paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/agile-multi-source-free-domain-adaptation
|
Agile Multi-Source-Free Domain Adaptation
|
2403.05062
|
https://arxiv.org/abs/2403.05062v1
|
https://arxiv.org/pdf/2403.05062v1.pdf
|
https://github.com/tl-uestc/bi-aten
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/sa-solver-stochastic-adams-solver-for-fast
|
SA-Solver: Stochastic Adams Solver for Fast Sampling of Diffusion Models
|
2309.05019
|
https://arxiv.org/abs/2309.05019v2
|
https://arxiv.org/pdf/2309.05019v2.pdf
|
https://github.com/scxue/SA-Solver
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/can-language-models-solve-graph-problems-in
|
Can Language Models Solve Graph Problems in Natural Language?
|
2305.10037
|
https://arxiv.org/abs/2305.10037v3
|
https://arxiv.org/pdf/2305.10037v3.pdf
|
https://github.com/Samyu0304/thought-propagation
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/neural-message-passing-for-quantum-chemistry
|
Neural Message Passing for Quantum Chemistry
|
1704.01212
|
http://arxiv.org/abs/1704.01212v2
|
http://arxiv.org/pdf/1704.01212v2.pdf
|
https://github.com/Samyu0304/thought-propagation
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/language-models-are-few-shot-learners
|
Language Models are Few-Shot Learners
|
2005.14165
|
https://arxiv.org/abs/2005.14165v4
|
https://arxiv.org/pdf/2005.14165v4.pdf
|
https://github.com/Samyu0304/thought-propagation
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/efficient-conditional-diffusion-model-with
|
Efficient Conditional Diffusion Model with Probability Flow Sampling for Image Super-resolution
|
2404.10688
|
https://arxiv.org/abs/2404.10688v1
|
https://arxiv.org/pdf/2404.10688v1.pdf
|
https://github.com/yuan-yutao/ecdp
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/sensory-attenuation-develops-as-a-result-of
|
Emergence of sensory attenuation based upon the free-energy principle
|
2111.02666
|
https://arxiv.org/abs/2111.02666v3
|
https://arxiv.org/pdf/2111.02666v3.pdf
|
https://github.com/h-idei/pvrnn_sa
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/rsmamba-remote-sensing-image-classification
|
RSMamba: Remote Sensing Image Classification with State Space Model
|
2403.19654
|
https://arxiv.org/abs/2403.19654v1
|
https://arxiv.org/pdf/2403.19654v1.pdf
|
https://github.com/KyanChen/RSMamba
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/wavelet-based-fourier-information-interaction
|
Wavelet-based Fourier Information Interaction with Frequency Diffusion Adjustment for Underwater Image Restoration
|
2311.16845
|
https://arxiv.org/abs/2311.16845v1
|
https://arxiv.org/pdf/2311.16845v1.pdf
|
https://github.com/zhihefang/wf-diff
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/comparative-evaluation-of-earthquake
|
Comparative evaluation of earthquake forecasting models: An application to Italy
|
2405.10712
|
https://arxiv.org/abs/2405.10712v1
|
https://arxiv.org/pdf/2405.10712v1.pdf
|
https://github.com/jbrehmer42/Earthquakes_Italy
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/voice-transformer-network-sequence-to
|
Voice Transformer Network: Sequence-to-Sequence Voice Conversion Using Transformer with Text-to-Speech Pretraining
|
1912.06813
|
https://arxiv.org/abs/1912.06813v1
|
https://arxiv.org/pdf/1912.06813v1.pdf
|
https://github.com/unilight/seq2seq-vc
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/pretraining-techniques-for-sequence-to
|
Pretraining Techniques for Sequence-to-Sequence Voice Conversion
|
2008.03088
|
https://arxiv.org/abs/2008.03088v1
|
https://arxiv.org/pdf/2008.03088v1.pdf
|
https://github.com/unilight/seq2seq-vc
