paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/vmamba-visual-state-space-model
|
VMamba: Visual State Space Model
|
2401.10166
|
https://arxiv.org/abs/2401.10166v4
|
https://arxiv.org/pdf/2401.10166v4.pdf
|
https://github.com/mzeromiko/vmamba
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/personality-alignment-of-large-language
|
Personality Alignment of Large Language Models
|
2408.11779
|
https://arxiv.org/abs/2408.11779v1
|
https://arxiv.org/pdf/2408.11779v1.pdf
|
https://github.com/zhu-minjun/palign
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/general-complex-polynomial-root-solver-and
|
General Complex Polynomial Root Solver and Its Further Optimization for Binary Microlenses
|
1203.1034
|
http://arxiv.org/abs/1203.1034v1
|
http://arxiv.org/pdf/1203.1034v1.pdf
|
https://github.com/valboz/VBBinaryLensing
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/medmae-a-self-supervised-backbone-for-medical
|
MedMAE: A Self-Supervised Backbone for Medical Imaging Tasks
|
2407.14784
|
https://arxiv.org/abs/2407.14784v1
|
https://arxiv.org/pdf/2407.14784v1.pdf
|
https://github.com/islamosmanubc/MedMAE
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/fedgs-federated-gradient-scaling-for
|
FedGS: Federated Gradient Scaling for Heterogeneous Medical Image Segmentation
|
2408.11701
|
https://arxiv.org/abs/2408.11701v1
|
https://arxiv.org/pdf/2408.11701v1.pdf
|
https://github.com/trustworthy-ai-uu-nki/federated-learning-disentanglement
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/gaussian-deja-vu-creating-controllable-3d
|
Gaussian Deja-vu: Creating Controllable 3D Gaussian Head-Avatars with Enhanced Generalization and Personalization Abilities
|
2409.16147
|
https://arxiv.org/abs/2409.16147v3
|
https://arxiv.org/pdf/2409.16147v3.pdf
|
https://github.com/peizhiyan/flame-head-tracker
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/integrating-ytopt-and-libensemble-to-autotune
|
Integrating ytopt and libEnsemble to Autotune OpenMC
|
2402.09222
|
https://arxiv.org/abs/2402.09222v2
|
https://arxiv.org/pdf/2402.09222v2.pdf
|
https://github.com/ytopt-team/ytopt-libensemble
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/avm-slam-semantic-visual-slam-with-multi
|
AVM-SLAM: Semantic Visual SLAM with Multi-Sensor Fusion in a Bird's Eye View for Automated Valet Parking
|
2309.08180
|
https://arxiv.org/abs/2309.08180v2
|
https://arxiv.org/pdf/2309.08180v2.pdf
|
https://github.com/yale-cv/avm-slam_dataset
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/tackling-hybrid-heterogeneity-on-federated
|
On the Power of Adaptive Weighted Aggregation in Heterogeneous Federated Learning and Beyond
|
2310.02702
|
https://arxiv.org/abs/2310.02702v4
|
https://arxiv.org/pdf/2310.02702v4.pdf
|
https://github.com/dunzeng/fedaware
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/seed-data-edit-technical-report-a-hybrid
|
SEED-Data-Edit Technical Report: A Hybrid Dataset for Instructional Image Editing
|
2405.04007
|
https://arxiv.org/abs/2405.04007v1
|
https://arxiv.org/pdf/2405.04007v1.pdf
|
https://github.com/ailab-cvc/seed-x
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/cure4rec-a-benchmark-for-recommendation
|
CURE4Rec: A Benchmark for Recommendation Unlearning with Deeper Influence
|
2408.14393
|
https://arxiv.org/abs/2408.14393v2
|
https://arxiv.org/pdf/2408.14393v2.pdf
|
https://github.com/xiye7lai/cure4rec
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/attencraft-attention-guided-disentanglement
|
AttenCraft: Attention-guided Disentanglement of Multiple Concepts for Text-to-Image Customization
|
2405.17965
|
https://arxiv.org/abs/2405.17965v1
|
https://arxiv.org/pdf/2405.17965v1.pdf
|
https://github.com/junjie-shentu/attencraft
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/large-language-models-for-depression
|
Large Language Models for Depression Recognition in Spoken Language Integrating Psychological Knowledge
