paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/generalized-measures-of-anticipation-and
|
Generalized Measures of Anticipation and Responsivity in Online Language Processing
|
2409.10728
|
https://arxiv.org/abs/2409.10728v2
|
https://arxiv.org/pdf/2409.10728v2.pdf
|
https://github.com/rycolab/generalized-surprisal
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-simple-baseline-for-multi-object-tracking
|
FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking
|
2004.01888
|
https://arxiv.org/abs/2004.01888v6
|
https://arxiv.org/pdf/2004.01888v6.pdf
|
https://github.com/ydhcg-bobo/stcmot
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/can-graph-reordering-speed-up-graph-neural
|
Can Graph Reordering Speed Up Graph Neural Network Training? An Experimental Study
|
2409.11129
|
https://arxiv.org/abs/2409.11129v1
|
https://arxiv.org/pdf/2409.11129v1.pdf
|
https://github.com/nikolaimerkel/reordering
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/stcmot-spatio-temporal-cohesion-learning-for
|
STCMOT: Spatio-Temporal Cohesion Learning for UAV-Based Multiple Object Tracking
|
2409.11234
|
https://arxiv.org/abs/2409.11234v1
|
https://arxiv.org/pdf/2409.11234v1.pdf
|
https://github.com/ydhcg-bobo/stcmot
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/unsupervised-hybrid-framework-for-anomaly
|
Unsupervised Hybrid framework for ANomaly Detection (HAND) -- applied to Screening Mammogram
|
2409.11534
|
https://arxiv.org/abs/2409.11534v1
|
https://arxiv.org/pdf/2409.11534v1.pdf
|
https://github.com/zheminzhang96/hand_mammo
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/feature-re-embedding-towards-foundation-model
|
Feature Re-Embedding: Towards Foundation Model-Level Performance in Computational Pathology
|
2402.17228
|
https://arxiv.org/abs/2402.17228v4
|
https://arxiv.org/pdf/2402.17228v4.pdf
|
https://github.com/dearcaat/rrt-mil
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/self-supervised-diffusion-mri-denoising-via
|
Self-Supervised Diffusion MRI Denoising via Iterative and Stable Refinement
|
2501.13514
|
https://arxiv.org/abs/2501.13514v3
|
https://arxiv.org/pdf/2501.13514v3.pdf
|
https://github.com/fouierl/di-fusion
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/revisiting-end-to-end-learning-with-slide
|
Revisiting End-to-End Learning with Slide-level Supervision in Computational Pathology
|
2506.02408
|
https://arxiv.org/abs/2506.02408v1
|
https://arxiv.org/pdf/2506.02408v1.pdf
|
https://github.com/dearcaat/rrt-mil
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/vista3d-unravel-the-3d-darkside-of-a-single
|
Vista3D: Unravel the 3D Darkside of a Single Image
|
2409.12193
|
https://arxiv.org/abs/2409.12193v1
|
https://arxiv.org/pdf/2409.12193v1.pdf
|
https://github.com/florinshen/vista3d
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/volvo-discovery-challenge-at-ecml-pkdd-2024
|
Volvo Discovery Challenge at ECML-PKDD 2024
|
2409.11446
|
https://arxiv.org/abs/2409.11446v1
|
https://arxiv.org/pdf/2409.11446v1.pdf
|
https://github.com/mal-to/volvo-discovery-challenge-ecml-pkdd-2024
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/three-dimensional-particle-in-cell
|
Three-Dimensional Particle-In-Cell Simulations of Two-Dimensional Bernstein-Greene-Kruskal Modes
|
2410.16585
|
https://arxiv.org/abs/2410.16585v1
|
https://arxiv.org/pdf/2410.16585v1.pdf
|
https://github.com/psc-code/psc
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/high-resolution-particle-in-cell-simulations
|
High-Resolution Particle-In-Cell Simulations of Two-Dimensional Bernstein-Greene-Kruskal Modes
|
2311.08613
|
https://arxiv.org/abs/2311.08613v1
|
https://arxiv.org/pdf/2311.08613v1.pdf
|
https://github.com/psc-code/psc
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/sum-of-parts-models-faithful-attributions-for
|
Sum-of-Parts: Faithful Attributions for Groups of Features
|
2310.16316
|
https://arxiv.org/abs/2310.16316v2
|
https://arxiv.org/pdf/2310.16316v2.pdf
|