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/dynamic-implicit-image-function-for-efficient
|
Dynamic Implicit Image Function for Efficient Arbitrary-Scale Image Representation
|
2306.12321
|
https://arxiv.org/abs/2306.12321v2
|
https://arxiv.org/pdf/2306.12321v2.pdf
|
https://github.com/hezongyao/diif
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/decoupling-static-and-hierarchical-motion
|
Decoupling Static and Hierarchical Motion Perception for Referring Video Segmentation
|
2404.03645
|
https://arxiv.org/abs/2404.03645v1
|
https://arxiv.org/pdf/2404.03645v1.pdf
|
https://github.com/heshuting555/dshmp
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/noise-robust-keyword-spotting-through-self
|
Noise-Robust Keyword Spotting through Self-supervised Pretraining
|
2403.18560
|
https://arxiv.org/abs/2403.18560v1
|
https://arxiv.org/pdf/2403.18560v1.pdf
|
https://github.com/aau-es-ml/ssl_noise-robust_kws
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/improving-label-deficient-keyword-spotting
|
Improving Label-Deficient Keyword Spotting Through Self-Supervised Pretraining
|
2210.01703
|
https://arxiv.org/abs/2210.01703v3
|
https://arxiv.org/pdf/2210.01703v3.pdf
|
https://github.com/aau-es-ml/ssl_noise-robust_kws
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/keyword-transformer-a-self-attention-model
|
Keyword Transformer: A Self-Attention Model for Keyword Spotting
|
2104.00769
|
https://arxiv.org/abs/2104.00769v3
|
https://arxiv.org/pdf/2104.00769v3.pdf
|
https://github.com/aau-es-ml/ssl_noise-robust_kws
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/data2vec-a-general-framework-for-self-1
|
data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language
|
2202.03555
|
https://arxiv.org/abs/2202.03555v3
|
https://arxiv.org/pdf/2202.03555v3.pdf
|
https://github.com/aau-es-ml/ssl_noise-robust_kws
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/estimating-aging-curves-using-multiple
|
Filling the Gaps: A Multiple Imputation Approach to Estimating Aging Curves in Baseball
|
2210.02383
|
https://arxiv.org/abs/2210.02383v3
|
https://arxiv.org/pdf/2210.02383v3.pdf
|
https://github.com/qntkhvn/aging
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/rho-1-not-all-tokens-are-what-you-need
|
Rho-1: Not All Tokens Are What You Need
|
2404.07965
|
https://arxiv.org/abs/2404.07965v4
|
https://arxiv.org/pdf/2404.07965v4.pdf
|
https://github.com/ZubinGou/rho
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/on-temporal-references-in-emergent
|
It's About Time: Temporal References in Emergent Communication
|
2310.06555
|
https://arxiv.org/abs/2310.06555v2
|
https://arxiv.org/pdf/2310.06555v2.pdf
|
https://github.com/olipinski/trg
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/mdvit-multi-domain-vision-transformer-for
|
MDViT: Multi-domain Vision Transformer for Small Medical Image Segmentation Datasets
|
2307.02100
|
https://arxiv.org/abs/2307.02100v3
|
https://arxiv.org/pdf/2307.02100v3.pdf
|
https://github.com/siyi-wind/tip
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/probing-for-multilingual-numerical
|
Probing for Multilingual Numerical Understanding in Transformer-Based Language Models
|
2010.06666
|
https://arxiv.org/abs/2010.06666v1
|
https://arxiv.org/pdf/2010.06666v1.pdf
|
https://github.com/dj1121/tlm_num_probe
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/game-based-platforms-for-artificial
|
Games for Artificial Intelligence Research: A Review and Perspectives
|
2304.13269
|
https://arxiv.org/abs/2304.13269v4
|
https://arxiv.org/pdf/2304.13269v4.pdf
|
https://github.com/sustechgameai/gameai-platforms
