , lowercase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : str = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , UpperCamelCase__ , ) @cached_property def lowerCamelCase ( self ) -> "torch.device": '''simple docstring''' logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: snake_case : Optional[Any] = torch.device("cpu" ) snake_case : List[Any] = 0 elif is_sagemaker_model_parallel_available(): snake_case : Tuple = smp.local_rank() snake_case : int = torch.device("cuda" , UpperCamelCase__ ) snake_case : Dict = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) snake_case : Any = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) snake_case : Optional[Any] = torch.device("cuda" , self.local_rank ) snake_case : str = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 snake_case : List[str] = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. snake_case : Optional[Any] = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) snake_case : Any = torch.device("cuda" , self.local_rank ) snake_case : Dict = 1 if device.type == "cuda": torch.cuda.set_device(UpperCamelCase__ ) return device @property def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' return not is_sagemaker_model_parallel_available() @property def lowerCamelCase ( self ) -> str: '''simple docstring''' return False
203
1
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar _SCREAMING_SNAKE_CASE : Tuple = TypeVar("T") def UpperCamelCase_( snake_case : int ): '''simple docstring''' return (position - 1) // 2 def UpperCamelCase_( snake_case : int ): '''simple docstring''' return (2 * position) + 1 def UpperCamelCase_( snake_case : int ): '''simple docstring''' return (2 * position) + 2 class _snake_case ( Generic[T] ): def __init__( self ) -> None: '''simple docstring''' snake_case_ = [] snake_case_ = {} snake_case_ = 0 def __len__( self ) -> int: '''simple docstring''' return self.elements def __repr__( self ) -> str: '''simple docstring''' return str(self.heap ) def lowerCAmelCase__ ( self ) -> bool: '''simple docstring''' return self.elements == 0 def lowerCAmelCase__ ( self , a__ , a__ ) -> None: '''simple docstring''' self.heap.append((elem, weight) ) snake_case_ = self.elements self.elements += 1 self._bubble_up(a__ ) def lowerCAmelCase__ ( self ) -> T: '''simple docstring''' if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) snake_case_ , snake_case_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: snake_case_ , snake_case_ = self.heap[0] self._bubble_down(a__ ) return elem def lowerCAmelCase__ ( self , a__ , a__ ) -> None: '''simple docstring''' snake_case_ = self.position_map[elem] snake_case_ = (elem, weight) if position > 0: snake_case_ = get_parent_position(a__ ) snake_case_ , snake_case_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(a__ ) else: self._bubble_down(a__ ) else: self._bubble_down(a__ ) def lowerCAmelCase__ ( self , a__ ) -> None: '''simple docstring''' snake_case_ = self.position_map[elem] if curr_pos == 0: return None snake_case_ = get_parent_position(a__ ) snake_case_ , snake_case_ = self.heap[curr_pos] snake_case_ , snake_case_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(a__ , a__ ) return self._bubble_up(a__ ) return None def lowerCAmelCase__ ( self , a__ ) -> None: '''simple docstring''' snake_case_ = self.position_map[elem] snake_case_ , snake_case_ = self.heap[curr_pos] snake_case_ = get_child_left_position(a__ ) snake_case_ = get_child_right_position(a__ ) if child_left_position < self.elements and child_right_position < self.elements: snake_case_ , snake_case_ = self.heap[child_left_position] snake_case_ , snake_case_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(a__ , a__ ) return self._bubble_down(a__ ) if child_left_position < self.elements: snake_case_ , snake_case_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(a__ , a__ ) return self._bubble_down(a__ ) else: return None if child_right_position < self.elements: snake_case_ , snake_case_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(a__ , a__ ) return self._bubble_down(a__ ) return None def lowerCAmelCase__ ( self , a__ , a__ ) -> None: '''simple docstring''' snake_case_ = self.heap[nodea_pos][0] snake_case_ = self.heap[nodea_pos][0] snake_case_ , snake_case_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) snake_case_ = nodea_pos snake_case_ = nodea_pos class _snake_case ( Generic[T] ): def __init__( self ) -> None: '''simple docstring''' snake_case_ = {} snake_case_ = 0 def __repr__( self ) -> str: '''simple docstring''' return str(self.connections ) def __len__( self ) -> int: '''simple docstring''' return self.nodes def lowerCAmelCase__ ( self , a__ ) -> None: '''simple docstring''' if node not in self.connections: snake_case_ = {} self.nodes += 1 def lowerCAmelCase__ ( self , a__ , a__ , a__ ) -> None: '''simple docstring''' self.add_node(a__ ) self.add_node(a__ ) snake_case_ = weight snake_case_ = weight def UpperCamelCase_( snake_case : GraphUndirectedWeighted[T] , ): '''simple docstring''' snake_case_ = {node: maxsize for node in graph.connections} snake_case_ = {node: None for node in graph.connections} snake_case_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(snake_case , snake_case ) if priority_queue.is_empty(): return dist, parent # initialization snake_case_ = priority_queue.extract_min() snake_case_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: snake_case_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(snake_case , dist[neighbour] ) snake_case_ = node # running prim's algorithm while not priority_queue.is_empty(): snake_case_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: snake_case_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(snake_case , dist[neighbour] ) snake_case_ = node return dist, parent
354
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class _snake_case : def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=32 , a__=2 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=3 , a__=4 , a__=None , a__=1_000 , ) -> Optional[int]: '''simple docstring''' snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope snake_case_ = range_bbox def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case_ = bbox[i, j, 3] snake_case_ = bbox[i, j, 1] snake_case_ = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case_ = bbox[i, j, 2] snake_case_ = bbox[i, j, 0] snake_case_ = t snake_case_ = tf.convert_to_tensor(a__ ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> Optional[Any]: '''simple docstring''' snake_case_ = TFLayoutLMModel(config=a__ ) snake_case_ = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ ) snake_case_ = model(a__ , a__ , token_type_ids=a__ ) snake_case_ = model(a__ , a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = TFLayoutLMForMaskedLM(config=a__ ) snake_case_ = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> Optional[int]: '''simple docstring''' snake_case_ = self.num_labels snake_case_ = TFLayoutLMForSequenceClassification(config=a__ ) snake_case_ = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> List[str]: '''simple docstring''' snake_case_ = self.num_labels snake_case_ = TFLayoutLMForTokenClassification(config=a__ ) snake_case_ = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = TFLayoutLMForQuestionAnswering(config=a__ ) snake_case_ = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class _snake_case ( lowercase_ , lowercase_ , unittest.TestCase ): lowerCAmelCase_ : Optional[int] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) lowerCAmelCase_ : List[Any] = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : int = True lowerCAmelCase_ : List[str] = 10 def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ = TFLayoutLMModelTester(self ) snake_case_ = ConfigTester(self , config_class=a__ , hidden_size=37 ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a__ ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a__ ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = TFLayoutLMModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass def UpperCamelCase_( ): '''simple docstring''' snake_case_ = tf.convert_to_tensor([[1_0_1,1_0_1_9,1_0_1_4,1_0_1_6,1_0_3_7,1_2_8_4_9,4_7_4_7,1_0_0_4,1_4_2_4_6,2_2_7_8,5_4_3_9,4_5_2_4,5_0_0_2,2_9_3_0,2_1_9_3,2_9_3_0,4_3_4_1,3_2_0_8,1_0_0_5,1_0_5_5,2_1_7_1,2_8_4_8,1_1_3_0_0,3_5_3_1,1_0_2],[1_0_1,4_0_7_0,4_0_3_4,7_0_2_0,1_0_2_4,3_0_5_8,1_0_1_5,1_0_1_3,2_8_6_1,1_0_1_3,6_0_7_0,1_9_2_7_4,2_7_7_2,6_2_0_5,2_7_8_1_4,1_6_1_4_7,1_6_1_4_7,4_3_4_3,2_0_4_7,1_0_2_8_3,1_0_9_6_9,1_4_3_8_9,1_0_1_2,2_3_3_8,1_0_2]] ) # noqa: E231 snake_case_ = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 snake_case_ = tf.convert_to_tensor([[[0,0,0,0],[4_2_3,2_3_7,4_4_0,2_5_1],[4_2_7,2_7_2,4_4_1,2_8_7],[4_1_9,1_1_5,4_3_7,1_2_9],[9_6_1,8_8_5,9_9_2,9_1_2],[2_5_6,3_8,3_3_0,5_8],[2_5_6,3_8,3_3_0,5_8],[3_3_6,4_2,3_5_3,5_7],[3_6_0,3_9,4_0_1,5_6],[3_6_0,3_9,4_0_1,5_6],[4_1_1,3_9,4_7_1,5_9],[4_7_9,4_1,5_2_8,5_9],[5_3_3,3_9,6_3_0,6_0],[6_7,1_1_3,1_3_4,1_3_1],[1_4_1,1_1_5,2_0_9,1_3_2],[6_8,1_4_9,1_3_3,1_6_6],[1_4_1,1_4_9,1_8_7,1_6_4],[1_9_5,1_4_8,2_8_7,1_6_5],[1_9_5,1_4_8,2_8_7,1_6_5],[1_9_5,1_4_8,2_8_7,1_6_5],[2_9_5,1_4_8,3_4_9,1_6_5],[4_4_1,1_4_9,4_9_2,1_6_6],[4_9_7,1_4_9,5_4_6,1_6_4],[6_4,2_0_1,1_2_5,2_1_8],[1_0_0_0,1_0_0_0,1_0_0_0,1_0_0_0]],[[0,0,0,0],[6_6_2,1_5_0,7_5_4,1_6_6],[6_6_5,1_9_9,7_4_2,2_1_1],[5_1_9,2_1_3,5_5_4,2_2_8],[5_1_9,2_1_3,5_5_4,2_2_8],[1_3_4,4_3_3,1_8_7,4_5_4],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[3_1_4,4_6_9,3_7_6,4_8_2],[5_0_4,6_8_4,5_8_2,7_0_6],[9_4_1,8_2_5,9_7_3,9_0_0],[9_4_1,8_2_5,9_7_3,9_0_0],[9_4_1,8_2_5,9_7_3,9_0_0],[9_4_1,8_2_5,9_7_3,9_0_0],[6_1_0,7_4_9,6_5_2,7_6_5],[1_3_0,6_5_9,1_6_8,6_7_2],[1_7_6,6_5_7,2_3_7,6_7_2],[2_3_8,6_5_7,3_1_2,6_7_2],[4_4_3,6_5_3,6_2_8,6_7_2],[4_4_3,6_5_3,6_2_8,6_7_2],[7_1_6,3_0_1,8_2_5,3_1_7],[1_0_0_0,1_0_0_0,1_0_0_0,1_0_0_0]]] ) # noqa: E231 snake_case_ = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) snake_case_ = tf.convert_to_tensor([[-1_0_0,1_0,1_0,1_0,9,1,-1_0_0,7,7,-1_0_0,7,7,4,2,5,2,8,8,-1_0_0,-1_0_0,5,0,3,2,-1_0_0],[-1_0_0,1_2,1_2,1_2,-1_0_0,1_2,1_0,-1_0_0,-1_0_0,-1_0_0,-1_0_0,1_0,1_2,9,-1_0_0,-1_0_0,-1_0_0,1_0,1_0,1_0,9,1_2,-1_0_0,1_0,-1_0_0]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class _snake_case ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = prepare_layoutlm_batch_inputs() # forward pass snake_case_ = model(input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ ) # test the sequence output on [0, :3, :3] snake_case_ = tf.convert_to_tensor( [[0.1_7_8_5, -0.1_9_4_7, -0.0_4_2_5], [-0.3_2_5_4, -0.2_8_0_7, 0.2_5_5_3], [-0.5_3_9_1, -0.3_3_2_2, 0.3_3_6_4]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , a__ , atol=1e-3 ) ) # test the pooled output on [1, :3] snake_case_ = tf.convert_to_tensor([-0.6_5_8_0, -0.0_2_1_4, 0.8_5_5_2] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , a__ , atol=1e-3 ) ) @slow def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = prepare_layoutlm_batch_inputs() # forward pass snake_case_ = model( input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar snake_case_ = outputs.loss snake_case_ = (2,) self.assertEqual(loss.shape , a__ ) # test the shape of the logits snake_case_ = outputs.logits snake_case_ = (2, 2) self.assertEqual(logits.shape , a__ ) @slow def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = prepare_layoutlm_batch_inputs() # forward pass snake_case_ = model( input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) # test the shape of the logits snake_case_ = outputs.logits snake_case_ = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , a__ ) @slow def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = prepare_layoutlm_batch_inputs() # forward pass snake_case_ = model(input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ ) # test the shape of the logits snake_case_ = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , a__ ) self.assertEqual(outputs.end_logits.shape , a__ )
92
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ :List[str] = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Union[str, Any] = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase__ :Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
329
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ :int = logging.get_logger(__name__) lowerCAmelCase__ :Optional[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class __a ( UpperCAmelCase ): _a : str = 'data2vec-text' def __init__( self , _SCREAMING_SNAKE_CASE=30522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-1_2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = classifier_dropout class __a ( UpperCAmelCase ): @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
329
1
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class A : '''simple docstring''' def __init__( self : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[Any]=99 , __lowerCAmelCase : Union[str, Any]=13 , __lowerCAmelCase : List[Any]=7 , __lowerCAmelCase : List[str]=9 , __lowerCAmelCase : Any=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Tuple=32 , __lowerCAmelCase : Any=5 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : Optional[int]=37 , __lowerCAmelCase : List[str]=8 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : List[Any]=0.0_0_2 , __lowerCAmelCase : int=1 , __lowerCAmelCase : Optional[int]=0 , __lowerCAmelCase : str=0 , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : List[str]=None , ) -> List[str]: """simple docstring""" A__ = parent A__ = batch_size A__ = encoder_seq_length A__ = decoder_seq_length # For common tests A__ = self.decoder_seq_length A__ = is_training A__ = use_attention_mask A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = d_ff A__ = relative_attention_num_buckets A__ = dropout_rate A__ = initializer_factor A__ = eos_token_id A__ = pad_token_id A__ = decoder_start_token_id A__ = None A__ = decoder_layers def a_ ( self : int ) -> Dict: """simple docstring""" return TaConfig.from_pretrained("""google/umt5-base""" ) def a_ ( self : str , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : str=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : int=None , ) -> Any: """simple docstring""" if attention_mask is None: A__ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: A__ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: A__ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__lowerCAmelCase ) if decoder_head_mask is None: A__ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__lowerCAmelCase ) if cross_attn_head_mask is None: A__ = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__lowerCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def a_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" A__ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) A__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input A__ = input_ids.clamp(self.pad_token_id + 1 ) A__ = decoder_input_ids.clamp(self.pad_token_id + 1 ) A__ = self.get_config() A__ = config.num_attention_heads A__ = self.prepare_inputs_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, input_dict def a_ ( self : str ) -> Optional[int]: """simple docstring""" A__ , A__ = self.prepare_config_and_inputs() return config, inputs_dict def a_ ( self : Dict ) -> List[str]: """simple docstring""" return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def a_ ( self : Any ) -> Tuple: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def a_ ( self : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" A__ = UMTaModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model( input_ids=__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , ) A__ = model(input_ids=__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase ) A__ = result.last_hidden_state A__ = result.past_key_values A__ = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__lowerCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def a_ ( self : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" A__ = UMTaModel(config=__lowerCAmelCase ).get_decoder().to(__lowerCAmelCase ).eval() # first forward pass A__ = model(__lowerCAmelCase , use_cache=__lowerCAmelCase ) A__ = model(__lowerCAmelCase ) A__ = model(__lowerCAmelCase , use_cache=__lowerCAmelCase ) self.parent.assertTrue(len(__lowerCAmelCase ) == len(__lowerCAmelCase ) ) self.parent.assertTrue(len(__lowerCAmelCase ) == len(__lowerCAmelCase ) + 1 ) A__ , A__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and A__ = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ = model(__lowerCAmelCase )["""last_hidden_state"""] A__ = model(__lowerCAmelCase , past_key_values=__lowerCAmelCase )["""last_hidden_state"""] # select random slice A__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ = output_from_no_past[:, -1, random_slice_idx].detach() A__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-3 ) ) def a_ ( self : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , ) -> List[Any]: """simple docstring""" A__ = UMTaModel(config=__lowerCAmelCase ).to(__lowerCAmelCase ).half().eval() A__ = model(**__lowerCAmelCase )["""last_hidden_state"""] self.parent.assertFalse(torch.isnan(__lowerCAmelCase ).any().item() ) @require_torch class A (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) __lowerCamelCase : Tuple = (UMTaForConditionalGeneration,) if is_torch_available() else () __lowerCamelCase : Optional[int] = ( { '''conversational''': UMTaForConditionalGeneration, '''feature-extraction''': UMTaModel, '''summarization''': UMTaForConditionalGeneration, '''text2text-generation''': UMTaForConditionalGeneration, '''translation''': UMTaForConditionalGeneration, '''question-answering''': UMTaForQuestionAnswering, } if is_torch_available() else {} ) __lowerCamelCase : Any = True __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : int = False __lowerCamelCase : List[Any] = True __lowerCamelCase : str = True # The small UMT5 model needs higher percentages for CPU/MP tests __lowerCamelCase : Any = [0.8, 0.9] def a_ ( self : int ) -> Union[str, Any]: """simple docstring""" A__ = UMTaModelTester(self ) @unittest.skip("""Test has a segmentation fault on torch 1.8.0""" ) def a_ ( self : Optional[int] ) -> str: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() A__ = UMTaModel(config_and_inputs[0] ).to(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __lowerCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'{tmpdirname}/t5_test.onnx' , export_params=__lowerCAmelCase , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def a_ ( self : Tuple ) -> List[Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__lowerCAmelCase ) def a_ ( self : Optional[int] ) -> List[str]: """simple docstring""" A__ = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""] A__ = self.model_tester.prepare_config_and_inputs() A__ = config_and_inputs[0] A__ = UMTaForConditionalGeneration(__lowerCAmelCase ).eval() model.to(__lowerCAmelCase ) A__ = { """head_mask""": torch.zeros(config.num_layers , config.num_heads , device=__lowerCAmelCase ), """decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__lowerCAmelCase ), """cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__lowerCAmelCase ), } for attn_name, (name, mask) in zip(__lowerCAmelCase , head_masking.items() ): A__ = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": A__ = torch.ones( config.num_decoder_layers , config.num_heads , device=__lowerCAmelCase ) A__ = model.generate( config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=__lowerCAmelCase , return_dict_in_generate=__lowerCAmelCase , **__lowerCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step A__ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" ) def a_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class A (unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( """Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" ) def a_ ( self : str ) -> List[str]: """simple docstring""" A__ = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=__lowerCAmelCase ).to(__lowerCAmelCase ) A__ = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=__lowerCAmelCase , legacy=__lowerCAmelCase ) A__ = [ """Bonjour monsieur <extra_id_0> bien <extra_id_1>.""", """No se como puedo <extra_id_0>.""", """This is the reason why we <extra_id_0> them.""", """The <extra_id_0> walks in <extra_id_1>, seats""", """A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""", ] A__ = tokenizer(__lowerCAmelCase , return_tensors="""pt""" , padding=__lowerCAmelCase ).input_ids # fmt: off A__ = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(__lowerCAmelCase , __lowerCAmelCase ) A__ = model.generate(input_ids.to(__lowerCAmelCase ) ) A__ = [ """<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""", """<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", ] A__ = tokenizer.batch_decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
