paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/eclipse-expunging-clean-label-indiscriminate
|
ECLIPSE: Expunging Clean-label Indiscriminate Poisons via Sparse Diffusion Purification
|
2406.15093
|
https://arxiv.org/abs/2406.15093v2
|
https://arxiv.org/pdf/2406.15093v2.pdf
|
https://github.com/cgcl-codes/eclipse
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-difference-of-convex-regularizers
|
Learning Difference-of-Convex Regularizers for Inverse Problems: A Flexible Framework with Theoretical Guarantees
|
2502.00240
|
https://arxiv.org/abs/2502.00240v1
|
https://arxiv.org/pdf/2502.00240v1.pdf
|
https://github.com/yasminzhang/adcr
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/task-aware-kv-compression-for-cost-effective
|
Task-Aware KV Compression For Cost-Effective Long Video Understanding
|
2506.21184
|
https://arxiv.org/abs/2506.21184v1
|
https://arxiv.org/pdf/2506.21184v1.pdf
|
https://github.com/unabletousegit/videox22l
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/computing-the-generalized-plasma-dispersion
|
Computing the generalized plasma dispersion function for non-Maxwellian plasmas, with applications to Thomson scattering
|
2502.01811
|
https://arxiv.org/abs/2502.01811v1
|
https://arxiv.org/pdf/2502.01811v1.pdf
|
https://github.com/crskolar/arbgenplasmadisp
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/privacy-preserving-federated-learning-in
|
Privacy Preserving Federated Learning in Medical Imaging with Uncertainty Estimation
|
2406.12815
|
https://arxiv.org/abs/2406.12815v1
|
https://arxiv.org/pdf/2406.12815v1.pdf
|
https://github.com/niko-k98/awesome-list-federated-learning-review
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/generative-pretrained-hierarchical
|
Generative Pretrained Hierarchical Transformer for Time Series Forecasting
|
2402.16516
|
https://arxiv.org/abs/2402.16516v2
|
https://arxiv.org/pdf/2402.16516v2.pdf
|
https://github.com/icantnamemyself/gpht
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/case-enhanced-vision-transformer-improving
|
Case-Enhanced Vision Transformer: Improving Explanations of Image Similarity with a ViT-based Similarity Metric
|
2407.16981
|
https://arxiv.org/abs/2407.16981v1
|
https://arxiv.org/pdf/2407.16981v1.pdf
|
https://github.com/ziweizhao1993/cevit
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/rcnet-deep-recurrent-collaborative-network
|
RCNet: Deep Recurrent Collaborative Network for Multi-View Low-Light Image Enhancement
|
2409.04363
|
https://arxiv.org/abs/2409.04363v1
|
https://arxiv.org/pdf/2409.04363v1.pdf
|
https://github.com/hluo29/rcnet
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/the-browsergym-ecosystem-for-web-agent
|
The BrowserGym Ecosystem for Web Agent Research
|
2412.05467
|
https://arxiv.org/abs/2412.05467v4
|
https://arxiv.org/pdf/2412.05467v4.pdf
|
https://github.com/servicenow/agentlab
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/faithful-density-peaks-clustering-via-matrix
|
Faithful Density-Peaks Clustering via Matrix Computations on MPI Parallelization System
|
2406.12297
|
https://arxiv.org/abs/2406.12297v1
|
https://arxiv.org/pdf/2406.12297v1.pdf
|
https://github.com/alanxuji/faithpdp
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/automated-mri-quality-assessment-of-brain-t1
|
Automated MRI Quality Assessment of Brain T1-weighted MRI in Clinical Data Warehouses: A Transfer Learning Approach Relying on Artefact Simulation
|
2406.12448
|
https://arxiv.org/abs/2406.12448v1
|
https://arxiv.org/pdf/2406.12448v1.pdf
|
https://github.com/aramis-lab/clinicadl
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/discovering-minimal-reinforcement-learning
|
Discovering Minimal Reinforcement Learning Environments
|
2406.12589
|
https://arxiv.org/abs/2406.12589v1
|
https://arxiv.org/pdf/2406.12589v1.pdf
|
https://github.com/keraJLi/synthetic-gymnax
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/balancing-embedding-spectrum-for