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/adaptive-multi-head-contrastive-learning
|
Adaptive Multi-head Contrastive Learning
|
2310.05615
|
https://arxiv.org/abs/2310.05615v3
|
https://arxiv.org/pdf/2310.05615v3.pdf
|
https://github.com/leiwangr/cl
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/pypots-a-python-toolbox-for-data-mining-on
|
PyPOTS: A Python Toolbox for Data Mining on Partially-Observed Time Series
|
2305.18811
|
https://arxiv.org/abs/2305.18811v1
|
https://arxiv.org/pdf/2305.18811v1.pdf
|
https://github.com/WenjieDu/PyGrinder
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/mirage-model-agnostic-graph-distillation-for
|
Mirage: Model-Agnostic Graph Distillation for Graph Classification
|
2310.09486
|
https://arxiv.org/abs/2310.09486v4
|
https://arxiv.org/pdf/2310.09486v4.pdf
|
https://github.com/idea-iitd/mirage
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/configurable-safety-tuning-of-language-models
|
Configurable Safety Tuning of Language Models with Synthetic Preference Data
|
2404.00495
|
https://arxiv.org/abs/2404.00495v1
|
https://arxiv.org/pdf/2404.00495v1.pdf
|
https://github.com/vicgalle/configurable-safety-tuning
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/selfpose3d-self-supervised-multi-person-multi
|
SelfPose3d: Self-Supervised Multi-Person Multi-View 3d Pose Estimation
|
2404.02041
|
https://arxiv.org/abs/2404.02041v2
|
https://arxiv.org/pdf/2404.02041v2.pdf
|
https://github.com/camma-public/selfpose3d
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/cameractrl-enabling-camera-control-for-text
|
CameraCtrl: Enabling Camera Control for Text-to-Video Generation
|
2404.02101
|
https://arxiv.org/abs/2404.02101v1
|
https://arxiv.org/pdf/2404.02101v1.pdf
|
https://github.com/hehao13/cameractrl
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-to-rank-patches-for-unbiased-image
|
Learning to Rank Patches for Unbiased Image Redundancy Reduction
|
2404.00680
|
https://arxiv.org/abs/2404.00680v2
|
https://arxiv.org/pdf/2404.00680v2.pdf
|
https://github.com/irslu/ltrp
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/dmssn-distilled-mixed-spectral-spatial
|
DMSSN: Distilled Mixed Spectral-Spatial Network for Hyperspectral Salient Object Detection
|
2404.00694
|
https://arxiv.org/abs/2404.00694v1
|
https://arxiv.org/pdf/2404.00694v1.pdf
|
https://github.com/anonymous0519/hsod-bit
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/humanizing-machine-generated-content-evading
|
Humanizing Machine-Generated Content: Evading AI-Text Detection through Adversarial Attack
|
2404.01907
|
https://arxiv.org/abs/2404.01907v1
|
https://arxiv.org/pdf/2404.01907v1.pdf
|
https://github.com/zhouying20/hmgc
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/diffusion-models-for-computational-design-at
|
Automating Computational Design with Generative AI
|
2307.02511
|
https://arxiv.org/abs/2307.02511v2
|
https://arxiv.org/pdf/2307.02511v2.pdf
|
https://github.com/ai4sc/bim-diffusion-models
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-new-benchmark-and-model-for-challenging
|
A New Benchmark and Model for Challenging Image Manipulation Detection
|
2311.14218
|
https://arxiv.org/abs/2311.14218v2
|
https://arxiv.org/pdf/2311.14218v2.pdf
|
https://github.com/zhenfeiz/cimd
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-transformer-approach-for-electricity-price
|
A Transformer approach for Electricity Price Forecasting
|
2403.16108
|
https://arxiv.org/abs/2403.16108v2
|
https://arxiv.org/pdf/2403.16108v2.pdf
|
https://github.com/osllogon/epf-transformers