https://github.com/debugml/sop
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/quantifying-the-individual-differences-of
|
Quantifying the Individual Differences of Driver' Risk Perception with Just Four Interpretable Parameters
|
2211.10907
|
https://arxiv.org/abs/2211.10907v1
|
https://arxiv.org/pdf/2211.10907v1.pdf
|
https://github.com/ChenChenGith/PODAR_individual_modeling_code
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/covomix-advancing-zero-shot-speech-generation
|
CoVoMix: Advancing Zero-Shot Speech Generation for Human-like Multi-talker Conversations
|
2404.06690
|
https://arxiv.org/abs/2404.06690v3
|
https://arxiv.org/pdf/2404.06690v3.pdf
|
https://github.com/vivian556123/neurips2024-covomix
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/kernel-methods-for-the-approximation-of-the
|
Kernel Methods for the Approximation of the Eigenfunctions of the Koopman Operator
|
2412.16588
|
https://arxiv.org/abs/2412.16588v1
|
https://arxiv.org/pdf/2412.16588v1.pdf
|
https://github.com/jonghyeon1998/koopman
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/less-is-more-a-simple-yet-effective-token
|
Less is More: A Simple yet Effective Token Reduction Method for Efficient Multi-modal LLMs
|
2409.10994
|
https://arxiv.org/abs/2409.10994v3
|
https://arxiv.org/pdf/2409.10994v3.pdf
|
https://github.com/freedomintelligence/trim
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/scanning-tables-for-the-layer-groups
|
Symmetries of all lines in monolayer crystals
|
2410.18750
|
https://arxiv.org/abs/2410.18750v2
|
https://arxiv.org/pdf/2410.18750v2.pdf
|
https://github.com/Griffin-Group/scanning-tables-layer-group-data
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/reward-modeling-with-weak-supervision-for
|
Reward Modeling with Weak Supervision for Language Models
|
2410.20869
|
https://arxiv.org/abs/2410.20869v1
|
https://arxiv.org/pdf/2410.20869v1.pdf
|
https://github.com/DFKI-NLP/weak-supervision-rlhf
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/conditional-variational-autoencoder-with
|
Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
|
2106.06103
|
https://arxiv.org/abs/2106.06103v1
|
https://arxiv.org/pdf/2106.06103v1.pdf
|
https://github.com/pwc-1/Paper-9/tree/main/1/vits
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/simple-and-fast-distillation-of-diffusion
|
Simple and Fast Distillation of Diffusion Models
|
2409.19681
|
https://arxiv.org/abs/2409.19681v1
|
https://arxiv.org/pdf/2409.19681v1.pdf
|
https://github.com/zhyzhouu/amed-solver
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/experience-and-evidence-are-the-eyes-of-an
|
Experience and Evidence are the eyes of an excellent summarizer! Towards Knowledge Infused Multi-modal Clinical Conversation Summarization
|
2309.15739
|
https://arxiv.org/abs/2309.15739v1
|
https://arxiv.org/pdf/2309.15739v1.pdf
|
https://github.com/nlp-rl/mm-cliconsummation
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/seeding-with-differentially-private-network
|
Seeding with Differentially Private Network Information
|
2305.16590
|
https://arxiv.org/abs/2305.16590v4
|
https://arxiv.org/pdf/2305.16590v4.pdf
|
https://github.com/aminrahimian/dp-inf-max
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/where-s-ben-nevis-a-2d-optimisation-benchmark
|
Where's Ben Nevis? A 2D optimisation benchmark with 957,174 local optima based on Great Britain terrain data
|
2410.02422
|
https://arxiv.org/abs/2410.02422v1
|
https://arxiv.org/pdf/2410.02422v1.pdf
|
https://github.com/CardiacModelling/BenNevis
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/personalized-topology-informed-12-lead-ecg
|
Personalized Topology-Informed Localization of Standard 12-Lead ECG Electrode Placement from Incomplete Cardiac MRIs for Efficient Cardiac Digital Twins
|
2408.13945
|
https://arxiv.org/abs/2408.13945v2
|
https://arxiv.org/pdf/2408.13945v2.pdf
|
https://github.com/lileitech/12lead_ecg_electrode_localizer
