paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/rebalanced-zero-shot-learning
|
Rebalanced Zero-shot Learning
|
2210.07031
|
https://arxiv.org/abs/2210.07031v2
|
https://arxiv.org/pdf/2210.07031v2.pdf
|
https://github.com/fouriye/rezsl-tip23
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/legal-syllogism-prompting-teaching-large
|
Legal Syllogism Prompting: Teaching Large Language Models for Legal Judgment Prediction
|
2307.08321
|
https://arxiv.org/abs/2307.08321v1
|
https://arxiv.org/pdf/2307.08321v1.pdf
|
https://github.com/jiangcong7/legal-syllogism-prompting
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/kinetic-monte-carlo-methods-for-three
|
Kinetic Monte Carlo methods for three-dimensional diffusive capture problems in exterior domains
|
2406.13644
|
https://arxiv.org/abs/2406.13644v2
|
https://arxiv.org/pdf/2406.13644v2.pdf
|
https://github.com/alanlindsay/3DKMC
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/back-to-mass-square-d-one-the-neutrino-mass
|
Back to (Mass-)Square(d) One: The Neutrino Mass Ordering in Light of Recent Data
|
2007.08526
|
https://arxiv.org/abs/2007.08526v2
|
https://arxiv.org/pdf/2007.08526v2.pdf
|
https://github.com/speysidehep/example-neutrino
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/adaptssr-pre-training-user-model-with
|
AdaptSSR: Pre-training User Model with Augmentation-Adaptive Self-Supervised Ranking
|
2310.09706
|
https://arxiv.org/abs/2310.09706v2
|
https://arxiv.org/pdf/2310.09706v2.pdf
|
https://github.com/yflyl613/AdaptSSR
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/multimodal-brain-age-estimation-using
|
Multimodal brain age estimation using interpretable adaptive population-graph learning
|
2307.04639
|
https://arxiv.org/abs/2307.04639v2
|
https://arxiv.org/pdf/2307.04639v2.pdf
|
https://github.com/bintsi/adaptive-graph-learning
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/can-neural-network-memorization-be-localized
|
Can Neural Network Memorization Be Localized?
|
2307.09542
|
https://arxiv.org/abs/2307.09542v1
|
https://arxiv.org/pdf/2307.09542v1.pdf
|
https://github.com/pratyushmaini/localizing-memorization
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/bsdm-background-suppression-diffusion-model
|
BSDM: Background Suppression Diffusion Model for Hyperspectral Anomaly Detection
|
2307.09861
|
https://arxiv.org/abs/2307.09861v1
|
https://arxiv.org/pdf/2307.09861v1.pdf
|
https://github.com/majitao-xd/bsdm-had
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-deep-learning-framework-for-efficient
|
A deep learning framework for efficient pathology image analysis
|
2502.13027
|
https://arxiv.org/abs/2502.13027v1
|
https://arxiv.org/pdf/2502.13027v1.pdf
|
https://github.com/hms-dbmi/chief
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-an-ai-to-win-ghana-s-national-science
|
Towards an AI to Win Ghana's National Science and Maths Quiz
|
2308.04333
|
https://arxiv.org/abs/2308.04333v1
|
https://arxiv.org/pdf/2308.04333v1.pdf
|
https://github.com/nsmq-ai/nsmqai
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/can-an-ai-win-ghana-s-national-science-and
|
Can an AI Win Ghana's National Science and Maths Quiz? An AI Grand Challenge for Education
|
2301.13089
|
https://arxiv.org/abs/2301.13089v1
|
https://arxiv.org/pdf/2301.13089v1.pdf
|
https://github.com/nsmq-ai/nsmqai
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/how-generalizable-are-deepfake-detectors-an
|
How Generalizable are Deepfake Image Detectors? An Empirical Study
|
2308.04177
|
https://arxiv.org/abs/2308.04177v2
|
https://arxiv.org/pdf/2308.04177v2.pdf
|
https://github.com/boutiquelee/deepfakeempiricalstudy
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/xflow-benchmarking-flow-behaviors-over-graphs
|
XFlow: Benchmarking Flow Behaviors over Graphs
|
2308.03819
|
https://arxiv.org/abs/2308.03819v1
|
https://arxiv.org/pdf/2308.03819v1.pdf
|
https://github.com/xgraphing/xflow
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/sok-evaluations-in-industrial-intrusion