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/robust-offline-policy-evaluation-and
|
Robust Offline Reinforcement learning with Heavy-Tailed Rewards
|
2310.18715
|
https://arxiv.org/abs/2310.18715v2
|
https://arxiv.org/pdf/2310.18715v2.pdf
|
https://github.com/mamba413/room
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/long-form-evaluation-of-model-editing
|
Long-form evaluation of model editing
|
2402.09394
|
https://arxiv.org/abs/2402.09394v2
|
https://arxiv.org/pdf/2402.09394v2.pdf
|
https://github.com/domenicrosati/longform-evaluation-model-editing
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/cages-cost-aware-gradient-entropy-search-for
|
CAGES: Cost-Aware Gradient Entropy Search for Efficient Local Multi-Fidelity Bayesian Optimization
|
2405.07760
|
https://arxiv.org/abs/2405.07760v1
|
https://arxiv.org/pdf/2405.07760v1.pdf
|
https://github.com/PaulsonLab/CAGES
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/enhancing-semantic-fidelity-in-text-to-image
|
Enhancing Semantic Fidelity in Text-to-Image Synthesis: Attention Regulation in Diffusion Models
|
2403.06381
|
https://arxiv.org/abs/2403.06381v1
|
https://arxiv.org/pdf/2403.06381v1.pdf
|
https://github.com/yangzhang-v5/attention_regulation
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/eye-gaze-guided-multi-modal-alignment
|
Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning
|
2403.12416
|
https://arxiv.org/abs/2403.12416v3
|
https://arxiv.org/pdf/2403.12416v3.pdf
|
https://github.com/momarky/egma
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/burstattention-an-efficient-distributed
|
BurstAttention: An Efficient Distributed Attention Framework for Extremely Long Sequences
|
2403.09347
|
https://arxiv.org/abs/2403.09347v4
|
https://arxiv.org/pdf/2403.09347v4.pdf
|
https://github.com/MayDomine/Burst-Attention
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/lucid-llm-generated-utterances-for-complex
|
LUCID: LLM-Generated Utterances for Complex and Interesting Dialogues
|
2403.00462
|
https://arxiv.org/abs/2403.00462v2
|
https://arxiv.org/pdf/2403.00462v2.pdf
|
https://github.com/apple/ml-lucid-datagen
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/learning-dynamic-graphs-from-all-contextual
|
Learning Dynamic Graphs from All Contextual Information for Accurate Point-of-Interest Visit Forecasting
|
2306.15927
|
https://arxiv.org/abs/2306.15927v2
|
https://arxiv.org/pdf/2306.15927v2.pdf
|
https://github.com/USC-InfoLab/busyness-graph-neural-network
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/syren-new-precise-formulae-for-the-linear-and
|
syren-new: Precise formulae for the linear and nonlinear matter power spectra with massive neutrinos and dynamical dark energy
|
2410.14623
|
https://arxiv.org/abs/2410.14623v1
|
https://arxiv.org/pdf/2410.14623v1.pdf
|
https://github.com/deaglanbartlett/symbolic_pofk
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/beyond-autoregression-discrete-diffusion-for
|
Beyond Autoregression: Discrete Diffusion for Complex Reasoning and Planning
|
2410.14157
|
https://arxiv.org/abs/2410.14157v1
|
https://arxiv.org/pdf/2410.14157v1.pdf
|
https://github.com/HKUNLP/diffusion-vs-ar
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/the-why-in-business-processes-discovery-of
|
The WHY in Business Processes: Discovery of Causal Execution Dependencies
|
2310.14975
|
https://arxiv.org/abs/2310.14975v3
|
https://arxiv.org/pdf/2310.14975v3.pdf
|
https://github.com/ibm/sax4bpm
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/how-well-can-large-language-models-explain
|
How well can a large language model explain business processes as perceived by users?