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/small-models-big-tasks-an-exploratory
|
Small Models, Big Tasks: An Exploratory Empirical Study on Small Language Models for Function Calling
|
2504.19277
|
https://arxiv.org/abs/2504.19277v1
|
https://arxiv.org/pdf/2504.19277v1.pdf
|
https://github.com/Raghav010/Small-Models-Big-Tasks
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/controlled-evaluation-of-syntactic-knowledge
|
Controlled Evaluation of Syntactic Knowledge in Multilingual Language Models
|
2411.07474
|
https://arxiv.org/abs/2411.07474v2
|
https://arxiv.org/pdf/2411.07474v2.pdf
|
https://github.com/dariakryvosheieva/syntactic_generalization_multilingual
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/a-general-purpose-multimodal-foundation-model
|
A Multimodal Vision Foundation Model for Clinical Dermatology
|
2410.15038
|
https://arxiv.org/abs/2410.15038v2
|
https://arxiv.org/pdf/2410.15038v2.pdf
|
https://github.com/SiyuanYan1/PanDerm
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/unraveling-cross-modality-knowledge-conflict
|
Unraveling Cross-Modality Knowledge Conflicts in Large Vision-Language Models
|
2410.03659
|
https://arxiv.org/abs/2410.03659v2
|
https://arxiv.org/pdf/2410.03659v2.pdf
|
https://github.com/luka-group/vlm-knowledge-conflict
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/stacked-conditional-generative-adversarial
|
Stacked Conditional Generative Adversarial Networks for Jointly Learning Shadow Detection and Shadow Removal
|
1712.02478
|
http://arxiv.org/abs/1712.02478v1
|
http://arxiv.org/pdf/1712.02478v1.pdf
|
https://github.com/Param-Raval/shadow-sight
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/federated-learning-with-label-masking
|
Federated Learning with Label-Masking Distillation
|
2409.13136
|
https://arxiv.org/abs/2409.13136v1
|
https://arxiv.org/pdf/2409.13136v1.pdf
|
https://github.com/wnma3mz/fedlmd
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/policy-improvement-using-language-feedback
|
Policy Improvement using Language Feedback Models
|
2402.07876
|
https://arxiv.org/abs/2402.07876v6
|
https://arxiv.org/pdf/2402.07876v6.pdf
|
https://github.com/vzhong/language_feedback_models
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/a-simple-image-segmentation-framework-via-in
|
A Simple Image Segmentation Framework via In-Context Examples
|
2410.04842
|
https://arxiv.org/abs/2410.04842v2
|
https://arxiv.org/pdf/2410.04842v2.pdf
|
https://github.com/aim-uofa/sine
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/llava-prumerge-adaptive-token-reduction-for
|
LLaVA-PruMerge: Adaptive Token Reduction for Efficient Large Multimodal Models
|
2403.15388
|
https://arxiv.org/abs/2403.15388v5
|
https://arxiv.org/pdf/2403.15388v5.pdf
|
https://github.com/42Shawn/LLaVA-PruMerge
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/swin-transformer-hierarchical-vision
|
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
|
2103.14030
|
https://arxiv.org/abs/2103.14030v2
|
https://arxiv.org/pdf/2103.14030v2.pdf
|
https://github.com/yangyucheng000/University/tree/main/model-3/swin
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/on-the-detectability-and-parameterisation-of
|
On the detectability and parameterisation of binary stars through spectral energy distributions
|
2412.05606
|
https://arxiv.org/abs/2412.05606v1
|
https://arxiv.org/pdf/2412.05606v1.pdf
|
https://github.com/jikrant3/sed-analysis-tools
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/tetrahedral-diffusion-models-for-3d-shape
|
TetraDiffusion: Tetrahedral Diffusion Models for 3D Shape Generation
|
2211.13220
|
https://arxiv.org/abs/2211.13220v3
|
https://arxiv.org/pdf/2211.13220v3.pdf
|
https://github.com/PeterTor/TetraDiffusion
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/streamgen-connecting-populations-of-streams
|
StreamGen: Connecting Populations of Streams and Shells to Their Host Galaxies
|
2409.13810
|
https://arxiv.org/abs/2409.13810v1
|
