paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/ace-a-generic-constraint-solver
|
ACE, a generic constraint solver
|
2302.05405
|
https://arxiv.org/abs/2302.05405v2
|
https://arxiv.org/pdf/2302.05405v2.pdf
|
https://github.com/xcsp3team/ace
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-unified-framework-for-quantifying-privacy
|
A Unified Framework for Quantifying Privacy Risk in Synthetic Data
|
2211.10459
|
https://arxiv.org/abs/2211.10459v1
|
https://arxiv.org/pdf/2211.10459v1.pdf
|
https://github.com/statice/anonymeter
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/diffusion-explainer-visual-explanation-for
|
Diffusion Explainer: Visual Explanation for Text-to-image Stable Diffusion
|
2305.03509
|
https://arxiv.org/abs/2305.03509v3
|
https://arxiv.org/pdf/2305.03509v3.pdf
|
https://github.com/poloclub/diffusion-explainer
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/intervalmdp-jl-accelerated-value-iteration
|
IntervalMDP.jl: Accelerated Value Iteration for Interval Markov Decision Processes
|
2401.04068
|
https://arxiv.org/abs/2401.04068v2
|
https://arxiv.org/pdf/2401.04068v2.pdf
|
https://github.com/zinoex/intervalmdp.jl
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/stars-enabled-integrated-sensing-and
|
STARS Enabled Integrated Sensing and Communications
|
2207.10748
|
https://arxiv.org/abs/2207.10748v3
|
https://arxiv.org/pdf/2207.10748v3.pdf
|
https://github.com/zhaolin820/stars-enabled-integrated-sensing-and-communications
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/learning-to-classify-images-without-labels
|
SCAN: Learning to Classify Images without Labels
|
2005.12320
|
https://arxiv.org/abs/2005.12320v2
|
https://arxiv.org/pdf/2005.12320v2.pdf
|
https://github.com/2023-MindSpore-4/Code14/tree/main/simclr
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/autoregressive-gan-for-semantic-unconditional
|
Autoregressive GAN for Semantic Unconditional Head Motion Generation
|
2211.00987
|
https://arxiv.org/abs/2211.00987v2
|
https://arxiv.org/pdf/2211.00987v2.pdf
|
https://github.com/louisbearing/unconditionalheadmotion
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/solving-elliptic-problems-with-singular
|
Solving Elliptic Problems with Singular Sources using Singularity Splitting Deep Ritz Method
|
2209.02931
|
https://arxiv.org/abs/2209.02931v2
|
https://arxiv.org/pdf/2209.02931v2.pdf
|
https://github.com/hhjc-web/ssdrm
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/memguard-defending-against-black-box
|
MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples
|
1909.10594
|
https://arxiv.org/abs/1909.10594v3
|
https://arxiv.org/pdf/1909.10594v3.pdf
|
https://github.com/jinyuan-jia/memguard
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/learning-navigational-visual-representations
|
Learning Navigational Visual Representations with Semantic Map Supervision
|
2307.12335
|
https://arxiv.org/abs/2307.12335v1
|
https://arxiv.org/pdf/2307.12335v1.pdf
|
https://github.com/yiconghong/ego2map-navit
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/baryonic-features-in-the-matter-transfer
|
Baryonic Features in the Matter Transfer Function
|
astro-ph/9709112
|
https://arxiv.org/abs/astro-ph/9709112v1
|
https://arxiv.org/pdf/astro-ph/9709112v1.pdf
|
https://github.com/cosmodesi/cosmoprimo
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/2pcnet-two-phase-consistency-training-for-day
|
2PCNet: Two-Phase Consistency Training for Day-to-Night Unsupervised Domain Adaptive Object Detection
|
2303.13853
|
https://arxiv.org/abs/2303.13853v1
|
https://arxiv.org/pdf/2303.13853v1.pdf
|
https://github.com/mecarill/2pcnet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/multilingual-translation-with-extensible
|
Multilingual Translation with Extensible Multilingual Pretraining and Finetuning
|
2008.00401
|
https://arxiv.org/abs/2008.00401v1