276
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Tuple = logging.get_logger(__name__) A : Optional[int] = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = '''roberta''' def __init__( self : Any , __lowerCAmelCase : Tuple=5_02_65 , __lowerCAmelCase : Optional[int]=7_68 , __lowerCAmelCase : Union[str, Any]=12 , __lowerCAmelCase : Dict=12 , __lowerCAmelCase : Optional[Any]=30_72 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Optional[Any]=5_12 , __lowerCAmelCase : int=2 , __lowerCAmelCase : List[str]=0.0_2 , __lowerCAmelCase : Dict=1e-12 , __lowerCAmelCase : Optional[int]=1 , __lowerCAmelCase : Tuple=0 , __lowerCAmelCase : int=2 , __lowerCAmelCase : Dict="absolute" , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Union[str, Any]=None , **__lowerCAmelCase : str , ) -> str: """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = classifier_dropout class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def a_ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": A__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
276
1
from math import pi def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
62
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _A = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( snake_case_ : list[float] , snake_case_ : Union[str, Any] ) -> Any: '''simple docstring''' print(f"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(snake_case_ ): print(f"""{i}\t\t{d}""" ) def lowerCAmelCase_ ( snake_case_ : list[dict[str, int]] , snake_case_ : list[float] , snake_case_ : int ) -> Any: '''simple docstring''' for j in range(snake_case_ ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: return True return False def lowerCAmelCase_ ( snake_case_ : list[dict[str, int]] , snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> list[float]: '''simple docstring''' UpperCAmelCase_ = [float("inf" )] * vertex_count UpperCAmelCase_ = 0.0 for _ in range(vertex_count - 1 ): for j in range(snake_case_ ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: UpperCAmelCase_ = distance[u] + w UpperCAmelCase_ = check_negative_cycle(snake_case_ , snake_case_ , snake_case_ ) if negative_cycle_exists: raise Exception("Negative cycle found" ) return distance if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_: Tuple =int(input('Enter number of vertices: ').strip()) SCREAMING_SNAKE_CASE_: Dict =int(input('Enter number of edges: ').strip()) SCREAMING_SNAKE_CASE_: list[dict[str, int]] =[{} for _ in range(E)] for i in range(E): print('Edge ', i + 1) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_: str =( int(x) for x in input('Enter source, destination, weight: ').strip().split(' ') ) SCREAMING_SNAKE_CASE_: int ={'src': src, 'dst': dest, 'weight': weight} SCREAMING_SNAKE_CASE_: Any =int(input('\nEnter shortest path source:').strip()) SCREAMING_SNAKE_CASE_: int =bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
106
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: List[Any] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Tuple ='Hello world! cécé herlolip' def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str , snake_case_ : bool ) -> Any: '''simple docstring''' UpperCAmelCase_ = FairseqRobertaModel.from_pretrained(snake_case_ ) roberta.eval() # disable dropout UpperCAmelCase_ = roberta.model.encoder.sentence_encoder UpperCAmelCase_ = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: UpperCAmelCase_ = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" , snake_case_ ) UpperCAmelCase_ = XLMRobertaXLForSequenceClassification(snake_case_ ) if classification_head else XLMRobertaXLForMaskedLM(snake_case_ ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase_ = roberta_sent_encoder.embed_tokens.weight UpperCAmelCase_ = roberta_sent_encoder.embed_positions.weight UpperCAmelCase_ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. UpperCAmelCase_ = roberta_sent_encoder.layer_norm.weight UpperCAmelCase_ = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase_ = model.roberta.encoder.layer[i] UpperCAmelCase_ = roberta_sent_encoder.layers[i] UpperCAmelCase_ = layer.attention UpperCAmelCase_ = roberta_layer.self_attn_layer_norm.weight UpperCAmelCase_ = roberta_layer.self_attn_layer_norm.bias # self attention UpperCAmelCase_ = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) UpperCAmelCase_ = roberta_layer.self_attn.q_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.q_proj.bias UpperCAmelCase_ = roberta_layer.self_attn.k_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.k_proj.bias UpperCAmelCase_ = roberta_layer.self_attn.v_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase_ = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape UpperCAmelCase_ = roberta_layer.self_attn.out_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.out_proj.bias # this one is final layer norm UpperCAmelCase_ = roberta_layer.final_layer_norm.weight UpperCAmelCase_ = roberta_layer.final_layer_norm.bias # intermediate UpperCAmelCase_ = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape UpperCAmelCase_ = roberta_layer.fca.weight UpperCAmelCase_ = roberta_layer.fca.bias # output UpperCAmelCase_ = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape UpperCAmelCase_ = roberta_layer.fca.weight UpperCAmelCase_ = roberta_layer.fca.bias # end of layer if classification_head: UpperCAmelCase_ = roberta.model.classification_heads["mnli"].dense.weight UpperCAmelCase_ = roberta.model.classification_heads["mnli"].dense.bias UpperCAmelCase_ = roberta.model.classification_heads["mnli"].out_proj.weight UpperCAmelCase_ = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head UpperCAmelCase_ = roberta.model.encoder.lm_head.dense.weight UpperCAmelCase_ = roberta.model.encoder.lm_head.dense.bias UpperCAmelCase_ = roberta.model.encoder.lm_head.layer_norm.weight UpperCAmelCase_ = roberta.model.encoder.lm_head.layer_norm.bias UpperCAmelCase_ = roberta.model.encoder.lm_head.weight UpperCAmelCase_ = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase_ = roberta.encode(snake_case_ ).unsqueeze(0 ) # batch of size 1 UpperCAmelCase_ = model(snake_case_ )[0] if classification_head: UpperCAmelCase_ = roberta.model.classification_heads["mnli"](roberta.extract_features(snake_case_ ) ) else: UpperCAmelCase_ = roberta.model(snake_case_ )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase_ = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 UpperCAmelCase_ = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(snake_case_ ).mkdir(parents=snake_case_ , exist_ok=snake_case_ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) SCREAMING_SNAKE_CASE_: Union[str, Any] =parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
106
1
'''simple docstring''' import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ): lowercase__ : List[Any] = OmegaConf.load(__UpperCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(__UpperCamelCase ) ) ) return config def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ): if conf_path is None: lowercase__ : List[str] = '''./model_checkpoints/vqgan_only.yaml''' lowercase__ : Optional[Any] = load_config(__UpperCamelCase , display=__UpperCamelCase ) lowercase__ : int = VQModel(**config.model.params ) if ckpt_path is None: lowercase__ : List[str] = '''./model_checkpoints/vqgan_only.pt''' lowercase__ : str = torch.load(__UpperCamelCase , map_location=__UpperCamelCase ) if ".ckpt" in ckpt_path: lowercase__ : str = sd['''state_dict'''] model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) model.to(__UpperCamelCase ) del sd return model def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ , lowercase__ , lowercase__ : List[Any] = model.encode(__UpperCamelCase ) print(F"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) lowercase__ : List[str] = model.decode(__UpperCamelCase ) return xrec def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ): lowercase__ , lowercase__ : int = string.rsplit('''.''' , 1 ) if reload: lowercase__ : int = importlib.import_module(__UpperCamelCase ) importlib.reload(__UpperCamelCase ) return getattr(importlib.import_module(__UpperCamelCase , package=__UpperCamelCase ) , cls ) def __UpperCamelCase ( UpperCAmelCase ): if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase=True ): lowercase__ : int = instantiate_from_config(__UpperCamelCase ) if sd is not None: model.load_state_dict(__UpperCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): # load the specified checkpoint if ckpt: lowercase__ : Dict = torch.load(__UpperCamelCase , map_location='''cpu''' ) lowercase__ : Union[str, Any] = pl_sd['''global_step'''] print(F"""loaded model from global step {global_step}.""" ) else: lowercase__ : List[str] = {'''state_dict''': None} lowercase__ : Optional[Any] = None lowercase__ : Optional[int] = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=__UpperCamelCase , eval_mode=__UpperCamelCase )['''model'''] return model, global_step
198
import math from datetime import datetime, timedelta def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = year % 1_9 SCREAMING_SNAKE_CASE_ = year % 4 SCREAMING_SNAKE_CASE_ = year % 7 SCREAMING_SNAKE_CASE_ = math.floor(year / 1_0_0 ) SCREAMING_SNAKE_CASE_ = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) SCREAMING_SNAKE_CASE_ = leap_day_inhibits / 4 SCREAMING_SNAKE_CASE_ = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 SCREAMING_SNAKE_CASE_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 SCREAMING_SNAKE_CASE_ = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon SCREAMING_SNAKE_CASE_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(__UpperCamelCase , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(__UpperCamelCase , 4 , 1_8 ) else: return datetime(__UpperCamelCase , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): A : Dict = "will be" if year > datetime.now().year else "was" print(f"Easter in {year} {tense} {gauss_easter(year)}")
118
0
"""simple docstring""" import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class lowerCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = None def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , __a ) def __A ( self ) -> int: SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = os.path.join(__a , 'feat_extract.json' ) feat_extract_first.to_json_file(__a ) SCREAMING_SNAKE_CASE = self.feature_extraction_class.from_json_file(__a ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = feat_extract_first.save_pretrained(__a )[0] check_json_file_has_correct_format(__a ) SCREAMING_SNAKE_CASE = self.feature_extraction_class.from_pretrained(__a ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = self.feature_extraction_class() self.assertIsNotNone(__a )
367
"""simple docstring""" from __future__ import annotations from collections.abc import MutableSequence class lowerCAmelCase : '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if len(lowerCAmelCase__ ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) SCREAMING_SNAKE_CASE = list(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = degree def __add__( self , lowerCAmelCase__ ) -> Polynomial: if self.degree > polynomial_a.degree: SCREAMING_SNAKE_CASE = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowerCAmelCase__ ) def __sub__( self , lowerCAmelCase__ ) -> Polynomial: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ) -> Polynomial: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , lowerCAmelCase__ ) -> Polynomial: SCREAMING_SNAKE_CASE = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ ) -> int | float: SCREAMING_SNAKE_CASE = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ) -> str: SCREAMING_SNAKE_CASE = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCAmelCase__ ) return polynomial def __repr__( self ) -> str: return self.__str__() def __A ( self ) -> Polynomial: SCREAMING_SNAKE_CASE = [0] * self.degree for i in range(self.degree ): SCREAMING_SNAKE_CASE = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ = 0 ) -> Polynomial: SCREAMING_SNAKE_CASE = [0] * (self.degree + 2) SCREAMING_SNAKE_CASE = constant for i in range(self.degree + 1 ): SCREAMING_SNAKE_CASE = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowerCAmelCase__ ) def __eq__( self , lowerCAmelCase__ ) -> bool: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , lowerCAmelCase__ ) -> bool: return not self.__eq__(lowerCAmelCase__ )
38
0
from __future__ import annotations def a ( lowerCamelCase_ ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE_ ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) lowercase__ = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
207
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available UpperCamelCase__ = { """configuration_audio_spectrogram_transformer""": [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ASTConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ASTForAudioClassification""", """ASTModel""", """ASTPreTrainedModel""", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ["""ASTFeatureExtractor"""] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
0
import numpy as np def snake_case( __magic_name__ ) -> np.array: '''simple docstring''' return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
116
def snake_case( __magic_name__ , __magic_name__ ) -> bool: '''simple docstring''' lowercase : List[Any] = len(__magic_name__ ) lowercase : str = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowercase : List[str] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowercase : str = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowercase : Optional[Any] = subset[i - 1][j] if arr[i - 1] <= j: lowercase : Dict = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
116
1
'''simple docstring''' A__: Union[str, Any] = '''Alexander Joslin''' import operator as op from .stack import Stack def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> int: _a : Optional[int] ={"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} _a : Stack[int] =Stack() _a : Stack[str] =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_UpperCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(_UpperCAmelCase ) elif i == ")": # RULE 4 _a : Union[str, Any] =operator_stack.peek() operator_stack.pop() _a : int =operand_stack.peek() operand_stack.pop() _a : Union[str, Any] =operand_stack.peek() operand_stack.pop() _a : Any =operators[opr](_UpperCAmelCase ,_UpperCAmelCase ) operand_stack.push(_UpperCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A__: Dict = '''(5 + ((4 * 2) * (2 + 3)))''' # answer = 45 print(F"{equation} = {dijkstras_two_stack_algorithm(equation)}")
276
'''simple docstring''' from __future__ import annotations from typing import TypedDict class A__ ( UpperCAmelCase__ ): __UpperCamelCase : str __UpperCamelCase : int def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> list[str]: if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(_UpperCAmelCase ) )] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> BWTTransformDict: if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _a : List[Any] =all_rotations(_UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _a : BWTTransformDict ={ "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(_UpperCAmelCase ), } return response def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : int ) -> str: if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _a : List[str] =int(_UpperCAmelCase ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(_UpperCAmelCase ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _a : Optional[int] =[""""""] * len(_UpperCAmelCase ) for _ in range(len(_UpperCAmelCase ) ): for i in range(len(_UpperCAmelCase ) ): _a : int =bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": A__: Any = '''Provide a string that I will generate its BWT transform: ''' A__: Union[str, Any] = input(entry_msg).strip() A__: Optional[int] = bwt_transform(s) print( F"Burrows Wheeler transform for string '{s}' results " F"in '{result['bwt_string']}'" ) A__: Union[str, Any] = reverse_bwt(result['''bwt_string'''], result['''idx_original_string''']) print( F"Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' " F"we get original string '{original_string}'" )
