paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/lightgcn-simplifying-and-powering-graph
|
LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation
|
2002.02126
|
https://arxiv.org/abs/2002.02126v4
|
https://arxiv.org/pdf/2002.02126v4.pdf
|
https://github.com/lucapantea/LightGCN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/labelbench-a-comprehensive-framework-for
|
LabelBench: A Comprehensive Framework for Benchmarking Adaptive Label-Efficient Learning
|
2306.09910
|
https://arxiv.org/abs/2306.09910v4
|
https://arxiv.org/pdf/2306.09910v4.pdf
|
https://github.com/efficienttraining/labelbench
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/exploring-the-impact-of-human-evaluator-group
|
Exploring the Impact of Human Evaluator Group on Chat-Oriented Dialogue Evaluation
|
2309.07998
|
https://arxiv.org/abs/2309.07998v1
|
https://arxiv.org/pdf/2309.07998v1.pdf
|
https://github.com/sfillwo/dialogueeval-annotatorimpact
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/the-hidden-dance-of-phonemes-and-visage
|
The Hidden Dance of Phonemes and Visage: Unveiling the Enigmatic Link between Phonemes and Facial Features
|
2307.13953
|
https://arxiv.org/abs/2307.13953v1
|
https://arxiv.org/pdf/2307.13953v1.pdf
|
https://github.com/Oscarwasoccupied/Interspeech23_Phonemes_and_Visage
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/jen-1-composer-a-unified-framework-for-high
|
JEN-1 Composer: A Unified Framework for High-Fidelity Multi-Track Music Generation
|
2310.19180
|
https://arxiv.org/abs/2310.19180v4
|
https://arxiv.org/pdf/2310.19180v4.pdf
|
https://github.com/0417keito/JEN-1-COMPOSER-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-to-estimate-critical-gait-parameters
|
Learning to Estimate Critical Gait Parameters from Single-View RGB Videos with Transformer-Based Attention Network
|
2312.00398
|
https://arxiv.org/abs/2312.00398v2
|
https://arxiv.org/pdf/2312.00398v2.pdf
|
https://github.com/vinuni-vishc/transformer-gait-analysis
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/comprehensive-generative-replay-for-task
|
Comprehensive Generative Replay for Task-Incremental Segmentation with Concurrent Appearance and Semantic Forgetting
|
2406.19796
|
https://arxiv.org/abs/2406.19796v1
|
https://arxiv.org/pdf/2406.19796v1.pdf
|
https://github.com/jingyzhang/cgr
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/toxicity-detection-for-free
|
Toxicity Detection for Free
|
2405.18822
|
https://arxiv.org/abs/2405.18822v2
|
https://arxiv.org/pdf/2405.18822v2.pdf
|
https://github.com/whothu/detection_logits
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/machine-learning-classification-of-fast-radio
|
Machine learning classification of CHIME fast radio bursts: II. Unsupervised Methods
|
2210.02471
|
https://arxiv.org/abs/2210.02471v3
|
https://arxiv.org/pdf/2210.02471v3.pdf
|
https://github.com/jiamingzhuge/frb_ml_unsp
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/machine-learning-classification-of-fast-radio-1
|
Machine learning classification of CHIME fast radio bursts -- I. Supervised methods
|
2210.02463
|
https://arxiv.org/abs/2210.02463v2
|
https://arxiv.org/pdf/2210.02463v2.pdf
|
https://github.com/jiamingzhuge/frb_ml_unsp
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/flexible-conformal-highest-predictive
|
Flexible Conformal Highest Predictive Conditional Density Sets
|
2406.18052
|
https://arxiv.org/abs/2406.18052v3
|
https://arxiv.org/pdf/2406.18052v3.pdf
|
https://github.com/maxsampson/CHCDS_HappyA
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/attribute-guided-multi-level-attention
|
Attribute-Guided Multi-Level Attention Network for Fine-Grained Fashion Retrieval
|
2301.13014
|
https://arxiv.org/abs/2301.13014v2
|
https://arxiv.org/pdf/2301.13014v2.pdf
|
https://github.com/dr-lingxiao/ag-man
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/conditional-similarity-networks
|
Conditional Similarity Networks