|
2401.12846
|
https://arxiv.org/abs/2401.12846v4
|
https://arxiv.org/pdf/2401.12846v4.pdf
|
https://github.com/ibm/sax4bpm
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/geot-tensor-centric-library-for-graph-neural
|
GeoT: Tensor Centric Library for Graph Neural Network via Efficient Segment Reduction on GPU
|
2404.03019
|
https://arxiv.org/abs/2404.03019v2
|
https://arxiv.org/pdf/2404.03019v2.pdf
|
https://github.com/fishmingyu/geot
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/lampilot-an-open-benchmark-dataset-for
|
LaMPilot: An Open Benchmark Dataset for Autonomous Driving with Language Model Programs
|
2312.04372
|
https://arxiv.org/abs/2312.04372v2
|
https://arxiv.org/pdf/2312.04372v2.pdf
|
https://github.com/purduedigitaltwin/lampilot
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/sok-unintended-interactions-among-machine
|
SoK: Unintended Interactions among Machine Learning Defenses and Risks
|
2312.04542
|
https://arxiv.org/abs/2312.04542v2
|
https://arxiv.org/pdf/2312.04542v2.pdf
|
https://github.com/ssg-research/sok-unintended-interactions
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/differentiable-instruction-optimization-for
|
Differentiable Instruction Optimization for Cross-Task Generalization
|
2306.10098
|
https://arxiv.org/abs/2306.10098v1
|
https://arxiv.org/pdf/2306.10098v1.pdf
|
https://github.com/misonuma/instopt
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/bcamirs-at-semeval-2024-task-4-beyond-words-a
|
BCAmirs at SemEval-2024 Task 4: Beyond Words: A Multimodal and Multilingual Exploration of Persuasion in Memes
|
2404.03022
|
https://arxiv.org/abs/2404.03022v2
|
https://arxiv.org/pdf/2404.03022v2.pdf
|
https://github.com/amirabaskohi/beyond-words-a-multimodal-exploration-of-persuasion-in-memes
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/uncertainty-estimation-for-path-loss-and
|
Uncertainty Estimation for Path Loss and Radio Metric Models
|
2501.06308
|
https://arxiv.org/abs/2501.06308v1
|
https://arxiv.org/pdf/2501.06308v1.pdf
|
https://github.com/ic-crc/uncertainty-estimation
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/increase-inductive-graph-representation
|
INCREASE: Inductive Graph Representation Learning for Spatio-Temporal Kriging
|
2302.02738
|
https://arxiv.org/abs/2302.02738v1
|
https://arxiv.org/pdf/2302.02738v1.pdf
|
https://github.com/Aminsheykh98/INCREASE-pytorch
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/visualizing-the-loss-landscape-of-neural-nets
|
Visualizing the Loss Landscape of Neural Nets
|
1712.09913
|
http://arxiv.org/abs/1712.09913v3
|
http://arxiv.org/pdf/1712.09913v3.pdf
|
https://github.com/StephenThacker/Visualiation-of-Loss-Function
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/multiple-environment-self-adaptive-network
|
Multiple-environment Self-adaptive Network for Aerial-view Geo-localization
|
2204.08381
|
https://arxiv.org/abs/2204.08381v2
|
https://arxiv.org/pdf/2204.08381v2.pdf
|
https://github.com/wtyhub/MuseNet
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/challenges-for-reinforcement-learning-in-1
|
Challenges for Reinforcement Learning in Quantum Circuit Design
|
2312.11337
|
https://arxiv.org/abs/2312.11337v3
|
https://arxiv.org/pdf/2312.11337v3.pdf
|
https://github.com/philippaltmann/qcd
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/on-the-trustworthiness-of-generative
|
On the Trustworthiness of Generative Foundation Models: Guideline, Assessment, and Perspective
|
2502.14296
|
https://arxiv.org/abs/2502.14296v3
|
https://arxiv.org/pdf/2502.14296v3.pdf
|
https://github.com/thuccslab/figstep
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/large-language-models-for-in-context-student
|
Large Language Models for In-Context Student Modeling: Synthesizing Student's Behavior in Visual Programming
|
2310.10690
|
https://arxiv.org/abs/2310.10690v3
|
https://arxiv.org/pdf/2310.10690v3.pdf
|
https://github.com/machine-teaching-group/edm2024-llm-student-modeling
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/multi-objective-transmission-expansion-an
|
Multi-Objective Transmission Expansion: An Offshore Wind Power Integration Case Study
|
2311.09563
|
https://arxiv.org/abs/2311.09563v3
|
https://arxiv.org/pdf/2311.09563v3.pdf
|
https://github.com/sarojkhanal/motep-osw
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/antiferromagnetic-and-bond-order-wave-phases
|