276
1
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[str] = StableUnCLIPPipeline UpperCamelCase_ : List[str] = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase_ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ : str = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCamelCase_ : Optional[Any] = False def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" _UpperCAmelCase : int = 3_2 _UpperCAmelCase : List[str] = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase__ , projection_dim=lowerCAmelCase__ , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = PriorTransformer( num_attention_heads=2 , attention_head_dim=1_2 , embedding_dim=lowerCAmelCase__ , num_layers=1 , ) torch.manual_seed(0 ) _UpperCAmelCase : Tuple = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_0_0_0 , clip_sample=lowerCAmelCase__ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) _UpperCAmelCase : int = StableUnCLIPImageNormalizer(embedding_dim=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) _UpperCAmelCase : str = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase__ , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCAmelCase__ , layers_per_block=1 , upcast_attention=lowerCAmelCase__ , use_linear_projection=lowerCAmelCase__ , ) torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCAmelCase : Any = AutoencoderKL() _UpperCAmelCase : int = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict=0 ) -> Tuple: """simple docstring""" if str(lowerCAmelCase__ ).startswith("mps" ): _UpperCAmelCase : Union[str, Any] = torch.manual_seed(lowerCAmelCase__ ) else: _UpperCAmelCase : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCAmelCase__ ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) _UpperCAmelCase : Tuple = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCAmelCase : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) _UpperCAmelCase : Tuple = pipe("anime turle" , generator=lowerCAmelCase__ , output_type="np" ) _UpperCAmelCase : str = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase : Tuple = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) _UpperCAmelCase : Dict = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCAmelCase : List[str] = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase : Optional[Any] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
363
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): _UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" ) if key.startswith("module.decoder" ): _UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: _UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] _UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: _UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )] _UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" ) if "attn.q" in key: _UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : Dict = key.replace("attn", "attention.self" ) if "fc1" in key: _UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" ) if "fc2" in key: _UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" ) if "linear_pred" in key: _UpperCAmelCase : Any = key.replace("linear_pred", "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" ) _UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: _UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" ) if "skip_conv1" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" ) if "skip_conv2" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" ) if "fusion1" in key: _UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" ) if "fusion2" in key: _UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" ) if "fusion3" in key: _UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" ) if "fusion" in key and "conv" in key: _UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): _UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" ) _UpperCAmelCase : int = value return new_state_dict def __UpperCAmelCase ( a_: str, a_: List[Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ): _UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _UpperCAmelCase : Dict = GLPNImageProcessor() # prepare image _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict _UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) ) # rename keys _UpperCAmelCase : List[str] = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict _UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass _UpperCAmelCase : Dict = model(a_ ) _UpperCAmelCase : List[str] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _UpperCAmelCase : Optional[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _UpperCAmelCase : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) _UpperCAmelCase : Dict = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __a = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
17
0
"""simple docstring""" from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' , [None, '''v2'''] ) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : Tuple = hf_hub_url(repo_id=A_ , path=A_ , revision=A_ ) assert url == f'https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(A_ )}'
106
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __UpperCamelCase : Tuple = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') __UpperCamelCase : Optional[int] = F'''https://www.google.com/search?q={query}&num=100''' __UpperCamelCase : Optional[Any] = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: __UpperCamelCase : Union[str, Any] = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: __UpperCamelCase : str = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
106
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) lowercase__ : Optional[Any] = (boundary[1] - boundary[0]) / steps lowercase__ : List[str] = boundary[0] lowercase__ : Tuple = boundary[1] lowercase__ : Dict = make_points(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase__ : Any = 0.0 y += (h / 2.0) * f(__lowerCamelCase ) for i in x_i: # print(i) y += h * f(__lowerCamelCase ) y += (h / 2.0) * f(__lowerCamelCase ) return y def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : List[str] = a + h while x < (b - h): yield x lowercase__ : Tuple = x + h def __UpperCAmelCase ( __lowerCamelCase ) -> str: # enter your function here lowercase__ : Optional[Any] = (x - 0) * (x - 0) return y def __UpperCAmelCase ( ) -> Any: lowercase__ : Union[str, Any] = 0.0 # Lower bound of integration lowercase__ : Optional[int] = 1.0 # Upper bound of integration lowercase__ : str = 10.0 # define number of steps or resolution lowercase__ : Optional[Any] = [a, b] # define boundary of integration lowercase__ : Optional[Any] = method_a(__lowerCamelCase , __lowerCamelCase ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
361
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = '#' class __A : '''simple docstring''' def __init__( self : str ) -> None: """simple docstring""" lowercase__ : dict = {} def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> None: """simple docstring""" lowercase__ : str = self._trie for char in text: if char not in trie: lowercase__ : Union[str, Any] = {} lowercase__ : Optional[Any] = trie[char] lowercase__ : Dict = True def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> tuple | list: """simple docstring""" lowercase__ : Optional[Any] = self._trie for char in prefix: if char in trie: lowercase__ : Union[str, Any] = trie[char] else: return [] return self._elements(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : dict ) -> tuple: """simple docstring""" lowercase__ : str = [] for c, v in d.items(): lowercase__ : List[Any] = [''' '''] if c == END else [(c + s) for s in self._elements(_snake_case )] result.extend(_snake_case ) return tuple(_snake_case ) lowerCAmelCase_ = Trie() lowerCAmelCase_ = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def __UpperCAmelCase ( __lowerCamelCase ) -> tuple: lowercase__ : List[Any] = trie.find_word(__lowerCamelCase ) return tuple(string + word for word in suffixes ) def __UpperCAmelCase ( ) -> None: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] , _lowercase : Tuple=False ) ->List[str]: '''simple docstring''' a : Dict = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a : int = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[int] , _lowercase : int , _lowercase : List[Any]=False ) ->int: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: a : List[Any] = "" else: a : int = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a : Optional[int] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) a : Tuple = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict a : int = in_proj_weight[ : config.hidden_size, : ] a : Optional[Any] = in_proj_bias[: config.hidden_size] a : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a : Dict = in_proj_weight[ -config.hidden_size :, : ] a : Optional[int] = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE ( _lowercase : Any ) ->Any: '''simple docstring''' a : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) def _SCREAMING_SNAKE_CASE ( _lowercase : Dict ) ->Tuple: '''simple docstring''' a : Optional[int] = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] , _lowercase : str , _lowercase : Any ) ->List[Any]: '''simple docstring''' a : Union[str, Any] = dct.pop(_lowercase ) a : Optional[Any] = val def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : Dict ) ->List[str]: '''simple docstring''' a : Tuple = ViTMSNConfig() a : List[Any] = 1000 a : str = "datasets/huggingface/label-files" a : Optional[Any] = "imagenet-1k-id2label.json" a : str = json.load(open(hf_hub_download(_lowercase , _lowercase ) , "r" ) ) a : Optional[Any] = {int(_lowercase ): v for k, v in idalabel.items()} a : Dict = idalabel a : Union[str, Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: a : Any = 384 a : Any = 1536 a : Optional[int] = 6 elif "l16" in checkpoint_url: a : str = 1024 a : Any = 4096 a : str = 24 a : List[str] = 16 a : Any = 0.1 elif "b4" in checkpoint_url: a : Optional[Any] = 4 elif "l7" in checkpoint_url: a : Dict = 7 a : int = 1024 a : List[str] = 4096 a : Optional[int] = 24 a : int = 16 a : List[Any] = 0.1 a : List[str] = ViTMSNModel(_lowercase ) a : Union[str, Any] = torch.hub.load_state_dict_from_url(_lowercase , map_location="cpu" )["target_encoder"] a : List[str] = ViTImageProcessor(size=config.image_size ) remove_projection_head(_lowercase ) a : int = create_rename_keys(_lowercase , base_model=_lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) read_in_q_k_v(_lowercase , _lowercase , base_model=_lowercase ) model.load_state_dict(_lowercase ) model.eval() a : str = "http://images.cocodataset.org/val2017/000000039769.jpg" a : Union[str, Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) a : List[Any] = ViTImageProcessor( size=config.image_size , image_mean=_lowercase , image_std=_lowercase ) a : List[Any] = image_processor(images=_lowercase , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) a : List[Any] = model(**_lowercase ) a : Optional[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: a : Dict = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: a : Union[str, Any] = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: a : Any = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: a : Optional[Any] = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: a : Tuple = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , _lowercase , atol=1E-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a : Optional[Any] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
105
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case__ : Tuple = ShapEImgaImgPipeline snake_case__ : Optional[Any] = ["""image"""] snake_case__ : Union[str, Any] = ["""image"""] snake_case__ : Optional[Any] = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] snake_case__ : List[str] = False @property def _A ( self : Any ): return 32 @property def _A ( self : Any ): return 32 @property def _A ( self : Optional[Any] ): return self.time_input_dim * 4 @property def _A ( self : Union[str, Any] ): return 8 @property def _A ( self : int ): torch.manual_seed(0 ) UpperCamelCase :Union[str, Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) UpperCamelCase :Optional[int] = CLIPVisionModel(__lowerCamelCase ) return model @property def _A ( self : str ): UpperCamelCase :Optional[int] = CLIPImageProcessor( crop_size=224 , do_center_crop=__lowerCamelCase , do_normalize=__lowerCamelCase , do_resize=__lowerCamelCase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor @property def _A ( self : Tuple ): torch.manual_seed(0 ) UpperCamelCase :Dict = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } UpperCamelCase :int = PriorTransformer(**__lowerCamelCase ) return model @property def _A ( self : Optional[int] ): torch.manual_seed(0 ) UpperCamelCase :str = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } UpperCamelCase :List[str] = ShapERenderer(**__lowerCamelCase ) return model def _A ( self : str ): UpperCamelCase :int = self.dummy_prior UpperCamelCase :Any = self.dummy_image_encoder UpperCamelCase :Dict = self.dummy_image_processor UpperCamelCase :List[Any] = self.dummy_renderer UpperCamelCase :int = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1_024 , prediction_type="""sample""" , use_karras_sigmas=__lowerCamelCase , clip_sample=__lowerCamelCase , clip_sample_range=1.0 , ) UpperCamelCase :Optional[Any] = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def _A ( self : int , __lowerCamelCase : int , __lowerCamelCase : Any=0 ): UpperCamelCase :Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) if str(__lowerCamelCase ).startswith("""mps""" ): UpperCamelCase :List[Any] = torch.manual_seed(__lowerCamelCase ) else: UpperCamelCase :Optional[int] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCamelCase :Optional[Any] = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def _A ( self : List[str] ): UpperCamelCase :Dict = """cpu""" UpperCamelCase :List[Any] = self.get_dummy_components() UpperCamelCase :Optional[int] = self.pipeline_class(**__lowerCamelCase ) UpperCamelCase :int = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Optional[Any] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) UpperCamelCase :Dict = output.images[0] UpperCamelCase :List[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCamelCase :Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _A ( self : List[Any] ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _A ( self : List[Any] ): UpperCamelCase :str = torch_device == """cpu""" UpperCamelCase :int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__lowerCamelCase , relax_max_difference=__lowerCamelCase , ) def _A ( self : List[Any] ): UpperCamelCase :List[Any] = self.get_dummy_components() UpperCamelCase :Optional[int] = self.pipeline_class(**__lowerCamelCase ) UpperCamelCase :List[Any] = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Any = 1 UpperCamelCase :int = 2 UpperCamelCase :Union[str, Any] = self.get_dummy_inputs(__lowerCamelCase ) for key in inputs.keys(): if key in self.batch_params: UpperCamelCase :str = batch_size * [inputs[key]] UpperCamelCase :Optional[int] = pipe(**__lowerCamelCase , num_images_per_prompt=__lowerCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Any ): UpperCamelCase :Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) UpperCamelCase :Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) UpperCamelCase :Union[str, Any] = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) UpperCamelCase :List[str] = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Optional[Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) UpperCamelCase :Optional[int] = pipe( __lowerCamelCase , generator=__lowerCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
38
0
import os from math import logaa def _A ( SCREAMING_SNAKE_CASE : str = "base_exp.txt" ): """simple docstring""" a__ : Union[str, Any] =0 a__ : Optional[Any] =0 for i, line in enumerate(open(os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) ): a__ , a__ : Tuple =list(map(SCREAMING_SNAKE_CASE , line.split("," ) ) ) if x * logaa(SCREAMING_SNAKE_CASE ) > largest: a__ : List[Any] =x * logaa(SCREAMING_SNAKE_CASE ) a__ : List[str] =i + 1 return result if __name__ == "__main__": print(solution())
354
def _A ( SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1_000 ): """simple docstring""" a__ : Any =1 a__ : Any =0 for divide_by_number in range(SCREAMING_SNAKE_CASE , digit + 1 ): a__ : list[int] =[] a__ : int =numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(SCREAMING_SNAKE_CASE ): a__ : Optional[Any] =len(SCREAMING_SNAKE_CASE ) a__ : List[str] =divide_by_number else: has_been_divided.append(SCREAMING_SNAKE_CASE ) a__ : List[Any] =now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
148
0
class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : int = name A : Tuple = value A : List[str] = weight def __repr__( self ): return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def _lowerCAmelCase ( self ): return self.value def _lowerCAmelCase ( self ): return self.name def _lowerCAmelCase ( self ): return self.weight def _lowerCAmelCase ( self ): return self.value / self.weight def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: """simple docstring""" A : Any = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: """simple docstring""" A : Dict = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) A : Dict = [] A , A : Optional[Any] = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
116