|
https://arxiv.org/pdf/2008.00401v1.pdf
|
https://github.com/russiannlp/rucola
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/effective-open-intent-classification-with-k
|
Effective Open Intent Classification with K-center Contrastive Learning and Adjustable Decision Boundary
|
2304.10220
|
https://arxiv.org/abs/2304.10220v1
|
https://arxiv.org/pdf/2304.10220v1.pdf
|
https://github.com/lxk00/clap
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/efficient-reachability-analysis-of-closed
|
Efficient Reachability Analysis of Closed-Loop Systems with Neural Network Controllers
|
2101.01815
|
https://arxiv.org/abs/2101.01815v2
|
https://arxiv.org/pdf/2101.01815v2.pdf
|
https://github.com/mit-acl/nn_robustness_analysis
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/flair-1-semantic-segmentation-and-domain
|
FLAIR #1: semantic segmentation and domain adaptation dataset
|
2211.12979
|
https://arxiv.org/abs/2211.12979v5
|
https://arxiv.org/pdf/2211.12979v5.pdf
|
https://github.com/IGNF/FLAIR-1-AI-Challenge
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-representative-trajectories-of
|
Learning Representative Trajectories of Dynamical Systems via Domain-Adaptive Imitation
|
2304.10260
|
https://arxiv.org/abs/2304.10260v1
|
https://arxiv.org/pdf/2304.10260v1.pdf
|
https://github.com/dlr-mi/dati
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/a-holistic-approach-to-predicting-top-quark
|
A Holistic Approach to Predicting Top Quark Kinematic Properties with the Covariant Particle Transformer
|
2203.05687
|
https://arxiv.org/abs/2203.05687v3
|
https://arxiv.org/pdf/2203.05687v3.pdf
|
https://github.com/hep-lbdl/covariant-particle-transformer
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/light-weight-deep-extreme-multilabel
|
Light-weight Deep Extreme Multilabel Classification
|
2304.11045
|
https://arxiv.org/abs/2304.11045v1
|
https://arxiv.org/pdf/2304.11045v1.pdf
|
https://github.com/misterpawan/lightdxml
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-convnet-for-the-2020s
|
A ConvNet for the 2020s
|
2201.03545
|
https://arxiv.org/abs/2201.03545v2
|
https://arxiv.org/pdf/2201.03545v2.pdf
|
https://github.com/k-h-ismail/convnext-dcls
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-scalable-adaptive-learning-with-graph
|
Towards Scalable Adaptive Learning with Graph Neural Networks and Reinforcement Learning
|
2305.06398
|
https://arxiv.org/abs/2305.06398v1
|
https://arxiv.org/pdf/2305.06398v1.pdf
|
https://github.com/jvasso/graph-rl4adaptive-learning
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/variational-quantum-simulation-of-the-fokker
|
Variational Quantum Simulation of the Fokker-Planck Equation applied to Quantum Radiation Reaction
|
2411.17517
|
https://arxiv.org/abs/2411.17517v2
|
https://arxiv.org/pdf/2411.17517v2.pdf
|
https://github.com/OsAmaro/QuantumFokkerPlanck
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/learning-permutation-symmetries-with-gips-in
|
Learning permutation symmetries with gips in R
|
2307.00790
|
https://arxiv.org/abs/2307.00790v3
|
https://arxiv.org/pdf/2307.00790v3.pdf
|
https://github.com/przechoj/gips_replication_code
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/resolving-the-hubble-tension-with-new-early
|
Resolving the Hubble Tension with New Early Dark Energy
|
2006.06686
|
https://arxiv.org/abs/2006.06686v3
|
https://arxiv.org/pdf/2006.06686v3.pdf
|
https://github.com/nede-cosmo/triggerclass
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/joint-acoustic-echo-cancellation-and-blind
|
Joint Acoustic Echo Cancellation and Blind Source Extraction based on Independent Vector Extraction
|
2205.06473
|
https://arxiv.org/abs/2205.06473v2
|
https://arxiv.org/pdf/2205.06473v2.pdf
|
https://github.com/thomashaubner/joint_aec_bse
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/scaling-up-dynamic-graph-representation