|
2505.22863
|
https://arxiv.org/abs/2505.22863v1
|
https://arxiv.org/pdf/2505.22863v1.pdf
|
https://github.com/myxp-lyp/depression-detection
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/rankability-enhanced-revenue-uplift-modeling
|
Rankability-enhanced Revenue Uplift Modeling Framework for Online Marketing
|
2405.15301
|
https://arxiv.org/abs/2405.15301v2
|
https://arxiv.org/pdf/2405.15301v2.pdf
|
https://github.com/BokwaiHo/revenue_uplift
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/bayesian-detector-combination-for-object
|
Bayesian Detector Combination for Object Detection with Crowdsourced Annotations
|
2407.07958
|
https://arxiv.org/abs/2407.07958v1
|
https://arxiv.org/pdf/2407.07958v1.pdf
|
https://github.com/zhiqin1998/bdc
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/novel-clustered-federated-learning-based-on
|
Novel clustered federated learning based on local loss
|
2407.09360
|
https://arxiv.org/abs/2407.09360v1
|
https://arxiv.org/pdf/2407.09360v1.pdf
|
https://github.com/wenh06/LCFL
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/llm-maybe-longlm-self-extend-llm-context
|
LLM Maybe LongLM: Self-Extend LLM Context Window Without Tuning
|
2401.01325
|
https://arxiv.org/abs/2401.01325v3
|
https://arxiv.org/pdf/2401.01325v3.pdf
|
https://github.com/datamllab/LongLM
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/deep-spectral-clustering-via-joint-spectral
|
Deep Spectral Clustering via Joint Spectral Embedding and Kmeans
|
2412.11080
|
https://arxiv.org/abs/2412.11080v1
|
https://arxiv.org/pdf/2412.11080v1.pdf
|
https://github.com/spdj2271/dsc
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/quasioptimal-alternating-projections-and
|
Quasioptimal alternating projections and their use in low-rank approximation of matrices and tensors
|
2308.16097
|
https://arxiv.org/abs/2308.16097v3
|
https://arxiv.org/pdf/2308.16097v3.pdf
|
https://github.com/sbudzinskiy/low-rank-big-data
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/on-discovery-of-local-independence-over
|
On Discovery of Local Independence over Continuous Variables via Neural Contextual Decomposition
|
2405.07220
|
https://arxiv.org/abs/2405.07220v1
|
https://arxiv.org/pdf/2405.07220v1.pdf
|
https://github.com/iwhwang/ncd
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/protboost-protein-function-prediction-with-py
|
ProtBoost: protein function prediction with Py-Boost and Graph Neural Networks -- CAFA5 top2 solution
|
2412.04529
|
https://arxiv.org/abs/2412.04529v1
|
https://arxiv.org/pdf/2412.04529v1.pdf
|
https://github.com/btbpanda/cafa5-protein-function-prediction-2nd-place
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/isfl-trustworthy-federated-learning-for-non-i
|
ISFL: Federated Learning for Non-i.i.d. Data with Local Importance Sampling
|
2210.02119
|
https://arxiv.org/abs/2210.02119v3
|
https://arxiv.org/pdf/2210.02119v3.pdf
|
https://github.com/zhuzzq/isfl
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/tunes-a-temporal-u-net-with-self-attention
|
TUNeS: A Temporal U-Net with Self-Attention for Video-based Surgical Phase Recognition
|
2307.09997
|
https://arxiv.org/abs/2307.09997v6
|
https://arxiv.org/pdf/2307.09997v6.pdf
|
https://gitlab.com/nct_tso_public/tunes
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/straightpcf-straight-point-cloud-filtering
|
StraightPCF: Straight Point Cloud Filtering
|
2405.08322
|
https://arxiv.org/abs/2405.08322v1
|
https://arxiv.org/pdf/2405.08322v1.pdf
|
https://github.com/ddsediri/straightpcf
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/conformal-prediction-for-causal-effects-of
|
Conformal Prediction for Causal Effects of Continuous Treatments
|
2407.03094
|
https://arxiv.org/abs/2407.03094v3
|
https://arxiv.org/pdf/2407.03094v3.pdf
|
https://github.com/m-schroder/continuouscausalcp