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = KandinskyVaaControlnetPipeline __lowerCamelCase : Optional[int] = ["image_embeds", "negative_image_embeds", "hint"] __lowerCamelCase : Dict = ["image_embeds", "negative_image_embeds", "hint"] __lowerCamelCase : List[str] = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __lowerCamelCase : Dict = False @property def _lowerCAmelCase ( self ): return 32 @property def _lowerCAmelCase ( self ): return 32 @property def _lowerCAmelCase ( self ): return self.time_input_dim @property def _lowerCAmelCase ( self ): return self.time_input_dim * 4 @property def _lowerCAmelCase ( self ): return 100 @property def _lowerCAmelCase ( self ): torch.manual_seed(0 ) A : Any = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A : List[str] = UNetaDConditionModel(**lowerCamelCase__ ) return model @property def _lowerCAmelCase ( self ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _lowerCAmelCase ( self ): torch.manual_seed(0 ) A : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCAmelCase ( self ): A : Optional[Any] = self.dummy_unet A : Tuple = self.dummy_movq A : List[Any] = DDIMScheduler( num_train_timesteps=1000, beta_schedule="""linear""", beta_start=0.0_0085, beta_end=0.012, clip_sample=lowerCamelCase__, set_alpha_to_one=lowerCamelCase__, steps_offset=1, prediction_type="""epsilon""", thresholding=lowerCamelCase__, ) A : int = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__=0 ): A : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) A : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase__ ) # create hint A : int = floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) if str(lowerCamelCase__ ).startswith("""mps""" ): A : Optional[Any] = torch.manual_seed(lowerCamelCase__ ) else: A : str = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) A : List[str] = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def _lowerCAmelCase ( self ): A : Dict = """cpu""" A : List[str] = self.get_dummy_components() A : Dict = self.pipeline_class(**lowerCamelCase__ ) A : Optional[Any] = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) A : int = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) A : Union[str, Any] = output.images A : str = pipe( **self.get_dummy_inputs(lowerCamelCase__ ), return_dict=lowerCamelCase__, )[0] A : Optional[int] = image[0, -3:, -3:, -1] A : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A : Dict = np.array( [0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): A : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) A : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) A : Optional[Any] = torch.from_numpy(np.array(lowerCamelCase__ ) ).float() / 255.0 A : List[str] = hint.permute(2, 0, 1 ).unsqueeze(0 ) A : Union[str, Any] = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""", torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase__ ) A : Tuple = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""", torch_dtype=torch.floataa ) A : Union[str, Any] = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) A : Optional[Any] = """A robot, 4k photo""" A : Union[str, Any] = torch.Generator(device="""cuda""" ).manual_seed(0 ) A , A : int = pipe_prior( lowerCamelCase__, generator=lowerCamelCase__, num_inference_steps=5, negative_prompt="""""", ).to_tuple() A : Union[str, Any] = torch.Generator(device="""cuda""" ).manual_seed(0 ) A : int = pipeline( image_embeds=lowerCamelCase__, negative_image_embeds=lowerCamelCase__, hint=lowerCamelCase__, generator=lowerCamelCase__, num_inference_steps=100, output_type="""np""", ) A : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowerCamelCase__, lowerCamelCase__ )
116
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class a__ ( snake_case__ ): _a : Optional[Any] = """Salesforce/blip-image-captioning-base""" _a : Union[str, Any] = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) _a : List[Any] = """image_captioner""" _a : Optional[int] = AutoModelForVisionaSeq _a : Any = ["""image"""] _a : List[Any] = ["""text"""] def __init__( self , *_A , **_A ): """simple docstring""" requires_backends(self , ["vision"] ) super().__init__(*_A , **_A ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" return self.pre_processor(images=_A , return_tensors="pt" ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" return self.model.generate(**_A ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" return self.pre_processor.batch_decode(_A , skip_special_tokens=_A )[0].strip()
102
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a__ ( unittest.TestCase ): @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" torch.manual_seed(0 ) __lowerCAmelCase = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.dummy_uncond_unet __lowerCAmelCase = ScoreSdeVeScheduler() __lowerCAmelCase = ScoreSdeVePipeline(unet=_A , scheduler=_A ) sde_ve.to(_A ) sde_ve.set_progress_bar_config(disable=_A ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=_A ).images __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=_A , return_dict=_A )[ 0 ] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __lowerCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = "google/ncsnpp-church-256" __lowerCAmelCase = UNetaDModel.from_pretrained(_A ) __lowerCAmelCase = ScoreSdeVeScheduler.from_pretrained(_A ) __lowerCAmelCase = ScoreSdeVePipeline(unet=_A , scheduler=_A ) sde_ve.to(_A ) sde_ve.set_progress_bar_config(disable=_A ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sde_ve(num_inference_steps=1_0 , output_type="numpy" , generator=_A ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) __lowerCAmelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
102
1
from sklearn.metrics import mean_squared_error import datasets lowercase__ : int = '''\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n''' lowercase__ : Optional[int] = '''\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n''' lowercase__ : Union[str, Any] = '''\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="uniform_average" , __SCREAMING_SNAKE_CASE=True ) ->Any: lowerCAmelCase = mean_squared_error( UpperCAmelCase__ , UpperCAmelCase__ , sample_weight=UpperCAmelCase__ , multioutput=UpperCAmelCase__ , squared=UpperCAmelCase__ ) return {"mse": mse}
338
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowerCAmelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[Any], UpperCAmelCase__ : str ): super().__init__() __lowercase = model __lowercase = 2 __lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels ) def _lowercase ( self : Optional[int] ): pass def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = LongformerModel.from_pretrained(UpperCamelCase_) __lowercase = LightningModel(UpperCamelCase_) __lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu")) lightning_model.load_state_dict(ckpt["state_dict"]) # init longformer question answering model __lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase_) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
0
def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Dict = len(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = arr[i + 1], arr[i] return arr if __name__ == "__main__": lowerCAmelCase : Dict = list(range(10, 0, -1)) print(f'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
127
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = ['''pixel_values'''] def __init__( self : List[Any] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 255 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : Tuple , ): super().__init__(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = size if size is not None else {"height": 384, "width": 384} SCREAMING_SNAKE_CASE_: Union[str, Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = do_resize SCREAMING_SNAKE_CASE_: Dict = size SCREAMING_SNAKE_CASE_: int = resample SCREAMING_SNAKE_CASE_: str = do_rescale SCREAMING_SNAKE_CASE_: str = rescale_factor SCREAMING_SNAKE_CASE_: Optional[Any] = do_normalize SCREAMING_SNAKE_CASE_: Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN SCREAMING_SNAKE_CASE_: List[str] = image_std if image_std is not None else OPENAI_CLIP_STD SCREAMING_SNAKE_CASE_: Optional[int] = do_convert_rgb def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: List[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__) if "height" not in size or "width" not in size: raise ValueError(F"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}") SCREAMING_SNAKE_CASE_: int = (size["height"], size["width"]) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[int, float] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : List[Any] , ): return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : List[Any] , ): return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase__ : Dict , ): SCREAMING_SNAKE_CASE_: Any = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_: Optional[int] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_: Dict = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_: Any = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_: Optional[int] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_: Optional[Any] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_: Optional[Any] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_: Optional[int] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb SCREAMING_SNAKE_CASE_: str = size if size is not None else self.size SCREAMING_SNAKE_CASE_: List[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # PIL RGBA images are converted to RGB if do_convert_rgb: SCREAMING_SNAKE_CASE_: List[Any] = [convert_to_rgb(lowerCAmelCase__) for image in images] # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_: List[Any] = [to_numpy_array(lowerCAmelCase__) for image in images] if do_resize: SCREAMING_SNAKE_CASE_: int = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_: Optional[Any] = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_: List[str] = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__) for image in images] SCREAMING_SNAKE_CASE_: str = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__) for image in images] SCREAMING_SNAKE_CASE_: List[str] = BatchFeature(data={"pixel_values": images} , tensor_type=lowerCAmelCase__) return encoded_outputs
127
1
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class _A: """simple docstring""" UpperCamelCase : List[Any] = LEDConfig UpperCamelCase : Any = {} UpperCamelCase : Optional[Any] = 'gelu' def __init__( self , _A , _A=13 , _A=7 , _A=True , _A=False , _A=99 , _A=32 , _A=2 , _A=4 , _A=37 , _A=0.1 , _A=0.1 , _A=20 , _A=2 , _A=1 , _A=0 , _A=4 , ): __A : Optional[int] = parent __A : Optional[Any] = batch_size __A : Optional[int] = seq_length __A : str = is_training __A : Optional[int] = use_labels __A : Optional[int] = vocab_size __A : Any = hidden_size __A : List[str] = num_hidden_layers __A : List[Any] = num_attention_heads __A : Optional[int] = intermediate_size __A : str = hidden_dropout_prob __A : Union[str, Any] = attention_probs_dropout_prob __A : List[Any] = max_position_embeddings __A : int = eos_token_id __A : str = pad_token_id __A : Optional[int] = bos_token_id __A : List[str] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __A : Any = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __A : Optional[Any] = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCAmelCase_ ( self ): __A : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __A : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __A : Dict = tf.concat([input_ids, eos_tensor] , axis=1 ) __A : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __A : Dict = prepare_led_inputs_dict(__lowercase , __lowercase , __lowercase ) __A : List[Any] = tf.concat( [tf.zeros_like(__lowercase )[:, :-1], tf.ones_like(__lowercase )[:, -1:]] , axis=-1 , ) __A : Union[str, Any] = global_attention_mask return config, inputs_dict def UpperCAmelCase_ ( self , _A , _A ): __A : List[str] = TFLEDModel(config=__lowercase ).get_decoder() __A : str = inputs_dict['input_ids'] __A : str = input_ids[:1, :] __A : List[Any] = inputs_dict['attention_mask'][:1, :] __A : Any = 1 # first forward pass __A : int = model(__lowercase , attention_mask=__lowercase , use_cache=__lowercase ) __A , __A : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __A : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __A : List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __A : int = tf.concat([input_ids, next_tokens] , axis=-1 ) __A : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __A : Tuple = model(__lowercase , attention_mask=__lowercase )[0] __A : Optional[int] = model(__lowercase , attention_mask=__lowercase , past_key_values=__lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __A : Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __A : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] __A : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowercase , __lowercase , rtol=1e-3 ) def _SCREAMING_SNAKE_CASE ( a , a , a , a=None , a=None , a=None , a=None , ) -> str: if attention_mask is None: __A : Tuple = tf.cast(tf.math.not_equal(_SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __A : Dict = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __A : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __A : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class _A( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : List[str] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCamelCase : str = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCamelCase : Any = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase : Any = True UpperCamelCase : Optional[Any] = False UpperCamelCase : Union[str, Any] = False UpperCamelCase : Any = False def UpperCAmelCase_ ( self ): __A : Optional[int] = TFLEDModelTester(self ) __A : Dict = ConfigTester(self , config_class=__lowercase ) def UpperCAmelCase_ ( self ): self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowercase ) def UpperCAmelCase_ ( self ): __A , __A : int = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = tf.zeros_like(inputs_dict['attention_mask'] ) __A : int = 2 __A : Any = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) __A : int = True __A : Union[str, Any] = self.model_tester.seq_length __A : Optional[Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_A ): __A : Tuple = outputs.decoder_attentions self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(_A ): __A : Tuple = [t.numpy() for t in outputs.encoder_attentions] __A : int = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __A : Union[str, Any] = True __A : Any = False __A : Tuple = False __A : List[Any] = model_class(__lowercase ) __A : Union[str, Any] = model(self._prepare_for_class(__lowercase , __lowercase ) ) __A : Any = len(__lowercase ) self.assertEqual(config.output_hidden_states , __lowercase ) check_encoder_attentions_output(__lowercase ) if self.is_encoder_decoder: __A : Optional[Any] = model_class(__lowercase ) __A : List[str] = model(self._prepare_for_class(__lowercase , __lowercase ) ) self.assertEqual(config.output_hidden_states , __lowercase ) check_decoder_attentions_output(__lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __A : Any = True __A : Any = model_class(__lowercase ) __A : Optional[Any] = model(self._prepare_for_class(__lowercase , __lowercase ) ) self.assertEqual(config.output_hidden_states , __lowercase ) check_encoder_attentions_output(__lowercase ) # Check attention is always last and order is fine __A : List[Any] = True __A : Union[str, Any] = True __A : Union[str, Any] = model_class(__lowercase ) __A : str = model(self._prepare_for_class(__lowercase , __lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowercase ) ) self.assertEqual(model.config.output_hidden_states , __lowercase ) check_encoder_attentions_output(__lowercase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): pass def _SCREAMING_SNAKE_CASE ( a ) -> Optional[Any]: return tf.constant(_SCREAMING_SNAKE_CASE , dtype=tf.intaa ) UpperCAmelCase : List[Any] = 1E-4 @slow @require_tf class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): __A : List[str] = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here __A : Tuple = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __A : Tuple = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __A : Dict = prepare_led_inputs_dict(model.config , __lowercase , __lowercase ) __A : str = model(**__lowercase )[0] __A : str = (1, 1024, 768) self.assertEqual(output.shape , __lowercase ) # change to expected output here __A : int = tf.convert_to_tensor( [[2.3_0_5_0, 2.8_2_7_9, 0.6_5_3_1], [-1.8_4_5_7, -0.1_4_5_5, -3.5_6_6_1], [-1.0_1_8_6, 0.4_5_8_6, -2.2_0_4_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , __lowercase , atol=1e-3 ) def UpperCAmelCase_ ( self ): __A : Optional[Any] = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here __A : Tuple = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __A : List[str] = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __A : List[Any] = prepare_led_inputs_dict(model.config , __lowercase , __lowercase ) __A : Dict = model(**__lowercase )[0] __A : List[str] = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __lowercase ) # change to expected output here __A : Optional[int] = tf.convert_to_tensor( [[3_3.6_5_0_7, 6.4_5_7_2, 1_6.8_0_8_9], [5.8_7_3_9, -2.4_2_3_8, 1_1.2_9_0_2], [-3.2_1_3_9, -4.3_1_4_9, 4.2_7_8_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , __lowercase , atol=1e-3 , rtol=1e-3 )
280
class SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __lowercase : Union[str, Any] ): '''simple docstring''' __a = val __a = None __a = None def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Any ): '''simple docstring''' if self.val: if val < self.val: if self.left is None: __a = Node(__lowercase ) else: self.left.insert(__lowercase ) elif val > self.val: if self.right is None: __a = Node(__lowercase ) else: self.right.insert(__lowercase ) else: __a = val def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if root: inorder(root.left , _SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) == 0: return arr __a = Node(arr[0] ) for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. __a = [] inorder(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