|
1603.07810
|
http://arxiv.org/abs/1603.07810v3
|
http://arxiv.org/pdf/1603.07810v3.pdf
|
https://github.com/dr-lingxiao/ag-man
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/filling-holes-in-lod2-building-models
|
Filling holes in LoD2 building models
|
2404.15892
|
https://arxiv.org/abs/2404.15892v1
|
https://arxiv.org/pdf/2404.15892v1.pdf
|
https://github.com/tudelft3d/automatic-repair-of-lod2-building-models
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/is-less-more-quality-quantity-and-context-in
|
Is Less More? Quality, Quantity and Context in Idiom Processing with Natural Language Models
|
2405.08497
|
https://arxiv.org/abs/2405.08497v1
|
https://arxiv.org/pdf/2405.08497v1.pdf
|
https://github.com/agneknie/com4520DarwinProject
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/merging-uncertainty-sets-via-majority-vote
|
Merging uncertainty sets via majority vote
|
2401.09379
|
https://arxiv.org/abs/2401.09379v5
|
https://arxiv.org/pdf/2401.09379v5.pdf
|
https://github.com/matteogaspa/merginguncertaintysets
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mixture-of-attention-heads-selecting
|
Mixture of Attention Heads: Selecting Attention Heads Per Token
|
2210.05144
|
https://arxiv.org/abs/2210.05144v1
|
https://arxiv.org/pdf/2210.05144v1.pdf
|
https://github.com/yikangshen/megablocks
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/generalized-population-based-training-for
|
Generalized Population-Based Training for Hyperparameter Optimization in Reinforcement Learning
|
2404.08233
|
https://arxiv.org/abs/2404.08233v2
|
https://arxiv.org/pdf/2404.08233v2.pdf
|
https://github.com/emi-group/gpbt-pl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/joint-diagnostic-test-of-regression
|
A unified test for regression discontinuity designs
|
2205.04345
|
https://arxiv.org/abs/2205.04345v5
|
https://arxiv.org/pdf/2205.04345v5.pdf
|
https://github.com/smasa11/rdtest
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/knowledge-based-in-silico-models-and-dataset-1
|
Knowledge-based in silico models and dataset for the comparative evaluation of mammography AI for a range of breast characteristics, lesion conspicuities and doses
|
2310.18494
|
https://arxiv.org/abs/2310.18494v1
|
https://arxiv.org/pdf/2310.18494v1.pdf
|
https://github.com/didsr/msynth-release
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/deep-learning-algorithms-for-fbsdes-with
|
Deep learning algorithms for FBSDEs with jumps: Applications to option pricing and a MFG model for smart grids
|
2401.03245
|
https://arxiv.org/abs/2401.03245v2
|
https://arxiv.org/pdf/2401.03245v2.pdf
|
https://github.com/zakariabensaid/deepfbsdejsolvers
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/auto-train-once-controller-network-guided
|
Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch
|
2403.14729
|
https://arxiv.org/abs/2403.14729v1
|
https://arxiv.org/pdf/2403.14729v1.pdf
|
https://github.com/xidongwu/autotrainonce
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/learning-low-bending-and-low-distortion-1
|
Convergent autoencoder approximation of low bending and low distortion manifold embeddings
|
2208.10193
|
https://arxiv.org/abs/2208.10193v2
|
https://arxiv.org/pdf/2208.10193v2.pdf
|
https://gitlab.com/jubrau/lbd
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/depicting-beyond-scores-advancing-image
|
Depicting Beyond Scores: Advancing Image Quality Assessment through Multi-modal Language Models
|
2312.08962
|
https://arxiv.org/abs/2312.08962v3
|
https://arxiv.org/pdf/2312.08962v3.pdf
|
https://github.com/XPixelGroup/DepictQA
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/descriptive-image-quality-assessment-in-the
|
Descriptive Image Quality Assessment in the Wild
|
2405.18842
|
https://arxiv.org/abs/2405.18842v2
|
https://arxiv.org/pdf/2405.18842v2.pdf
|
https://github.com/XPixelGroup/DepictQA
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/hiprompt-tuning-free-higher-resolution