https://arxiv.org/pdf/2409.13810v1.pdf
|
https://github.com/adropulic/streamgen
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/to-glue-or-not-to-glue-classical-vs-learned
|
To Glue or Not to Glue? Classical vs Learned Image Matching for Mobile Mapping Cameras to Textured Semantic 3D Building Models
|
2505.17973
|
https://arxiv.org/abs/2505.17973v1
|
https://arxiv.org/pdf/2505.17973v1.pdf
|
https://github.com/simbauer/to_glue_or_not_to_glue
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/simulating-the-two-dimensional-t-j-model-at
|
Simulating the two-dimensional $t-J$ model at finite doping with neural quantum states
|
2411.10430
|
https://arxiv.org/abs/2411.10430v2
|
https://arxiv.org/pdf/2411.10430v2.pdf
|
https://github.com/HannahLange/HFDSfortJ
| true
| false
| true
|
jax
|
https://paperswithcode.com/paper/flame-financial-large-language-model
|
FLAME: Financial Large-Language Model Assessment and Metrics Evaluation
|
2501.06211
|
https://arxiv.org/abs/2501.06211v1
|
https://arxiv.org/pdf/2501.06211v1.pdf
|
https://github.com/flame-ruc/flame
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/first-experiments-with-neural-cvc5
|
First Experiments with Neural cvc5
|
2501.09379
|
https://arxiv.org/abs/2501.09379v1
|
https://arxiv.org/pdf/2501.09379v1.pdf
|
https://github.com/jellepiepenbrock/mlcvc5-lpar
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/scaling-up-your-kernels-large-kernel-design
|
Scaling Up Your Kernels: Large Kernel Design in ConvNets towards Universal Representations
|
2410.08049
|
https://arxiv.org/abs/2410.08049v1
|
https://arxiv.org/pdf/2410.08049v1.pdf
|
https://github.com/ailab-cvc/unireplknet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/optimal-state-dynamics-estimation-for-physics
|
Optimal-state Dynamics Estimation for Physics-based Human Motion Capture from Videos
|
2410.07795
|
https://arxiv.org/abs/2410.07795v4
|
https://arxiv.org/pdf/2410.07795v4.pdf
|
https://github.com/cuongle1206/osdcap
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/memsduino-an-arduino-based-mems-switch
|
MEMSDuino: An Arduino-Based MEMS Switch Controller
|
2501.03340
|
https://arxiv.org/abs/2501.03340v1
|
https://arxiv.org/pdf/2501.03340v1.pdf
|
https://github.com/lafefspietz/memsduino
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/query-enhanced-knowledge-intensive
|
Query Enhanced Knowledge-Intensive Conversation via Unsupervised Joint Modeling
|
2212.09588
|
https://arxiv.org/abs/2212.09588v2
|
https://arxiv.org/pdf/2212.09588v2.pdf
|
https://github.com/MindCode-4/code-12/tree/main/model-conversion-via
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/pyramidal-flow-matching-for-efficient-video
|
Pyramidal Flow Matching for Efficient Video Generative Modeling
|
2410.05954
|
https://arxiv.org/abs/2410.05954v1
|
https://arxiv.org/pdf/2410.05954v1.pdf
|
https://github.com/jy0205/Pyramid-Flow
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/aligning-few-step-diffusion-models-with-dense
|
Aligning Few-Step Diffusion Models with Dense Reward Difference Learning
|
2411.11727
|
https://arxiv.org/abs/2411.11727v1
|
https://arxiv.org/pdf/2411.11727v1.pdf
|
https://github.com/ziyizhang27/sdpo
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/identifying-memorization-of-diffusion-models
|
Identifying Memorization of Diffusion Models through p-Laplace Analysis
|
2505.08246
|
https://arxiv.org/abs/2505.08246v1
|
https://arxiv.org/pdf/2505.08246v1.pdf
|
https://github.com/jonathanbrok/identifying-memorization-of-diffusion-models-through-p-laplace-analysis
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/extreme-values-of-the-mass-distribution
|
Extreme values of the mass distribution associated with $d$-quasi-copulas via linear programming
|
2410.19339
|
https://arxiv.org/abs/2410.19339v2
|
https://arxiv.org/pdf/2410.19339v2.pdf
|
https://gitlab.com/mrcinv/quasicopula.jl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/physics-informed-neural-networks-for-22
|