|
Balancing Embedding Spectrum for Recommendation
|
2406.12032
|
https://arxiv.org/abs/2406.12032v1
|
https://arxiv.org/pdf/2406.12032v1.pdf
|
https://github.com/tanatosuu/directspec
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/gslb-the-graph-structure-learning-benchmark-1
|
GSLB: The Graph Structure Learning Benchmark
|
2310.05174
|
https://arxiv.org/abs/2310.05174v1
|
https://arxiv.org/pdf/2310.05174v1.pdf
|
https://github.com/gsl-benchmark/gslb
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/hilti-oxford-dataset-a-millimetre-accurate
|
Hilti-Oxford Dataset: A Millimetre-Accurate Benchmark for Simultaneous Localization and Mapping
|
2208.09825
|
https://arxiv.org/abs/2208.09825v3
|
https://arxiv.org/pdf/2208.09825v3.pdf
|
https://github.com/hilti-research/hilti-slam-challenge-2022
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-second-order-like-optimizer-with-adaptive
|
A second-order-like optimizer with adaptive gradient scaling for deep learning
|
2410.05871
|
https://arxiv.org/abs/2410.05871v2
|
https://arxiv.org/pdf/2410.05871v2.pdf
|
https://github.com/innaprop/innaprop
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/adapting-promptore-for-modern-history
|
Adapting PromptORE for Modern History: Information Extraction from Hispanic Monarchy Documents of the XVIth Century
|
2406.00027
|
https://arxiv.org/abs/2406.00027v1
|
https://arxiv.org/pdf/2406.00027v1.pdf
|
https://github.com/Hector1993prog/Spanish_PromptORE
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/high-throughput-phenotyping-using-computer
|
High-Throughput Phenotyping using Computer Vision and Machine Learning
|
2407.06354
|
https://arxiv.org/abs/2407.06354v2
|
https://arxiv.org/pdf/2407.06354v2.pdf
|
https://github.com/vivaansinghvi07/smoky-mountain-data-comp
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/advancing-continual-lifelong-learning-in
|
Advancing continual lifelong learning in neural information retrieval: definition, dataset, framework, and empirical evaluation
|
2308.08378
|
https://arxiv.org/abs/2308.08378v2
|
https://arxiv.org/pdf/2308.08378v2.pdf
|
https://github.com/jingruihou/clnir
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/neural-concept-binder
|
Neural Concept Binder
|
2406.09949
|
https://arxiv.org/abs/2406.09949v2
|
https://arxiv.org/pdf/2406.09949v2.pdf
|
https://github.com/ml-research/neuralconceptbinder
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/deeptreegan-fast-generation-of-high
|
DeepTreeGAN: Fast Generation of High Dimensional Point Clouds
|
2311.12616
|
https://arxiv.org/abs/2311.12616v1
|
https://arxiv.org/pdf/2311.12616v1.pdf
|
https://github.com/degesim/nips23deeptreeganv2
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/spach-transformer-spatial-and-channel-wise
|
Spach Transformer: Spatial and Channel-wise Transformer Based on Local and Global Self-attentions for PET Image Denoising
|
2209.03300
|
https://arxiv.org/abs/2209.03300v2
|
https://arxiv.org/pdf/2209.03300v2.pdf
|
https://github.com/sijang/spachtransformer
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/self-interacting-neutrinos-in-light-of-recent
|
Self-interacting neutrinos in light of recent CMB and LSS data
|
2503.10485
|
https://arxiv.org/abs/2503.10485v1
|
https://arxiv.org/pdf/2503.10485v1.pdf
|
https://github.com/PoulinV/class_interacting_neutrinos
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/glad-global-local-view-alignment-and
|
GLAD: Global-Local View Alignment and Background Debiasing for Unsupervised Video Domain Adaptation with Large Domain Gap
|
2311.12467
|
https://arxiv.org/abs/2311.12467v2
|
https://arxiv.org/pdf/2311.12467v2.pdf
|
https://github.com/khu-vll/glad
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/microflow-an-efficient-rust-based-inference
|
MicroFlow: An Efficient Rust-Based Inference Engine for TinyML
|
2409.19432
|
https://arxiv.org/abs/2409.19432v3
|