302
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Any = logging.get_logger(__name__) lowercase : Optional[Any] = { 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = 'wavlm' def __init__( self :List[str] , a :Optional[Any]=3_2 , a :Union[str, Any]=7_6_8 , a :str=1_2 , a :Dict=1_2 , a :int=3_0_7_2 , a :List[Any]="gelu" , a :Union[str, Any]=0.1 , a :Union[str, Any]=0.1 , a :Optional[Any]=0.1 , a :Dict=0.0 , a :int=0.1 , a :List[str]=0.1 , a :Optional[int]=0.02 , a :Optional[int]=1E-5 , a :Union[str, Any]="group" , a :Dict="gelu" , a :Dict=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , a :Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , a :Union[str, Any]=(1_0, 3, 3, 3, 3, 2, 2) , a :str=False , a :Optional[Any]=1_2_8 , a :int=1_6 , a :Optional[int]=3_2_0 , a :Dict=8_0_0 , a :List[str]=False , a :Union[str, Any]=True , a :Optional[Any]=0.05 , a :List[str]=1_0 , a :Optional[Any]=2 , a :List[Any]=0.0 , a :Any=1_0 , a :Union[str, Any]=3_2_0 , a :List[str]=2 , a :Union[str, Any]=0.1 , a :Dict=1_0_0 , a :Any=2_5_6 , a :Optional[int]=2_5_6 , a :List[str]=0.1 , a :Union[str, Any]="mean" , a :Dict=False , a :List[Any]=False , a :List[str]=2_5_6 , a :Union[str, Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , a :Union[str, Any]=(5, 3, 3, 1, 1) , a :int=(1, 2, 3, 1, 1) , a :Dict=5_1_2 , a :Tuple=8_0 , a :Tuple=0 , a :Any=1 , a :Any=2 , a :Optional[Any]=False , a :Tuple=3 , a :List[Any]=2 , a :Optional[int]=3 , a :int=None , **a :Dict , ) -> Optional[Any]: super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) __UpperCamelCase : Dict = hidden_size __UpperCamelCase : Union[str, Any] = feat_extract_norm __UpperCamelCase : str = feat_extract_activation __UpperCamelCase : List[str] = list(a ) __UpperCamelCase : Optional[int] = list(a ) __UpperCamelCase : int = list(a ) __UpperCamelCase : List[Any] = conv_bias __UpperCamelCase : Union[str, Any] = num_buckets __UpperCamelCase : Any = max_bucket_distance __UpperCamelCase : str = num_conv_pos_embeddings __UpperCamelCase : List[str] = num_conv_pos_embedding_groups __UpperCamelCase : List[Any] = len(self.conv_dim ) __UpperCamelCase : Dict = num_hidden_layers __UpperCamelCase : Tuple = intermediate_size __UpperCamelCase : int = hidden_act __UpperCamelCase : str = num_attention_heads __UpperCamelCase : Dict = hidden_dropout __UpperCamelCase : Union[str, Any] = attention_dropout __UpperCamelCase : Optional[int] = activation_dropout __UpperCamelCase : Optional[int] = feat_proj_dropout __UpperCamelCase : str = final_dropout __UpperCamelCase : List[Any] = layerdrop __UpperCamelCase : List[str] = layer_norm_eps __UpperCamelCase : Tuple = initializer_range __UpperCamelCase : Optional[int] = num_ctc_classes __UpperCamelCase : str = vocab_size __UpperCamelCase : str = do_stable_layer_norm __UpperCamelCase : Dict = use_weighted_layer_sum __UpperCamelCase : List[Any] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase : int = apply_spec_augment __UpperCamelCase : str = mask_time_prob __UpperCamelCase : Optional[Any] = mask_time_length __UpperCamelCase : int = mask_time_min_masks __UpperCamelCase : Optional[int] = mask_feature_prob __UpperCamelCase : Tuple = mask_feature_length # parameters for pretraining with codevector quantized representations __UpperCamelCase : Any = num_codevectors_per_group __UpperCamelCase : Union[str, Any] = num_codevector_groups __UpperCamelCase : Union[str, Any] = contrastive_logits_temperature __UpperCamelCase : List[Any] = num_negatives __UpperCamelCase : List[str] = codevector_dim __UpperCamelCase : Optional[Any] = proj_codevector_dim __UpperCamelCase : Dict = diversity_loss_weight # ctc loss __UpperCamelCase : Optional[int] = ctc_loss_reduction __UpperCamelCase : Any = ctc_zero_infinity # adapter __UpperCamelCase : Optional[int] = add_adapter __UpperCamelCase : Dict = adapter_kernel_size __UpperCamelCase : str = adapter_stride __UpperCamelCase : List[Any] = num_adapter_layers __UpperCamelCase : Optional[int] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __UpperCamelCase : Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __UpperCamelCase : Union[str, Any] = list(a ) __UpperCamelCase : Optional[int] = list(a ) __UpperCamelCase : Union[str, Any] = list(a ) __UpperCamelCase : List[str] = xvector_output_dim @property def _lowerCamelCase ( self :Optional[int] ) -> Any: return functools.reduce(operator.mul , self.conv_stride , 1 )
151
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase : Optional[int] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( __lowercase , unittest.TestCase): '''simple docstring''' _A = DebertaVaTokenizer _A = DebertaVaTokenizerFast _A = True _A = True def _lowerCamelCase ( self :int ) -> int: super().setUp() # We have a SentencePiece fixture for testing __UpperCamelCase : Any = DebertaVaTokenizer(a , unk_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self :Optional[int] , a :List[str] ) -> List[str]: __UpperCamelCase : Any = "this is a test" __UpperCamelCase : Optional[int] = "this is a test" return input_text, output_text def _lowerCamelCase ( self :str ) -> Any: __UpperCamelCase : Optional[Any] = "<pad>" __UpperCamelCase : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a ) , a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a ) , a ) def _lowerCamelCase ( self :Union[str, Any] ) -> Tuple: __UpperCamelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "[PAD]" ) self.assertEqual(len(a ) , 3_0_0_0_1 ) def _lowerCamelCase ( self :Union[str, Any] ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def _lowerCamelCase ( self :List[Any] ) -> str: # fmt: off __UpperCamelCase : int = " \tHeLLo!how \n Are yoU? " __UpperCamelCase : Optional[int] = ["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on __UpperCamelCase : Dict = DebertaVaTokenizer(a , do_lower_case=a ) __UpperCamelCase : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) __UpperCamelCase : List[Any] = DebertaVaTokenizerFast(a , do_lower_case=a ) __UpperCamelCase : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def _lowerCamelCase ( self :Dict ) -> Optional[Any]: pass @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def _lowerCamelCase ( self :str ) -> Any: pass def _lowerCamelCase ( self :Tuple ) -> Dict: # fmt: off __UpperCamelCase : Optional[int] = "I was born in 92000, and this is falsé." __UpperCamelCase : Optional[int] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on __UpperCamelCase : Dict = DebertaVaTokenizer(a , split_by_punct=a ) __UpperCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) __UpperCamelCase : Optional[Any] = DebertaVaTokenizerFast(a , split_by_punct=a ) __UpperCamelCase : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) def _lowerCamelCase ( self :List[Any] ) -> str: # fmt: off __UpperCamelCase : Dict = "I was born in 92000, and this is falsé." __UpperCamelCase : Any = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on __UpperCamelCase : Any = DebertaVaTokenizer(a , do_lower_case=a , split_by_punct=a ) __UpperCamelCase : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) __UpperCamelCase : Dict = DebertaVaTokenizerFast(a , do_lower_case=a , split_by_punct=a ) __UpperCamelCase : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) def _lowerCamelCase ( self :Dict ) -> Any: # fmt: off __UpperCamelCase : Optional[int] = "I was born in 92000, and this is falsé." __UpperCamelCase : Tuple = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on __UpperCamelCase : Optional[int] = DebertaVaTokenizer(a , do_lower_case=a , split_by_punct=a ) __UpperCamelCase : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) __UpperCamelCase : List[Any] = DebertaVaTokenizerFast(a , do_lower_case=a , split_by_punct=a ) __UpperCamelCase : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) def _lowerCamelCase ( self :List[str] ) -> Tuple: # fmt: off __UpperCamelCase : Dict = "I was born in 92000, and this is falsé." __UpperCamelCase : List[str] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on __UpperCamelCase : List[str] = DebertaVaTokenizer(a , do_lower_case=a , split_by_punct=a ) __UpperCamelCase : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) __UpperCamelCase : List[str] = DebertaVaTokenizerFast(a , do_lower_case=a , split_by_punct=a ) __UpperCamelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) def _lowerCamelCase ( self :Union[str, Any] ) -> Any: # fmt: off __UpperCamelCase : Optional[int] = " \tHeLLo!how \n Are yoU? " __UpperCamelCase : str = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on __UpperCamelCase : int = DebertaVaTokenizer(a , do_lower_case=a , split_by_punct=a ) __UpperCamelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) __UpperCamelCase : Tuple = DebertaVaTokenizerFast(a , do_lower_case=a , split_by_punct=a ) __UpperCamelCase : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) def _lowerCamelCase ( self :int ) -> Any: __UpperCamelCase : Tuple = self.get_tokenizer() __UpperCamelCase : List[Any] = self.get_rust_tokenizer() __UpperCamelCase : Dict = "I was born in 92000, and this is falsé." __UpperCamelCase : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(a , add_special_tokens=a ) ) __UpperCamelCase : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) __UpperCamelCase : str = tokenizer.encode(a , add_special_tokens=a ) __UpperCamelCase : Union[str, Any] = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) __UpperCamelCase : Optional[int] = self.get_rust_tokenizer() __UpperCamelCase : List[Any] = tokenizer.encode(a ) __UpperCamelCase : Union[str, Any] = rust_tokenizer.encode(a ) self.assertListEqual(a , a ) def _lowerCamelCase ( self :List[Any] ) -> List[str]: __UpperCamelCase : Optional[int] = "This is a test" __UpperCamelCase : List[Any] = [1_3, 1, 4_3_9_8, 2_5, 2_1, 1_2_8_9] __UpperCamelCase : Tuple = ["▁", "T", "his", "▁is", "▁a", "▁test"] __UpperCamelCase : Union[str, Any] = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"] __UpperCamelCase : Union[str, Any] = DebertaVaTokenizer(a , keep_accents=a ) __UpperCamelCase : int = DebertaVaTokenizerFast(a , keep_accents=a ) __UpperCamelCase : Tuple = tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) __UpperCamelCase : List[str] = tokenizer.tokenize(a ) self.assertListEqual(a , a ) __UpperCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual(a , a ) __UpperCamelCase : List[Any] = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) __UpperCamelCase : Optional[Any] = rust_tokenizer.tokenize(a ) self.assertListEqual(a , a ) __UpperCamelCase : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(a ) self.assertListEqual(a , a ) # fmt: off __UpperCamelCase : Optional[int] = "I was born in 92000, and this is falsé." __UpperCamelCase : int = [1_3, 1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] __UpperCamelCase : Optional[int] = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] __UpperCamelCase : Union[str, Any] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on __UpperCamelCase : List[str] = tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) __UpperCamelCase : Dict = tokenizer.tokenize(a ) self.assertListEqual(a , a ) __UpperCamelCase : Optional[int] = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual(a , a ) __UpperCamelCase : Dict = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) __UpperCamelCase : int = rust_tokenizer.tokenize(a ) self.assertListEqual(a , a ) __UpperCamelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(a ) self.assertListEqual(a , a ) def _lowerCamelCase ( self :Union[str, Any] ) -> str: __UpperCamelCase : List[Any] = DebertaVaTokenizer(a ) __UpperCamelCase : Optional[int] = tokenizer.encode("sequence builders" ) __UpperCamelCase : Optional[int] = tokenizer.encode("multi-sequence build" ) __UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(a ) __UpperCamelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(a , a ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , a ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , a , ) @slow def _lowerCamelCase ( self :Dict ) -> int: # fmt: off __UpperCamelCase : Dict = {"input_ids": [[1, 3_9_8_6_7, 3_6, 1_9_3_9_0, 4_8_6, 2_7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 6_0_6_8_5, 1_2_2_5, 7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 9_3_6_7, 1_6_8_9_9, 1_8, 1_5_9_3_7, 5_3, 5_9_4, 7_7_3, 1_8, 1_6_2_8_7, 3_0_4_6_5, 3_6, 1_5_9_3_7, 6, 4_1_1_3_9, 3_8, 3_6_9_7_9, 6_0_7_6_3, 1_9_1, 6, 3_4_1_3_2, 9_9, 6, 5_0_5_3_8, 3_9_0, 4_3_2_3_0, 6, 3_4_1_3_2, 2_7_7_9, 2_0_8_5_0, 1_4, 6_9_9, 1_0_7_2, 1_1_9_4, 3_6, 3_8_2, 1_0_9_0_1, 5_3, 7, 6_9_9, 1_0_7_2, 2_0_8_4, 3_6, 2_0_4_2_2, 6_3_0, 5_3, 1_9, 1_0_5, 3_0_4_9, 1_8_9_6, 1_0_5_3, 1_6_8_9_9, 1_5_0_6, 1_1, 3_7_9_7_8, 4_2_4_3, 7, 1_2_3_7, 3_1_8_6_9, 2_0_0, 1_6_5_6_6, 6_5_4, 6, 3_5_0_5_2, 8_1_4_3_6, 7, 5_5_6_3_0, 1_3_5_9_3, 4, 2], [1, 2_6, 1_5_0_1_1, 1_3, 6_6_7, 8, 1_0_5_3, 1_8, 2_3_6_1_1, 1_2_3_7, 7_2_3_5_6, 1_2_8_2_0, 3_4, 1_0_4_1_3_4, 1_2_0_9, 3_5, 1_3_3_1_3, 6_6_2_7, 2_1, 2_0_2, 3_4_7, 7, 1_6_4, 2_3_9_9, 1_1, 4_6, 4_4_8_5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_2_3_2, 2_8_6_4, 1_5_7_8_5, 1_4_9_5_1, 1_0_5, 5, 8_5_8_1, 1_2_5_0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a , model_name="microsoft/deberta-v2-xlarge" , revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" , )
151
1
'''simple docstring''' __lowerCAmelCase = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' __lowerCAmelCase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __lowerCAmelCase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
89
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( lowerCamelCase_ , unittest.TestCase ): a__ : Union[str, Any] = XLMRobertaTokenizer a__ : Optional[int] = XLMRobertaTokenizerFast a__ : List[str] = True a__ : List[Any] = True def lowerCamelCase_ ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing snake_case : Any = XLMRobertaTokenizer(SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[Any] = "<pad>" snake_case : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 1_002 ) def lowerCamelCase_ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_002 ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = XLMRobertaTokenizer(SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(SCREAMING_SNAKE_CASE , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) snake_case : Union[str, Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) snake_case : Optional[Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) self.assertListEqual( SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case : Optional[int] = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ) self.assertListEqual( SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def lowerCamelCase_ ( self ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case : List[str] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-xlm-roberta", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case : Optional[int] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) snake_case : Tuple = tempfile.mkdtemp() snake_case : Tuple = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE ) snake_case : List[str] = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) snake_case : Dict = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way snake_case : int = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE ) snake_case : Tuple = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True snake_case : Tuple = tempfile.mkdtemp() snake_case : str = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE ) snake_case : str = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way snake_case : Dict = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE ) snake_case : Dict = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) shutil.rmtree(SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False snake_case : List[str] = tempfile.mkdtemp() snake_case : List[Any] = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE ) snake_case : Union[str, Any] = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case : Optional[Any] = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE ) snake_case : Union[str, Any] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) shutil.rmtree(SCREAMING_SNAKE_CASE ) @cached_property def lowerCamelCase_ ( self ): """simple docstring""" return XLMRobertaTokenizer.from_pretrained("xlm-roberta-base" ) def lowerCamelCase_ ( self ): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(SCREAMING_SNAKE_CASE , f.name ) snake_case : int = XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE ) snake_case : Tuple = pickle.dumps(SCREAMING_SNAKE_CASE ) pickle.loads(SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return snake_case : Union[str, Any] = self.get_tokenizer() snake_case : Dict = self.get_rust_tokenizer() snake_case : Optional[Any] = "I was born in 92000, and this is falsé." snake_case : str = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) snake_case : Union[str, Any] = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case : str = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) snake_case : str = rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case : Union[str, Any] = self.get_rust_tokenizer() snake_case : Tuple = tokenizer.encode(SCREAMING_SNAKE_CASE ) snake_case : Dict = rust_tokenizer.encode(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : int = "Hello World!" snake_case : Optional[Any] = [0, 35_378, 6_661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Dict = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) snake_case : Dict = [ 0, 3_293, 83, 10, 4_552, 4_989, 7_986, 678, 10, 5_915, 111, 179_459, 124_850, 4, 6_044, 237, 12, 6, 5, 6, 4, 6_780, 705, 15, 1_388, 44, 378, 10_114, 711, 152, 20, 6, 5, 22_376, 642, 1_221, 15_190, 34_153, 450, 5_608, 959, 1_119, 57_702, 136, 186, 47, 1_098, 29_367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_044, 237, 6_284, 50_901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = {"input_ids": [[0, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [0, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE , model_name="xlm-roberta-base" , revision="d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3" , )
148
0
