paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/up-nerf-unconstrained-pose-prior-free-neural
|
UP-NeRF: Unconstrained Pose-Prior-Free Neural Radiance Fields
|
2311.03784
|
https://arxiv.org/abs/2311.03784v2
|
https://arxiv.org/pdf/2311.03784v2.pdf
|
https://github.com/mlvlab/UP-NeRF
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/toward-sufficient-spatial-frequency
|
Toward Sufficient Spatial-Frequency Interaction for Gradient-aware Underwater Image Enhancement
|
2309.04089
|
https://arxiv.org/abs/2309.04089v2
|
https://arxiv.org/pdf/2309.04089v2.pdf
|
https://github.com/zhihefang/SFGNet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/reinforcement-learning-discovers-efficient
|
Reinforcement Learning Discovers Efficient Decentralized Graph Path Search Strategies
|
2409.07932
|
https://arxiv.org/abs/2409.07932v2
|
https://arxiv.org/pdf/2409.07932v2.pdf
|
https://github.com/flxclxc/rl-graph-search
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/affective-reasoning-at-utterance-level-in
|
How to Enhance Causal Discrimination of Utterances: A Case on Affective Reasoning
|
2305.02615
|
https://arxiv.org/abs/2305.02615v2
|
https://arxiv.org/pdf/2305.02615v2.pdf
|
https://github.com/zodiark-ch/mater-of-our-emnlp2023-paper
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/sednet-shallow-encoder-decoder-network-for
|
SEDNet: Shallow Encoder-Decoder Network for Brain Tumor Segmentation
|
2401.13403
|
https://arxiv.org/abs/2401.13403v3
|
https://arxiv.org/pdf/2401.13403v3.pdf
|
https://github.com/chollette/SEDNet_Shallow-Encoder-Decoder-Network-for-Brain-Tumor-Segmentation
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/hartley-spectral-pooling-for-deep-learning
|
Hartley Spectral Pooling for Deep Learning
|
1810.04028
|
https://arxiv.org/abs/1810.04028v2
|
https://arxiv.org/pdf/1810.04028v2.pdf
|
https://github.com/AlbertZhangHIT/Hartley-spectral-pooling
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/beyond-automated-evaluation-metrics
|
Improving the TENOR of Labeling: Re-evaluating Topic Models for Content Analysis
|
2401.16348
|
https://arxiv.org/abs/2401.16348v2
|
https://arxiv.org/pdf/2401.16348v2.pdf
|
https://github.com/zli12321/tenor
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/dynamic-and-scalable-data-preparation-for
|
Dynamic and Scalable Data Preparation for Object-Centric Process Mining
|
2410.00596
|
https://arxiv.org/abs/2410.00596v1
|
https://arxiv.org/pdf/2410.00596v1.pdf
|
https://github.com/LienBosmans/stack-t
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/rethinking-image-mixture-for-unsupervised
|
Un-Mix: Rethinking Image Mixtures for Unsupervised Visual Representation Learning
|
2003.05438
|
https://arxiv.org/abs/2003.05438v5
|
https://arxiv.org/pdf/2003.05438v5.pdf
|
https://github.com/hannaiiyanggit/unicon
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-simple-framework-for-contrastive-learning
|
A Simple Framework for Contrastive Learning of Visual Representations
|
2002.05709
|
https://arxiv.org/abs/2002.05709v3
|
https://arxiv.org/pdf/2002.05709v3.pdf
|
https://github.com/hannaiiyanggit/unicon
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/supervised-contrastive-learning
|
Supervised Contrastive Learning
|
2004.11362
|
https://arxiv.org/abs/2004.11362v5
|
https://arxiv.org/pdf/2004.11362v5.pdf
|
https://github.com/hannaiiyanggit/unicon
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/active-vision-reinforcement-learning-under
|
Active Vision Reinforcement Learning under Limited Visual Observability
|
2306.00975
|
https://arxiv.org/abs/2306.00975v2
|
https://arxiv.org/pdf/2306.00975v2.pdf
|
https://github.com/elicassion/active-gym
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/improving-robustness-against-common
|
Improving robustness against common corruptions by covariate shift adaptation
|
2006.16971
|
https://arxiv.org/abs/2006.16971v2
|
https://arxiv.org/pdf/2006.16971v2.pdf
|