https://arxiv.org/pdf/2409.19432v3.pdf
|
https://github.com/matteocarnelos/microflow-rs
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/discovering-local-hidden-variable-models-for
|
Discovering Local Hidden-Variable Models for Arbitrary Multipartite Entangled States and Arbitrary Measurements
|
2407.04673
|
https://arxiv.org/abs/2407.04673v1
|
https://arxiv.org/pdf/2407.04673v1.pdf
|
https://github.com/nick-von-selzam/autolhvs
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/deep-residual-fourier-transformation-for
|
Intriguing Findings of Frequency Selection for Image Deblurring
|
2111.11745
|
https://arxiv.org/abs/2111.11745v2
|
https://arxiv.org/pdf/2111.11745v2.pdf
|
https://github.com/INVOKERer/AdaRevD
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/more-variable-circadian-rhythms-in-epilepsy-a
|
More variable circadian rhythms in epilepsy captured by long-term heart rate recordings from wearable sensors
|
2411.04634
|
https://arxiv.org/abs/2411.04634v4
|
https://arxiv.org/pdf/2411.04634v4.pdf
|
https://github.com/cnnp-lab/2024_billy_intra-individual_variability_circadian
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/proximal-policy-optimization-algorithms
|
Proximal Policy Optimization Algorithms
|
1707.06347
|
http://arxiv.org/abs/1707.06347v2
|
http://arxiv.org/pdf/1707.06347v2.pdf
|
https://github.com/intellisys-lab/stellaris-sc24
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/acceleration-via-perturbations-on-low
|
Acceleration via Perturbations on Low-resolution Ordinary Differential Equations
|
2504.01497
|
https://arxiv.org/abs/2504.01497v1
|
https://arxiv.org/pdf/2504.01497v1.pdf
|
https://github.com/smq1918/codes-for-Acceleration-via-Perturbations-on-Low-resolution-Ordinary-Differential-Equations-
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/learning-load-balancing-with-gnn-in-mptcp
|
Learning Load Balancing with GNN in MPTCP-Enabled Heterogeneous Networks
|
2410.17118
|
https://arxiv.org/abs/2410.17118v1
|
https://arxiv.org/pdf/2410.17118v1.pdf
|
https://github.com/hanji-ucd/gnn-hetnet
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/room-impulse-response-as-a-prompt-for
|
Room Impulse Response as a Prompt for Acoustic Echo Cancellation
|
2505.19480
|
https://arxiv.org/abs/2505.19480v1
|
https://arxiv.org/pdf/2505.19480v1.pdf
|
https://github.com/zhaof-i/rir-prompt-aec
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/top-k-representative-search-for-comparative
|
Top-k Representative Search for Comparative Tree Summarization
|
2407.14098
|
https://arxiv.org/abs/2407.14098v1
|
https://arxiv.org/pdf/2407.14098v1.pdf
|
https://github.com/csyqchen/TKDE_SVDT
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/neca-3d-coronary-artery-tree-reconstruction
|
NeCA: 3D Coronary Artery Tree Reconstruction from Two 2D Projections via Neural Implicit Representation
|
2409.04596
|
https://arxiv.org/abs/2409.04596v2
|
https://arxiv.org/pdf/2409.04596v2.pdf
|
https://github.com/WangStephen/NeCA
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/vanp-learning-where-to-see-for-navigation
|
VANP: Learning Where to See for Navigation with Self-Supervised Vision-Action Pre-Training
|
2403.08109
|
https://arxiv.org/abs/2403.08109v3
|
https://arxiv.org/pdf/2403.08109v3.pdf
|
https://github.com/mhnazeri/vanp
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/vuldetectbench-evaluating-the-deep-capability
|
VulDetectBench: Evaluating the Deep Capability of Vulnerability Detection with Large Language Models
|
2406.07595
|
https://arxiv.org/abs/2406.07595v4
|
https://arxiv.org/pdf/2406.07595v4.pdf
|
https://github.com/sweetaroo/vuldetectbench
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/masterweaver-taming-editability-and-identity
|
MasterWeaver: Taming Editability and Face Identity for Personalized Text-to-Image Generation
|
2405.05806
|
https://arxiv.org/abs/2405.05806v3
|
https://arxiv.org/pdf/2405.05806v3.pdf
|
https://github.com/csyxwei/masterweaver