|
Scaling Up Dynamic Graph Representation Learning via Spiking Neural Networks
|
2208.10364
|
https://arxiv.org/abs/2208.10364v3
|
https://arxiv.org/pdf/2208.10364v3.pdf
|
https://github.com/edisonleeeee/spikenet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/enriching-language-models-with-graph-based
|
Enriching language models with graph-based context information to better understand textual data
|
2305.11070
|
https://arxiv.org/abs/2305.11070v1
|
https://arxiv.org/pdf/2305.11070v1.pdf
|
https://github.com/tryptofanik/gc-bert
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/assessing-the-predicting-power-of-gps-data
|
Assessing the predicting power of GPS data for aftershocks forecasting
|
2305.11183
|
https://arxiv.org/abs/2305.11183v1
|
https://arxiv.org/pdf/2305.11183v1.pdf
|
https://github.com/vicioms/gps_aftershocks_ml
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/measuring-intersectional-biases-in-historical
|
Measuring Intersectional Biases in Historical Documents
|
2305.12376
|
https://arxiv.org/abs/2305.12376v1
|
https://arxiv.org/pdf/2305.12376v1.pdf
|
https://github.com/copenlu/intersectional-bias-pbw
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/zero-shot-end-to-end-spoken-language
|
Zero-Shot End-to-End Spoken Language Understanding via Cross-Modal Selective Self-Training
|
2305.12793
|
https://arxiv.org/abs/2305.12793v2
|
https://arxiv.org/pdf/2305.12793v2.pdf
|
https://github.com/amazon-science/zero-shot-e2e-slu
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/uncertainty-based-detection-of-adversarial
|
Uncertainty-based Detection of Adversarial Attacks in Semantic Segmentation
|
2305.12825
|
https://arxiv.org/abs/2305.12825v2
|
https://arxiv.org/pdf/2305.12825v2.pdf
|
https://github.com/kmaag/adversarial-attack-detection-uncertainty
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/asynchronous-trajectory-matching-based
|
Asynchronous Trajectory Matching-Based Multimodal Maritime Data Fusion for Vessel Traffic Surveillance in Inland Waterways
|
2302.11283
|
https://arxiv.org/abs/2302.11283v1
|
https://arxiv.org/pdf/2302.11283v1.pdf
|
https://github.com/gy65896/DeepSORVF
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/generative-data-driven-approaches-for
|
Generative data-driven approaches for stochastic subgrid parameterizations in an idealized ocean model
|
2302.07984
|
https://arxiv.org/abs/2302.07984v1
|
https://arxiv.org/pdf/2302.07984v1.pdf
|
https://github.com/m2lines/pyqg_generative
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/cl-uzh-at-semeval-2023-task-10-sexism
|
CL-UZH at SemEval-2023 Task 10: Sexism Detection through Incremental Fine-Tuning and Multi-Task Learning with Label Descriptions
|
2306.03907
|
https://arxiv.org/abs/2306.03907v1
|
https://arxiv.org/pdf/2306.03907v1.pdf
|
https://github.com/jagol/cl-uzh-edos-2023
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/how-poor-is-the-stimulus-evaluating
|
How poor is the stimulus? Evaluating hierarchical generalization in neural networks trained on child-directed speech
|
2301.11462
|
https://arxiv.org/abs/2301.11462v2
|
https://arxiv.org/pdf/2301.11462v2.pdf
|
https://github.com/adityayedetore/lm-povstim-with-childes
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/predicting-gender-of-brazilian-names-using
|
Predicting Gender by First Name Using Character-level Machine Learning
|
2106.10156
|
https://arxiv.org/abs/2106.10156v2
|
https://arxiv.org/pdf/2106.10156v2.pdf
|
https://github.com/roscibely/Gender-Classification
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/a-term-based-approach-for-generating-finite
|
A Term-based Approach for Generating Finite Automata from Interaction Diagrams
|
2306.02983
|
https://arxiv.org/abs/2306.02983v2
|
https://arxiv.org/pdf/2306.02983v2.pdf
|
https://github.com/erwanm974/hibou_nfa_generation
| false
| true
| false
|