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/revisiting-cnns-for-trajectory-similarity
|
Revisiting CNNs for Trajectory Similarity Learning
|
2405.19761
|
https://arxiv.org/abs/2405.19761v2
|
https://arxiv.org/pdf/2405.19761v2.pdf
|
https://github.com/proudc/convtraj
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/multivariate-probabilistic-time-series
|
Multivariate Probabilistic Time Series Forecasting with Correlated Errors
|
2402.01000
|
https://arxiv.org/abs/2402.01000v4
|
https://arxiv.org/pdf/2402.01000v4.pdf
|
https://github.com/rottenivy/mv_pts_correlatederr
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/pokerkit-a-comprehensive-python-library-for
|
PokerKit: A Comprehensive Python Library for Fine-Grained Multi-Variant Poker Game Simulations
|
2308.07327
|
https://arxiv.org/abs/2308.07327v6
|
https://arxiv.org/pdf/2308.07327v6.pdf
|
https://github.com/uoftcprg/pokerkit
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/inline-photometrically-calibrated-hybrid
|
Inline Photometrically Calibrated Hybrid Visual SLAM
|
2409.16810
|
https://arxiv.org/abs/2409.16810v1
|
https://arxiv.org/pdf/2409.16810v1.pdf
|
https://github.com/AUBVRL/HSLAM_docker
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/crafting-interpretable-embeddings-by-asking
|
Crafting Interpretable Embeddings by Asking LLMs Questions
|
2405.16714
|
https://arxiv.org/abs/2405.16714v1
|
https://arxiv.org/pdf/2405.16714v1.pdf
|
https://github.com/csinva/interpretable-embeddings
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/causalconceptts-causal-attributions-for-time
|
CausalConceptTS: Causal Attributions for Time Series Classification using High Fidelity Diffusion Models
|
2405.15871
|
https://arxiv.org/abs/2405.15871v1
|
https://arxiv.org/pdf/2405.15871v1.pdf
|
https://github.com/ai4healthuol/causalconceptts
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/we-should-identify-and-mitigate-third-party
|
We Should Identify and Mitigate Third-Party Safety Risks in MCP-Powered Agent Systems
|
2506.13666
|
https://arxiv.org/abs/2506.13666v1
|
https://arxiv.org/pdf/2506.13666v1.pdf
|
https://github.com/littlelittlenine/safemcp
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/do-not-answer-a-dataset-for-evaluating
|
Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs
|
2308.13387
|
https://arxiv.org/abs/2308.13387v2
|
https://arxiv.org/pdf/2308.13387v2.pdf
|
https://github.com/libr-ai/do-not-answer
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/3d-unsupervised-learning-by-distilling-2d
|
3D Annotation-Free Learning by Distilling 2D Open-Vocabulary Segmentation Models for Autonomous Driving
|
2405.15286
|
https://arxiv.org/abs/2405.15286v3
|
https://arxiv.org/pdf/2405.15286v3.pdf
|
https://github.com/sbysbysbys/afov
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/on-fairness-of-medical-image-classification
|
On Fairness of Medical Image Classification with Multiple Sensitive Attributes via Learning Orthogonal Representations
|
2301.01481
|
https://arxiv.org/abs/2301.01481v3
|
https://arxiv.org/pdf/2301.01481v3.pdf
|
https://github.com/ubc-tea/fcro-fair-classification-orthogonal-representation
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/detectorless-3d-terahertz-imaging-achieving
|
Detectorless 3D terahertz imaging: achieving subwavelength resolution with reflectance confocal interferometric microscopy
|
2412.18403
|
https://arxiv.org/abs/2412.18403v4
|
https://arxiv.org/pdf/2412.18403v4.pdf
|
https://github.com/jrgsilv/beam-propagation
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/cross-view-masked-diffusion-transformers-for
|
Cross-view Masked Diffusion Transformers for Person Image Synthesis
|
2402.01516
|
https://arxiv.org/abs/2402.01516v2
|
https://arxiv.org/pdf/2402.01516v2.pdf
|
https://github.com/trungpx/xmdpt
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/text2ac-zero-consistent-synthesis-of-animated