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/enhancing-content-based-recommendation-via
|
Enhancing Content-based Recommendation via Large Language Model
|
2404.00236
|
https://arxiv.org/abs/2404.00236v2
|
https://arxiv.org/pdf/2404.00236v2.pdf
|
https://github.com/cjx96/loid
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/repurposing-diffusion-based-image-generators
|
Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation
|
2312.02145
|
https://arxiv.org/abs/2312.02145v2
|
https://arxiv.org/pdf/2312.02145v2.pdf
|
https://github.com/Magicboomliu/Accelerator-Simple-Template
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/procedurally-optimised-zx-diagram-cutting-for
|
Procedurally Optimised ZX-Diagram Cutting for Efficient T-Decomposition in Classical Simulation
|
2403.10964
|
https://arxiv.org/abs/2403.10964v2
|
https://arxiv.org/pdf/2403.10964v2.pdf
|
https://github.com/mjsutcliffe99/procoptcut
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/lumen-unleashing-versatile-vision-centric
|
Lumen: Unleashing Versatile Vision-Centric Capabilities of Large Multimodal Models
|
2403.07304
|
https://arxiv.org/abs/2403.07304v2
|
https://arxiv.org/pdf/2403.07304v2.pdf
|
https://github.com/sxjyjay/lumen
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/improving-3d-medical-image-segmentation-at
|
Improving 3D Medical Image Segmentation at Boundary Regions using Local Self-attention and Global Volume Mixing
|
2410.15360
|
https://arxiv.org/abs/2410.15360v1
|
https://arxiv.org/pdf/2410.15360v1.pdf
|
https://github.com/Daniyanaj/vMixer
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/perceptions-to-beliefs-exploring-precursory
|
Perceptions to Beliefs: Exploring Precursory Inferences for Theory of Mind in Large Language Models
|
2407.06004
|
https://arxiv.org/abs/2407.06004v3
|
https://arxiv.org/pdf/2407.06004v3.pdf
|
https://github.com/chanijung/PercepToM
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/causal-guided-active-learning-for-debiasing
|
Causal-Guided Active Learning for Debiasing Large Language Models
|
2408.12942
|
https://arxiv.org/abs/2408.12942v2
|
https://arxiv.org/pdf/2408.12942v2.pdf
|
https://github.com/spirit-moon-fly/CAL
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/varif-ai-to-vary-and-verify-user-driven
|
Varif.ai to Vary and Verify User-Driven Diversity in Scalable Image Generation
|
2506.19644
|
https://arxiv.org/abs/2506.19644v1
|
https://arxiv.org/pdf/2506.19644v1.pdf
|
https://github.com/mario-michelessa/varifai
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/medsam2-segment-anything-in-3d-medical-images
|
MedSAM2: Segment Anything in 3D Medical Images and Videos
|
2504.03600
|
https://arxiv.org/abs/2504.03600v1
|
https://arxiv.org/pdf/2504.03600v1.pdf
|
https://github.com/bowang-lab/medsam2
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/dcnv3-towards-next-generation-deep-cross
|
FCN: Fusing Exponential and Linear Cross Network for Click-Through Rate Prediction
|
2407.13349
|
https://arxiv.org/abs/2407.13349v7
|
https://arxiv.org/pdf/2407.13349v7.pdf
|
https://github.com/reczoo/FuxiCTR
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/deep-interest-evolution-network-for-click
|
Deep Interest Evolution Network for Click-Through Rate Prediction
|
1809.03672
|
http://arxiv.org/abs/1809.03672v5
|
http://arxiv.org/pdf/1809.03672v5.pdf
|
https://github.com/reczoo/FuxiCTR
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/2408-01391
|
FT K-means: A High-Performance K-means on GPU with Fault Tolerance
|
2408.01391
|
https://arxiv.org/abs/2408.01391v2
|
https://arxiv.org/pdf/2408.01391v2.pdf
|
https://github.com/shixun404/FT_KMeans
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/att2cpc-attention-guided-lossy-attribute
|
Att2CPC: Attention-Guided Lossy Attribute Compression of Point Clouds
|
2410.17823
|
https://arxiv.org/abs/2410.17823v1
|
https://arxiv.org/pdf/2410.17823v1.pdf
|