https://github.com/Claydon-Wang/OFTTA
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/do-we-really-need-to-access-the-source-data
|
Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
|
2002.08546
|
https://arxiv.org/abs/2002.08546v6
|
https://arxiv.org/pdf/2002.08546v6.pdf
|
https://github.com/Claydon-Wang/OFTTA
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/torchaudio-2-1-advancing-speech-recognition
|
TorchAudio 2.1: Advancing speech recognition, self-supervised learning, and audio processing components for PyTorch
|
2310.17864
|
https://arxiv.org/abs/2310.17864v1
|
https://arxiv.org/pdf/2310.17864v1.pdf
|
https://github.com/pytorch/audio
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/2407-21024
|
An Autonomous GIS Agent Framework for Geospatial Data Retrieval
|
2407.21024
|
https://arxiv.org/abs/2407.21024v2
|
https://arxiv.org/pdf/2407.21024v2.pdf
|
https://github.com/teakinboyewa/autonomousgis_geodataretrieveragent
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/algebraic-proofs-of-path-disconnectedness
|
Algebraic Proofs of Path Disconnectedness using Time-Dependent Barrier Functions
|
2404.06985
|
https://arxiv.org/abs/2404.06985v1
|
https://arxiv.org/pdf/2404.06985v1.pdf
|
https://github.com/jarmill/set_connected
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/galapy-the-highly-optimised-c-python-spectral
|
GalaPy, the highly optimised C++/Python spectral modelling tool for galaxies - I - Library presentation and photometric fitting
|
2402.12427
|
https://arxiv.org/abs/2402.12427v1
|
https://arxiv.org/pdf/2402.12427v1.pdf
|
https://github.com/tommasoronconi/galapy
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/facial-expression-and-attributes-recognition-1
|
Facial expression and attributes recognition based on multi-task learning of lightweight neural networks
|
2103.17107
|
https://arxiv.org/abs/2103.17107v3
|
https://arxiv.org/pdf/2103.17107v3.pdf
|
https://github.com/HSE-asavchenko/face-emotion-recognition
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/provably-convergent-stochastic-fixed-point
|
Provably convergent stochastic fixed-point algorithm for free-support Wasserstein barycenter of continuous non-parametric measures
|
2505.24384
|
https://arxiv.org/abs/2505.24384v1
|
https://arxiv.org/pdf/2505.24384v1.pdf
|
https://github.com/chenzeyi1101/wb_algo
| true
| true
| false
|
jax
|
https://paperswithcode.com/paper/hse-nn-team-at-the-4th-abaw-competition-multi
|
HSE-NN Team at the 4th ABAW Competition: Multi-task Emotion Recognition and Learning from Synthetic Images
|
2207.09508
|
https://arxiv.org/abs/2207.09508v3
|
https://arxiv.org/pdf/2207.09508v3.pdf
|
https://github.com/HSE-asavchenko/face-emotion-recognition
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/colrio-lidar-ranging-inertial-centralized
|
CoLRIO: LiDAR-Ranging-Inertial Centralized State Estimation for Robotic Swarms
|
2402.11790
|
https://arxiv.org/abs/2402.11790v2
|
https://arxiv.org/pdf/2402.11790v2.pdf
|
https://github.com/pengyu-team/co-lrio
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/improving-reliable-navigation-under
|
Improving Reliable Navigation under Uncertainty via Predictions Informed by Non-Local Information
|
2307.14501
|
https://arxiv.org/abs/2307.14501v1
|
https://arxiv.org/pdf/2307.14501v1.pdf
|
https://github.com/RAIL-group/RAIL-group-software/tree/main/modules/lsp_gnn
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/augmenting-automation-intent-based-user
|
Augmenting Automation: Intent-Based User Instruction Classification with Machine Learning
|
2403.01242
|
https://arxiv.org/abs/2403.01242v1
|
https://arxiv.org/pdf/2403.01242v1.pdf
|
https://github.com/lbasyal/Intent_classification
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/recipegpt-generative-pre-training-based
|
RecipeGPT: Generative Pre-training Based Cooking Recipe Generation and Evaluation System
|
2003.02498
|
https://arxiv.org/abs/2003.02498v1
|