Physics-informed Neural Networks for Functional Differential Equations: Cylindrical Approximation and Its Convergence Guarantees
|
2410.18153
|
https://arxiv.org/abs/2410.18153v1
|
https://arxiv.org/pdf/2410.18153v1.pdf
|
https://github.com/taikimiyagawa/functionalpinn
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-joint-learning-framework-with-feature
|
A Joint Learning Framework with Feature Reconstruction and Prediction for Incomplete Satellite Image Time Series in Agricultural Semantic Segmentation
|
2505.19159
|
https://arxiv.org/abs/2505.19159v1
|
https://arxiv.org/pdf/2505.19159v1.pdf
|
https://github.com/wangyuze-csu/joint_frp
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-survey-of-medical-vision-and-language
|
A Survey of Medical Vision-and-Language Applications and Their Techniques
|
2411.12195
|
https://arxiv.org/abs/2411.12195v1
|
https://arxiv.org/pdf/2411.12195v1.pdf
|
https://github.com/ytongxie/medical-vision-and-language-tasks-and-methodologies-a-survey
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/local-and-global-decoding-in-text-generation
|
Local and Global Decoding in Text Generation
|
2410.10810
|
https://arxiv.org/abs/2410.10810v1
|
https://arxiv.org/pdf/2410.10810v1.pdf
|
https://github.com/lowlypalace/global-decoding
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/bbsea-an-exploration-of-brain-body
|
BBSEA: An Exploration of Brain-Body Synchronization for Embodied Agents
|
2402.08212
|
https://arxiv.org/abs/2402.08212v1
|
https://arxiv.org/pdf/2402.08212v1.pdf
|
https://github.com/yangsizhe/bbsea
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/multi-type-preference-learning-empowering
|
Multi-Type Preference Learning: Empowering Preference-Based Reinforcement Learning with Equal Preferences
|
2409.07268
|
https://arxiv.org/abs/2409.07268v2
|
https://arxiv.org/pdf/2409.07268v2.pdf
|
https://github.com/feicuilengmmbb/paper_mtpl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/towards-better-multi-head-attention-via
|
Towards Better Multi-head Attention via Channel-wise Sample Permutation
|
2410.10914
|
https://arxiv.org/abs/2410.10914v1
|
https://arxiv.org/pdf/2410.10914v1.pdf
|
https://github.com/dashenzi721/csp
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/automato-a-parameter-free-persistence-based
|
AuToMATo: An Out-Of-The-Box Persistence-Based Clustering Algorithm
|
2408.06958
|
https://arxiv.org/abs/2408.06958v2
|
https://arxiv.org/pdf/2408.06958v2.pdf
|
https://github.com/m-a-huber/AuToMATo
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/denial-of-service-poisoning-attacks-against
|
Denial-of-Service Poisoning Attacks against Large Language Models
|
2410.10760
|
https://arxiv.org/abs/2410.10760v1
|
https://arxiv.org/pdf/2410.10760v1.pdf
|
https://github.com/sail-sg/p-dos
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/ar-tta-a-simple-method-for-real-world
|
AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation
|
2309.10109
|
https://arxiv.org/abs/2309.10109v2
|
https://arxiv.org/pdf/2309.10109v2.pdf
|
https://github.com/dmn-sjk/ar-tta
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/v2m-visual-2-dimensional-mamba-for-image
|
V2M: Visual 2-Dimensional Mamba for Image Representation Learning
|
2410.10382
|
https://arxiv.org/abs/2410.10382v1
|
https://arxiv.org/pdf/2410.10382v1.pdf
|
https://github.com/wangck20/v2m
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/finetuning-pretrained-transformers-into-rnns
|
Finetuning Pretrained Transformers into RNNs
|
2103.13076
|
https://arxiv.org/abs/2103.13076v2
|
https://arxiv.org/pdf/2103.13076v2.pdf
|
https://github.com/hazyresearch/lolcats
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/the-hedgehog-the-porcupine-expressive-linear
|
The Hedgehog & the Porcupine: Expressive Linear Attentions with Softmax Mimicry
|
2402.04347
|
https://arxiv.org/abs/2402.04347v1
|
https://arxiv.org/pdf/2402.04347v1.pdf
|
https://github.com/hazyresearch/lolcats