|
LatentMan: Generating Consistent Animated Characters using Image Diffusion Models
|
2312.07133
|
https://arxiv.org/abs/2312.07133v2
|
https://arxiv.org/pdf/2312.07133v2.pdf
|
https://github.com/abdo-eldesokey/latentman
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/pose-guidance-by-supervision-a-framework-for
|
PGDS: Pose-Guidance Deep Supervision for Mitigating Clothes-Changing in Person Re-Identification
|
2312.05634
|
https://arxiv.org/abs/2312.05634v3
|
https://arxiv.org/pdf/2312.05634v3.pdf
|
https://github.com/huyquoctrinh/pgds
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/alirector-alignment-enhanced-chinese
|
Alirector: Alignment-Enhanced Chinese Grammatical Error Corrector
|
2402.04601
|
https://arxiv.org/abs/2402.04601v2
|
https://arxiv.org/pdf/2402.04601v2.pdf
|
https://github.com/yanghh2000/alirector
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/gift-generative-interpretable-fine-tuning
|
Generative Parameter-Efficient Fine-Tuning
|
2312.00700
|
https://arxiv.org/abs/2312.00700v4
|
https://arxiv.org/pdf/2312.00700v4.pdf
|
https://github.com/savadikarc/gift
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/phase-aware-speech-enhancement-with-deep-1
|
Phase-aware Speech Enhancement with Deep Complex U-Net
|
1903.03107
|
http://arxiv.org/abs/1903.03107v2
|
http://arxiv.org/pdf/1903.03107v2.pdf
|
https://github.com/ContigoAI/tf1-phase-aware-speech-enhancement
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/grootvl-tree-topology-is-all-you-need-in
|
GrootVL: Tree Topology is All You Need in State Space Model
|
2406.02395
|
https://arxiv.org/abs/2406.02395v1
|
https://arxiv.org/pdf/2406.02395v1.pdf
|
https://github.com/easonxiao-888/grootvl
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/factgenius-combining-zero-shot-prompting-and
|
FactGenius: Combining Zero-Shot Prompting and Fuzzy Relation Mining to Improve Fact Verification with Knowledge Graphs
|
2406.01311
|
https://arxiv.org/abs/2406.01311v1
|
https://arxiv.org/pdf/2406.01311v1.pdf
|
https://github.com/sushantgautam/factgenius
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/eit-enhanced-interactive-transformer
|
EIT: Enhanced Interactive Transformer
|
2212.10197
|
https://arxiv.org/abs/2212.10197v2
|
https://arxiv.org/pdf/2212.10197v2.pdf
|
https://github.com/zhengkid/eit-enhanced-interactive-transformer
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/densegnn-universal-and-scalable-deeper-graph
|
DenseGNN: universal and scalable deeper graph neural networks for high-performance property prediction in crystals and molecules
|
2501.03278
|
https://arxiv.org/abs/2501.03278v1
|
https://arxiv.org/pdf/2501.03278v1.pdf
|
https://github.com/dhw059/densegnn
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/multifaceteval-multifaceted-evaluation-to
|
MultifacetEval: Multifaceted Evaluation to Probe LLMs in Mastering Medical Knowledge
|
2406.02919
|
https://arxiv.org/abs/2406.02919v1
|
https://arxiv.org/pdf/2406.02919v1.pdf
|
https://github.com/thumlp/multifaceteval
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/spikelm-towards-general-spike-driven-language
|
SpikeLM: Towards General Spike-Driven Language Modeling via Elastic Bi-Spiking Mechanisms
|
2406.03287
|
https://arxiv.org/abs/2406.03287v1
|
https://arxiv.org/pdf/2406.03287v1.pdf
|
https://github.com/xingrun-xing/spikelm
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/specexec-massively-parallel-speculative
|
SpecExec: Massively Parallel Speculative Decoding for Interactive LLM Inference on Consumer Devices
|
2406.02532
|
https://arxiv.org/abs/2406.02532v3
|
https://arxiv.org/pdf/2406.02532v3.pdf
|
https://github.com/yandex-research/specexec
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/zero-shot-machine-unlearning-at-scale-via
|
An Information Theoretic Approach to Machine Unlearning
|
2402.01401
|