|
SoK: Evaluations in Industrial Intrusion Detection Research
|
2311.02929
|
https://arxiv.org/abs/2311.02929v1
|
https://arxiv.org/pdf/2311.02929v1.pdf
|
https://github.com/fkie-cad/ipal_evaluate
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/delivering-document-conversion-as-a-cloud
|
Delivering Document Conversion as a Cloud Service with High Throughput and Responsiveness
|
2206.00785
|
https://arxiv.org/abs/2206.00785v1
|
https://arxiv.org/pdf/2206.00785v1.pdf
|
https://github.com/ds4sd/deepsearch-toolkit
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/neural-networks-for-programming-quantum
|
Neural Networks for Programming Quantum Annealers
|
2308.06807
|
https://arxiv.org/abs/2308.06807v1
|
https://arxiv.org/pdf/2308.06807v1.pdf
|
https://github.com/boschsamuel/nnforprogrammingquantumannealers
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/hierarchy-flow-for-high-fidelity-image-to
|
Hierarchy Flow For High-Fidelity Image-to-Image Translation
|
2308.06909
|
https://arxiv.org/abs/2308.06909v1
|
https://arxiv.org/pdf/2308.06909v1.pdf
|
https://github.com/weichenfan/hierarchyflow
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/global-features-are-all-you-need-for-image
|
Global Features are All You Need for Image Retrieval and Reranking
|
2308.06954
|
https://arxiv.org/abs/2308.06954v2
|
https://arxiv.org/pdf/2308.06954v2.pdf
|
https://github.com/shihaoshao-gh/superglobal
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/the-importance-of-being-scalable-improving
|
The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains
|
2410.24169
|
https://arxiv.org/abs/2410.24169v1
|
https://arxiv.org/pdf/2410.24169v1.pdf
|
https://github.com/ASK-Berkeley/EScAIP
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/bounding-and-estimating-mcmc-convergence
|
Estimating MCMC convergence rates using common random number simulation
|
2309.15735
|
https://arxiv.org/abs/2309.15735v3
|
https://arxiv.org/pdf/2309.15735v3.pdf
|
https://github.com/sixter/commonrandomnumber
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/powerset-multi-class-cross-entropy-loss-for
|
Powerset multi-class cross entropy loss for neural speaker diarization
|
2310.13025
|
https://arxiv.org/abs/2310.13025v1
|
https://arxiv.org/pdf/2310.13025v1.pdf
|
https://github.com/frenchkrab/is2023-powerset-diarization
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/speech-recognition-and-multi-speaker
|
Speech Recognition and Multi-Speaker Diarization of Long Conversations
|
2005.08072
|
https://arxiv.org/abs/2005.08072v2
|
https://arxiv.org/pdf/2005.08072v2.pdf
|
https://github.com/frenchkrab/is2023-powerset-diarization
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/ava-avd-audio-visual-speaker-diarization-in
|
AVA-AVD: Audio-Visual Speaker Diarization in the Wild
|
2111.14448
|
https://arxiv.org/abs/2111.14448v5
|
https://arxiv.org/pdf/2111.14448v5.pdf
|
https://github.com/frenchkrab/is2023-powerset-diarization
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/understanding-and-optimizing-deep-learning
|
Boosting DNN Cold Inference on Edge Devices
|
2206.07446
|
https://arxiv.org/abs/2206.07446v2
|
https://arxiv.org/pdf/2206.07446v2.pdf
|
https://github.com/ubiquitouslearning/nnv12
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/primitive-geometry-segment-pre-training-for
|
Primitive Geometry Segment Pre-training for 3D Medical Image Segmentation
|
2401.03665
|
https://arxiv.org/abs/2401.03665v1
|
https://arxiv.org/pdf/2401.03665v1.pdf
|
https://github.com/super-tadory/primgeoseg
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/nef-neural-edge-fields-for-3d-parametric
|
NEF: Neural Edge Fields for 3D Parametric Curve Reconstruction from Multi-view Images
|
2303.07653
|
https://arxiv.org/abs/2303.07653v2
|
https://arxiv.org/pdf/2303.07653v2.pdf
|
https://github.com/yunfan1202/NEF_code
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/are-current-long-term-video-understanding
|
Are current long-term video understanding datasets long-term?