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any]=7 , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : int=1_8 , lowerCAmelCase_ : Optional[int]=3_0 , lowerCAmelCase_ : str=4_0_0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Dict=True , ) -> Union[str, Any]: __lowerCAmelCase = size if size is not None else {'height': 1_8, 'width': 1_8} __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = image_size __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = do_normalize def lowercase ( self : List[str] ) -> Dict: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ImageGPTImageProcessor if is_vision_available() else None def lowercase ( self : Union[str, Any] ) -> str: __lowerCAmelCase = ImageGPTImageProcessingTester(self ) @property def lowercase ( self : Dict ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self : Optional[int] ) -> Tuple: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , 'clusters' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'do_normalize' ) ) def lowercase ( self : Union[str, Any] ) -> int: __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} ) __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) def lowercase ( self : Any ) -> Any: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) __lowerCAmelCase = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase_ , obj[key] ) ) else: self.assertEqual(obj[key] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> str: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'image_processor.json' ) image_processor_first.to_json_file(lowerCAmelCase_ ) __lowerCAmelCase = self.image_processing_class.from_json_file(lowerCAmelCase_ ).to_dict() __lowerCAmelCase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCAmelCase_ ) def lowercase ( self : int ) -> str: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = self.image_processing_class.from_pretrained(lowerCAmelCase_ ).to_dict() __lowerCAmelCase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCAmelCase_ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def lowercase ( self : Dict ) -> Union[str, Any]: pass def a_ ( ): __lowerCAmelCase = load_dataset('hf-internal-testing/fixtures_image_utils', split='test' ) __lowerCAmelCase = Image.open(dataset[4]['file'] ) __lowerCAmelCase = Image.open(dataset[5]['file'] ) __lowerCAmelCase = [imagea, imagea] return images @require_vision @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Optional[Any] ) -> List[Any]: __lowerCAmelCase = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) __lowerCAmelCase = prepare_images() # test non-batched __lowerCAmelCase = image_processing(images[0] , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) ) __lowerCAmelCase = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCAmelCase_ ) # test batched __lowerCAmelCase = image_processing(lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) ) __lowerCAmelCase = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCAmelCase_ )
207
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _snake_case : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def a_ ( lowerCAmelCase_ : Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead', lowerCAmelCase_, ) if isinstance(lowerCAmelCase_, torch.Tensor ): return image elif isinstance(lowerCAmelCase_, PIL.Image.Image ): __lowerCAmelCase = [image] if isinstance(image[0], PIL.Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image[0].size __lowerCAmelCase , __lowerCAmelCase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 __lowerCAmelCase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] __lowerCAmelCase = np.concatenate(lowerCAmelCase_, axis=0 ) __lowerCAmelCase = np.array(lowerCAmelCase_ ).astype(np.floataa ) / 255.0 __lowerCAmelCase = image.transpose(0, 3, 1, 2 ) __lowerCAmelCase = 2.0 * image - 1.0 __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) elif isinstance(image[0], torch.Tensor ): __lowerCAmelCase = torch.cat(lowerCAmelCase_, dim=0 ) return image def a_ ( lowerCAmelCase_ : Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(lowerCAmelCase_, torch.Tensor ): return mask elif isinstance(lowerCAmelCase_, PIL.Image.Image ): __lowerCAmelCase = [mask] if isinstance(mask[0], PIL.Image.Image ): __lowerCAmelCase , __lowerCAmelCase = mask[0].size __lowerCAmelCase , __lowerCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __lowerCAmelCase = [np.array(m.convert('L' ).resize((w, h), resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] __lowerCAmelCase = np.concatenate(lowerCAmelCase_, axis=0 ) __lowerCAmelCase = mask.astype(np.floataa ) / 255.0 __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) elif isinstance(mask[0], torch.Tensor ): __lowerCAmelCase = torch.cat(lowerCAmelCase_, dim=0 ) return mask class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 a_ = 42 def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ) -> Optional[int]: super().__init__() self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) @torch.no_grad() def __call__( self : Dict , lowerCAmelCase_ : Union[torch.Tensor, PIL.Image.Image] , lowerCAmelCase_ : Union[torch.Tensor, PIL.Image.Image] , lowerCAmelCase_ : int = 2_5_0 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 1_0 , lowerCAmelCase_ : int = 1_0 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: __lowerCAmelCase = image __lowerCAmelCase = _preprocess_image(lowerCAmelCase_ ) __lowerCAmelCase = original_image.to(device=self.device , dtype=self.unet.dtype ) __lowerCAmelCase = _preprocess_mask(lowerCAmelCase_ ) __lowerCAmelCase = mask_image.to(device=self.device , dtype=self.unet.dtype ) __lowerCAmelCase = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(lowerCAmelCase_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __lowerCAmelCase = original_image.shape __lowerCAmelCase = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.device ) __lowerCAmelCase = eta __lowerCAmelCase = self.scheduler.timesteps[0] + 1 __lowerCAmelCase = generator[0] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual __lowerCAmelCase = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample # compute previous image: x_t -> x_t-1 __lowerCAmelCase = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t __lowerCAmelCase = self.scheduler.undo_step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = t __lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCAmelCase = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
207
1
"""simple docstring""" import sys SCREAMING_SNAKE_CASE : Optional[Any] = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowercase ( _snake_case : str ) ->int: """simple docstring""" __snake_case : List[Any] = 1 for digit in s: product *= int(_snake_case ) return product def lowercase ( _snake_case : str = N ) ->int: """simple docstring""" __snake_case : int = -sys.maxsize - 1 __snake_case : int = n[:13] __snake_case : Any = 13 while cur_index < len(_snake_case ) - 13: if int(n[cur_index] ) >= int(substr[0] ): __snake_case : List[Any] = substr[1:] + n[cur_index] cur_index += 1 else: __snake_case : Optional[Any] = max(_snake_case , str_eval(_snake_case ) ) __snake_case : Optional[Any] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F'{solution() = }')
102
"""simple docstring""" import math def lowercase ( _snake_case : int ) ->bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( _snake_case : float = 0.1 ) ->int: """simple docstring""" __snake_case : Tuple = 3 __snake_case : Any = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_snake_case ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
102
1
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def _snake_case ( A , A , A , A = 100 , ) -> float: lowerCAmelCase__ = x_start lowerCAmelCase__ = fnc(A ) lowerCAmelCase__ = 0.0 for _ in range(A ): # Approximates curve as a sequence of linear lines and sums their length lowerCAmelCase__ = (x_end - x_start) / steps + xa lowerCAmelCase__ = fnc(A ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step lowerCAmelCase__ = xa lowerCAmelCase__ = fxa return length if __name__ == "__main__": def _snake_case ( A ) -> List[Any]: return math.sin(10 * x ) print('''f(x) = sin(10 * x)''') print('''The length of the curve from x = -10 to x = 10 is:''') __UpperCAmelCase = 10 while i <= 100_000: print(f"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
228
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '''https://openaipublic.azureedge.net/jukebox/models/''' __UpperCAmelCase = { '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def _snake_case ( A ) -> Union[str, Any]: if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCAmelCase__ = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCAmelCase__ = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCAmelCase__ = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCAmelCase__ = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: lowerCAmelCase__ = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: lowerCAmelCase__ = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCAmelCase__ = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: lowerCAmelCase__ = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def _snake_case ( A , A , A , A ) -> Optional[int]: lowerCAmelCase__ = {} import re lowerCAmelCase__ = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCAmelCase__ = re.compile( R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase__ = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase__ = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCAmelCase__ = re.compile( R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase__ = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase__ = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) lowerCAmelCase__ = re.compile( R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase__ = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(A ): lowerCAmelCase__ = re_encoder_block_conv_in.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) lowerCAmelCase__ = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" lowerCAmelCase__ = re_encoder_block_conv_in.sub(A , A ) elif re_encoder_block_resnet.fullmatch(A ): lowerCAmelCase__ = re_encoder_block_resnet.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) lowerCAmelCase__ = {'''1''': 1, '''3''': 2}[groups[-2]] lowerCAmelCase__ = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" lowerCAmelCase__ = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" lowerCAmelCase__ = prefix + resnet_block lowerCAmelCase__ = re_encoder_block_resnet.sub(A , A ) elif re_encoder_block_proj_out.fullmatch(A ): lowerCAmelCase__ = re_encoder_block_proj_out.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" lowerCAmelCase__ = re_encoder_block_proj_out.sub(A , A ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(A ): lowerCAmelCase__ = re_decoder_block_conv_out.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCAmelCase__ = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" lowerCAmelCase__ = re_decoder_block_conv_out.sub(A , A ) elif re_decoder_block_resnet.fullmatch(A ): lowerCAmelCase__ = re_decoder_block_resnet.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCAmelCase__ = {'''1''': 1, '''3''': 2}[groups[-2]] lowerCAmelCase__ = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" lowerCAmelCase__ = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" lowerCAmelCase__ = prefix + resnet_block lowerCAmelCase__ = re_decoder_block_resnet.sub(A , A ) elif re_decoder_block_proj_in.fullmatch(A ): lowerCAmelCase__ = re_decoder_block_proj_in.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" lowerCAmelCase__ = re_decoder_block_proj_in.sub(A , A ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(A ): lowerCAmelCase__ = re_prior_cond_conv_out.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCAmelCase__ = F"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" lowerCAmelCase__ = re_prior_cond_conv_out.sub(A , A ) elif re_prior_cond_resnet.fullmatch(A ): lowerCAmelCase__ = re_prior_cond_resnet.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCAmelCase__ = {'''1''': 1, '''3''': 2}[groups[-2]] lowerCAmelCase__ = F"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" lowerCAmelCase__ = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" lowerCAmelCase__ = prefix + resnet_block lowerCAmelCase__ = re_prior_cond_resnet.sub(A , A ) elif re_prior_cond_proj_in.fullmatch(A ): lowerCAmelCase__ = re_prior_cond_proj_in.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = F"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" lowerCAmelCase__ = re_prior_cond_proj_in.sub(A , A ) # keep original key else: lowerCAmelCase__ = original_key lowerCAmelCase__ = replace_key(A ) if F"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(F"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[F"""{key_prefix}.{key}"""].shape: lowerCAmelCase__ = model_state_dict[F"""{key_prefix}.{key}"""] print(F"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) lowerCAmelCase__ = original_key lowerCAmelCase__ = original_key lowerCAmelCase__ = value return new_dict @torch.no_grad() def _snake_case ( A=None , A=None ) -> str: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): lowerCAmelCase__ = requests.get(F"""{PREFIX}{file}""" , allow_redirects=A ) os.makedirs(F"""{pytorch_dump_folder_path}/""" , exist_ok=A ) open(F"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , '''wb''' ).write(r.content ) lowerCAmelCase__ = MODEL_MAPPING[model_name.split('''/''' )[-1]] lowerCAmelCase__ = JukeboxConfig.from_pretrained(A ) lowerCAmelCase__ = JukeboxModel(A ) lowerCAmelCase__ = [] lowerCAmelCase__ = {} for i, dict_name in enumerate(A ): lowerCAmelCase__ = torch.load(F"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )['''model'''] lowerCAmelCase__ = {} for k in old_dic.keys(): if k.endswith('''.b''' ): lowerCAmelCase__ = old_dic[k] elif k.endswith('''.w''' ): lowerCAmelCase__ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCAmelCase__ = old_dic[k] else: lowerCAmelCase__ = old_dic[k] lowerCAmelCase__ = '''vqvae''' if i == 0 else F"""priors.{3 - i}""" lowerCAmelCase__ = fix_jukebox_keys(A , model.state_dict() , A , A ) weight_dict.append(A ) lowerCAmelCase__ = weight_dict.pop(0 ) model.vqvae.load_state_dict(A ) for i in range(len(A ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(A ).mkdir(exist_ok=A ) with open(F"""{pytorch_dump_folder_path}/mapping.json""" , '''w''' ) as txtfile: json.dump(A , A ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A ) return weight_dict if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) __UpperCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
228
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : int = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
127
_SCREAMING_SNAKE_CASE : Optional[Any] = tuple[float, float, float] _SCREAMING_SNAKE_CASE : Optional[Any] = tuple[float, float, float] def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = end_pointa[0] - end_pointa[0] snake_case = end_pointa[1] - end_pointa[1] snake_case = end_pointa[2] - end_pointa[2] return (x, y, z) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = ab[1] * ac[2] - ab[2] * ac[1] # *i snake_case = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j snake_case = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" return tuple(round(UpperCamelCase_ ,UpperCamelCase_ ) for x in vector ) == (0, 0, 0) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = 10 ): """simple docstring""" snake_case = create_vector(UpperCamelCase_ ,UpperCamelCase_ ) snake_case = create_vector(UpperCamelCase_ ,UpperCamelCase_ ) return is_zero_vector(get_ad_vectors_cross(UpperCamelCase_ ,UpperCamelCase_ ) ,UpperCamelCase_ )
127
1
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def _lowerCamelCase( a ): __a = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " F"{test_file} instead." ) __a = components[-1] if not test_fn.endswith("py" ): raise ValueError(F"`test_file` should be a python file. Got {test_fn} instead." ) if not test_fn.startswith("test_modeling_" ): raise ValueError( F"`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead." ) __a = components[:-1] + [test_fn.replace(".py" , "" )] __a = ".".join(a ) return test_module_path def _lowerCamelCase( a ): __a = get_module_path(a ) __a = importlib.import_module(a ) return test_module def _lowerCamelCase( a ): __a = [] __a = get_test_module(a ) for attr in dir(a ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(a , a ) ) # sort with class names return sorted(a , key=lambda a : x.__name__ ) def _lowerCamelCase( a ): __a = [] __a = get_test_module(a ) for attr in dir(a ): __a = getattr(a , a ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __a = getattr(a , "all_model_classes" , [] ) if len(a ) > 0: test_classes.append(a ) # sort with class names return sorted(a , key=lambda a : x.__name__ ) def _lowerCamelCase( a ): __a = get_test_classes(a ) __a = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(a , key=lambda a : x.__name__ ) def _lowerCamelCase( a ): __a = test_class() if hasattr(a , "setUp" ): test.setUp() __a = None if hasattr(a , "model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __a = test.model_tester.__class__ return model_tester def _lowerCamelCase( a , a ): __a = get_test_classes(a ) __a = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(a ) # sort with class names return sorted(a , key=lambda a : x.__name__ ) def _lowerCamelCase( a , a ): __a = get_test_classes_for_model(a , a ) __a = [] for test_class in test_classes: __a = get_model_tester_from_test_class(a ) if tester_class is not None: tester_classes.append(a ) # sort with class names return sorted(a , key=lambda a : x.__name__ ) def _lowerCamelCase( a ): __a = get_test_classes(a ) __a = {test_class: get_model_tester_from_test_class(a ) for test_class in test_classes} return test_tester_mapping def _lowerCamelCase( a ): __a = get_model_classes(a ) __a = { model_class: get_test_classes_for_model(a , a ) for model_class in model_classes } return model_test_mapping def _lowerCamelCase( a ): __a = get_model_classes(a ) __a = { model_class: get_tester_classes_for_model(a , a ) for model_class in model_classes } return model_to_tester_mapping def _lowerCamelCase( a ): if isinstance(a , a ): return o elif isinstance(a , a ): return o.__name__ elif isinstance(a , (list, tuple) ): return [to_json(a ) for x in o] elif isinstance(a , a ): return {to_json(a ): to_json(a ) for k, v in o.items()} else: return o