https://arxiv.org/pdf/2003.02498v1.pdf
|
https://github.com/LARC-CMU-SMU/RecipeGPT-exp
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/finite-element-hybridization-of-port
|
Finite element hybridization of port-Hamiltonian systems
|
2302.06239
|
https://arxiv.org/abs/2302.06239v4
|
https://arxiv.org/pdf/2302.06239v4.pdf
|
https://github.com/a-brugnoli/ph_hybridization
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/robustness-of-graph-embedding-methods-for
|
Robustness of graph embedding methods for community detection
|
2405.00636
|
https://arxiv.org/abs/2405.00636v2
|
https://arxiv.org/pdf/2405.00636v2.pdf
|
https://github.com/zf-wei/Robustness-of-Graph-Embeddings-for-Community-Detection
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/deelema-missing-information-search-with-deep
|
DeeLeMa: Missing information search with Deep Learning for Mass estimation
|
2212.12836
|
https://arxiv.org/abs/2212.12836v3
|
https://arxiv.org/pdf/2212.12836v3.pdf
|
https://github.com/Yonsei-HEP-COSMO/DeeLeMa
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/corrective-machine-unlearning
|
Corrective Machine Unlearning
|
2402.14015
|
https://arxiv.org/abs/2402.14015v2
|
https://arxiv.org/pdf/2402.14015v2.pdf
|
https://github.com/drimpossible/corrective-unlearning-bench
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-goal-driven-approach-to-systems
|
A Goal-Driven Approach to Systems Neuroscience
|
2311.02704
|
https://arxiv.org/abs/2311.02704v1
|
https://arxiv.org/pdf/2311.02704v1.pdf
|
https://github.com/HZhongLab/melander_nayebi_2021
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/3d-vessel-reconstruction-from-sparse-view
|
3D Vessel Reconstruction from Sparse-View Dynamic DSA Images via Vessel Probability Guided Attenuation Learning
|
2405.10705
|
https://arxiv.org/abs/2405.10705v1
|
https://arxiv.org/pdf/2405.10705v1.pdf
|
https://github.com/Zhentao-Liu/VPAL
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/cmdag-a-chinese-metaphor-dataset-with
|
CMDAG: A Chinese Metaphor Dataset with Annotated Grounds as CoT for Boosting Metaphor Generation
|
2402.13145
|
https://arxiv.org/abs/2402.13145v2
|
https://arxiv.org/pdf/2402.13145v2.pdf
|
https://github.com/xingweiqu/NLPCC-2024-Shared-Task-9
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/the-media-bias-taxonomy-a-systematic
|
The Media Bias Taxonomy: A Systematic Literature Review on the Forms and Automated Detection of Media Bias
|
2312.16148
|
https://arxiv.org/abs/2312.16148v3
|
https://arxiv.org/pdf/2312.16148v3.pdf
|
https://github.com/media-bias-group/media-bias-taxonomy
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-novel-and-accurate-bilstm-configuration
|
A Novel and Accurate BiLSTM Configuration Controller for Modular Soft Robots with Module Number Adaptability
|
2401.10997
|
https://arxiv.org/abs/2401.10997v1
|
https://arxiv.org/pdf/2401.10997v1.pdf
|
https://github.com/zixichen007115/23zcd
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/unsupervised-video-summarization
|
Unsupervised Video Summarization via Iterative Training and Simplified GAN
|
2311.03745
|
https://arxiv.org/abs/2311.03745v2
|
https://arxiv.org/pdf/2311.03745v2.pdf
|
https://github.com/hanklee97121/SUM-SR-5iter
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/an-explicit-version-of-chen-s-theorem
|
An explicit version of Chen's theorem and the linear sieve
|
2207.09452
|
https://arxiv.org/abs/2207.09452v6
|
https://arxiv.org/pdf/2207.09452v6.pdf
|
https://github.com/Valeriia57/Chen-s-theorem
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/a-pattern-to-align-them-all-integrating
|
A Pattern to Align Them All: Integrating Different Modalities to Define Multi-Modal Entities
|
2410.13803
|
https://arxiv.org/abs/2410.13803v1
|
https://arxiv.org/pdf/2410.13803v1.pdf
|
https://github.com/ida-fbk/multimodalpattern
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/tackling-the-abstraction-and-reasoning-corpus-1
|