|
2308.11244
|
https://arxiv.org/abs/2308.11244v1
|
https://arxiv.org/pdf/2308.11244v1.pdf
|
https://github.com/ombretta/longterm_datasets
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/protein-dna-binding-sites-prediction-based-on
|
Protein-DNA binding sites prediction based on pre-trained protein language model and contrastive learning
|
2306.15912
|
https://arxiv.org/abs/2306.15912v1
|
https://arxiv.org/pdf/2306.15912v1.pdf
|
https://github.com/yandrewl/clape
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/exposing-flaws-of-generative-model-evaluation-1
|
Exposing flaws of generative model evaluation metrics and their unfair treatment of diffusion models
|
2306.04675
|
https://arxiv.org/abs/2306.04675v2
|
https://arxiv.org/pdf/2306.04675v2.pdf
|
https://github.com/gmum/PALATE
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/coarse-to-fine-amodal-segmentation-with-shape
|
Coarse-to-Fine Amodal Segmentation with Shape Prior
|
2308.16825
|
https://arxiv.org/abs/2308.16825v1
|
https://arxiv.org/pdf/2308.16825v1.pdf
|
https://github.com/amazon-science/c2f-seg
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/large-language-model-can-transcribe-speech-in
|
Large Language Model Can Transcribe Speech in Multi-Talker Scenarios with Versatile Instructions
|
2409.08596
|
https://arxiv.org/abs/2409.08596v2
|
https://arxiv.org/pdf/2409.08596v2.pdf
|
https://github.com/cuhealthybrains/mt-llm
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/communication-efficient-learning-of-deep
|
Communication-Efficient Learning of Deep Networks from Decentralized Data
|
1602.05629
|
https://arxiv.org/abs/1602.05629v4
|
https://arxiv.org/pdf/1602.05629v4.pdf
|
https://github.com/Lyhao0212/FedAvg
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/ego4d-around-the-world-in-3000-hours-of
|
Ego4D: Around the World in 3,000 Hours of Egocentric Video
|
2110.07058
|
https://arxiv.org/abs/2110.07058v3
|
https://arxiv.org/pdf/2110.07058v3.pdf
|
https://github.com/frenchkrab/is2023-powerset-diarization
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/product-attribute-value-extraction-using
|
ExtractGPT: Exploring the Potential of Large Language Models for Product Attribute Value Extraction
|
2310.12537
|
https://arxiv.org/abs/2310.12537v5
|
https://arxiv.org/pdf/2310.12537v5.pdf
|
https://github.com/wbsg-uni-mannheim/extractgpt
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/voxelmorph-a-learning-framework-for
|
VoxelMorph: A Learning Framework for Deformable Medical Image Registration
|
1809.05231
|
https://arxiv.org/abs/1809.05231v3
|
https://arxiv.org/pdf/1809.05231v3.pdf
|
https://github.com/jw4hv/geo-sic
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/stratmed-relevance-stratification-for-low
|
StratMed: Relevance Stratification between Biomedical Entities for Sparsity on Medication Recommendation
|
2308.16781
|
https://arxiv.org/abs/2308.16781v4
|
https://arxiv.org/pdf/2308.16781v4.pdf
|
https://github.com/lixiang-222/drug-recommendations
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-divergence-preserving-cut-finite-element
|
A divergence preserving cut finite element method for Darcy flow
|
2205.12023
|
https://arxiv.org/abs/2205.12023v8
|
https://arxiv.org/pdf/2205.12023v8.pdf
|
https://github.com/cutfem/cutfem-library
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/tensorshield-safeguarding-on-device-inference
|
TensorShield: Safeguarding On-Device Inference by Shielding Critical DNN Tensors with TEE
|
2505.22735
|
https://arxiv.org/abs/2505.22735v1
|
https://arxiv.org/pdf/2505.22735v1.pdf
|
https://github.com/suntong30/tensorshield
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/vistruct-visual-structural-knowledge
|
ViStruct: Visual Structural Knowledge Extraction via Curriculum Guided Code-Vision Representation
|
2311.13258
|