none
|
https://paperswithcode.com/paper/subgraph2vec-learning-distributed
|
subgraph2vec: Learning Distributed Representations of Rooted Sub-graphs from Large Graphs
|
1606.08928
|
http://arxiv.org/abs/1606.08928v1
|
http://arxiv.org/pdf/1606.08928v1.pdf
|
https://github.com/mldroid/subgraph2vec_tf
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/sensing-the-pulse-of-the-pandemic
|
Sensing the Pulse of the Pandemic: Geovisualizing the Demographic Disparities of Public Sentiment toward COVID-19 through Social Media
|
2304.06120
|
https://arxiv.org/abs/2304.06120v2
|
https://arxiv.org/pdf/2304.06120v2.pdf
|
https://github.com/binbinlingiser/sentiment-adjusted-by-demographics-sad-index
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/distributionally-robust-ensemble-of-lottery
|
Distributionally Robust Ensemble of Lottery Tickets Towards Calibrated Sparse Network Training
| null |
https://openreview.net/forum?id=WrRG0C1Vo5
|
https://openreview.net/pdf?id=WrRG0C1Vo5
|
https://github.com/ritmininglab/dre
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/contrabar-contrastive-bayes-adaptive-deep-rl
|
ContraBAR: Contrastive Bayes-Adaptive Deep RL
|
2306.02418
|
https://arxiv.org/abs/2306.02418v1
|
https://arxiv.org/pdf/2306.02418v1.pdf
|
https://github.com/ec2604/contrabar
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/nice-slam-with-adaptive-feature-grids
|
NICE-SLAM with Adaptive Feature Grids
|
2306.02395
|
https://arxiv.org/abs/2306.02395v2
|
https://arxiv.org/pdf/2306.02395v2.pdf
|
https://github.com/zhangganlin/nice-slam-with-adaptive-feature-grids
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/mavd-the-first-open-large-scale-mandarin
|
MAVD: The First Open Large-Scale Mandarin Audio-Visual Dataset with Depth Information
|
2306.02263
|
https://arxiv.org/abs/2306.02263v1
|
https://arxiv.org/pdf/2306.02263v1.pdf
|
https://github.com/springhuo/mavd
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/balancing-logit-variation-for-long-tailed-1
|
Balancing Logit Variation for Long-tailed Semantic Segmentation
|
2306.02061
|
https://arxiv.org/abs/2306.02061v1
|
https://arxiv.org/pdf/2306.02061v1.pdf
|
https://github.com/grantword8/blv
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/robust-imaging-sonar-based-place-recognition
|
Robust Imaging Sonar-based Place Recognition and Localization in Underwater Environments
|
2305.14773
|
https://arxiv.org/abs/2305.14773v1
|
https://arxiv.org/pdf/2305.14773v1.pdf
|
https://github.com/sparolab/sonar_context
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/debiased-pairwise-learning-from-positive
|
Debiased Pairwise Learning from Positive-Unlabeled Implicit Feedback
|
2307.15973
|
https://arxiv.org/abs/2307.15973v1
|
https://arxiv.org/pdf/2307.15973v1.pdf
|
https://github.com/liubin06/dpl
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/pygwalker-on-the-fly-assistant-for
|
PyGWalker: On-the-fly Assistant for Exploratory Visual Data Analysis
|
2406.11637
|
https://arxiv.org/abs/2406.11637v1
|
https://arxiv.org/pdf/2406.11637v1.pdf
|
https://github.com/Kanaries/pygwalker
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/computational-methods-for-fast-bayesian-model
|
Computational methods for fast Bayesian model assessment via calibrated posterior p-values
|
2306.04866
|
https://arxiv.org/abs/2306.04866v2
|
https://arxiv.org/pdf/2306.04866v2.pdf
|
https://github.com/salleuska/fastcppp
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/deepening-gamma-ray-point-source-catalogues
|
Deepening gamma-ray point-source catalogues with sub-threshold information
|
2306.16483
|
https://arxiv.org/abs/2306.16483v2
|
https://arxiv.org/pdf/2306.16483v2.pdf
|
https://github.com/aurelio-amerio/gpcs
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/the-drunkard-s-odometry-estimating-camera
|
The Drunkard's Odometry: Estimating Camera Motion in Deforming Scenes