|
HiPrompt: Tuning-free Higher-Resolution Generation with Hierarchical MLLM Prompts
|
2409.02919
|
https://arxiv.org/abs/2409.02919v3
|
https://arxiv.org/pdf/2409.02919v3.pdf
|
https://github.com/Liuxinyv/HiPrompt
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/q-instruct-improving-low-level-visual
|
Q-Instruct: Improving Low-level Visual Abilities for Multi-modality Foundation Models
|
2311.06783
|
https://arxiv.org/abs/2311.06783v1
|
https://arxiv.org/pdf/2311.06783v1.pdf
|
https://github.com/XPixelGroup/DepictQA
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/efficient-deformable-convnets-rethinking
|
Efficient Deformable ConvNets: Rethinking Dynamic and Sparse Operator for Vision Applications
|
2401.06197
|
https://arxiv.org/abs/2401.06197v1
|
https://arxiv.org/pdf/2401.06197v1.pdf
|
https://github.com/opengvlab/dcnv4
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/premier-taco-pretraining-multitask
|
Premier-TACO is a Few-Shot Policy Learner: Pretraining Multitask Representation via Temporal Action-Driven Contrastive Loss
|
2402.06187
|
https://arxiv.org/abs/2402.06187v4
|
https://arxiv.org/pdf/2402.06187v4.pdf
|
https://github.com/premiertaco/premier-taco
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/m3dsynth-a-dataset-of-medical-3d-images-with
|
M3Dsynth: A dataset of medical 3D images with AI-generated local manipulations
|
2309.07973
|
https://arxiv.org/abs/2309.07973v2
|
https://arxiv.org/pdf/2309.07973v2.pdf
|
https://github.com/grip-unina/m3dsynth
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/tttrlib-modular-software-for-integrating
|
tttrlib: modular software for integrating fluorescence spectroscopy, imaging, and molecular modeling
|
2402.17252
|
https://arxiv.org/abs/2402.17252v2
|
https://arxiv.org/pdf/2402.17252v2.pdf
|
https://github.com/fluorescence-tools/tttrlib
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/how-we-refute-claims-automatic-fact-checking
|
How We Refute Claims: Automatic Fact-Checking through Flaw Identification and Explanation
|
2401.15312
|
https://arxiv.org/abs/2401.15312v1
|
https://arxiv.org/pdf/2401.15312v1.pdf
|
https://github.com/nycu-nlp-lab/flawcheck
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-verified-optimizer-for-quantum-circuits
|
A Verified Optimizer for Quantum Circuits
|
1912.02250
|
https://arxiv.org/abs/1912.02250v3
|
https://arxiv.org/pdf/1912.02250v3.pdf
|
https://github.com/inqwire/pyvoqc
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/voiceloop-voice-fitting-and-synthesis-via-a
|
VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop
|
1707.06588
|
http://arxiv.org/abs/1707.06588v3
|
http://arxiv.org/pdf/1707.06588v3.pdf
|
https://github.com/jasminsternkopf/mel_cepstral_distance
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/df-pagerank-improved-incrementally-expanding
|
DF* PageRank: Improved Incrementally Expanding Approaches for Updating PageRank on Dynamic Graphs
|
2401.15870
|
https://arxiv.org/abs/2401.15870v2
|
https://arxiv.org/pdf/2401.15870v2.pdf
|
https://github.com/puzzlef/pagerank-openmp-dynamic
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/immunohistochemistry-guided-segmentation-of
|
Immunohistochemistry guided segmentation of benign epithelial cells, in situ lesions, and invasive epithelial cells in breast cancer slides
|
2311.13261
|
https://arxiv.org/abs/2311.13261v4
|
https://arxiv.org/pdf/2311.13261v4.pdf
|
https://github.com/aican-research/breast-epithelium-segmentation
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/vi-pann-harnessing-transfer-learning-and
|
VI-PANN: Harnessing Transfer Learning and Uncertainty-Aware Variational Inference for Improved Generalization in Audio Pattern Recognition
|
2401.05531
|
https://arxiv.org/abs/2401.05531v2
|
https://arxiv.org/pdf/2401.05531v2.pdf
|
https://github.com/marko-orescanin-nps/vi-pann