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/geometry-informed-neural-networks
|
Geometry-Informed Neural Networks
|
2402.14009
|
https://arxiv.org/abs/2402.14009v3
|
https://arxiv.org/pdf/2402.14009v3.pdf
|
https://github.com/ml-jku/ginns-geometry-informed-neural-networks
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/implicit-multi-spectral-transformer-an
|
Implicit Multi-Spectral Transformer: An Lightweight and Effective Visible to Infrared Image Translation Model
|
2404.07072
|
https://arxiv.org/abs/2404.07072v2
|
https://arxiv.org/pdf/2404.07072v2.pdf
|
https://github.com/CXH-Research/IRFormer
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-quick-primer-on-machine-learning-in
|
A Quick Primer on Machine Learning in Wireless Communications
|
2312.17713
|
https://arxiv.org/abs/2312.17713v6
|
https://arxiv.org/pdf/2312.17713v6.pdf
|
https://github.com/farismismar/eesc7v86-fall22
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/subjective-and-objective-analysis-of-indian
|
Subjective and Objective Analysis of Indian Social Media Video Quality
|
2401.02794
|
https://arxiv.org/abs/2401.02794v1
|
https://arxiv.org/pdf/2401.02794v1.pdf
|
https://github.com/sandeep-sm/live-sc
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/inflation-of-test-accuracy-due-to-data
|
Inflation of test accuracy due to data leakage in deep learning-based classification of OCT images
|
2202.12267
|
https://arxiv.org/abs/2202.12267v2
|
https://arxiv.org/pdf/2202.12267v2.pdf
|
https://github.com/iulianemiltampu/split_properly_oct_data
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/topa-extend-large-language-models-for-video
|
TOPA: Extending Large Language Models for Video Understanding via Text-Only Pre-Alignment
|
2405.13911
|
https://arxiv.org/abs/2405.13911v2
|
https://arxiv.org/pdf/2405.13911v2.pdf
|
https://github.com/dhg-wei/topa
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/unsupervised-homography-estimation-on
|
Unsupervised Homography Estimation on Multimodal Image Pair via Alternating Optimization
|
2411.13036
|
https://arxiv.org/abs/2411.13036v1
|
https://arxiv.org/pdf/2411.13036v1.pdf
|
https://github.com/songsang7/alto
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/vista-dataset-do-vision-language-models
|
ViSTa Dataset: Do vision-language models understand sequential tasks?
|
2411.13211
|
https://arxiv.org/abs/2411.13211v2
|
https://arxiv.org/pdf/2411.13211v2.pdf
|
https://github.com/eugleo/vista-dataset
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/whales-a-multi-agent-scheduling-dataset-for
|
WHALES: A Multi-agent Scheduling Dataset for Enhanced Cooperation in Autonomous Driving
|
2411.13340
|
https://arxiv.org/abs/2411.13340v1
|
https://arxiv.org/pdf/2411.13340v1.pdf
|
https://github.com/chensiweithu/whales
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/teaching-vlms-to-localize-specific-objects
|
Teaching VLMs to Localize Specific Objects from In-context Examples
|
2411.13317
|
https://arxiv.org/abs/2411.13317v1
|
https://arxiv.org/pdf/2411.13317v1.pdf
|
https://github.com/sivandoveh/iploc
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/joint-vision-language-social-bias-removal-for
|
Joint Vision-Language Social Bias Removal for CLIP
|
2411.12785
|
https://arxiv.org/abs/2411.12785v1
|
https://arxiv.org/pdf/2411.12785v1.pdf
|
https://github.com/haoyusimon/VL_Debiasing
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/fg-dfpn-flow-guided-deformable-frame
|
FG-DFPN: Flow Guided Deformable Frame Prediction Network
|
2503.11343
|
https://arxiv.org/abs/2503.11343v1
|
https://arxiv.org/pdf/2503.11343v1.pdf
|
https://github.com/KUIS-AI-Tekalp-Research-Group/frame-prediction
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/consistency-models
|
Consistency Models
|
2303.01469
|
https://arxiv.org/abs/2303.01469v2
|
https://arxiv.org/pdf/2303.01469v2.pdf
|
https://github.com/cloneofsimo/consistency_models
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/developing-a-top-tier-framework-in