|
2306.16917
|
https://arxiv.org/abs/2306.16917v1
|
https://arxiv.org/pdf/2306.16917v1.pdf
|
https://github.com/UZ-SLAMLab/DrunkardsOdometry
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/hierarchical-consistent-contrastive-learning
|
Hierarchical Consistent Contrastive Learning for Skeleton-Based Action Recognition with Growing Augmentations
|
2211.13466
|
https://arxiv.org/abs/2211.13466v3
|
https://arxiv.org/pdf/2211.13466v3.pdf
|
https://github.com/JHang2020/HiCLR
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/end-to-end-differentiable-molecular-mechanics
|
End-to-End Differentiable Molecular Mechanics Force Field Construction
|
2010.01196
|
https://arxiv.org/abs/2010.01196v3
|
https://arxiv.org/pdf/2010.01196v3.pdf
|
https://github.com/kntkb/openmmforcefields
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/minddiffuser-controlled-image-reconstruction-1
|
MindDiffuser: Controlled Image Reconstruction from Human Brain Activity with Semantic and Structural Diffusion
|
2308.04249
|
https://arxiv.org/abs/2308.04249v1
|
https://arxiv.org/pdf/2308.04249v1.pdf
|
https://github.com/reedonepeck/minddiffuser
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition
|
Deep Residual Learning for Image Recognition
|
1512.03385
|
http://arxiv.org/abs/1512.03385v1
|
http://arxiv.org/pdf/1512.03385v1.pdf
|
https://github.com/ljy-hy/mentormix_pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/model-based-offline-reinforcement-learning
|
Model-Based Offline Reinforcement Learning with Pessimism-Modulated Dynamics Belief
|
2210.06692
|
https://arxiv.org/abs/2210.06692v2
|
https://arxiv.org/pdf/2210.06692v2.pdf
|
https://github.com/2023-MindSpore-1/ms-code-220/tree/main/pmdb
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/conditional-variational-autoencoder-with
|
Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
|
2106.06103
|
https://arxiv.org/abs/2106.06103v1
|
https://arxiv.org/pdf/2106.06103v1.pdf
|
https://github.com/lakahaga/dc-comix-tts
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/mixer-tts-non-autoregressive-fast-and-compact
|
Mixer-TTS: non-autoregressive, fast and compact text-to-speech model conditioned on language model embeddings
|
2110.03584
|
https://arxiv.org/abs/2110.03584v2
|
https://arxiv.org/pdf/2110.03584v2.pdf
|
https://github.com/lakahaga/dc-comix-tts
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/qmix-monotonic-value-function-factorisation
|
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
|
1803.11485
|
http://arxiv.org/abs/1803.11485v2
|
http://arxiv.org/pdf/1803.11485v2.pdf
|
https://github.com/2023-MindSpore-1/ms-code-221/tree/main/qmix
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/fpdm-domain-specific-fast-pre-training
|
$FastDoc$: Domain-Specific Fast Continual Pre-training Technique using Document-Level Metadata and Taxonomy
|
2306.06190
|
https://arxiv.org/abs/2306.06190v3
|
https://arxiv.org/pdf/2306.06190v3.pdf
|
https://github.com/manavkapadnis/FPDM-Fast-Pre-training-Technique
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/on-a-tropicalization-of-planar-polynomial
|
On a tropicalization of planar polynomial ODEs with finitely many structurally stable phase portraits
|
2305.18002
|
https://arxiv.org/abs/2305.18002v3
|
https://arxiv.org/pdf/2305.18002v3.pdf
|
https://github.com/ahsarantaris/tropical-phase-plane
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-large-scale-empirical-study-on-semantic
|
A Large-Scale Empirical Study on Semantic Versioning in Golang Ecosystem
|
2309.02894
|
https://arxiv.org/abs/2309.02894v2
|
https://arxiv.org/pdf/2309.02894v2.pdf
|
https://github.com/liwenke1/GoSVI
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/nearest-neighbor-and-kernel-survival-analysis
|
Nearest Neighbor and Kernel Survival Analysis: Nonasymptotic Error Bounds and Strong Consistency Rates
|
1905.05285