268
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _lowerCamelCase( a ): __a = torch.exp(a ) __a = torch.sum(a , dim=1 ) # sum of exp(x_i) __a = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(a ) - B / A class snake_case__ ( nn.Module ): def __init__( self , lowerCamelCase ): super().__init__() __a = config.output_attentions __a = config.output_hidden_states __a = nn.ModuleList([BertLayer(lowerCamelCase ) for _ in range(config.num_hidden_layers )] ) __a = nn.ModuleList([BertHighway(lowerCamelCase ) for _ in range(config.num_hidden_layers )] ) __a = [-1 for _ in range(config.num_hidden_layers )] def a__ ( self , lowerCamelCase ): if (type(lowerCamelCase ) is float) or (type(lowerCamelCase ) is int): for i in range(len(self.early_exit_entropy ) ): __a = x else: __a = x def a__ ( self , lowerCamelCase ): __a = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def a__ ( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ): __a = () __a = () __a = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __a = all_hidden_states + (hidden_states,) __a = layer_module( lowerCamelCase , lowerCamelCase , head_mask[i] , lowerCamelCase , lowerCamelCase ) __a = layer_outputs[0] if self.output_attentions: __a = all_attentions + (layer_outputs[1],) __a = (hidden_states,) if self.output_hidden_states: __a = current_outputs + (all_hidden_states,) if self.output_attentions: __a = current_outputs + (all_attentions,) __a = self.highway[i](lowerCamelCase ) # logits, pooled_output if not self.training: __a = highway_exit[0] __a = entropy(lowerCamelCase ) __a = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __a = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __a = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(lowerCamelCase , i + 1 ) else: __a = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __a = all_hidden_states + (hidden_states,) __a = (hidden_states,) if self.output_hidden_states: __a = outputs + (all_hidden_states,) if self.output_attentions: __a = outputs + (all_attentions,) __a = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """, snake_case_, ) class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase ): super().__init__(lowerCamelCase ) __a = config __a = BertEmbeddings(lowerCamelCase ) __a = DeeBertEncoder(lowerCamelCase ) __a = BertPooler(lowerCamelCase ) self.init_weights() def a__ ( self ): self.encoder.init_highway_pooler(self.pooler ) def a__ ( self ): return self.embeddings.word_embeddings def a__ ( self , lowerCamelCase ): __a = value def a__ ( self , lowerCamelCase ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(lowerCamelCase ) @add_start_docstrings_to_model_forward(lowerCamelCase ) def a__ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __a = input_ids.size() elif inputs_embeds is not None: __a = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __a = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __a = torch.ones(lowerCamelCase , device=lowerCamelCase ) if encoder_attention_mask is None: __a = torch.ones(lowerCamelCase , device=lowerCamelCase ) if token_type_ids is None: __a = torch.zeros(lowerCamelCase , dtype=torch.long , device=lowerCamelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __a = self.get_extended_attention_mask(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __a = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __a = encoder_attention_mask[:, None, None, :] __a = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __a = (1.0 - encoder_extended_attention_mask) * -1_0000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __a = self.get_head_mask(lowerCamelCase , self.config.num_hidden_layers ) __a = self.embeddings( input_ids=lowerCamelCase , position_ids=lowerCamelCase , token_type_ids=lowerCamelCase , inputs_embeds=lowerCamelCase ) __a = self.encoder( lowerCamelCase , attention_mask=lowerCamelCase , head_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , ) __a = encoder_outputs[0] __a = self.pooler(lowerCamelCase ) __a = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase , lowerCamelCase ): __a = message __a = exit_layer # start from 1! class snake_case__ ( nn.Module ): def __init__( self , lowerCamelCase ): super().__init__() __a = BertPooler(lowerCamelCase ) __a = nn.Dropout(config.hidden_dropout_prob ) __a = nn.Linear(config.hidden_size , config.num_labels ) def a__ ( self , lowerCamelCase ): # Pooler __a = encoder_outputs[0] __a = self.pooler(lowerCamelCase ) # "return" pooler_output # BertModel __a = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __a = bmodel_output[1] __a = self.dropout(lowerCamelCase ) __a = self.classifier(lowerCamelCase ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """, snake_case_, ) class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase ): super().__init__(lowerCamelCase ) __a = config.num_labels __a = config.num_hidden_layers __a = DeeBertModel(lowerCamelCase ) __a = nn.Dropout(config.hidden_dropout_prob ) __a = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCamelCase ) def a__ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=-1 , lowerCamelCase=False , ): __a = self.num_layers try: __a = self.bert( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , position_ids=lowerCamelCase , head_mask=lowerCamelCase , inputs_embeds=lowerCamelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __a = outputs[1] __a = self.dropout(lowerCamelCase ) __a = self.classifier(lowerCamelCase ) __a = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __a = e.message __a = e.exit_layer __a = outputs[0] if not self.training: __a = entropy(lowerCamelCase ) __a = [] __a = [] if labels is not None: if self.num_labels == 1: # We are doing regression __a = MSELoss() __a = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __a = CrossEntropyLoss() __a = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __a = [] for highway_exit in outputs[-1]: __a = highway_exit[0] if not self.training: highway_logits_all.append(lowerCamelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __a = MSELoss() __a = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __a = CrossEntropyLoss() __a = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowerCamelCase ) if train_highway: __a = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __a = (loss,) + outputs if not self.training: __a = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __a = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
268
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection UpperCAmelCase : str = len(UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = max(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = min(UpperCAmelCase_ ) # create the counting array UpperCAmelCase : str = coll_max + 1 - coll_min UpperCAmelCase : Optional[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCAmelCase_ ): UpperCAmelCase : Dict = counting_arr[i] + counting_arr[i - 1] # create the output collection UpperCAmelCase : Tuple = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCAmelCase_ ) ): UpperCAmelCase : int = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def UpperCamelCase( UpperCAmelCase_ ): return "".join([chr(UpperCAmelCase_ ) for i in counting_sort([ord(UpperCAmelCase_ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" lowercase__ = input("Enter numbers separated by a comma:\n").strip() lowercase__ = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
151
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A_ : '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XGLMConfig UpperCAmelCase_ : str = {} UpperCAmelCase_ : List[str] = """gelu""" def __init__( self : Tuple , lowercase_ : str , lowercase_ : List[str]=14 , lowercase_ : Optional[int]=7 , lowercase_ : Optional[int]=True , lowercase_ : List[str]=True , lowercase_ : Union[str, Any]=True , lowercase_ : Dict=99 , lowercase_ : Optional[int]=32 , lowercase_ : Any=2 , lowercase_ : Union[str, Any]=4 , lowercase_ : Optional[int]=37 , lowercase_ : List[str]="gelu" , lowercase_ : Tuple=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : List[Any]=512 , lowercase_ : Union[str, Any]=0.02 , ) -> str: UpperCAmelCase : Optional[Any] = parent UpperCAmelCase : Optional[int] = batch_size UpperCAmelCase : List[str] = seq_length UpperCAmelCase : List[str] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : int = use_labels UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : Optional[int] = d_model UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Optional[int] = num_attention_heads UpperCAmelCase : List[str] = ffn_dim UpperCAmelCase : Optional[int] = activation_function UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Dict = attention_dropout UpperCAmelCase : List[str] = max_position_embeddings UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : Optional[Any] = None UpperCAmelCase : str = 0 UpperCAmelCase : List[Any] = 2 UpperCAmelCase : Optional[Any] = 1 def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def UpperCAmelCase_ ( self : Dict ) -> int: UpperCAmelCase : Any = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Any = self.get_config() UpperCAmelCase : Optional[int] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowercase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowercase_ , ) def UpperCAmelCase_ ( self : List[str] ) -> Dict: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase : List[str] = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : int = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCAmelCase_ : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCAmelCase_ : str = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : str = False def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: UpperCAmelCase : Any = TFXGLMModelTester(self ) UpperCAmelCase : int = ConfigTester(self , config_class=lowercase_ , n_embd=37 ) def UpperCAmelCase_ ( self : Any ) -> List[str]: self.config_tester.run_common_tests() @slow def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : int = TFXGLMModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: super().test_resize_token_embeddings() @require_tf class A_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase_ ( self : int , lowercase_ : str=True ) -> Any: UpperCAmelCase : str = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) UpperCAmelCase : Any = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCAmelCase : Union[str, Any] = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on UpperCAmelCase : int = model.generate(lowercase_ , do_sample=lowercase_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_ ) @slow def UpperCAmelCase_ ( self : Optional[int] ) -> int: UpperCAmelCase : str = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) UpperCAmelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) UpperCAmelCase : Dict = tokenizer('Today is a nice day and' , return_tensors='tf' ) UpperCAmelCase : Tuple = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): UpperCAmelCase : int = model.generate(lowercase_ , do_sample=lowercase_ , seed=[7, 0] ) UpperCAmelCase : Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase_ ) UpperCAmelCase : Dict = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(lowercase_ , lowercase_ ) @slow def UpperCAmelCase_ ( self : int ) -> str: UpperCAmelCase : List[str] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) UpperCAmelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) UpperCAmelCase : str = 'left' # use different length sentences to test batching UpperCAmelCase : Tuple = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] UpperCAmelCase : Union[str, Any] = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ ) UpperCAmelCase : Any = inputs['input_ids'] UpperCAmelCase : int = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) UpperCAmelCase : Union[str, Any] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids UpperCAmelCase : Dict = model.generate(input_ids=lowercase_ , max_new_tokens=12 ) UpperCAmelCase : Tuple = tokenizer(sentences[1] , return_tensors='tf' ).input_ids UpperCAmelCase : List[Any] = model.generate(input_ids=lowercase_ , max_new_tokens=12 ) UpperCAmelCase : List[str] = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) UpperCAmelCase : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) UpperCAmelCase : Optional[int] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) UpperCAmelCase : str = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] )
151
1
'''simple docstring''' from math import factorial def __UpperCAmelCase ( a_: int = 100 ): return sum(int(a_ ) for x in str(factorial(a_ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
362
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( a_: list[int] ): if not nums: return 0 _UpperCAmelCase : int = nums[0] _UpperCAmelCase : Dict = 0 for num in nums[1:]: _UpperCAmelCase , _UpperCAmelCase : Any = ( max_excluding + num, max(a_, a_ ), ) return max(a_, a_ ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A__ : List[str] = logging.get_logger(__name__) A__ : Optional[int] = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = """marian""" lowercase__ = ["""past_key_values"""] lowercase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[str], lowerCamelCase : List[str]=58_101, lowerCamelCase : List[str]=None, lowerCamelCase : int=1_024, lowerCamelCase : Union[str, Any]=12, lowerCamelCase : int=4_096, lowerCamelCase : List[str]=16, lowerCamelCase : str=12, lowerCamelCase : List[str]=4_096, lowerCamelCase : List[Any]=16, lowerCamelCase : Dict=0.0, lowerCamelCase : Optional[Any]=0.0, lowerCamelCase : int=True, lowerCamelCase : int=True, lowerCamelCase : str="gelu", lowerCamelCase : str=1_024, lowerCamelCase : Any=0.1, lowerCamelCase : Tuple=0.0, lowerCamelCase : List[str]=0.0, lowerCamelCase : List[str]=0.02, lowerCamelCase : List[str]=58_100, lowerCamelCase : Dict=False, lowerCamelCase : List[Any]=58_100, lowerCamelCase : Optional[Any]=0, lowerCamelCase : Any=0, lowerCamelCase : str=True, **lowerCamelCase : Union[str, Any], ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = decoder_vocab_size or vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, is_encoder_decoder=lowerCamelCase, decoder_start_token_id=lowerCamelCase, forced_eos_token_id=lowerCamelCase, **lowerCamelCase, ) class _UpperCAmelCase ( A__ ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowercase__ ( self : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase__ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowercase__ = {0: '''batch'''} lowercase__ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowercase__ = {0: '''batch''', 1: '''decoder_sequence'''} lowercase__ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase, direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. lowercase__ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowercase__ , lowercase__ = self.num_layers for i in range(lowerCamelCase ): lowercase__ = {0: '''batch''', 2: '''past_sequence + sequence'''} lowercase__ = {0: '''batch''', 2: '''past_sequence + sequence'''} else: lowercase__ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowercase__ ( self : List[str] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase__ = super().outputs else: lowercase__ = super(lowerCamelCase, self ).outputs if self.use_past: lowercase__ , lowercase__ = self.num_layers for i in range(lowerCamelCase ): lowercase__ = {0: '''batch''', 2: '''past_sequence + sequence'''} lowercase__ = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def lowercase__ ( self : str, lowerCamelCase : PreTrainedTokenizer, lowerCamelCase : int = -1, lowerCamelCase : int = -1, lowerCamelCase : bool = False, lowerCamelCase : Optional[TensorType] = None, ): '''simple docstring''' lowercase__ = self._generate_dummy_inputs_for_encoder_and_decoder( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) # Generate decoder inputs lowercase__ = seq_length if not self.use_past else 1 lowercase__ = self._generate_dummy_inputs_for_encoder_and_decoder( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} lowercase__ = dict(**lowerCamelCase, **lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__ , lowercase__ = common_inputs['''input_ids'''].shape lowercase__ = common_inputs['''decoder_input_ids'''].shape[1] lowercase__ , lowercase__ = self.num_attention_heads lowercase__ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase__ = decoder_seq_length + 3 lowercase__ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowercase__ = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowerCamelCase, lowerCamelCase )], dim=1 ) lowercase__ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowercase__ , lowercase__ = self.num_layers lowercase__ = min(lowerCamelCase, lowerCamelCase ) lowercase__ = max(lowerCamelCase, lowerCamelCase ) - min_num_layers lowercase__ = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), ) ) # TODO: test this. lowercase__ = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowerCamelCase, lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) ) return common_inputs def lowercase__ ( self : Optional[Any], lowerCamelCase : PreTrainedTokenizer, lowerCamelCase : int = -1, lowerCamelCase : int = -1, lowerCamelCase : bool = False, lowerCamelCase : Optional[TensorType] = None, ): '''simple docstring''' lowercase__ = self._generate_dummy_inputs_for_encoder_and_decoder( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__ , lowercase__ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__ = seqlen + 2 lowercase__ , lowercase__ = self.num_layers lowercase__ , lowercase__ = self.num_attention_heads lowercase__ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase__ = common_inputs['''attention_mask'''].dtype lowercase__ = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowerCamelCase, lowerCamelCase, dtype=lowerCamelCase )], dim=1 ) lowercase__ = [ (torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) for _ in range(lowerCamelCase ) ] return common_inputs def lowercase__ ( self : List[Any], lowerCamelCase : PreTrainedTokenizer, lowerCamelCase : int = -1, lowerCamelCase : int = -1, lowerCamelCase : bool = False, lowerCamelCase : Optional[TensorType] = None, ): '''simple docstring''' # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase__ = compute_effective_axis_dimension( lowerCamelCase, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase__ = tokenizer.num_special_tokens_to_add(lowerCamelCase ) lowercase__ = compute_effective_axis_dimension( lowerCamelCase, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence lowercase__ = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size lowercase__ = dict(tokenizer(lowerCamelCase, return_tensors=lowerCamelCase ) ) return common_inputs def lowercase__ ( self : Any, lowerCamelCase : PreTrainedTokenizer, lowerCamelCase : int = -1, lowerCamelCase : int = -1, lowerCamelCase : bool = False, lowerCamelCase : Optional[TensorType] = None, ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase__ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCamelCase, batch_size=lowerCamelCase, seq_length=lowerCamelCase, is_pair=lowerCamelCase, framework=lowerCamelCase ) else: lowercase__ = self._generate_dummy_inputs_for_causal_lm( lowerCamelCase, batch_size=lowerCamelCase, seq_length=lowerCamelCase, is_pair=lowerCamelCase, framework=lowerCamelCase ) return common_inputs def lowercase__ ( self : List[Any], lowerCamelCase : List[Any], lowerCamelCase : Tuple, lowerCamelCase : int, lowerCamelCase : Tuple ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase__ = super()._flatten_past_key_values_(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) else: lowercase__ = super(lowerCamelCase, self )._flatten_past_key_values_( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) @property def lowercase__ ( self : Tuple ): '''simple docstring''' return 1E-4