Antiferromagnetic and bond-order-wave phases in the half-filled two-dimensional optical Su-Schrieffer-Heeger-Hubbard model
|
2502.14196
|
https://arxiv.org/abs/2502.14196v1
|
https://arxiv.org/pdf/2502.14196v1.pdf
|
https://github.com/smoqysuite/smoqydqmc.jl
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/deep-reinforcement-learning-for-personalized-1
|
Deep Reinforcement Learning for Personalized Diagnostic Decision Pathways Using Electronic Health Records: A Comparative Study on Anemia and Systemic Lupus Erythematosus
|
2404.05913
|
https://arxiv.org/abs/2404.05913v1
|
https://arxiv.org/pdf/2404.05913v1.pdf
|
https://github.com/lilly-muyama/deep_rl_diagnosis_pathways
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/classification-of-breast-cancer
|
Classification of Breast Cancer Histopathology Images using a Modified Supervised Contrastive Learning Method
|
2405.03642
|
https://arxiv.org/abs/2405.03642v2
|
https://arxiv.org/pdf/2405.03642v2.pdf
|
https://github.com/matinamehdizadeh/Breast-Cancer-Detection
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/consistent-point-orientation-for-manifold
|
Consistent Point Orientation for Manifold Surfaces via Boundary Integration
|
2407.03165
|
https://arxiv.org/abs/2407.03165v1
|
https://arxiv.org/pdf/2407.03165v1.pdf
|
https://github.com/liuweizhou319/bim
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-high-order-conservative-cut-finite-element
|
A High-Order Conservative Cut Finite Element Method for Problems in Time-Dependent Domains
|
2404.10756
|
https://arxiv.org/abs/2404.10756v3
|
https://arxiv.org/pdf/2404.10756v3.pdf
|
https://github.com/cutfem/cutfem-library
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/two-stages-domain-invariant-representation
|
Two stages domain invariant representation learners solve the large co-variate shift in unsupervised domain adaptation with two dimensional data domains
|
2412.04682
|
https://arxiv.org/abs/2412.04682v1
|
https://arxiv.org/pdf/2412.04682v1.pdf
|
https://github.com/oh-yu/domain-invariant-learning
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/bertweet-a-pre-trained-language-model-for
|
BERTweet: A pre-trained language model for English Tweets
|
2005.10200
|
https://arxiv.org/abs/2005.10200v2
|
https://arxiv.org/pdf/2005.10200v2.pdf
|
https://github.com/2024-MindSpore-1/Code2/tree/main/model-1/bertweet
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/when-do-prompting-and-prefix-tuning-work-a
|
When Do Prompting and Prefix-Tuning Work? A Theory of Capabilities and Limitations
|
2310.19698
|
https://arxiv.org/abs/2310.19698v2
|
https://arxiv.org/pdf/2310.19698v2.pdf
|
https://github.com/aleksandarpetrov/prefix-tuning-theory
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/raffesdg-random-frequency-filtering-enabled
|
RaffeSDG: Random Frequency Filtering enabled Single-source Domain Generalization for Medical Image Segmentation
|
2405.01228
|
https://arxiv.org/abs/2405.01228v2
|
https://arxiv.org/pdf/2405.01228v2.pdf
|
https://github.com/liamheng/non-iid_medical_image_segmentation
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/hypothesis-testing-using-causal-and-causal
|
Causal Structural Hypothesis Testing and Data Generation Models
|
2210.11275
|
https://arxiv.org/abs/2210.11275v2
|
https://arxiv.org/pdf/2210.11275v2.pdf
|
https://github.com/sunaybhat1/causal-structural-hypothesis-testing
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/q8bert-quantized-8bit-bert
|
Q8BERT: Quantized 8Bit BERT
|
1910.06188
|
https://arxiv.org/abs/1910.06188v2
|
https://arxiv.org/pdf/1910.06188v2.pdf
|
https://github.com/iabd/QuantizedNMT
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/medoid-silhouette-clustering-with-automatic
|
Medoid Silhouette clustering with automatic cluster number selection
|
2309.03751
|
https://arxiv.org/abs/2309.03751v1
|
https://arxiv.org/pdf/2309.03751v1.pdf
|
https://github.com/kno10/python-kmedoids
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/learning-based-video-motion-magnification
|
Learning-based Video Motion Magnification
|
1804.02684
|
http://arxiv.org/abs/1804.02684v3
|
http://arxiv.org/pdf/1804.02684v3.pdf
|
https://github.com/ZhengPeng7/motion_magnification_learning-based
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/harnessing-data-and-physics-for-deep-learning
|
Deep learning phase recovery: data-driven, physics-driven, or combining both?