|
https://arxiv.org/abs/1905.05285v2
|
https://arxiv.org/pdf/1905.05285v2.pdf
|
https://github.com/georgehc/npsurvival
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/revisiting-ensembling-in-one-shot-federated
|
Revisiting Ensembling in One-Shot Federated Learning
|
2411.07182
|
https://arxiv.org/abs/2411.07182v1
|
https://arxiv.org/pdf/2411.07182v1.pdf
|
https://github.com/sacs-epfl/fens
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/estimating-lexical-complexity-from-document
|
Estimating Lexical Complexity from Document-Level Distributions
|
2404.01196
|
https://arxiv.org/abs/2404.01196v1
|
https://arxiv.org/pdf/2404.01196v1.pdf
|
https://github.com/sondrewold/lexical_complexity_estimation
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/liquid-structural-state-space-models
|
Liquid Structural State-Space Models
|
2209.12951
|
https://arxiv.org/abs/2209.12951v1
|
https://arxiv.org/pdf/2209.12951v1.pdf
|
https://github.com/raminmh/liquid-s4
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-effective-ancient-chinese-translation
|
Towards Effective Ancient Chinese Translation: Dataset, Model, and Evaluation
|
2308.00240
|
https://arxiv.org/abs/2308.00240v1
|
https://arxiv.org/pdf/2308.00240v1.pdf
|
https://github.com/rucaibox/erya
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/generative-downscaling-of-pde-solvers-with
|
Generative downscaling of PDE solvers with physics-guided diffusion models
|
2404.05009
|
https://arxiv.org/abs/2404.05009v1
|
https://arxiv.org/pdf/2404.05009v1.pdf
|
https://github.com/woodssss/generative-downsscaling-pde-solvers
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/training-neural-networks-as-recognizers-of
|
Training Neural Networks as Recognizers of Formal Languages
|
2411.07107
|
https://arxiv.org/abs/2411.07107v1
|
https://arxiv.org/pdf/2411.07107v1.pdf
|
https://github.com/rycolab/flare
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/training-neural-networks-as-recognizers-of
|
Training Neural Networks as Recognizers of Formal Languages
|
2411.07107
|
https://arxiv.org/abs/2411.07107v1
|
https://arxiv.org/pdf/2411.07107v1.pdf
|
https://github.com/rycolab/neural-network-recognizers
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/xgbd-explanation-guided-graph-backdoor
|
XGBD: Explanation-Guided Graph Backdoor Detection
|
2308.04406
|
https://arxiv.org/abs/2308.04406v1
|
https://arxiv.org/pdf/2308.04406v1.pdf
|
https://github.com/guanzihan/gnn_backdoor_detection
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/improved-benthic-classification-using
|
Improved Benthic Classification using Resolution Scaling and SymmNet Unsupervised Domain Adaptation
|
2303.10960
|
https://arxiv.org/abs/2303.10960v1
|
https://arxiv.org/pdf/2303.10960v1.pdf
|
https://github.com/hdoi5324/benthic-uda
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/structural-attention-rethinking-transformer
|
Structural Attention: Rethinking Transformer for Unpaired Medical Image Synthesis
|
2406.18967
|
https://arxiv.org/abs/2406.18967v2
|
https://arxiv.org/pdf/2406.18967v2.pdf
|
https://github.com/hieuphan33/miccai2024-unest
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/mamba-linear-time-sequence-modeling-with
|
Mamba: Linear-Time Sequence Modeling with Selective State Spaces
|
2312.00752
|
https://arxiv.org/abs/2312.00752v2
|
https://arxiv.org/pdf/2312.00752v2.pdf
|
https://github.com/mzeromiko/vmamba
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/tc-gnn-accelerating-sparse-graph-neural
|
TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs
|
2112.02052
|
https://arxiv.org/abs/2112.02052v4
|
https://arxiv.org/pdf/2112.02052v4.pdf
|
https://github.com/YukeWang96/TCGNN-Pytorch
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/attribute-descent-simulating-object-centric
|
Attribute Descent: Simulating Object-Centric Datasets on the Content Level and Beyond