https://arxiv.org/abs/2311.13258v1
|
https://arxiv.org/pdf/2311.13258v1.pdf
|
https://github.com/yangyi-chen/vi-struct
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/the-third-dihard-diarization-challenge
|
The Third DIHARD Diarization Challenge
|
2012.01477
|
https://arxiv.org/abs/2012.01477v3
|
https://arxiv.org/pdf/2012.01477v3.pdf
|
https://github.com/frenchkrab/is2023-powerset-diarization
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/echomamba4rec-harmonizing-bidirectional-state
|
EchoMamba4Rec: Harmonizing Bidirectional State Space Models with Spectral Filtering for Advanced Sequential Recommendation
|
2406.02638
|
https://arxiv.org/abs/2406.02638v2
|
https://arxiv.org/pdf/2406.02638v2.pdf
|
https://github.com/wyd0042/EchoMamba4Rec
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/a-physical-model-guided-framework-for
|
A Physical Model-Guided Framework for Underwater Image Enhancement and Depth Estimation
|
2407.04230
|
https://arxiv.org/abs/2407.04230v1
|
https://arxiv.org/pdf/2407.04230v1.pdf
|
https://github.com/ddz16/UWEnhancer
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/post-ocr-document-correction-with-large
|
Post-OCR Document Correction with large Ensembles of Character Sequence-to-Sequence Models
|
2109.06264
|
https://arxiv.org/abs/2109.06264v3
|
https://arxiv.org/pdf/2109.06264v3.pdf
|
https://github.com/jarobyte91/post_ocr_correction
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/distributed-representations-of-words-and-1
|
Distributed Representations of Words and Phrases and their Compositionality
|
1310.4546
|
http://arxiv.org/abs/1310.4546v1
|
http://arxiv.org/pdf/1310.4546v1.pdf
|
https://github.com/Robotmurlock/Deepwalk-and-Node2vec
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/self-distillation-regularized-connectionist
|
Self-distillation Regularized Connectionist Temporal Classification Loss for Text Recognition: A Simple Yet Effective Approach
|
2308.08806
|
https://arxiv.org/abs/2308.08806v4
|
https://arxiv.org/pdf/2308.08806v4.pdf
|
https://github.com/zzyhlyoko/DCTC
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/roboss-a-robust-bounded-sparse-and-smooth
|
RoBoSS: A Robust, Bounded, Sparse, and Smooth Loss Function for Supervised Learning
|
2309.02250
|
https://arxiv.org/abs/2309.02250v1
|
https://arxiv.org/pdf/2309.02250v1.pdf
|
https://github.com/mtanveer1/RoBoSS
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/mask-of-truth-model-sensitivity-to-unexpected
|
Mask of truth: model sensitivity to unexpected regions of medical images
|
2412.04030
|
https://arxiv.org/abs/2412.04030v2
|
https://arxiv.org/pdf/2412.04030v2.pdf
|
https://github.com/theosourget/mmc_masking_eyefundus
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/aggregating-capacity-in-fl-through-successive
|
Aggregating Capacity in FL through Successive Layer Training for Computationally-Constrained Devices
|
2305.17005
|
https://arxiv.org/abs/2305.17005v2
|
https://arxiv.org/pdf/2305.17005v2.pdf
|
https://github.com/k1l1/SLT
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/event-based-dynamic-graph-representation
|
Event-based Dynamic Graph Representation Learning for Patent Application Trend Prediction
|
2308.09780
|
https://arxiv.org/abs/2308.09780v2
|
https://arxiv.org/pdf/2308.09780v2.pdf
|
https://github.com/Hope-Rita/EDGPAT
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/graph-neural-networks-use-graphs-when-they
|
Graph Neural Networks Use Graphs When They Shouldn't
|
2309.04332
|
https://arxiv.org/abs/2309.04332v2
|
https://arxiv.org/pdf/2309.04332v2.pdf
|
https://github.com/mayabechlerspeicher/Graph_Neural_Networks_Overfit_Graphs
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/how-susceptible-are-large-language-models-to
|
How Susceptible are Large Language Models to Ideological Manipulation?