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/direct-side-information-learning-for-zero
|
Direct side information learning for zero-shot regression
|
2402.01264
|
https://arxiv.org/abs/2402.01264v1
|
https://arxiv.org/pdf/2402.01264v1.pdf
|
https://github.com/uo231492/dsilzsr
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/ai-generated-images-introduce-invisible
|
Invisible Relevance Bias: Text-Image Retrieval Models Prefer AI-Generated Images
|
2311.14084
|
https://arxiv.org/abs/2311.14084v4
|
https://arxiv.org/pdf/2311.14084v4.pdf
|
https://github.com/xsc1234/invisible-relevance-bias
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/magdi-structured-distillation-of-multi-agent
|
MAGDi: Structured Distillation of Multi-Agent Interaction Graphs Improves Reasoning in Smaller Language Models
|
2402.01620
|
https://arxiv.org/abs/2402.01620v2
|
https://arxiv.org/pdf/2402.01620v2.pdf
|
https://github.com/dinobby/magdi
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/global-and-local-attention-networks-for
|
Learning what and where to attend
|
1805.08819
|
https://arxiv.org/abs/1805.08819v4
|
https://arxiv.org/pdf/1805.08819v4.pdf
|
https://github.com/serre-lab/harmonization
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/harmonizing-the-object-recognition-strategies
|
Harmonizing the object recognition strategies of deep neural networks with humans
|
2211.04533
|
https://arxiv.org/abs/2211.04533v2
|
https://arxiv.org/pdf/2211.04533v2.pdf
|
https://github.com/serre-lab/harmonization
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/learning-explicitly-conditioned-sparsifying
|
Learning Explicitly Conditioned Sparsifying Transforms
|
2403.03168
|
https://arxiv.org/abs/2403.03168v1
|
https://arxiv.org/pdf/2403.03168v1.pdf
|
https://github.com/pirofti/conditionedtransformlearning
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/gerea-question-aware-prompt-captions-for
|
GeReA: Question-Aware Prompt Captions for Knowledge-based Visual Question Answering
|
2402.02503
|
https://arxiv.org/abs/2402.02503v1
|
https://arxiv.org/pdf/2402.02503v1.pdf
|
https://github.com/upper9527/gerea
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/feel-a-framework-for-evaluating-emotional
|
FEEL: A Framework for Evaluating Emotional Support Capability with Large Language Models
|
2403.15699
|
https://arxiv.org/abs/2403.15699v3
|
https://arxiv.org/pdf/2403.15699v3.pdf
|
https://github.com/ansisy/feel
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/edge-parallel-graph-encoder-embedding
|
Edge-Parallel Graph Encoder Embedding
|
2402.04403
|
https://arxiv.org/abs/2402.04403v1
|
https://arxiv.org/pdf/2402.04403v1.pdf
|
https://github.com/ariellubonja/graph-encoder-embedding
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/sumrec-a-framework-for-recommendation-using
|
SumRec: A Framework for Recommendation using Open-Domain Dialogue
|
2402.04523
|
https://arxiv.org/abs/2402.04523v1
|
https://arxiv.org/pdf/2402.04523v1.pdf
|
https://github.com/ryutaro-a/sumrec
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/improving-whispered-speech-recognition
|
Improving Whispered Speech Recognition Performance using Pseudo-whispered based Data Augmentation
|
2311.05179
|
https://arxiv.org/abs/2311.05179v1
|
https://arxiv.org/pdf/2311.05179v1.pdf
|
https://github.com/chaufanglin/Normal2Whisper
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/simplifying-stabilizing-and-scaling
|
Simplifying, Stabilizing and Scaling Continuous-Time Consistency Models
|
2410.11081
|
https://arxiv.org/abs/2410.11081v1
|
https://arxiv.org/pdf/2410.11081v1.pdf
|
https://github.com/xandergos/sCM-mnist
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/lsk3dnet-towards-effective-and-efficient-3d
|
LSK3DNet: Towards Effective and Efficient 3D Perception with Large Sparse Kernels
|
2403.15173
|
https://arxiv.org/abs/2403.15173v1
|
https://arxiv.org/pdf/2403.15173v1.pdf
|