|
2202.14034
|
https://arxiv.org/abs/2202.14034v2
|
https://arxiv.org/pdf/2202.14034v2.pdf
|
https://github.com/yorkeyao/VehicleX
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/potter-pooling-attention-transformer-for
|
POTTER: Pooling Attention Transformer for Efficient Human Mesh Recovery
|
2303.13357
|
https://arxiv.org/abs/2303.13357v1
|
https://arxiv.org/pdf/2303.13357v1.pdf
|
https://github.com/zczcwh/potter
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/minority-oriented-vicinity-expansion-with
|
Minority-Oriented Vicinity Expansion with Attentive Aggregation for Video Long-Tailed Recognition
|
2211.13471
|
https://arxiv.org/abs/2211.13471v1
|
https://arxiv.org/pdf/2211.13471v1.pdf
|
https://github.com/wjun0830/move
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/py-gwbse-a-high-throughput-workflow-package
|
$py$GWBSE: A high throughput workflow package for GW-BSE calculations
|
2210.00152
|
https://arxiv.org/abs/2210.00152v2
|
https://arxiv.org/pdf/2210.00152v2.pdf
|
https://github.com/cmdlab/pygwbse
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/iterative-graph-alignment
|
Iterative Graph Alignment
|
2408.16667
|
https://arxiv.org/abs/2408.16667v1
|
https://arxiv.org/pdf/2408.16667v1.pdf
|
https://github.com/fangyuan-ksgk/ruleeval
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/hyperparameter-optimization-for-ast
|
Hyperparameter Optimization for AST Differencing
|
2011.10268
|
https://arxiv.org/abs/2011.10268v3
|
https://arxiv.org/pdf/2011.10268v3.pdf
|
https://github.com/GumTreeDiff/gumtree
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/improve-long-term-memory-learning-through
|
Improve Long-term Memory Learning Through Rescaling the Error Temporally
|
2307.11462
|
https://arxiv.org/abs/2307.11462v1
|
https://arxiv.org/pdf/2307.11462v1.pdf
|
https://github.com/radarFudan/INTEREST
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/generative-modeling-helps-weak-supervision
|
Generative Modeling Helps Weak Supervision (and Vice Versa)
|
2203.12023
|
https://arxiv.org/abs/2203.12023v6
|
https://arxiv.org/pdf/2203.12023v6.pdf
|
https://github.com/benbo/wsgan-paper
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/magic-nerf-lens-interactive-fusion-of-neural
|
Magic NeRF Lens: Interactive Fusion of Neural Radiance Fields for Virtual Facility Inspection
|
2307.09860
|
https://arxiv.org/abs/2307.09860v1
|
https://arxiv.org/pdf/2307.09860v1.pdf
|
https://github.com/uhhhci/immersive-ngp
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/bayesian-optimized-monte-carlo-planning
|
Bayesian Optimized Monte Carlo Planning
|
2010.03597
|
https://arxiv.org/abs/2010.03597v1
|
https://arxiv.org/pdf/2010.03597v1.pdf
|
https://github.com/sisl/BOMCP.jl
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/from-sparse-to-soft-mixtures-of-experts
|
From Sparse to Soft Mixtures of Experts
|
2308.00951
|
https://arxiv.org/abs/2308.00951v2
|
https://arxiv.org/pdf/2308.00951v2.pdf
|
https://github.com/fkodom/soft-mixture-of-experts
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-to-paraphrase-sentences-to-different
|
Learning to Paraphrase Sentences to Different Complexity Levels
|
2308.02226
|
https://arxiv.org/abs/2308.02226v1
|
https://arxiv.org/pdf/2308.02226v1.pdf
|
https://github.com/alisonhc/change-complexity
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/distilbert-a-distilled-version-of-bert
|
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter
|
1910.01108
|
https://arxiv.org/abs/1910.01108v4
|
https://arxiv.org/pdf/1910.01108v4.pdf
|
https://github.com/philschmid/knowledge-distillation-transformers-pytorch-sagemaker
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/fastformers-highly-efficient-transformer
|
FastFormers: Highly Efficient Transformer Models for Natural Language Understanding
|
2010.13382
|
https://arxiv.org/abs/2010.13382v1