https://github.com/i2-multimedia-lab/att2cpc
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/soft-prompts-go-hard-steering-visual-language
|
Self-interpreting Adversarial Images
|
2407.08970
|
https://arxiv.org/abs/2407.08970v4
|
https://arxiv.org/pdf/2407.08970v4.pdf
|
https://github.com/tingwei-zhang/soft-prompts-go-hard
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/nuplanqa-a-large-scale-dataset-and-benchmark
|
NuPlanQA: A Large-Scale Dataset and Benchmark for Multi-View Driving Scene Understanding in Multi-Modal Large Language Models
|
2503.12772
|
https://arxiv.org/abs/2503.12772v1
|
https://arxiv.org/pdf/2503.12772v1.pdf
|
https://github.com/sungyeonparkk/nuplanqa
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/p-862-2-wideband-extension-to-recommendation
|
P.862.2 : Wideband extension to Recommendation P.862 for the assessment of wideband telephone networks and speech codecs
| null |
https://www.itu.int/rec/T-REC-P.862.2-200711-W/en
|
https://www.itu.int/rec/T-REC-P.862.2-200711-W/en
|
https://github.com/ludlows/pesq
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/scalable-offline-reinforcement-learning-for
|
Scalable Offline Reinforcement Learning for Mean Field Games
|
2410.17898
|
https://arxiv.org/abs/2410.17898v1
|
https://arxiv.org/pdf/2410.17898v1.pdf
|
https://github.com/axelbr/offline-mmd
| true
| false
| true
|
jax
|
https://paperswithcode.com/paper/cycle-configuration-a-novel-graph-theoretic
|
Cycle-Configuration: A Novel Graph-theoretic Descriptor Set for Molecular Inference
|
2408.05136
|
https://arxiv.org/abs/2408.05136v1
|
https://arxiv.org/pdf/2408.05136v1.pdf
|
https://github.com/ku-dml/mol-infer
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/recprompt-a-prompt-tuning-framework-for-news
|
RecPrompt: A Self-tuning Prompting Framework for News Recommendation Using Large Language Models
|
2312.10463
|
https://arxiv.org/abs/2312.10463v4
|
https://arxiv.org/pdf/2312.10463v4.pdf
|
https://github.com/ruixinhua/rec-prompt
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/nulite-lightweight-and-fast-model-for-nuclei
|
NuLite -- Lightweight and Fast Model for Nuclei Instance Segmentation and Classification
|
2408.01797
|
https://arxiv.org/abs/2408.01797v2
|
https://arxiv.org/pdf/2408.01797v2.pdf
|
https://github.com/cosmoiknoslab/nulite
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/modes-of-the-kerr-geometry-with-purely
|
Modes of the Kerr geometry with purely imaginary frequencies
|
1607.07406
|
http://arxiv.org/abs/1607.07406v1
|
http://arxiv.org/pdf/1607.07406v1.pdf
|
https://github.com/eliotfinch/qnmfits
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/black-hole-cartography
|
Black-Hole Cartography
|
2410.13935
|
https://arxiv.org/abs/2410.13935v2
|
https://arxiv.org/pdf/2410.13935v2.pdf
|
https://github.com/eliotfinch/qnmfits
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/high-overtone-fits-to-numerical-relativity
|
High-overtone fits to numerical relativity ringdowns: beyond the dismissed n=8 special tone
|
2107.11829
|
https://arxiv.org/abs/2107.11829v2
|
https://arxiv.org/pdf/2107.11829v2.pdf
|
https://github.com/eliotfinch/qnmfits
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/tinychirp-bird-song-recognition-using-tinyml
|
TinyChirp: Bird Song Recognition Using TinyML Models on Low-power Wireless Acoustic Sensors
|
2407.21453
|
https://arxiv.org/abs/2407.21453v2
|
https://arxiv.org/pdf/2407.21453v2.pdf
|
https://github.com/TinyPART/TinyBirdSounds
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/emid-an-emotional-aligned-dataset-in-audio
|
EMID: An Emotional Aligned Dataset in Audio-Visual Modality
|
2308.07622
|
https://arxiv.org/abs/2308.07622v2
|
https://arxiv.org/pdf/2308.07622v2.pdf
|
https://github.com/ecnu-aigc/emid
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/brainfounder-towards-brain-foundation-models
|
BrainSegFounder: Towards 3D Foundation Models for Neuroimage Segmentation