https://github.com/fengzicai/lsk3dnet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/tflex-temporal-feature-logic-embedding-1
|
TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph
|
2205.14307
|
https://arxiv.org/abs/2205.14307v3
|
https://arxiv.org/pdf/2205.14307v3.pdf
|
https://github.com/linxueyuanstdio/tflex
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/visual-in-context-prompting
|
Visual In-Context Prompting
|
2311.13601
|
https://arxiv.org/abs/2311.13601v1
|
https://arxiv.org/pdf/2311.13601v1.pdf
|
https://github.com/idea-research/t-rex
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/splitting-probabilities-are-optimal
|
Splitting probabilities as optimal controllers of rare reactive events
|
2402.05414
|
https://arxiv.org/abs/2402.05414v3
|
https://arxiv.org/pdf/2402.05414v3.pdf
|
https://github.com/ansingh1214/splitting-optimal
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/conceptmath-a-bilingual-concept-wise
|
ConceptMath: A Bilingual Concept-wise Benchmark for Measuring Mathematical Reasoning of Large Language Models
|
2402.14660
|
https://arxiv.org/abs/2402.14660v2
|
https://arxiv.org/pdf/2402.14660v2.pdf
|
https://github.com/conceptmath/conceptmath
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-geometric-perspective-on-diffusion-models
|
A Geometric Perspective on Diffusion Models
|
2305.19947
|
https://arxiv.org/abs/2305.19947v3
|
https://arxiv.org/pdf/2305.19947v3.pdf
|
https://github.com/zhyzhouu/amed-solver
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/fast-ode-based-sampling-for-diffusion-models
|
Fast ODE-based Sampling for Diffusion Models in Around 5 Steps
|
2312.00094
|
https://arxiv.org/abs/2312.00094v3
|
https://arxiv.org/pdf/2312.00094v3.pdf
|
https://github.com/zhyzhouu/amed-solver
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/not-understanding-latin-poetic-style-with
|
(Not) Understanding Latin Poetic Style with Deep Learning
|
2404.06150
|
https://arxiv.org/abs/2404.06150v1
|
https://arxiv.org/pdf/2404.06150v1.pdf
|
https://github.com/bnagy/fail-paper
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/on-the-effectiveness-of-distillation-in
|
On the Effectiveness of Distillation in Mitigating Backdoors in Pre-trained Encoder
|
2403.03846
|
https://arxiv.org/abs/2403.03846v1
|
https://arxiv.org/pdf/2403.03846v1.pdf
|
https://github.com/wssun/sslbackdoormitigation
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-multi-agent-reinforcement-learning-study-of-1
|
A Multi-agent Reinforcement Learning Study of Evolution of Communication and Teaching under Libertarian and Utilitarian Governing Systems
|
2403.02369
|
https://arxiv.org/abs/2403.02369v1
|
https://arxiv.org/pdf/2403.02369v1.pdf
|
https://github.com/aslansd/modified-ai-economist-wt
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/large-scale-exploit-of-github-repository
|
Large-Scale-Exploit of GitHub Repository Metadata and Preventive Measures
|
1908.05354
|
https://arxiv.org/abs/1908.05354v2
|
https://arxiv.org/pdf/1908.05354v2.pdf
|
https://github.com/cirosantilli/all-github-commit-emails
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/deep-heterogeneous-contrastive-hyper-graph
|
Deep Heterogeneous Contrastive Hyper-Graph Learning for In-the-Wild Context-Aware Human Activity Recognition
|
2409.18481
|
https://arxiv.org/abs/2409.18481v1
|
https://arxiv.org/pdf/2409.18481v1.pdf
|
https://github.com/GMouYes/DHC_HGL
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/you-only-read-once-constituency-oriented
|
You Only Read Once: Constituency-Oriented Relational Graph Convolutional Network for Multi-Aspect Multi-Sentiment Classification
| null |
https://ojs.aaai.org/index.php/AAAI/article/view/29945
|
https://ojs.aaai.org/index.php/AAAI/article/download/29945/31652
|
https://github.com/gdufsnlp/YORO
| false
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/beyond-film-subtitles-is-youtube-the-best
|
Beyond Film Subtitles: Is YouTube the Best Approximation of Spoken Vocabulary?