|
2402.11725
|
https://arxiv.org/abs/2402.11725v3
|
https://arxiv.org/pdf/2402.11725v3.pdf
|
https://github.com/kaichen23/llm_ideo_manipulate
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mxt-mamba-x-transformer-for-image-inpainting
|
MxT: Mamba x Transformer for Image Inpainting
|
2407.16126
|
https://arxiv.org/abs/2407.16126v3
|
https://arxiv.org/pdf/2407.16126v3.pdf
|
https://github.com/chrischen1023/mxt
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/omnisearchsage-multi-task-multi-entity
|
OmniSearchSage: Multi-Task Multi-Entity Embeddings for Pinterest Search
|
2404.16260
|
https://arxiv.org/abs/2404.16260v1
|
https://arxiv.org/pdf/2404.16260v1.pdf
|
https://github.com/pinterest/atg-research
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/item-graph2vec-a-efficient-and-effective
|
Item-Graph2vec: a Efficient and Effective Approach using Item Co-occurrence Graph Embedding for Collaborative Filtering
|
2310.14215
|
https://arxiv.org/abs/2310.14215v1
|
https://arxiv.org/pdf/2310.14215v1.pdf
|
https://github.com/cpu135/item-graph2vec
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/end-to-end-user-behavior-retrieval-in-click
|
End-to-End User Behavior Retrieval in Click-Through RatePrediction Model
|
2108.04468
|
https://arxiv.org/abs/2108.04468v1
|
https://arxiv.org/pdf/2108.04468v1.pdf
|
https://github.com/reczoo/FuxiCTR
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/imface-a-sophisticated-nonlinear-3d-morphable
|
ImFace++: A Sophisticated Nonlinear 3D Morphable Face Model with Implicit Neural Representations
|
2312.04028
|
https://arxiv.org/abs/2312.04028v3
|
https://arxiv.org/pdf/2312.04028v3.pdf
|
https://github.com/mingwuzheng/imface
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/deep-interest-network-for-click-through-rate
|
Deep Interest Network for Click-Through Rate Prediction
|
1706.06978
|
http://arxiv.org/abs/1706.06978v4
|
http://arxiv.org/pdf/1706.06978v4.pdf
|
https://github.com/reczoo/FuxiCTR
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/affective-and-dynamic-beam-search-for-story
|
Affective and Dynamic Beam Search for Story Generation
|
2310.15079
|
https://arxiv.org/abs/2310.15079v1
|
https://arxiv.org/pdf/2310.15079v1.pdf
|
https://github.com/tenghaohuang/affgen
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/impala-scalable-distributed-deep-rl-with
|
IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
|
1802.01561
|
http://arxiv.org/abs/1802.01561v3
|
http://arxiv.org/pdf/1802.01561v3.pdf
|
https://github.com/seolhokim/SimpleDistributedRL
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/seamless-integration-of-tactile-sensors-for
|
Seamless Integration of Tactile Sensors for Cobots
|
2309.05792
|
https://arxiv.org/abs/2309.05792v1
|
https://arxiv.org/pdf/2309.05792v1.pdf
|
https://github.com/remkopr/airo-halberd
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/conversational-recommender-system-and-large
|
Conversational Recommender System and Large Language Model Are Made for Each Other in E-commerce Pre-sales Dialogue
|
2310.14626
|
https://arxiv.org/abs/2310.14626v2
|
https://arxiv.org/pdf/2310.14626v2.pdf
|
https://github.com/leeeeoliu/llm-crs
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/normdial-a-comparable-bilingual-synthetic
|
NormDial: A Comparable Bilingual Synthetic Dialog Dataset for Modeling Social Norm Adherence and Violation
|
2310.14563
|
https://arxiv.org/abs/2310.14563v2
|
https://arxiv.org/pdf/2310.14563v2.pdf
|
https://github.com/aochong-li/normdial
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/qonfusion-quantum-approaches-to-gaussian
|
QonFusion -- Quantum Approaches to Gaussian Random Variables: Applications in Stable Diffusion and Brownian Motion
|
2309.16258
|
https://arxiv.org/abs/2309.16258v1
|
https://arxiv.org/pdf/2309.16258v1.pdf
|
https://github.com/BoltzmannEntropy/QonFusion
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/w2v-bert-combining-contrastive-learning-and