|
Developing a Top-tier Framework in Naturalistic Conditions Challenge for Categorized Emotion Prediction: From Speech Foundation Models and Learning Objective to Data Augmentation and Engineering Choices
|
2505.22133
|
https://arxiv.org/abs/2505.22133v2
|
https://arxiv.org/pdf/2505.22133v2.pdf
|
https://github.com/tiantiaf0627/vox-profile-release
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/gaze-guided-learning-avoiding-shortcut-bias
|
Gaze-Guided Learning: Avoiding Shortcut Bias in Visual Classification
|
2504.05583
|
https://arxiv.org/abs/2504.05583v1
|
https://arxiv.org/pdf/2504.05583v1.pdf
|
https://github.com/rekkles2/Gaze-CIFAR-10
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/trustworthy-deep-learning-via-proper
|
Better Uncertainty Calibration via Proper Scores for Classification and Beyond
|
2203.07835
|
https://arxiv.org/abs/2203.07835v4
|
https://arxiv.org/pdf/2203.07835v4.pdf
|
https://github.com/MLO-lab/better_uncertainty_calibration_via_proper_scores_for_classification_and_beyond
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/flipsketch-flipping-static-drawings-to-text
|
FlipSketch: Flipping Static Drawings to Text-Guided Sketch Animations
|
2411.10818
|
https://arxiv.org/abs/2411.10818v1
|
https://arxiv.org/pdf/2411.10818v1.pdf
|
https://github.com/hmrishavbandy/flipsketch
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/intruding-with-words-towards-understanding
|
Intruding with Words: Towards Understanding Graph Injection Attacks at the Text Level
|
2405.16405
|
https://arxiv.org/abs/2405.16405v2
|
https://arxiv.org/pdf/2405.16405v2.pdf
|
https://github.com/leirunlin/text-level-graph-attack
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-llm-based-ranking-method-for-the-evaluation
|
A LLM-Based Ranking Method for the Evaluation of Automatic Counter-Narrative Generation
|
2406.15227
|
https://arxiv.org/abs/2406.15227v3
|
https://arxiv.org/pdf/2406.15227v3.pdf
|
https://github.com/hitz-zentroa/cn-eval
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/adjointdeis-efficient-gradients-for-diffusion
|
AdjointDEIS: Efficient Gradients for Diffusion Models
|
2405.15020
|
https://arxiv.org/abs/2405.15020v3
|
https://arxiv.org/pdf/2405.15020v3.pdf
|
https://github.com/zblasingame/adjointdeis
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/simulation-of-nanorobots-with-artificial
|
Simulation of Nanorobots with Artificial Intelligence and Reinforcement Learning for Advanced Cancer Cell Detection and Tracking
|
2411.02345
|
https://arxiv.org/abs/2411.02345v1
|
https://arxiv.org/pdf/2411.02345v1.pdf
|
https://github.com/shahab-k93/cancer-and-smart-nanorobot
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/generative-ai-aided-optimization-for-ai
|
Diffusion-based Reinforcement Learning for Edge-enabled AI-Generated Content Services
|
2303.13052
|
https://arxiv.org/abs/2303.13052v3
|
https://arxiv.org/pdf/2303.13052v3.pdf
|
https://github.com/lizonghang/agod
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/neural-audio-synthesis-of-musical-notes-with
|
Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders
|
1704.01279
|
http://arxiv.org/abs/1704.01279v1
|
http://arxiv.org/pdf/1704.01279v1.pdf
|
https://github.com/MindSpore-scientific/code-6/tree/main/neural-audio-synthesis-wavenet
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/normalization-layer-per-example-gradients-are
|
Normalization Layer Per-Example Gradients are Sufficient to Predict Gradient Noise Scale in Transformers
|
2411.00999
|
https://arxiv.org/abs/2411.00999v1
|
https://arxiv.org/pdf/2411.00999v1.pdf
|
https://github.com/cerebrasresearch/nanogns
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/interpreting-clip-with-sparse-linear-concept
|
Interpreting CLIP with Sparse Linear Concept Embeddings (SpLiCE)
|
2402.10376
|
https://arxiv.org/abs/2402.10376v2
|
https://arxiv.org/pdf/2402.10376v2.pdf
|
https://github.com/ai4life-group/splice