|
2406.10395
|
https://arxiv.org/abs/2406.10395v3
|
https://arxiv.org/pdf/2406.10395v3.pdf
|
https://github.com/lab-smile/brainsegfounder
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/adaptive-tempered-reversible-jump-algorithm
|
Adaptive tempered reversible jump algorithm for Bayesian curve fitting
|
2402.08844
|
https://arxiv.org/abs/2402.08844v2
|
https://arxiv.org/pdf/2402.08844v2.pdf
|
https://github.com/Zhiyao-code/AP-PT-RJMCMC_MATLAB
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/the-yin-yang-dataset
|
The Yin-Yang dataset
|
2102.08211
|
https://arxiv.org/abs/2102.08211v2
|
https://arxiv.org/pdf/2102.08211v2.pdf
|
https://github.com/lkriener/yin_yang_data_set
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/informer-beyond-efficient-transformer-for
|
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting
|
2012.07436
|
https://arxiv.org/abs/2012.07436v3
|
https://arxiv.org/pdf/2012.07436v3.pdf
|
https://github.com/MindCode-4/code-10/tree/main/CS-F-LTR
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/salsa-swift-adaptive-lightweight-self
|
SALSA: Swift Adaptive Lightweight Self-Attention for Enhanced LiDAR Place Recognition
|
2407.08260
|
https://arxiv.org/abs/2407.08260v2
|
https://arxiv.org/pdf/2407.08260v2.pdf
|
https://github.com/raktimgg/salsa
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fast-and-deep-neuromorphic-learning-with-time
|
Fast and energy-efficient neuromorphic deep learning with first-spike times
|
1912.11443
|
https://arxiv.org/abs/1912.11443v4
|
https://arxiv.org/pdf/1912.11443v4.pdf
|
https://github.com/lkriener/yin_yang_data_set
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/vae-with-a-vampprior
|
VAE with a VampPrior
|
1705.07120
|
http://arxiv.org/abs/1705.07120v5
|
http://arxiv.org/pdf/1705.07120v5.pdf
|
https://github.com/MindSpore-scientific/code-10/tree/main/VAE-Creative-Discovery-using-QD-Search
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/on-the-proof-of-posterior-contraction-for
|
Two-Step Mixed-Type Multivariate Bayesian Sparse Variable Selection with Shrinkage Priors
|
2201.12839
|
https://arxiv.org/abs/2201.12839v8
|
https://arxiv.org/pdf/2201.12839v8.pdf
|
https://github.com/raybai07/mtmbsp
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/improving-text-guided-object-inpainting-with
|
Improving Text-guided Object Inpainting with Semantic Pre-inpainting
|
2409.08260
|
https://arxiv.org/abs/2409.08260v1
|
https://arxiv.org/pdf/2409.08260v1.pdf
|
https://github.com/nnn-s/catdiffusion
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/2408-03010
|
Fact Finder -- Enhancing Domain Expertise of Large Language Models by Incorporating Knowledge Graphs
|
2408.03010
|
https://arxiv.org/abs/2408.03010v1
|
https://arxiv.org/pdf/2408.03010v1.pdf
|
https://github.com/chrschy/fact-finder
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/graph-gospa-metric-a-metric-to-measure-the
|
Graph GOSPA metric: a metric to measure the discrepancy between graphs of different sizes
|
2311.07596
|
https://arxiv.org/abs/2311.07596v2
|
https://arxiv.org/pdf/2311.07596v2.pdf
|
https://github.com/jinhaogu/the-graph-gospa-metric
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/super-tiny-language-models
|
Super Tiny Language Models
|
2405.14159
|
https://arxiv.org/abs/2405.14159v2
|
https://arxiv.org/pdf/2405.14159v2.pdf
|
https://github.com/leonguertler/supertinylanguagemodels
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/umap-uniform-manifold-approximation-and
|
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
|
1802.03426
|
https://arxiv.org/abs/1802.03426v3
|
https://arxiv.org/pdf/1802.03426v3.pdf
|
https://github.com/turhancan97/Methods-of-Clustering-Single-Cell-RNA-Sequencing-Data
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/envisioning-beyond-the-pixels-benchmarking
|
Envisioning Beyond the Pixels: Benchmarking Reasoning-Informed Visual Editing
|
2504.02826
|