|
W2v-BERT: Combining Contrastive Learning and Masked Language Modeling for Self-Supervised Speech Pre-Training
|
2108.06209
|
https://arxiv.org/abs/2108.06209v2
|
https://arxiv.org/pdf/2108.06209v2.pdf
|
https://github.com/wenet-e2e/wenet
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/doclayout-yolo-enhancing-document-layout
|
DocLayout-YOLO: Enhancing Document Layout Analysis through Diverse Synthetic Data and Global-to-Local Adaptive Perception
|
2410.12628
|
https://arxiv.org/abs/2410.12628v1
|
https://arxiv.org/pdf/2410.12628v1.pdf
|
https://github.com/opendatalab/PDF-Extract-Kit
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/tree-prompting-efficient-task-adaptation
|
Tree Prompting: Efficient Task Adaptation without Fine-Tuning
|
2310.14034
|
https://arxiv.org/abs/2310.14034v1
|
https://arxiv.org/pdf/2310.14034v1.pdf
|
https://github.com/csinva/tree-prompt
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/identifiable-cognitive-diagnosis-with-encoder
|
Towards the Identifiability and Explainability for Personalized Learner Modeling: An Inductive Paradigm
|
2309.00300
|
https://arxiv.org/abs/2309.00300v4
|
https://arxiv.org/pdf/2309.00300v4.pdf
|
https://github.com/cslijt/id-cdf
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/the-convergence-of-stochastic-differential
|
The convergence of stochastic differential equations to their linearisation in small noise limits
|
2309.16334
|
https://arxiv.org/abs/2309.16334v2
|
https://arxiv.org/pdf/2309.16334v2.pdf
|
https://github.com/liamblake/explicit-characterisation-sde-linearisation
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mapping-bias-in-vision-language-models
|
debiaSAE: Benchmarking and Mitigating Vision-Language Model Bias
|
2410.13146
|
https://arxiv.org/abs/2410.13146v2
|
https://arxiv.org/pdf/2410.13146v2.pdf
|
https://github.com/kuleens/vlmbiaseval
| true
| true
| false
|
jax
|
https://paperswithcode.com/paper/accelerating-ilp-solvers-for-minimum-flow
|
Accelerating ILP solvers for Minimum Flow Decompositions through search space and dimensionality reductions
|
2311.10563
|
https://arxiv.org/abs/2311.10563v1
|
https://arxiv.org/pdf/2311.10563v1.pdf
|
https://github.com/algbio/optimized-fd
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/second-order-group-knockoffs-with
|
Second-order group knockoffs with applications to GWAS
|
2310.15069
|
https://arxiv.org/abs/2310.15069v2
|
https://arxiv.org/pdf/2310.15069v2.pdf
|
https://github.com/biona001/knockoffspy
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/visualwebbench-how-far-have-multimodal-llms
|
VisualWebBench: How Far Have Multimodal LLMs Evolved in Web Page Understanding and Grounding?
|
2404.05955
|
https://arxiv.org/abs/2404.05955v1
|
https://arxiv.org/pdf/2404.05955v1.pdf
|
https://github.com/visualwebbench/visualwebbench
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/fully-differentiable-ransac
|
Generalized Differentiable RANSAC
|
2212.13185
|
https://arxiv.org/abs/2212.13185v3
|
https://arxiv.org/pdf/2212.13185v3.pdf
|
https://github.com/weitong8591/ars_magsac
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/consensus-guided-correspondence-denoising
|
Progressive Correspondence Pruning by Consensus Learning
|
2101.00591
|
https://arxiv.org/abs/2101.00591v2
|
https://arxiv.org/pdf/2101.00591v2.pdf
|
https://github.com/weitong8591/ars_magsac
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/risk-of-bias-in-chest-x-ray-foundation-models
|
Risk of Bias in Chest Radiography Deep Learning Foundation Models
|
2209.02965
|
https://arxiv.org/abs/2209.02965v3
|
https://arxiv.org/pdf/2209.02965v3.pdf
|
https://github.com/biomedia-mira/cxr-foundation-bias
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/an-application-driven-method-for-assembling
|
An Application Driven Method for Assembling Numerical Schemes for the Solution of Complex Multiphysics Problems
|
2309.17055
|
https://arxiv.org/abs/2309.17055v2
|