|
2404.01360
|
https://arxiv.org/abs/2404.01360v2
|
https://arxiv.org/pdf/2404.01360v2.pdf
|
https://github.com/kqwang/DLPR
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/symmetric-observations-without-symmetric
|
Symmetric observations without symmetric causal explanations
|
2502.14950
|
https://arxiv.org/abs/2502.14950v1
|
https://arxiv.org/pdf/2502.14950v1.pdf
|
https://github.com/apozas/symmetric-causal
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/sea-land-cloud-segmentation-in-satellite
|
Semantic Segmentation in Satellite Hyperspectral Imagery by Deep Learning
|
2310.16210
|
https://arxiv.org/abs/2310.16210v4
|
https://arxiv.org/pdf/2310.16210v4.pdf
|
https://github.com/ntnu-smallsat-lab/s_l_c_segm_hyp_img
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/when-big-data-actually-are-low-rank-or
|
When big data actually are low-rank, or entrywise approximation of certain function-generated matrices
|
2407.03250
|
https://arxiv.org/abs/2407.03250v4
|
https://arxiv.org/pdf/2407.03250v4.pdf
|
https://github.com/sbudzinskiy/low-rank-big-data
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/ampic-adaptive-model-predictive-ising
|
Traffic signal optimization in large-scale urban road networks: an adaptive-predictive controller using Ising models
|
2406.03690
|
https://arxiv.org/abs/2406.03690v2
|
https://arxiv.org/pdf/2406.03690v2.pdf
|
https://github.com/toyotacrdl/ampic
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/identification-of-snps-in-genomes-using
|
GRAMEP: an alignment-free method based on the Maximum Entropy Principle for identifying SNPs
|
2405.01715
|
https://arxiv.org/abs/2405.01715v2
|
https://arxiv.org/pdf/2405.01715v2.pdf
|
https://github.com/omatheuspimenta/gramep
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/machine-learning-predictions-from
|
Machine learning predictions from unpredictable chaos
|
2503.14956
|
https://arxiv.org/abs/2503.14956v1
|
https://arxiv.org/pdf/2503.14956v1.pdf
|
https://github.com/kelu0124/TEPC
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/mistral-7b
|
Mistral 7B
|
2310.06825
|
https://arxiv.org/abs/2310.06825v1
|
https://arxiv.org/pdf/2310.06825v1.pdf
|
https://github.com/mgmalek/efficient_cross_entropy
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/can-modifying-data-address-graph-domain
|
Can Modifying Data Address Graph Domain Adaptation?
|
2407.19311
|
https://arxiv.org/abs/2407.19311v1
|
https://arxiv.org/pdf/2407.19311v1.pdf
|
https://github.com/zjunet/GraphAlign
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/attention-guided-cosine-margin-for-overcoming
|
Attention Guided Cosine Margin For Overcoming Class-Imbalance in Few-Shot Road Object Detection
|
2111.06639
|
https://arxiv.org/abs/2111.06639v1
|
https://arxiv.org/pdf/2111.06639v1.pdf
|
https://github.com/amajee11us/smile-fsod
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/generating-realistic-3d-brain-mris-using-a
|
Generating Realistic Brain MRIs via a Conditional Diffusion Probabilistic Model
|
2212.08034
|
https://arxiv.org/abs/2212.08034v2
|
https://arxiv.org/pdf/2212.08034v2.pdf
|
https://github.com/jiaqiw01/MRIAnatEval
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/large-scale-multi-domain-recommendation-an
|
Large-Scale Multi-Domain Recommendation: an Automatic Domain Feature Extraction and Personalized Integration Framework
|
2404.08361
|
https://arxiv.org/abs/2404.08361v2
|
https://arxiv.org/pdf/2404.08361v2.pdf
|
https://github.com/xidongbo/dfei
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/fastspell-the-langid-magic-spell
|
FastSpell: the LangId Magic Spell
|
2404.08345
|
https://arxiv.org/abs/2404.08345v1
|
https://arxiv.org/pdf/2404.08345v1.pdf
|
https://github.com/mbanon/fastspell
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-classification-benchmark-for-artificial
|
A Classification Benchmark for Artificial Intelligence Detection of Laryngeal Cancer from Patient Voice