|
2410.03240
|
https://arxiv.org/abs/2410.03240v2
|
https://arxiv.org/pdf/2410.03240v2.pdf
|
https://github.com/naist-nlp/tubelex
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/zero-shot-text-to-image-generation
|
Zero-Shot Text-to-Image Generation
|
2102.12092
|
https://arxiv.org/abs/2102.12092v2
|
https://arxiv.org/pdf/2102.12092v2.pdf
|
https://github.com/neonbjb/tortoise-tts
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/icp-flow-lidar-scene-flow-estimation-with-icp
|
ICP-Flow: LiDAR Scene Flow Estimation with ICP
|
2402.17351
|
https://arxiv.org/abs/2402.17351v2
|
https://arxiv.org/pdf/2402.17351v2.pdf
|
https://github.com/yanconglin/icp-flow
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/when-do-generative-query-and-document
|
When do Generative Query and Document Expansions Fail? A Comprehensive Study Across Methods, Retrievers, and Datasets
|
2309.08541
|
https://arxiv.org/abs/2309.08541v2
|
https://arxiv.org/pdf/2309.08541v2.pdf
|
https://github.com/orionw/lm-expansions
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/heysquad-a-spoken-question-answering-dataset
|
HeySQuAD: A Spoken Question Answering Dataset
|
2304.13689
|
https://arxiv.org/abs/2304.13689v2
|
https://arxiv.org/pdf/2304.13689v2.pdf
|
https://github.com/yijingjoanna/heysquad
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/padellm-ner-parallel-decoding-in-large
|
PaDeLLM-NER: Parallel Decoding in Large Language Models for Named Entity Recognition
|
2402.04838
|
https://arxiv.org/abs/2402.04838v5
|
https://arxiv.org/pdf/2402.04838v5.pdf
|
https://github.com/GeorgeLuImmortal/PaDeLLM_NER
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/can-github-issues-be-solved-with-tree-of
|
Can Github issues be solved with Tree Of Thoughts?
|
2405.13057
|
https://arxiv.org/abs/2405.13057v1
|
https://arxiv.org/pdf/2405.13057v1.pdf
|
https://github.com/ricardo-larosa/tree-of-thought-llm
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/dispersion-measures-as-predictors-of-lexical
|
Dispersion Measures as Predictors of Lexical Decision Time, Word Familiarity, and Lexical Complexity
|
2501.06536
|
https://arxiv.org/abs/2501.06536v1
|
https://arxiv.org/pdf/2501.06536v1.pdf
|
https://github.com/naist-nlp/tubelex
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-comprehensive-calculation-of-the-primakoff
|
A comprehensive calculation of the Primakoff process and the solar axion flux
|
2402.16083
|
https://arxiv.org/abs/2402.16083v2
|
https://arxiv.org/pdf/2402.16083v2.pdf
|
https://github.com/fenyutanchan/solar-axion-primakoff-flux
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/drm-mastering-visual-reinforcement-learning
|
DrM: Mastering Visual Reinforcement Learning through Dormant Ratio Minimization
|
2310.19668
|
https://arxiv.org/abs/2310.19668v2
|
https://arxiv.org/pdf/2310.19668v2.pdf
|
https://github.com/premiertaco/premier-taco
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/qmix-monotonic-value-function-factorisation
|
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
|
1803.11485
|
http://arxiv.org/abs/1803.11485v2
|
http://arxiv.org/pdf/1803.11485v2.pdf
|
https://github.com/nju-rl/acorm
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/the-surprising-effectiveness-of-mappo-in
|
The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games
|
2103.01955
|
https://arxiv.org/abs/2103.01955v4
|
https://arxiv.org/pdf/2103.01955v4.pdf
|
https://github.com/nju-rl/acorm
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/layoutllm-t2i-eliciting-layout-guidance-from
|
LayoutLLM-T2I: Eliciting Layout Guidance from LLM for Text-to-Image Generation
|
2308.05095
|
https://arxiv.org/abs/2308.05095v2
|
https://arxiv.org/pdf/2308.05095v2.pdf
|
https://github.com/layoutllm-t2i/layoutllm-t2i
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/panoptic-segformer
|
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers
|