Tackling the Abstraction and Reasoning Corpus with Vision Transformers: the Importance of 2D Representation, Positions, and Objects
|
2410.06405
|
https://arxiv.org/abs/2410.06405v1
|
https://arxiv.org/pdf/2410.06405v1.pdf
|
https://github.com/khalil-research/ViTARC
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/revisiting-rcnn-on-awakening-the
|
Revisiting RCNN: On Awakening the Classification Power of Faster RCNN
|
1803.06799
|
http://arxiv.org/abs/1803.06799v3
|
http://arxiv.org/pdf/1803.06799v3.pdf
|
https://github.com/MindSpore-paper-code-3/code10/tree/main/faster_rcnn_ssod
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/evolution-strategies-as-a-scalable
|
Evolution Strategies as a Scalable Alternative to Reinforcement Learning
|
1703.03864
|
http://arxiv.org/abs/1703.03864v2
|
http://arxiv.org/pdf/1703.03864v2.pdf
|
https://github.com/cesch97/NeuroEvolution
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/improving-continuous-time-conflict-based
|
Improving Continuous-time Conflict Based Search
|
2101.09723
|
https://arxiv.org/abs/2101.09723v2
|
https://arxiv.org/pdf/2101.09723v2.pdf
|
https://github.com/thaynewalker/ccbs
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/varformer-adapting-var-s-generative-prior-for
|
Varformer: Adapting VAR's Generative Prior for Image Restoration
|
2412.21063
|
https://arxiv.org/abs/2412.21063v1
|
https://arxiv.org/pdf/2412.21063v1.pdf
|
https://github.com/siywang541/Varformer
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/improved-yolov5-network-for-real-time-multi
|
Improved YOLOv5 network for real-time multi-scale traffic sign detection
|
2112.08782
|
https://arxiv.org/abs/2112.08782v2
|
https://arxiv.org/pdf/2112.08782v2.pdf
|
https://github.com/NWPU-Li/AF_FPN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/160600942
|
Approximating the Spectral Sums of Large-scale Matrices using Chebyshev Approximations
|
1606.00942
|
http://arxiv.org/abs/1606.00942v2
|
http://arxiv.org/pdf/1606.00942v2.pdf
|
https://github.com/EiffL/SpectralFlow
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/backpropagation-for-implicit-spectral
|
Backpropagation for Implicit Spectral Densities
|
1806.00499
|
http://arxiv.org/abs/1806.00499v1
|
http://arxiv.org/pdf/1806.00499v1.pdf
|
https://github.com/EiffL/SpectralFlow
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/mixed-integer-optimal-control-via
|
Mixed-Integer Optimal Control via Reinforcement Learning: A Case Study on Hybrid Electric Vehicle Energy Management
|
2305.01461
|
https://arxiv.org/abs/2305.01461v3
|
https://arxiv.org/pdf/2305.01461v3.pdf
|
https://github.com/xujinming01/td3aq
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/unsupervised-learning-of-phylogenetic-trees
|
Unsupervised Learning of Phylogenetic Trees via Split-Weight Embedding
|
2312.16074
|
https://arxiv.org/abs/2312.16074v2
|
https://arxiv.org/pdf/2312.16074v2.pdf
|
https://github.com/solislemuslab/phyloclustering.jl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/multi-eup-the-multilingual-european
|
Multi-EuP: The Multilingual European Parliament Dataset for Analysis of Bias in Information Retrieval
|
2311.01870
|
https://arxiv.org/abs/2311.01870v1
|
https://arxiv.org/pdf/2311.01870v1.pdf
|
https://github.com/jrnlp/multi-eup
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/diversified-outlier-exposure-for-out-of
|
Diversified Outlier Exposure for Out-of-Distribution Detection via Informative Extrapolation
| null |
https://openreview.net/forum?id=RuxBLfiEqI
|
https://openreview.net/pdf?id=RuxBLfiEqI
|
https://github.com/zfancy/divoe
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/temporal-3d-shape-modeling-for-video-based
|
Temporal 3D Shape Modeling for Video-Based Cloth-Changing Person Re-Identification
| null |
https://openaccess.thecvf.com/content/WACV2024W/RWS/html/Nguyen_Temporal_3D_Shape_Modeling_for_Video-Based_Cloth-Changing_Person_Re-Identification_WACVW_2024_paper.html
|