|
https://arxiv.org/pdf/2010.13382v1.pdf
|
https://github.com/philschmid/knowledge-distillation-transformers-pytorch-sagemaker
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/yolov3-an-incremental-improvement
|
YOLOv3: An Incremental Improvement
|
1804.02767
|
http://arxiv.org/abs/1804.02767v1
|
http://arxiv.org/pdf/1804.02767v1.pdf
|
https://github.com/MindSpore-paper-code-3/code5/tree/main/res2net_yolov3
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/adarevd-adaptive-patch-exiting-reversible-1
|
AdaRevD: Adaptive Patch Exiting Reversible Decoder Pushes the Limit of Image Deblurring
|
2406.09135
|
https://arxiv.org/abs/2406.09135v1
|
https://arxiv.org/pdf/2406.09135v1.pdf
|
https://github.com/INVOKERer/AdaRevD
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/rethinking-uncertainly-missing-and-ambiguous
|
Rethinking Uncertainly Missing and Ambiguous Visual Modality in Multi-Modal Entity Alignment
|
2307.16210
|
https://arxiv.org/abs/2307.16210v2
|
https://arxiv.org/pdf/2307.16210v2.pdf
|
https://github.com/zjukg/umaea
| false
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/better-speech-synthesis-through-scaling
|
Better speech synthesis through scaling
|
2305.07243
|
https://arxiv.org/abs/2305.07243v2
|
https://arxiv.org/pdf/2305.07243v2.pdf
|
https://github.com/neonbjb/tortoise-tts
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/synthesis-of-separation-processes-with
|
Synthesis of separation processes with reinforcement learning
|
2211.04327
|
https://arxiv.org/abs/2211.04327v1
|
https://arxiv.org/pdf/2211.04327v1.pdf
|
https://github.com/lollcat/aspen-rl
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/it5-large-scale-text-to-text-pretraining-for
|
IT5: Text-to-text Pretraining for Italian Language Understanding and Generation
|
2203.03759
|
https://arxiv.org/abs/2203.03759v2
|
https://arxiv.org/pdf/2203.03759v2.pdf
|
https://github.com/MrFeelgoood/RealEstateStocksForecasting
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/optimal-sample-size-planning-for-the-wilcoxon
|
Optimal Sample Size Planning for the Wilcoxon-Mann-Whitney-Test
|
1805.12249
|
http://arxiv.org/abs/1805.12249v1
|
http://arxiv.org/pdf/1805.12249v1.pdf
|
https://github.com/cran/WMWssp
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/deformation-equivariant-cross-modality-image
|
Deformation equivariant cross-modality image synthesis with paired non-aligned training data
|
2208.12491
|
https://arxiv.org/abs/2208.12491v2
|
https://arxiv.org/pdf/2208.12491v2.pdf
|
https://github.com/honkamj/non-aligned-i2i
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/generalized-laplacian-regularized-framelet
|
Generalized Laplacian Regularized Framelet Graph Neural Networks
|
2210.15092
|
https://arxiv.org/abs/2210.15092v2
|
https://arxiv.org/pdf/2210.15092v2.pdf
|
https://github.com/superca729/pl-ufg
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-quantum-of-quic-dissecting-cryptography
|
A Quantum of QUIC: Dissecting Cryptography with Post-Quantum Insights
|
2405.09264
|
https://arxiv.org/abs/2405.09264v1
|
https://arxiv.org/pdf/2405.09264v1.pdf
|
https://github.com/tumi8/quic-crypto-paper
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/scaling-inference-time-search-with-vision
|
Scaling Inference-Time Search with Vision Value Model for Improved Visual Comprehension
|
2412.03704
|
https://arxiv.org/abs/2412.03704v2
|
https://arxiv.org/pdf/2412.03704v2.pdf
|
https://github.com/si0wang/visvm
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/compose-and-conquer-diffusion-based-3d-depth
|
Compose and Conquer: Diffusion-Based 3D Depth Aware Composable Image Synthesis
|
2401.09048
|
https://arxiv.org/abs/2401.09048v1
|
https://arxiv.org/pdf/2401.09048v1.pdf
|
https://github.com/tomtom1103/compose-and-conquer
| true
| true
| true
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.