2109.03814
|
https://arxiv.org/abs/2109.03814v4
|
https://arxiv.org/pdf/2109.03814v4.pdf
|
https://github.com/claud1234/fcn_transformer_object_segmentation
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/online-adaptation-of-language-models-with-a
|
Online Adaptation of Language Models with a Memory of Amortized Contexts
|
2403.04317
|
https://arxiv.org/abs/2403.04317v2
|
https://arxiv.org/pdf/2403.04317v2.pdf
|
https://github.com/jihoontack/mac
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/bihmp-gan-bidirectional-3d-human-motion
|
BiHMP-GAN: Bidirectional 3D Human Motion Prediction GAN
|
1812.02591
|
http://arxiv.org/abs/1812.02591v1
|
http://arxiv.org/pdf/1812.02591v1.pdf
|
https://github.com/ThomasDupiereux/EnGAN
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/unsupervised-feature-learning-of-human
|
Unsupervised Feature Learning of Human Actions as Trajectories in Pose Embedding Manifold
|
1812.02592
|
http://arxiv.org/abs/1812.02592v1
|
http://arxiv.org/pdf/1812.02592v1.pdf
|
https://github.com/ThomasDupiereux/EnGAN
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/a-faster-fourier-transform-computing-small
|
A Faster Fourier Transform? Computing Small-Scale Power Spectra and Bispectra for Cosmological Simulations in $\mathcal{O}(N^2)$ Time
|
2005.01739
|
https://arxiv.org/abs/2005.01739v3
|
https://arxiv.org/pdf/2005.01739v3.pdf
|
https://github.com/oliverphilcox/HIPSTER
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/computing-the-small-scale-galaxy-power
|
Computing the Small-Scale Galaxy Power Spectrum and Bispectrum in Configuration-Space
|
1912.01010
|
https://arxiv.org/abs/1912.01010v1
|
https://arxiv.org/pdf/1912.01010v1.pdf
|
https://github.com/oliverphilcox/HIPSTER
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/pecc-problem-extraction-and-coding-challenges
|
PECC: Problem Extraction and Coding Challenges
|
2404.18766
|
https://arxiv.org/abs/2404.18766v1
|
https://arxiv.org/pdf/2404.18766v1.pdf
|
https://github.com/hallerpatrick/pecc
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mac-maximizing-algebraic-connectivity-for
|
MAC: Graph Sparsification by Maximizing Algebraic Connectivity
|
2403.19879
|
https://arxiv.org/abs/2403.19879v2
|
https://arxiv.org/pdf/2403.19879v2.pdf
|
https://github.com/MarineRoboticsGroup/mac
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/evaluating-the-effectiveness-of-predicting
|
Evaluating the effectiveness of predicting covariates in LSTM Networks for Time Series Forecasting
|
2404.18553
|
https://arxiv.org/abs/2404.18553v1
|
https://arxiv.org/pdf/2404.18553v1.pdf
|
https://github.com/garethmd/nnts
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/intactkv-improving-large-language-model
|
IntactKV: Improving Large Language Model Quantization by Keeping Pivot Tokens Intact
|
2403.01241
|
https://arxiv.org/abs/2403.01241v2
|
https://arxiv.org/pdf/2403.01241v2.pdf
|
https://github.com/ruikangliu/IntactKV
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/salute-the-classic-revisiting-challenges-of
|
Salute the Classic: Revisiting Challenges of Machine Translation in the Age of Large Language Models
|
2401.08350
|
https://arxiv.org/abs/2401.08350v2
|
https://arxiv.org/pdf/2401.08350v2.pdf
|
https://github.com/pangjh3/llm4mt
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/enhanced-short-text-modeling-leveraging-large
|
Enhanced Short Text Modeling: Leveraging Large Language Models for Topic Refinement
|
2403.17706
|
https://arxiv.org/abs/2403.17706v1
|
https://arxiv.org/pdf/2403.17706v1.pdf
|
https://github.com/nguyentthong/CLNTM
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/assessing-image-quality-using-a-simple
|
Assessing Image Quality Using a Simple Generative Representation
|
2404.18178
|
https://arxiv.org/abs/2404.18178v1
|
https://arxiv.org/pdf/2404.18178v1.pdf
|
https://github.com/simonraviv/vae-qa