https://arxiv.org/abs/2504.02826v1
|
https://arxiv.org/pdf/2504.02826v1.pdf
|
https://github.com/phoenixz810/risebench
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/synthetic-high-resolution-cryo-em-density
|
Struc2mapGAN: improving synthetic cryo-EM density maps with generative adversarial networks
|
2407.17674
|
https://arxiv.org/abs/2407.17674v2
|
https://arxiv.org/pdf/2407.17674v2.pdf
|
https://github.com/chenwei-zhang/struc2mapgan
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/rhle-relational-reasoning-for-existential
|
RHLE: Modular Deductive Verification of Relational $\forall\exists$ Properties
|
2002.02904
|
https://arxiv.org/abs/2002.02904v5
|
https://arxiv.org/pdf/2002.02904v5.pdf
|
https://github.com/rcdickerson/rhle-benchmarks
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/efficient-mapping-of-phase-diagrams-with
|
Efficient mapping of phase diagrams with conditional Boltzmann Generators
|
2406.12378
|
https://arxiv.org/abs/2406.12378v2
|
https://arxiv.org/pdf/2406.12378v2.pdf
|
https://github.com/maxschebek/flow_diagrams
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/improving-neural-question-generation-using
|
Improving Neural Question Generation using Answer Separation
|
1809.02393
|
http://arxiv.org/abs/1809.02393v2
|
http://arxiv.org/pdf/1809.02393v2.pdf
|
https://github.com/yanghoonkim/neural_question_generation
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/enhancing-human-learning-via-spaced
|
Enhancing human learning via spaced repetition optimization
| null |
https://www.pnas.org/doi/10.1073/pnas.1815156116
|
https://www.pnas.org/doi/epdf/10.1073/pnas.1815156116
|
https://github.com/Networks-Learning/memorize
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/exploring-multiple-strategies-to-improve
|
Exploring Multiple Strategies to Improve Multilingual Coreference Resolution in CorefUD
|
2408.16893
|
https://arxiv.org/abs/2408.16893v3
|
https://arxiv.org/pdf/2408.16893v3.pdf
|
https://github.com/ondfa/coref-multiling
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/when-to-extract-reid-features-a-selective
|
When to Extract ReID Features: A Selective Approach for Improved Multiple Object Tracking
|
2409.06617
|
https://arxiv.org/abs/2409.06617v2
|
https://arxiv.org/pdf/2409.06617v2.pdf
|
https://github.com/emirhanbayar/fast-strongsort
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/vector-quantization-prompting-for-continual
|
Vector Quantization Prompting for Continual Learning
|
2410.20444
|
https://arxiv.org/abs/2410.20444v1
|
https://arxiv.org/pdf/2410.20444v1.pdf
|
https://github.com/jiaolifengmi/vq-prompt
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/on-kemeny-s-constant-and-stochastic
|
On Kemeny's constant and stochastic complement
|
2312.13201
|
https://arxiv.org/abs/2312.13201v2
|
https://arxiv.org/pdf/2312.13201v2.pdf
|
https://github.com/Cirdans-Home/Kemeny-and-Conquer
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/an-etsi-gs-qkd-compliant-tls-implementation
|
An ETSI GS QKD compliant TLS implementation
|
2506.19409
|
https://arxiv.org/abs/2506.19409v1
|
https://arxiv.org/pdf/2506.19409v1.pdf
|
https://github.com/thomasarmel/qkd_kme_server
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/integrating-graph-neural-networks-and-many
|
Integrating Graph Neural Networks and Many-Body Expansion Theory for Potential Energy Surfaces
|
2411.01578
|
https://arxiv.org/abs/2411.01578v1
|
https://arxiv.org/pdf/2411.01578v1.pdf
|
https://github.com/Lin-Group-at-UMass/FBGNN-MBE
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/optimal-regret-is-achievable-with-bounded-1
|
Optimal Regret Is Achievable with Bounded Approximate Inference Error: An Enhanced Bayesian Upper Confidence Bound Framework
|
2201.12955
|
https://arxiv.org/abs/2201.12955v4
|
https://arxiv.org/pdf/2201.12955v4.pdf
|
https://github.com/hz0000/ebucb
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/understanding-user-mental-models-in-ai-driven