https://openaccess.thecvf.com/content/WACV2024W/RWS/papers/Nguyen_Temporal_3D_Shape_Modeling_for_Video-Based_Cloth-Changing_Person_Re-Identification_WACVW_2024_paper.pdf
|
https://github.com/dustin-nguyen-qil/Videobased-ClothChanging-ReID-Baseline
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/band-selection-with-higher-order-multivariate
|
Band selection with Higher Order Multivariate Cumulants for small target detection in hyperspectral images
|
1808.03513
|
http://arxiv.org/abs/1808.03513v1
|
http://arxiv.org/pdf/1808.03513v1.pdf
|
https://github.com/ZKSI/CumulantsFeatures.jl
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/the-use-of-the-higher-order-singular-value
|
The use of the Higher Order Singular Value Decomposition of the 4-cumulant's tensors in features selection and outlier detection
|
1804.00541
|
http://arxiv.org/abs/1804.00541v3
|
http://arxiv.org/pdf/1804.00541v3.pdf
|
https://github.com/ZKSI/CumulantsFeatures.jl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/3d-shape-temporal-aggregation-for-video-based
|
3D Shape Temporal Aggregation for Video-Based Clothing-Change Person Re-Identication
| null |
https://link.springer.com/chapter/10.1007/978-3-031-26348-4_5
|
https://openaccess.thecvf.com/content/ACCV2022/papers/Han_3D_Shape_Temporal_Aggregation_for_Video-Based_Clothing-Change_Person_Re-identification_ACCV_2022_paper.pdf
|
https://github.com/dustin-nguyen-qil/Videobased-ClothChanging-ReID-Baseline
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/reference-based-restoration-of-digitized
|
Reference-based Restoration of Digitized Analog Videotapes
|
2310.14926
|
https://arxiv.org/abs/2310.14926v2
|
https://arxiv.org/pdf/2310.14926v2.pdf
|
https://github.com/miccunifi/analog-video-restoration
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/be-careful-when-evaluating-explanations
|
Be Careful When Evaluating Explanations Regarding Ground Truth
|
2311.04813
|
https://arxiv.org/abs/2311.04813v1
|
https://arxiv.org/pdf/2311.04813v1.pdf
|
https://github.com/mi2datalab/be-careful-evaluating-explanations
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/uni-moe-scaling-unified-multimodal-llms-with
|
Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts
|
2405.11273
|
https://arxiv.org/abs/2405.11273v1
|
https://arxiv.org/pdf/2405.11273v1.pdf
|
https://github.com/hitsz-tmg/umoe-scaling-unified-multimodal-llms
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/multi-order-graph-clustering-with-adaptive
|
Multi-order Graph Clustering with Adaptive Node-level Weight Learning
|
2405.12183
|
https://arxiv.org/abs/2405.12183v1
|
https://arxiv.org/pdf/2405.12183v1.pdf
|
https://github.com/scutft-ml/mogc
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-comparative-study-of-deep-reinforcement-1
|
A Comparative Study of Deep Reinforcement Learning Models: DQN vs PPO vs A2C
|
2407.14151
|
https://arxiv.org/abs/2407.14151v1
|
https://arxiv.org/pdf/2407.14151v1.pdf
|
https://github.com/neilus03/drl_comparative_study
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/iclr-2021-challenge-for-computational
|
ICLR 2021 Challenge for Computational Geometry & Topology: Design and Results
|
2108.09810
|
https://arxiv.org/abs/2108.09810v2
|
https://arxiv.org/pdf/2108.09810v2.pdf
|
https://github.com/oxcsml/geomstats
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/an-iterative-conditional-dispatch-algorithm
|
An iterative sample scenario approach for the dynamic dispatch waves problem
|
2308.14476
|
https://arxiv.org/abs/2308.14476v3
|
https://arxiv.org/pdf/2308.14476v3.pdf
|
https://github.com/leonlan/dynamic-dispatch-waves
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/grounding-dino-marrying-dino-with-grounded
|
Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection
|
2303.05499
|
https://arxiv.org/abs/2303.05499v5
|
https://arxiv.org/pdf/2303.05499v5.pdf
|
https://github.com/camenduru/grounded-segment-anything-colab