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/from-density-to-geometry-yolov8-instance
|
From Density to Geometry: YOLOv8 Instance Segmentation for Reverse Engineering of Optimized Structures
|
2404.18763
|
https://arxiv.org/abs/2404.18763v1
|
https://arxiv.org/pdf/2404.18763v1.pdf
|
https://github.com/cosim-lab/yolov8-to
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/where-the-really-hard-quadratic-assignment
|
Where the Really Hard Quadratic Assignment Problems Are: the QAP-SAT instances
|
2403.02783
|
https://arxiv.org/abs/2403.02783v1
|
https://arxiv.org/pdf/2403.02783v1.pdf
|
https://gitlab.com/verel/qap-sat
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/towards-robust-recommendation-a-review-and-an
|
Towards Robust Recommendation: A Review and an Adversarial Robustness Evaluation Library
|
2404.17844
|
https://arxiv.org/abs/2404.17844v2
|
https://arxiv.org/pdf/2404.17844v2.pdf
|
https://github.com/chengleileilei/shillingrec
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/vitaev2-vision-transformer-advanced-by
|
ViTAEv2: Vision Transformer Advanced by Exploring Inductive Bias for Image Recognition and Beyond
|
2202.10108
|
https://arxiv.org/abs/2202.10108v2
|
https://arxiv.org/pdf/2202.10108v2.pdf
|
https://github.com/yangyucheng000/Paper-2/tree/main/STViT-Mindspore-main
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/uncertainty-quantification-for-molecular
|
Uncertainty Quantification for Molecular Property Predictions with Graph Neural Architecture Search
|
2307.10438
|
https://arxiv.org/abs/2307.10438v3
|
https://arxiv.org/pdf/2307.10438v3.pdf
|
https://github.com/sjiang87/deephyper
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/lars-vsa-a-vector-symbolic-architecture-for
|
LARS-VSA: A Vector Symbolic Architecture For Learning with Abstract Rules
|
2405.14436
|
https://arxiv.org/abs/2405.14436v1
|
https://arxiv.org/pdf/2405.14436v1.pdf
|
https://github.com/mmejri3/lars-vsa
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/ge-advgan-improving-the-transferability-of
|
GE-AdvGAN: Improving the transferability of adversarial samples by gradient editing-based adversarial generative model
|
2401.06031
|
https://arxiv.org/abs/2401.06031v2
|
https://arxiv.org/pdf/2401.06031v2.pdf
|
https://github.com/lmbtough/ge-advgan
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/solving-kernel-ridge-regression-with-gradient-1
|
Changing the Kernel During Training Leads to Double Descent in Kernel Regression
|
2311.01762
|
https://arxiv.org/abs/2311.01762v3
|
https://arxiv.org/pdf/2311.01762v3.pdf
|
https://github.com/allerbo/non_constant_kgd
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/univnet-a-neural-vocoder-with-multi
|
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation
|
2106.07889
|
https://arxiv.org/abs/2106.07889v1
|
https://arxiv.org/pdf/2106.07889v1.pdf
|
https://github.com/neonbjb/tortoise-tts
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/peeb-part-based-image-classifiers-with-an
|
PEEB: Part-based Image Classifiers with an Explainable and Editable Language Bottleneck
|
2403.05297
|
https://arxiv.org/abs/2403.05297v3
|
https://arxiv.org/pdf/2403.05297v3.pdf
|
https://github.com/anguyen8/peeb
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/text-r-2-bench-benchmarking-the-robustness-of
|
$\text{R}^2$-Bench: Benchmarking the Robustness of Referring Perception Models under Perturbations
|
2403.04924
|
https://arxiv.org/abs/2403.04924v1
|
https://arxiv.org/pdf/2403.04924v1.pdf
|
https://github.com/lxa9867/r2bench
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-dual-control-variate-for-doubly-stochastic
|
Joint control variate for faster black-box variational inference
|
2210.07290
|
https://arxiv.org/abs/2210.07290v4
|
https://arxiv.org/pdf/2210.07290v4.pdf
|
https://github.com/xidulu/jointcv
| true
| true
| true
|
jax
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.