|
Understanding User Mental Models in AI-Driven Code Completion Tools: Insights from an Elicitation Study
|
2502.02194
|
https://arxiv.org/abs/2502.02194v1
|
https://arxiv.org/pdf/2502.02194v1.pdf
|
https://github.com/ivu-laboratory/athena
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/tnddr-efficient-and-doubly-robust-estimation
|
A Double Machine Learning Approach for the Evaluation of COVID-19 Vaccine Effectiveness under the Test-Negative Design: Analysis of Québec Administrative Data
|
2310.04578
|
https://arxiv.org/abs/2310.04578v2
|
https://arxiv.org/pdf/2310.04578v2.pdf
|
https://github.com/congjiang/tnddr
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/analysis-of-centrifugal-clutches-in-two-speed
|
Analysis of Centrifugal Clutches in Two-Speed Automatic Transmissions with Deep Learning-Based Engagement Prediction
|
2409.09755
|
https://arxiv.org/abs/2409.09755v2
|
https://arxiv.org/pdf/2409.09755v2.pdf
|
https://github.com/bokiiiiiii/Analysis-of-Centrifugal-Clutches-in-Automatic-Transmissions-with-Deep-Learning-Engagement-Prediction
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/bge-m3-embedding-multi-lingual-multi
|
BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation
|
2402.03216
|
https://arxiv.org/abs/2402.03216v4
|
https://arxiv.org/pdf/2402.03216v4.pdf
|
https://github.com/flagopen/flagembedding
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/on-the-classification-of-smooth-fano-weighted
|
The classification of smooth well-formed Fano weighted complete intersections
|
2006.05666
|
https://arxiv.org/abs/2006.05666v5
|
https://arxiv.org/pdf/2006.05666v5.pdf
|
https://github.com/MikhailOvcharenko/fano-WCI
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/egvd-event-guided-video-deraining
|
EGVD: Event-Guided Video Deraining
|
2309.17239
|
https://arxiv.org/abs/2309.17239v1
|
https://arxiv.org/pdf/2309.17239v1.pdf
|
https://github.com/booker-max/egvd
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/revisiting-english-winogender-schemas-for
|
WinoPron: Revisiting English Winogender Schemas for Consistency, Coverage, and Grammatical Case
|
2409.05653
|
https://arxiv.org/abs/2409.05653v3
|
https://arxiv.org/pdf/2409.05653v3.pdf
|
https://github.com/uds-lsv/winopron
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/fast-algorithms-to-improve-fair-information
|
Fast algorithms to improve fair information access in networks
|
2409.03127
|
https://arxiv.org/abs/2409.03127v2
|
https://arxiv.org/pdf/2409.03127v2.pdf
|
https://github.com/rhythmthief/FairnessNetworks
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/an-efficient-framework-based-on-large
|
An efficient framework based on large foundation model for cervical cytopathology whole slide image screening
|
2407.11486
|
https://arxiv.org/abs/2407.11486v1
|
https://arxiv.org/pdf/2407.11486v1.pdf
|
https://github.com/cviu-csu/tct-infonce
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/vexir2vec-an-architecture-neutral-embedding
|
VEXIR2Vec: An Architecture-Neutral Embedding Framework for Binary Similarity
|
2312.00507
|
https://arxiv.org/abs/2312.00507v2
|
https://arxiv.org/pdf/2312.00507v2.pdf
|
https://github.com/systemsecuritystorm/awesome-binary-similarity
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/smile-leveraging-submodular-mutual
|
SMILe: Leveraging Submodular Mutual Information For Robust Few-Shot Object Detection
|
2407.02665
|
https://arxiv.org/abs/2407.02665v2
|
https://arxiv.org/pdf/2407.02665v2.pdf
|
https://github.com/amajee11us/smile-fsod
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/bayesian-parameter-efficient-fine-tuning-for
|
Bayesian Parameter-Efficient Fine-Tuning for Overcoming Catastrophic Forgetting
|
2402.12220
|
https://arxiv.org/abs/2402.12220v3
|
https://arxiv.org/pdf/2402.12220v3.pdf
|
https://github.com/idiap/bayesian-peft
| true
| true
| true
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.