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/ttt-a-temporal-refinement-heuristic-for
|
TTT: A Temporal Refinement Heuristic for Tenuously Tractable Discrete Time Reachability Problems
|
2407.14394
|
https://arxiv.org/abs/2407.14394v2
|
https://arxiv.org/pdf/2407.14394v2.pdf
|
https://github.com/sisl/OVERTVerify.jl
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/deep-learning-for-portfolio-optimisation
|
Deep Learning for Portfolio Optimization
|
2005.13665
|
https://arxiv.org/abs/2005.13665v3
|
https://arxiv.org/pdf/2005.13665v3.pdf
|
https://github.com/thinklab-sjtu/linsatnet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/jkonet-proximal-optimal-transport-modeling-of
|
Proximal Optimal Transport Modeling of Population Dynamics
|
2106.06345
|
https://arxiv.org/abs/2106.06345v4
|
https://arxiv.org/pdf/2106.06345v4.pdf
|
https://github.com/gjhuizing/wsingular
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/joint-or-disjoint-mixing-training-regimes-for
|
Joint or Disjoint: Mixing Training Regimes for Early-Exit Models
|
2407.14320
|
https://arxiv.org/abs/2407.14320v1
|
https://arxiv.org/pdf/2407.14320v1.pdf
|
https://github.com/kamadforge/early-exit-benchmark
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/renderme-360-a-large-digital-asset-library-1
|
RenderMe-360: A Large Digital Asset Library and Benchmarks Towards High-fidelity Head Avatars
|
2305.13353
|
https://arxiv.org/abs/2305.13353v1
|
https://arxiv.org/pdf/2305.13353v1.pdf
|
https://github.com/renderme-360/renderme-360
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/moleculargpt-open-large-language-model-llm
|
MolecularGPT: Open Large Language Model (LLM) for Few-Shot Molecular Property Prediction
|
2406.12950
|
https://arxiv.org/abs/2406.12950v2
|
https://arxiv.org/pdf/2406.12950v2.pdf
|
https://github.com/nyushcs/moleculargpt
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/wasserstein-k-centres-clustering-for
|
Wasserstein $k$-Centers Clustering for Distributional Data
|
2407.08228
|
https://arxiv.org/abs/2407.08228v4
|
https://arxiv.org/pdf/2407.08228v4.pdf
|
https://github.com/RyoOkano21/kCentresDIstributionalClustering
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/can-llms-speak-for-diverse-people-tuning-llms
|
Can LLMs Speak For Diverse People? Tuning LLMs via Debate to Generate Controllable Controversial Statements
|
2402.10614
|
https://arxiv.org/abs/2402.10614v2
|
https://arxiv.org/pdf/2402.10614v2.pdf
|
https://github.com/tianyi-lab/debatune
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/diffusion-self-guidance-for-controllable-1
|
Diffusion Self-Guidance for Controllable Image Generation
|
2306.00986
|
https://arxiv.org/abs/2306.00986v3
|
https://arxiv.org/pdf/2306.00986v3.pdf
|
https://github.com/Sainzerjj/Free-Guidance-Diffusion
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/pareto-actor-critic-for-equilibrium-selection
|
Pareto Actor-Critic for Equilibrium Selection in Multi-Agent Reinforcement Learning
|
2209.14344
|
https://arxiv.org/abs/2209.14344v3
|
https://arxiv.org/pdf/2209.14344v3.pdf
|
https://github.com/uoe-agents/epymarl
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/progressive-distillation-for-fast-sampling-of-1
|
Progressive Distillation for Fast Sampling of Diffusion Models
|
2202.00512
|
https://arxiv.org/abs/2202.00512v2
|
https://arxiv.org/pdf/2202.00512v2.pdf
|
https://github.com/deepxuan/dn-dp
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/improving-diffusion-model-efficiency-through
|
Improving Diffusion Model Efficiency Through Patching
|
2207.04316
|
https://arxiv.org/abs/2207.04316v1
|
https://arxiv.org/pdf/2207.04316v1.pdf
|
https://github.com/deepxuan/dn-dp
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/differentiable-all-pole-filters-for-time
|
Differentiable All-pole Filters for Time-varying Audio Systems
|
2404.07970
|
https://arxiv.org/abs/2404.07970v4
|
https://arxiv.org/pdf/2404.07970v4.pdf
|
https://github.com/DiffAPF/web