https://arxiv.org/abs/2402.01401v4
|
https://arxiv.org/pdf/2402.01401v4.pdf
|
https://github.com/jwf40/information-theoretic-unlearning
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/adaptive-slot-attention-object-discovery-with-1
|
Adaptive Slot Attention: Object Discovery with Dynamic Slot Number
|
2406.09196
|
https://arxiv.org/abs/2406.09196v1
|
https://arxiv.org/pdf/2406.09196v1.pdf
|
https://github.com/lucidrains/slot-attention
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/transformers-are-sample-efficient-world
|
Transformers are Sample-Efficient World Models
|
2209.00588
|
https://arxiv.org/abs/2209.00588v2
|
https://arxiv.org/pdf/2209.00588v2.pdf
|
https://github.com/vmicheli/delta-iris
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/topviewrs-vision-language-models-as-top-view
|
TopViewRS: Vision-Language Models as Top-View Spatial Reasoners
|
2406.02537
|
https://arxiv.org/abs/2406.02537v1
|
https://arxiv.org/pdf/2406.02537v1.pdf
|
https://github.com/cambridgeltl/topviewrs
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/dwnet-dense-warp-based-network-for-pose
|
DwNet: Dense warp-based network for pose-guided human video generation
|
1910.09139
|
https://arxiv.org/abs/1910.09139v1
|
https://arxiv.org/pdf/1910.09139v1.pdf
|
https://github.com/ai-med/stablepose
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/humansd-a-native-skeleton-guided-diffusion
|
HumanSD: A Native Skeleton-Guided Diffusion Model for Human Image Generation
|
2304.04269
|
https://arxiv.org/abs/2304.04269v1
|
https://arxiv.org/pdf/2304.04269v1.pdf
|
https://github.com/ai-med/stablepose
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/tackling-non-stationarity-in-reinforcement
|
Tackling Non-Stationarity in Reinforcement Learning via Causal-Origin Representation
|
2306.02747
|
https://arxiv.org/abs/2306.02747v3
|
https://arxiv.org/pdf/2306.02747v3.pdf
|
https://github.com/pku-rl/corep
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/adafisher-adaptive-second-order-optimization
|
AdaFisher: Adaptive Second Order Optimization via Fisher Information
|
2405.16397
|
https://arxiv.org/abs/2405.16397v3
|
https://arxiv.org/pdf/2405.16397v3.pdf
|
https://github.com/AtlasAnalyticsLab/AdaFisher
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/automated-focused-feedback-generation-for
|
Automated Focused Feedback Generation for Scientific Writing Assistance
|
2405.20477
|
https://arxiv.org/abs/2405.20477v2
|
https://arxiv.org/pdf/2405.20477v2.pdf
|
https://github.com/ericchamoun/FocusedFeedbackGeneration
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/ttm-re-memory-augmented-document-level
|
TTM-RE: Memory-Augmented Document-Level Relation Extraction
|
2406.05906
|
https://arxiv.org/abs/2406.05906v1
|
https://arxiv.org/pdf/2406.05906v1.pdf
|
https://github.com/chufangao/ttm-re
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/multi-swap-k-means
|
Multi-Swap $k$-Means++
|
2309.16384
|
https://arxiv.org/abs/2309.16384v2
|
https://arxiv.org/pdf/2309.16384v2.pdf
|
https://github.com/lorenzo2beretta/multi-swap-k-means-pp
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/trusting-your-evidence-hallucinate-less-with
|
Trusting Your Evidence: Hallucinate Less with Context-aware Decoding
|
2305.14739
|
https://arxiv.org/abs/2305.14739v1
|
https://arxiv.org/pdf/2305.14739v1.pdf
|
https://github.com/danshi777/ircan
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/score-based-causal-representation-learning-1
|
Score-based Causal Representation Learning: Linear and General Transformations
|
2402.00849
|
https://arxiv.org/abs/2402.00849v3
|
https://arxiv.org/pdf/2402.00849v3.pdf
|
https://github.com/acarturk-e/score-based-crl
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/general-identifiability-and-achievability-for
|
General Identifiability and Achievability for Causal Representation Learning
|
2310.15450