https://arxiv.org/pdf/2309.17055v2.pdf
|
https://github.com/pzimbrod/multiphysics-pde-methods
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/alma-lensing-cluster-survey-average-dust-gas
|
ALMA Lensing Cluster Survey: average dust, gas, and star formation properties of cluster and field galaxies from stacking analysis
|
2309.16832
|
https://arxiv.org/abs/2309.16832v1
|
https://arxiv.org/pdf/2309.16832v1.pdf
|
https://github.com/guerrero-andrea/stacking_codes
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/an-image-is-worth-16x16-words-transformers-1
|
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
|
2010.11929
|
https://arxiv.org/abs/2010.11929v2
|
https://arxiv.org/pdf/2010.11929v2.pdf
|
https://github.com/rayanramoul/Visual-Transformer-PyTorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/improved-anisotropic-gaussian-filters
|
Improved Anisotropic Gaussian Filters
|
2303.13278
|
https://arxiv.org/abs/2303.13278v2
|
https://arxiv.org/pdf/2303.13278v2.pdf
|
https://github.com/akeilmann/anigauss
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/the-partial-entropy-decomposition-decomposing
|
The Partial Entropy Decomposition: Decomposing multivariate entropy and mutual information via pointwise common surprisal
|
1702.01591
|
http://arxiv.org/abs/1702.01591v2
|
http://arxiv.org/pdf/1702.01591v2.pdf
|
https://github.com/robince/partial-info-decomp
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/measuring-multivariate-redundant-information
|
Measuring multivariate redundant information with pointwise common change in surprisal
|
1602.05063
|
http://arxiv.org/abs/1602.05063v3
|
http://arxiv.org/pdf/1602.05063v3.pdf
|
https://github.com/robince/partial-info-decomp
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/engineering-serendipity-through
|
Engineering Serendipity through Recommendations of Items with Atypical Aspects
|
2505.23580
|
https://arxiv.org/abs/2505.23580v1
|
https://arxiv.org/pdf/2505.23580v1.pdf
|
https://github.com/ramituncc49er/atars
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/object-aware-adaptive-positivity-learning-for
|
Object-aware Adaptive-Positivity Learning for Audio-Visual Question Answering
|
2312.12816
|
https://arxiv.org/abs/2312.12816v1
|
https://arxiv.org/pdf/2312.12816v1.pdf
|
https://github.com/zhangbin-ai/apl
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/manipulation-robust-regression-discontinuity
|
Manipulation-Robust Regression Discontinuity Designs
|
2009.07551
|
https://arxiv.org/abs/2009.07551v7
|
https://arxiv.org/pdf/2009.07551v7.pdf
|
https://github.com/smasa11/rdtest
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/linear-recurrent-units-for-sequential
|
Linear Recurrent Units for Sequential Recommendation
|
2310.02367
|
https://arxiv.org/abs/2310.02367v2
|
https://arxiv.org/pdf/2310.02367v2.pdf
|
https://github.com/yueqirex/lrurec
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/nearest-neighbor-machine-translation-is-meta
|
Nearest Neighbor Machine Translation is Meta-Optimizer on Output Projection Layer
|
2305.13034
|
https://arxiv.org/abs/2305.13034v2
|
https://arxiv.org/pdf/2305.13034v2.pdf
|
https://github.com/ruizgao/knnmt-meta-optimizer
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/eden-multimodal-synthetic-dataset-of-enclosed
|
EDEN: Multimodal Synthetic Dataset of Enclosed GarDEN Scenes
|
2011.04389
|
https://arxiv.org/abs/2011.04389v2
|
https://arxiv.org/pdf/2011.04389v2.pdf
|
https://github.com/lhoangan/eden-generation
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/vision-language-pseudo-labels-for-single
|
Vision-Language Pseudo-Labels for Single-Positive Multi-Label Learning
|
2310.15985
|
https://arxiv.org/abs/2310.15985v1
|
https://arxiv.org/pdf/2310.15985v1.pdf
|
https://github.com/mvrl/vlpl
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/rrhf-v-ranking-responses-to-mitigate
|
RRHF-V: Ranking Responses to Mitigate Hallucinations in Multimodal Large Language Models with Human Feedback