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/removing-biases-from-molecular
|
Removing Biases from Molecular Representations via Information Maximization
|
2312.00718
|
https://arxiv.org/abs/2312.00718v1
|
https://arxiv.org/pdf/2312.00718v1.pdf
|
https://github.com/uhlerlab/infocore
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/famo-fast-adaptive-multitask-optimization-1
|
FAMO: Fast Adaptive Multitask Optimization
|
2306.03792
|
https://arxiv.org/abs/2306.03792v3
|
https://arxiv.org/pdf/2306.03792v3.pdf
|
https://github.com/cranial-xix/famo
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/improving-the-astrometric-solution-of-the
|
Improving the astrometric solution of the Hyper Suprime-Cam with anisotropic Gaussian processes
|
2103.09881
|
https://arxiv.org/abs/2103.09881v1
|
https://arxiv.org/pdf/2103.09881v1.pdf
|
https://github.com/PFLeget/treegp
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/averitec-a-dataset-for-real-world-claim-1
|
AVeriTeC: A Dataset for Real-world Claim Verification with Evidence from the Web
|
2305.13117
|
https://arxiv.org/abs/2305.13117v3
|
https://arxiv.org/pdf/2305.13117v3.pdf
|
https://github.com/ssu-humane/hero
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/the-positioning-of-stress-fibers-in
|
The positioning of stress fibers in contractile cells minimizes internal mechanical stress
|
2407.07797
|
https://arxiv.org/abs/2407.07797v2
|
https://arxiv.org/pdf/2407.07797v2.pdf
|
https://github.com/usschwarz/dune-structures
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/caseformer-pre-training-for-legal-case
|
Caseformer: Pre-training for Legal Case Retrieval Based on Inter-Case Distinctions
|
2311.00333
|
https://arxiv.org/abs/2311.00333v2
|
https://arxiv.org/pdf/2311.00333v2.pdf
|
https://github.com/oneal2000/caseformer
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/automated-detection-of-label-errors-in
|
Automated Detection of Label Errors in Semantic Segmentation Datasets via Deep Learning and Uncertainty Quantification
|
2207.06104
|
https://arxiv.org/abs/2207.06104v2
|
https://arxiv.org/pdf/2207.06104v2.pdf
|
https://github.com/mrcoee/automatic-label-error-detection
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/occamy-a-preemptive-buffer-management-for-on
|
Occamy: A Preemptive Buffer Management for On-chip Shared-memory Switches
|
2501.13570
|
https://arxiv.org/abs/2501.13570v1
|
https://arxiv.org/pdf/2501.13570v1.pdf
|
https://github.com/ants-xjtu/occamy
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/does-it-chug-towards-a-data-driven
|
Does it Chug? Towards a Data-Driven Understanding of Guitar Tone Description
|
2412.11769
|
https://arxiv.org/abs/2412.11769v1
|
https://arxiv.org/pdf/2412.11769v1.pdf
|
https://github.com/pratikstar/doesitchug
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/global-transformer-overheating-from
|
Global transformer overheating from geomagnetic storms
|
2403.18070
|
https://arxiv.org/abs/2403.18070v2
|
https://arxiv.org/pdf/2403.18070v2.pdf
|
https://github.com/allfed/geomagneticmodel
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/llara-aligning-large-language-models-with
|
LLaRA: Large Language-Recommendation Assistant
|
2312.02445
|
https://arxiv.org/abs/2312.02445v4
|
https://arxiv.org/pdf/2312.02445v4.pdf
|
https://github.com/ljy0ustc/llara
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/embedding-neighborhoods-simultaneously-t-sne
|
ENS-t-SNE: Embedding Neighborhoods Simultaneously t-SNE
|
2205.11720
|
https://arxiv.org/abs/2205.11720v3
|
https://arxiv.org/pdf/2205.11720v3.pdf
|
https://github.com/enggiqbal/mpse-tsne
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/muse-text-to-image-generation-via-masked
|
Muse: Text-To-Image Generation via Masked Generative Transformers
|
2301.00704
|
https://arxiv.org/abs/2301.00704v1
|
https://arxiv.org/pdf/2301.00704v1.pdf
|
https://github.com/baaivision/muse-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/leveraging-vision-centric-multi-modal-1