|
https://arxiv.org/abs/2310.15450v2
|
https://arxiv.org/pdf/2310.15450v2.pdf
|
https://github.com/acarturk-e/score-based-crl
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/fine-tuning-wav2vec2-for-speaker-recognition
|
Fine-tuning wav2vec2 for speaker recognition
|
2109.15053
|
https://arxiv.org/abs/2109.15053v2
|
https://arxiv.org/pdf/2109.15053v2.pdf
|
https://github.com/MS-P3/code7/tree/main/wav2vec2
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/a-modelling-framework-for-the-analysis-of-the
|
A modelling framework for the analysis of the SARS-CoV2 transmission dynamics
|
2203.03773
|
https://arxiv.org/abs/2203.03773v3
|
https://arxiv.org/pdf/2203.03773v3.pdf
|
https://github.com/anastasiachtz/seir-gbm
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/reframing-the-relationship-in-out-of
|
Concept Matching with Agent for Out-of-Distribution Detection
|
2405.16766
|
https://arxiv.org/abs/2405.16766v2
|
https://arxiv.org/pdf/2405.16766v2.pdf
|
https://github.com/yuxiaoleemarks/cma
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/evaluating-extensions-to-lcdm-an-application
|
Evaluating extensions to LCDM: an application of Bayesian model averaging and selection
|
2403.02120
|
https://arxiv.org/abs/2403.02120v4
|
https://arxiv.org/pdf/2403.02120v4.pdf
|
https://github.com/simonpara/fast-mpc
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/dataset-condensation-for-time-series
|
Dataset Condensation for Time Series Classification via Dual Domain Matching
|
2403.07245
|
https://arxiv.org/abs/2403.07245v3
|
https://arxiv.org/pdf/2403.07245v3.pdf
|
https://github.com/zhyliu00/TimeSeriesCond
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/sslam-enhancing-self-supervised-models-with-1
|
SSLAM: Enhancing Self-Supervised Models with Audio Mixtures for Polyphonic Soundscapes
|
2506.12222
|
https://arxiv.org/abs/2506.12222v1
|
https://arxiv.org/pdf/2506.12222v1.pdf
|
https://github.com/ta012/SSLAM
| false
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/the-signaling-dimension-of-two-dimensional
|
The signaling dimension of two-dimensional and polytopic systems
|
2407.17725
|
https://arxiv.org/abs/2407.17725v1
|
https://arxiv.org/pdf/2407.17725v1.pdf
|
https://github.com/syu-shu/sigdim
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/togs-gaussian-splatting-with-temporal-opacity
|
TOGS: Gaussian Splatting with Temporal Opacity Offset for Real-Time 4D DSA Rendering
|
2403.19586
|
https://arxiv.org/abs/2403.19586v2
|
https://arxiv.org/pdf/2403.19586v2.pdf
|
https://github.com/hustvl/TOGS
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/xmem-long-term-video-object-segmentation-with
|
XMem: Long-Term Video Object Segmentation with an Atkinson-Shiffrin Memory Model
|
2207.07115
|
https://arxiv.org/abs/2207.07115v2
|
https://arxiv.org/pdf/2207.07115v2.pdf
|
https://github.com/tianyuan168326/videosemanticcompression-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/vript-a-video-is-worth-thousands-of-words
|
Vript: A Video Is Worth Thousands of Words
|
2406.06040
|
https://arxiv.org/abs/2406.06040v2
|
https://arxiv.org/pdf/2406.06040v2.pdf
|
https://github.com/mutonix/vript
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/q-ground-image-quality-grounding-with-large
|
Q-Ground: Image Quality Grounding with Large Multi-modality Models
|
2407.17035
|
https://arxiv.org/abs/2407.17035v1
|
https://arxiv.org/pdf/2407.17035v1.pdf
|
https://github.com/q-future/q-ground
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/persistent-homology-for-structural
|
Persistent Homology for Structural Characterization in Disordered Systems
|
2411.14390
|
https://arxiv.org/abs/2411.14390v8
|
https://arxiv.org/pdf/2411.14390v8.pdf
|
https://github.com/anwanguow/PH_structural
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/dynamics-of-quantum-turbulence-in-axially
|