207
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""image_processor""", """tokenizer"""] lowercase__ = """BlipImageProcessor""" lowercase__ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Dict, lowerCamelCase : Dict, lowerCamelCase : str ): '''simple docstring''' lowercase__ = False super().__init__(lowerCamelCase, lowerCamelCase ) lowercase__ = self.image_processor def __call__( self : int, lowerCamelCase : ImageInput = None, lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, lowerCamelCase : bool = True, lowerCamelCase : Union[bool, str, PaddingStrategy] = False, lowerCamelCase : Union[bool, str, TruncationStrategy] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : int = 0, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[bool] = None, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = True, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : Any, ): '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: lowercase__ = self.tokenizer lowercase__ = self.tokenizer( text=lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, stride=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_attention_mask=lowerCamelCase, return_overflowing_tokens=lowerCamelCase, return_special_tokens_mask=lowerCamelCase, return_offsets_mapping=lowerCamelCase, return_token_type_ids=lowerCamelCase, return_length=lowerCamelCase, verbose=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase, ) return text_encoding # add pixel_values lowercase__ = self.image_processor(lowerCamelCase, return_tensors=lowerCamelCase ) if text is not None: lowercase__ = self.tokenizer( text=lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, stride=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_attention_mask=lowerCamelCase, return_overflowing_tokens=lowerCamelCase, return_special_tokens_mask=lowerCamelCase, return_offsets_mapping=lowerCamelCase, return_token_type_ids=lowerCamelCase, return_length=lowerCamelCase, verbose=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase, ) else: lowercase__ = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase ) return encoding_image_processor def lowercase__ ( self : Tuple, *lowerCamelCase : Union[str, Any], **lowerCamelCase : Optional[int] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase, **lowerCamelCase ) def lowercase__ ( self : List[str], *lowerCamelCase : int, **lowerCamelCase : List[str] ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase, **lowerCamelCase ) @property def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.tokenizer.model_input_names lowercase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
207
1
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : List[str] = (DDPMScheduler,) def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Dict ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**lowerCAmelCase__ ) return config def _lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase__ , prediction_type=lowerCAmelCase__ , sample_max_value=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : str = self.get_scheduler_config() _UpperCAmelCase : str = scheduler_class(**lowerCAmelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : Any = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ ) _UpperCAmelCase : Any = len(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = self.dummy_model() _UpperCAmelCase : List[str] = self.dummy_sample_deter _UpperCAmelCase : Tuple = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase__ ) ): # 1. predict noise residual _UpperCAmelCase : Tuple = model(lowerCAmelCase__ , lowerCAmelCase__ ) # 2. predict previous mean of sample x_t-1 _UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCAmelCase : int = pred_prev_sample _UpperCAmelCase : int = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : int = self.scheduler_classes[0] _UpperCAmelCase : List[str] = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCAmelCase : Dict = scheduler_class(**lowerCAmelCase__ ) _UpperCAmelCase : str = len(lowerCAmelCase__ ) _UpperCAmelCase : str = self.dummy_model() _UpperCAmelCase : Any = self.dummy_sample_deter _UpperCAmelCase : Tuple = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase__ ) ): # 1. predict noise residual _UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ , lowerCAmelCase__ ) # 2. predict previous mean of sample x_t-1 _UpperCAmelCase : List[str] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCAmelCase : str = pred_prev_sample _UpperCAmelCase : Optional[int] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : int = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : Any = self.get_scheduler_config() _UpperCAmelCase : List[str] = scheduler_class(**lowerCAmelCase__ ) _UpperCAmelCase : Tuple = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase__ ): if i == len(lowerCAmelCase__ ) - 1: _UpperCAmelCase : Optional[Any] = -1 else: _UpperCAmelCase : Optional[Any] = timesteps[i + 1] _UpperCAmelCase : Union[str, Any] = scheduler.previous_timestep(lowerCAmelCase__ ) _UpperCAmelCase : str = prev_t.item() self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = self.scheduler_classes[0] _UpperCAmelCase : Union[str, Any] = self.get_scheduler_config() _UpperCAmelCase : List[str] = scheduler_class(**lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase__ , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[Any] = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _UpperCAmelCase : Optional[int] = len(lowerCAmelCase__ ) with self.assertRaises(lowerCAmelCase__ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase__ , timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : Optional[Any] = scheduler_class(**lowerCAmelCase__ ) _UpperCAmelCase : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase__ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=lowerCAmelCase__ )
17
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( a_: int ): # A local function to see if a dot lands in the circle. def is_in_circle(a_: float, a_: float ) -> bool: _UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase : str = mean( int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) ) for _ in range(a_ ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase : Optional[int] = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ): return mean( function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value) def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ): def identity_function(a_: float ) -> float: return x _UpperCAmelCase : Union[str, Any] = area_under_curve_estimator( a_, a_, a_, a_ ) _UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def __UpperCAmelCase ( a_: int ): def function_to_integrate(a_: float ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase : List[str] = area_under_curve_estimator( a_, a_, 0.0, 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
17
1
def __A ( __lowerCamelCase ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("""The given input must be positive""" ) # get the generated string sequence a = gray_code_sequence_string(__lowerCamelCase ) # # convert them to integers for i in range(len(__lowerCamelCase ) ): a = int(sequence[i] , 2 ) return sequence def __A ( __lowerCamelCase ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] a = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits a = gray_code_sequence_string(bit_count - 1 ) a = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): a = """0""" + smaller_sequence[i] sequence.append(__lowerCamelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): a = """1""" + smaller_sequence[i] sequence.append(__lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
228
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() __UpperCamelCase : List[str] = logging.get_logger(__name__) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: a = WavaVecaForSequenceClassification.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) a = downstream_dict["""projector.weight"""] a = downstream_dict["""projector.bias"""] a = downstream_dict["""model.post_net.linear.weight"""] a = downstream_dict["""model.post_net.linear.bias"""] return model def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: a = WavaVecaForAudioFrameClassification.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) a = downstream_dict["""model.linear.weight"""] a = downstream_dict["""model.linear.bias"""] return model def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: a = WavaVecaForXVector.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) a = downstream_dict["""connector.weight"""] a = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): a = downstream_dict[ f'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] a = downstream_dict[f'model.framelevel_feature_extractor.module.{i}.kernel.bias'] a = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] a = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] a = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] a = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] a = downstream_dict["""objective.W"""] return model @torch.no_grad() def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: a = torch.load(__lowerCamelCase , map_location="""cpu""" ) a = checkpoint["""Downstream"""] a = WavaVecaConfig.from_pretrained(__lowerCamelCase ) a = WavaVecaFeatureExtractor.from_pretrained( __lowerCamelCase , return_attention_mask=__lowerCamelCase , do_normalize=__lowerCamelCase ) a = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): a = convert_classification(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) elif arch.endswith("""ForAudioFrameClassification""" ): a = convert_diarization(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) elif arch.endswith("""ForXVector""" ): a = convert_xvector(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: raise NotImplementedError(f'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: a = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(__lowerCamelCase ) hf_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") __UpperCamelCase : List[Any] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
228
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :int = '''distilbert''' lowerCamelCase :Optional[Any] = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , lowerCAmelCase_=3_05_22 , lowerCAmelCase_=5_12 , lowerCAmelCase_=False , lowerCAmelCase_=6 , lowerCAmelCase_=12 , lowerCAmelCase_=7_68 , lowerCAmelCase_=4 * 7_68 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.02 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.2 , lowerCAmelCase_=0 , **lowerCAmelCase_ , ) -> Tuple: _A = vocab_size _A = max_position_embeddings _A = sinusoidal_pos_embds _A = n_layers _A = n_heads _A = dim _A = hidden_dim _A = dropout _A = attention_dropout _A = activation _A = initializer_range _A = qa_dropout _A = seq_classif_dropout super().__init__(**lowerCAmelCase_ , pad_token_id=lowerCAmelCase_ ) class a ( __lowerCAmelCase ): """simple docstring""" @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _A = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
81
def snake_case ( snake_case__ :int , snake_case__ :int) -> str: return "\n".join( F'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1)) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
81
1
"""simple docstring""" from __future__ import annotations def snake_case ( A__ ,A__ ): UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : List[str] = len(A__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCAmelCase_ : Tuple = i + 1 else: UpperCAmelCase_ : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'{two_pointer([2, 7, 11, 15], 9) = }')
268
"""simple docstring""" from torch import nn def snake_case ( A__ ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"""Unsupported activation function: {act_fn}""" )
268
1
"""simple docstring""" lowerCamelCase = { """Pillow""": """Pillow""", """accelerate""": """accelerate>=0.11.0""", """compel""": """compel==0.1.8""", """black""": """black~=23.1""", """datasets""": """datasets""", """filelock""": """filelock""", """flax""": """flax>=0.4.1""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.13.2""", """requests-mock""": """requests-mock==1.10.0""", """importlib_metadata""": """importlib_metadata""", """invisible-watermark""": """invisible-watermark""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2""", """jaxlib""": """jaxlib>=0.1.65""", """Jinja2""": """Jinja2""", """k-diffusion""": """k-diffusion>=0.0.12""", """torchsde""": """torchsde""", """note_seq""": """note_seq""", """librosa""": """librosa""", """numpy""": """numpy""", """omegaconf""": """omegaconf""", """parameterized""": """parameterized""", """protobuf""": """protobuf>=3.20.3,<4""", """pytest""": """pytest""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """ruff""": """ruff>=0.0.241""", """safetensors""": """safetensors""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """scipy""": """scipy""", """onnx""": """onnx""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """tensorboard""": """tensorboard""", """torch""": """torch>=1.4""", """torchvision""": """torchvision""", """transformers""": """transformers>=4.25.1""", """urllib3""": """urllib3<=2.0.0""", }
363
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase = 250_004 lowerCamelCase = 250_020 @require_sentencepiece @require_tokenizers class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = MBartTokenizer UpperCamelCase = MBartTokenizerFast UpperCamelCase = True UpperCamelCase = True def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = MBartTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Any ) -> int: '''simple docstring''' UpperCAmelCase_ = MBartTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase_ = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = self.tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = tokenizer_r.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) UpperCAmelCase_ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(_UpperCAmelCase , _UpperCAmelCase ) # Checks everything loads correctly in the same way UpperCAmelCase_ = tokenizer_r.from_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_UpperCAmelCase ) # Save tokenizer rust, legacy_format=True UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = tokenizer_r.save_pretrained(_UpperCAmelCase , legacy_format=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(_UpperCAmelCase , _UpperCAmelCase ) # Checks everything loads correctly in the same way UpperCAmelCase_ = tokenizer_r.from_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) shutil.rmtree(_UpperCAmelCase ) # Save tokenizer rust, legacy_format=False UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = tokenizer_r.save_pretrained(_UpperCAmelCase , legacy_format=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase_ = tokenizer_r.from_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) shutil.rmtree(_UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = '''facebook/mbart-large-en-ro''' UpperCamelCase = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] UpperCamelCase = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] UpperCamelCase = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def lowercase__ ( cls : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) UpperCAmelCase_ = 1 return cls def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250020 ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) UpperCAmelCase_ = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' UpperCAmelCase_ = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , _UpperCAmelCase ) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [250026, 250001] ) def lowercase__ ( self : Any ) -> Any: '''simple docstring''' UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = MBartTokenizer.from_pretrained(_UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase ) @require_torch def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) UpperCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" ) UpperCAmelCase_ = self.tokenizer( text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" ) UpperCAmelCase_ = targets["input_ids"] UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { # A, test, EOS, en_XX "input_ids": [[62, 3034, 2, 250004]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 250001, } , )
241
0