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/flexchunk-enabling-100mx100m-out-of-core-spmv
|
FlexChunk: Enabling 100M×100M Out-of-Core SpMV (~1.8 min, ~1.7 GB RAM) with Near-Linear Scaling
| null |
https://www.lesswrong.com/posts/zpRhsdDkWygTDScxb/flexchunk-enabling-100m-100m-out-of-core-spmv-1-8-min-1-7-gb
|
https://github.com/DanielSwift1992/FlexChunk/blob/main/docs/lesswrong.com-FlexChunk.pdf
|
https://github.com/DanielSwift1992/FlexChunk
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/gateformer-advancing-multivariate-time-series
|
Gateformer: Advancing Multivariate Time Series Forecasting through Temporal and Variate-Wise Attention with Gated Representations
|
2505.00307
|
https://arxiv.org/abs/2505.00307v2
|
https://arxiv.org/pdf/2505.00307v2.pdf
|
https://github.com/nyuolab/gateformer
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/c-pmi-conditional-pointwise-mutual
|
C-PMI: Conditional Pointwise Mutual Information for Turn-level Dialogue Evaluation
|
2306.15245
|
https://arxiv.org/abs/2306.15245v3
|
https://arxiv.org/pdf/2306.15245v3.pdf
|
https://github.com/renll/c-pmi
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/tip-of-the-tongue-query-elicitation-for
|
Tip of the Tongue Query Elicitation for Simulated Evaluation
|
2502.17776
|
https://arxiv.org/abs/2502.17776v1
|
https://arxiv.org/pdf/2502.17776v1.pdf
|
https://github.com/kimdanny/human-tot-query-elicitation-mturk
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/luminance-attentive-networks-for-hdr-image
|
Luminance Attentive Networks for HDR Image and Panorama Reconstruction
|
2109.06688
|
https://arxiv.org/abs/2109.06688v1
|
https://arxiv.org/pdf/2109.06688v1.pdf
|
https://github.com/MindSpore-scientific/code-13/tree/main/Luminance-Guided-Chrominance-Enhancement-for-HEVC-Intra-Coding
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/in-context-learning-with-hypothesis-class
|
In-Context Learning with Hypothesis-Class Guidance
|
2502.19787
|
https://arxiv.org/abs/2502.19787v1
|
https://arxiv.org/pdf/2502.19787v1.pdf
|
https://github.com/uw-madison-lee-lab/icl-hcg
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/steerable-conditional-diffusion-for-out-of
|
Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction
|
2308.14409
|
https://arxiv.org/abs/2308.14409v3
|
https://arxiv.org/pdf/2308.14409v3.pdf
|
https://github.com/alexdenker/SteerableConditionalDiffusion
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/deft-efficient-finetuning-of-conditional
|
DEFT: Efficient Fine-Tuning of Diffusion Models by Learning the Generalised $h$-transform
|
2406.01781
|
https://arxiv.org/abs/2406.01781v5
|
https://arxiv.org/pdf/2406.01781v5.pdf
|
https://github.com/alexdenker/deft
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/strategic-learning-and-trading-in-broker
|
Strategic Learning and Trading in Broker-Mediated Markets
|
2412.20847
|
https://arxiv.org/abs/2412.20847v1
|
https://arxiv.org/pdf/2412.20847v1.pdf
|
https://github.com/muhammadalifaqsha/broker_informed_noise_filtering_game
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/the-bigger-the-better-accurate-molecular
|
The Bigger the Better? Accurate Molecular Potential Energy Surfaces from Minimalist Neural Networks
|
2411.18121
|
https://arxiv.org/abs/2411.18121v1
|
https://arxiv.org/pdf/2411.18121v1.pdf
|
https://github.com/MMunibas/KerNN
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/model-x-ray-detect-backdoored-models-via
|
Model X-ray:Detecting Backdoored Models via Decision Boundary
|
2402.17465
|
https://arxiv.org/abs/2402.17465v2
|
https://arxiv.org/pdf/2402.17465v2.pdf
|
https://github.com/SuYanghao/Model_X-ray
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/pruning-in-the-face-of-adversaries
|
Pruning in the Face of Adversaries
|
2108.08560
|
https://arxiv.org/abs/2108.08560v1
|
https://arxiv.org/pdf/2108.08560v1.pdf
|
https://github.com/FlorianMerkle/network-pruning-and-robustness
| false
| false
| true
|
tf
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.