Dynamics of quantum turbulence in axially rotating thermal counterflow
|
2407.06311
|
https://arxiv.org/abs/2407.06311v1
|
https://arxiv.org/pdf/2407.06311v1.pdf
|
https://bitbucket.org/emil_varga/openvort
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/open-vocabulary-calibration-for-vision
|
Open-Vocabulary Calibration for Fine-tuned CLIP
|
2402.04655
|
https://arxiv.org/abs/2402.04655v4
|
https://arxiv.org/pdf/2402.04655v4.pdf
|
https://github.com/ml-stat-Sustech/CLIP_Calibration
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/enhancing-end-to-end-autonomous-driving-with
|
Enhancing End-to-End Autonomous Driving with Latent World Model
|
2406.08481
|
https://arxiv.org/abs/2406.08481v1
|
https://arxiv.org/pdf/2406.08481v1.pdf
|
https://github.com/bravegroup/law
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/combining-graph-neural-network-and-mamba-to
|
Combining Graph Neural Network and Mamba to Capture Local and Global Tissue Spatial Relationships in Whole Slide Images
|
2406.04377
|
https://arxiv.org/abs/2406.04377v1
|
https://arxiv.org/pdf/2406.04377v1.pdf
|
https://github.com/rina-ding/gat-mamba
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-hetero-client-federated-multi-task
|
FedHCA$^2$: Towards Hetero-Client Federated Multi-Task Learning
|
2311.13250
|
https://arxiv.org/abs/2311.13250v2
|
https://arxiv.org/pdf/2311.13250v2.pdf
|
https://github.com/innovator-zero/fedhca2
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/autoregressive-pretraining-with-mamba-in
|
Autoregressive Pretraining with Mamba in Vision
|
2406.07537
|
https://arxiv.org/abs/2406.07537v1
|
https://arxiv.org/pdf/2406.07537v1.pdf
|
https://github.com/oliverrensu/arm
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/transact-transformer-based-realtime-user
|
TransAct: Transformer-based Realtime User Action Model for Recommendation at Pinterest
|
2306.00248
|
https://arxiv.org/abs/2306.00248v1
|
https://arxiv.org/pdf/2306.00248v1.pdf
|
https://github.com/reczoo/FuxiCTR
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/machine-learning-classification-of-fast-radio
|
Machine learning classification of CHIME fast radio bursts: II. Unsupervised Methods
|
2210.02471
|
https://arxiv.org/abs/2210.02471v3
|
https://arxiv.org/pdf/2210.02471v3.pdf
|
https://github.com/ArjunS07/pu-learning-for-frbs-2023
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/boosting-zero-shot-crosslingual-performance
|
Boosting Zero-Shot Crosslingual Performance using LLM-Based Augmentations with Effective Data Selection
|
2407.10582
|
https://arxiv.org/abs/2407.10582v1
|
https://arxiv.org/pdf/2407.10582v1.pdf
|
https://github.com/csalt-research/llm-based-augmentations-with-effective-data-selection
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/active-learning-for-derivative-based-global
|
Active Learning for Derivative-Based Global Sensitivity Analysis with Gaussian Processes
|
2407.09739
|
https://arxiv.org/abs/2407.09739v2
|
https://arxiv.org/pdf/2407.09739v2.pdf
|
https://github.com/belakaria/al-gsa-dgsms
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/no-train-all-gain-self-supervised-gradients
|
No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations
|
2407.10964
|
https://arxiv.org/abs/2407.10964v2
|
https://arxiv.org/pdf/2407.10964v2.pdf
|
https://github.com/waltersimoncini/fungivision
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/video-diffusion-alignment-via-reward
|
Video Diffusion Alignment via Reward Gradients
|
2407.08737
|
https://arxiv.org/abs/2407.08737v1
|
https://arxiv.org/pdf/2407.08737v1.pdf
|
https://github.com/mihirp1998/vader
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/securing-confidential-data-for-distributed
|
Securing Confidential Data For Distributed Software Development Teams: Encrypted Container File
|
2407.09142
|
https://arxiv.org/abs/2407.09142v1
|
https://arxiv.org/pdf/2407.09142v1.pdf
|