|
2412.16267
|
https://arxiv.org/abs/2412.16267v2
|
https://arxiv.org/pdf/2412.16267v2.pdf
|
https://github.com/mary-paterson/laryngealcancerclassificationbenchmark
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/instructpix2pix-learning-to-follow-image
|
InstructPix2Pix: Learning to Follow Image Editing Instructions
|
2211.09800
|
https://arxiv.org/abs/2211.09800v2
|
https://arxiv.org/pdf/2211.09800v2.pdf
|
https://github.com/lsl001006/zone
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/zone-zero-shot-instruction-guided-local
|
ZONE: Zero-Shot Instruction-Guided Local Editing
|
2312.16794
|
https://arxiv.org/abs/2312.16794v2
|
https://arxiv.org/pdf/2312.16794v2.pdf
|
https://github.com/lsl001006/zone
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/empowering-clinicians-and-democratizing-data
|
Large Language Models Streamline Automated Machine Learning for Clinical Studies
|
2308.14120
|
https://arxiv.org/abs/2308.14120v5
|
https://arxiv.org/pdf/2308.14120v5.pdf
|
https://github.com/tayebiarasteh/llmmed
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-benchmark-suite-for-systematically
|
A Neuro-Symbolic Benchmark Suite for Concept Quality and Reasoning Shortcuts
|
2406.10368
|
https://arxiv.org/abs/2406.10368v2
|
https://arxiv.org/pdf/2406.10368v2.pdf
|
https://github.com/unitn-sml/rsbench-code
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/autonomous-llm-driven-research-from-data-to
|
Autonomous LLM-driven research from data to human-verifiable research papers
|
2404.17605
|
https://arxiv.org/abs/2404.17605v1
|
https://arxiv.org/pdf/2404.17605v1.pdf
|
https://github.com/technion-kishony-lab/data-to-paper
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/deslib-a-dynamic-ensemble-selection-library
|
DESlib: A Dynamic ensemble selection library in Python
|
1802.04967
|
http://arxiv.org/abs/1802.04967v3
|
http://arxiv.org/pdf/1802.04967v3.pdf
|
https://github.com/scikit-learn-contrib/DESlib
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/an-open-world-lottery-ticket-for-out-of
|
The Open-World Lottery Ticket Hypothesis for OOD Intent Classification
|
2210.07071
|
https://arxiv.org/abs/2210.07071v3
|
https://arxiv.org/pdf/2210.07071v3.pdf
|
https://github.com/zyh190507/open-world-lottery
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/factuality-enhanced-language-models-for-open
|
Factuality Enhanced Language Models for Open-Ended Text Generation
|
2206.04624
|
https://arxiv.org/abs/2206.04624v3
|
https://arxiv.org/pdf/2206.04624v3.pdf
|
https://github.com/ranggihwang/pregated_moe
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/global-local-collaborative-inference-with-llm
|
Global-Local Collaborative Inference with LLM for Lidar-Based Open-Vocabulary Detection
|
2407.08931
|
https://arxiv.org/abs/2407.08931v1
|
https://arxiv.org/pdf/2407.08931v1.pdf
|
https://github.com/gradiustwinbee/glis
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/elucidating-the-theoretical-underpinnings-of
|
Elucidating the theoretical underpinnings of surrogate gradient learning in spiking neural networks
|
2404.14964
|
https://arxiv.org/abs/2404.14964v3
|
https://arxiv.org/pdf/2404.14964v3.pdf
|
https://github.com/fmi-basel/surrogate-gradient-theory
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/astropop-the-astronomical-polarimetry-and
|
ASTROPOP: the ASTROnomical POlarimetry and Photometry pipeline
|
1811.01408
|
https://arxiv.org/abs/1811.01408v1
|
https://arxiv.org/pdf/1811.01408v1.pdf
|
https://github.com/juliotux/astropop
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/deep-learning-in-medical-image-registration-1
|
Deep Learning in Medical Image Registration: Magic or Mirage?
|
2408.05839
|
https://arxiv.org/abs/2408.05839v2
|
https://arxiv.org/pdf/2408.05839v2.pdf
|
https://github.com/rohitrango/Magic-or-Mirage
| true
| false
| false
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.