|
Leveraging Vision-Centric Multi-Modal Expertise for 3D Object Detection
|
2310.15670
|
https://arxiv.org/abs/2310.15670v1
|
https://arxiv.org/pdf/2310.15670v1.pdf
|
https://github.com/opendrivelab/birds-eye-view-perception
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/shape-iou-more-accurate-metric-considering
|
Shape-IoU: More Accurate Metric considering Bounding Box Shape and Scale
|
2312.17663
|
https://arxiv.org/abs/2312.17663v2
|
https://arxiv.org/pdf/2312.17663v2.pdf
|
https://github.com/malagoutou/shape-iou
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/svft-parameter-efficient-fine-tuning-with
|
SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors
|
2405.19597
|
https://arxiv.org/abs/2405.19597v1
|
https://arxiv.org/pdf/2405.19597v1.pdf
|
https://github.com/vijaylingam95/svft
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/attention-beats-linear-for-fast-implicit
|
Attention Beats Linear for Fast Implicit Neural Representation Generation
|
2407.15355
|
https://arxiv.org/abs/2407.15355v1
|
https://arxiv.org/pdf/2407.15355v1.pdf
|
https://github.com/roninton/anr
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/growing-urban-bicycle-networks
|
Growing Urban Bicycle Networks
|
2107.02185
|
https://arxiv.org/abs/2107.02185v3
|
https://arxiv.org/pdf/2107.02185v3.pdf
|
https://github.com/mszell/bikenwgrowth
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/distance-guided-generative-adversarial
|
Distance Guided Generative Adversarial Network for Explainable Binary Classifications
|
2312.17538
|
https://arxiv.org/abs/2312.17538v1
|
https://arxiv.org/pdf/2312.17538v1.pdf
|
https://github.com/yxiangxiong/disgan
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/towards-efficient-and-effective-deep
|
Towards Efficient and Effective Deep Clustering with Dynamic Grouping and Prototype Aggregation
|
2401.13581
|
https://arxiv.org/abs/2401.13581v2
|
https://arxiv.org/pdf/2401.13581v2.pdf
|
https://github.com/regan-zhang/digpro
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mint-evaluating-llms-in-multi-turn
|
MINT: Evaluating LLMs in Multi-turn Interaction with Tools and Language Feedback
|
2309.10691
|
https://arxiv.org/abs/2309.10691v3
|
https://arxiv.org/pdf/2309.10691v3.pdf
|
https://github.com/xingyaoww/mint-bench
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/iroyinspeech-a-multi-purpose-yoruba-speech
|
ÌròyìnSpeech: A multi-purpose Yorùbá Speech Corpus
|
2307.16071
|
https://arxiv.org/abs/2307.16071v2
|
https://arxiv.org/pdf/2307.16071v2.pdf
|
https://github.com/niger-volta-lti/yoruba-voice
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/gifsplanation-via-latent-shift-a-simple
|
Gifsplanation via Latent Shift: A Simple Autoencoder Approach to Counterfactual Generation for Chest X-rays
|
2102.09475
|
https://arxiv.org/abs/2102.09475v2
|
https://arxiv.org/pdf/2102.09475v2.pdf
|
https://github.com/ieee8023/latentshift
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/codex-a-cluster-based-method-for-explainable
|
CODEX: A Cluster-Based Method for Explainable Reinforcement Learning
|
2312.04216
|
https://arxiv.org/abs/2312.04216v1
|
https://arxiv.org/pdf/2312.04216v1.pdf
|
https://github.com/ainfosec/codex
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/domain-private-transformers
|
Domain Private Transformers for Multi-Domain Dialog Systems
|
2305.14208
|
https://arxiv.org/abs/2305.14208v2
|
https://arxiv.org/pdf/2305.14208v2.pdf
|
https://github.com/asappresearch/domain-private-transformers
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/weakly-supervised-video-individual
|
Weakly Supervised Video Individual CountingWeakly Supervised Video Individual Counting
|
2312.05923
|
https://arxiv.org/abs/2312.05923v1
|
https://arxiv.org/pdf/2312.05923v1.pdf
|
https://github.com/streamer-ap/cgnet
| true
| true
| false
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.