https://github.com/hirnmoder/ecf
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/the-scandinavian-embedding-benchmarks
|
The Scandinavian Embedding Benchmarks: Comprehensive Assessment of Multilingual and Monolingual Text Embedding
|
2406.02396
|
https://arxiv.org/abs/2406.02396v1
|
https://arxiv.org/pdf/2406.02396v1.pdf
|
https://github.com/kennethenevoldsen/scandinavian-embedding-benchmark
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/harp-a-large-scale-higher-order-ambisonic
|
HARP: A Large-Scale Higher-Order Ambisonic Room Impulse Response Dataset
|
2411.14207
|
https://arxiv.org/abs/2411.14207v2
|
https://arxiv.org/pdf/2411.14207v2.pdf
|
https://github.com/whojavumusic/harp
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/moat-evaluating-lmms-for-capability
|
MOAT: Evaluating LMMs for Capability Integration and Instruction Grounding
|
2503.09348
|
https://arxiv.org/abs/2503.09348v1
|
https://arxiv.org/pdf/2503.09348v1.pdf
|
https://github.com/Cambrian-yzt/MOAT
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/stranger-danger-identifying-and-avoiding
|
Stranger Danger! Identifying and Avoiding Unpredictable Pedestrians in RL-based Social Robot Navigation
|
2407.06056
|
https://arxiv.org/abs/2407.06056v1
|
https://arxiv.org/pdf/2407.06056v1.pdf
|
https://github.com/sarapohland/stranger-danger
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/an-empirical-comparison-of-vocabulary
|
An Empirical Comparison of Vocabulary Expansion and Initialization Approaches for Language Models
|
2407.05841
|
https://arxiv.org/abs/2407.05841v2
|
https://arxiv.org/pdf/2407.05841v2.pdf
|
https://github.com/AI4Bharat/VocabAdaptation_LLM
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-computational-study-of-a-class-of-recursive
|
A computational study of a class of recursive inequalities
|
2207.14559
|
https://arxiv.org/abs/2207.14559v2
|
https://arxiv.org/pdf/2207.14559v2.pdf
|
https://github.com/Kejineri/Proof-mining-
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/p-icl-point-in-context-learning-for-named
|
P-ICL: Point In-Context Learning for Named Entity Recognition with Large Language Models
|
2405.04960
|
https://arxiv.org/abs/2405.04960v2
|
https://arxiv.org/pdf/2405.04960v2.pdf
|
https://github.com/jiangguochaogg/p-icl
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/protsolm-protein-solubility-prediction-with
|
ProtSolM: Protein Solubility Prediction with Multi-modal Features
|
2406.19744
|
https://arxiv.org/abs/2406.19744v1
|
https://arxiv.org/pdf/2406.19744v1.pdf
|
https://github.com/tyang816/ProtSolM
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/close-but-not-there-boosting-geographic
|
Close, But Not There: Boosting Geographic Distance Sensitivity in Visual Place Recognition
|
2407.02422
|
https://arxiv.org/abs/2407.02422v1
|
https://arxiv.org/pdf/2407.02422v1.pdf
|
https://github.com/serizba/cliquemining
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/ceci-n-est-pas-une-pomme-adversarial
|
Adversarial Illusions in Multi-Modal Embeddings
|
2308.11804
|
https://arxiv.org/abs/2308.11804v4
|
https://arxiv.org/pdf/2308.11804v4.pdf
|
https://github.com/ebagdasa/adversarial_illusions
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-neural-scaling-laws-for-foundation
|
Towards Neural Scaling Laws for Foundation Models on Temporal Graphs
|
2406.10426
|
https://arxiv.org/abs/2406.10426v2
|
https://arxiv.org/pdf/2406.10426v2.pdf
|
https://github.com/benjaminnNgo/ScalingTGNs
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/quantune-post-training-quantization-of
|
Quantune: Post-training Quantization of Convolutional Neural Networks using Extreme Gradient Boosting for Fast Deployment
|
2202.05048
|
https://arxiv.org/abs/2202.05048v2
|
https://arxiv.org/pdf/2202.05048v2.pdf
|
https://github.com/etri/nest-compiler
| true
| true
| false
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.