| null |
https://aclanthology.org/2025.coling-main.454/
|
https://aclanthology.org/2025.coling-main.454.pdf
|
https://github.com/MindSpore-scientific-2/code-7/tree/main/RRHF-V_mindformers
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/pruning-filters-for-efficient-convnets
|
Pruning Filters for Efficient ConvNets
|
1608.08710
|
http://arxiv.org/abs/1608.08710v3
|
http://arxiv.org/pdf/1608.08710v3.pdf
|
https://github.com/VainF/Torch-Pruning
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/few-shot-generative-model-adaption-via
|
Few Shot Generative Model Adaption via Relaxed Spatial Structural Alignment
|
2203.04121
|
https://arxiv.org/abs/2203.04121v3
|
https://arxiv.org/pdf/2203.04121v3.pdf
|
https://github.com/2023-MindSpore-4/Code12/tree/main/liliang/RSSA_mds-main
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/quark-controllable-text-generation-with
|
Quark: Controllable Text Generation with Reinforced Unlearning
|
2205.13636
|
https://arxiv.org/abs/2205.13636v2
|
https://arxiv.org/pdf/2205.13636v2.pdf
|
https://github.com/gximinglu/quark
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fingerspelling-recognition-in-the-wild-with
|
Fingerspelling recognition in the wild with iterative visual attention
|
1908.10546
|
https://arxiv.org/abs/1908.10546v1
|
https://arxiv.org/pdf/1908.10546v1.pdf
|
https://github.com/fmahoudeau/MiCT-RANet-ASL-FingerSpelling
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/improving-fairness-of-graph-neural-networks-a
|
Towards Fair Graph Neural Networks via Graph Counterfactual
|
2307.04937
|
https://arxiv.org/abs/2307.04937v2
|
https://arxiv.org/pdf/2307.04937v2.pdf
|
https://github.com/timelovercc/caf-gnn
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/quantum-clustering-and-gaussian-mixtures
|
Quantum Clustering and Gaussian Mixtures
|
1612.09199
|
http://arxiv.org/abs/1612.09199v1
|
http://arxiv.org/pdf/1612.09199v1.pdf
|
https://github.com/mrpintime/Quantum_Gaussian_Mixtures_Clustering
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/revisiting-semidefinite-programming
|
Revisiting semidefinite programming approaches to options pricing: complexity and computational perspectives
|
2111.07701
|
https://arxiv.org/abs/2111.07701v3
|
https://arxiv.org/pdf/2111.07701v3.pdf
|
https://github.com/informsjoc/2022.0328
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/out-of-distribution-detection-by-leveraging
|
Out-of-Distribution Detection by Leveraging Between-Layer Transformation Smoothness
|
2310.02832
|
https://arxiv.org/abs/2310.02832v2
|
https://arxiv.org/pdf/2310.02832v2.pdf
|
https://github.com/fjelenic/between-layer-ood
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/docreal-robust-document-dewarping-of-real
|
DocReal: Robust Document Dewarping of Real-Life Images via Attention-Enhanced Control Point Prediction
| null |
https://openaccess.thecvf.com/content/WACV2024/html/Yu_DocReal_Robust_Document_Dewarping_of_Real-Life_Images_via_Attention-Enhanced_Control_WACV_2024_paper.html
|
https://openaccess.thecvf.com/content/WACV2024/papers/Yu_DocReal_Robust_Document_Dewarping_of_Real-Life_Images_via_Attention-Enhanced_Control_WACV_2024_paper.pdf
|
https://github.com/SciYu/DocReal
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/stella-nera-achieving-161-top-s-w-with
|
Stella Nera: Achieving 161 TOp/s/W with Multiplier-free DNN Acceleration based on Approximate Matrix Multiplication
|
2311.10207
|
https://arxiv.org/abs/2311.10207v1
|
https://arxiv.org/pdf/2311.10207v1.pdf
|
https://github.com/joennlae/halutmatmul
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/sums-of-hurwitz-class-numbers-cm-modular
|
Sums of Hurwitz class numbers, CM modular forms, and primes of the form $x^2+ny^2$
|
2405.07565
|
https://arxiv.org/abs/2405.07565v1
|
https://arxiv.org/pdf/2405.07565v1.pdf
|
https://github.com/zinmik/Hurwitz-class-numbers
| true
| true
| false
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.