paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/mozart-s-touch-a-lightweight-multi-modal
|
Mozart's Touch: A Lightweight Multi-modal Music Generation Framework Based on Pre-Trained Large Models
|
2405.02801
|
https://arxiv.org/abs/2405.02801v3
|
https://arxiv.org/pdf/2405.02801v3.pdf
|
https://github.com/tiffanyblews/mozartstouch
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/matrix-free-methods-for-finite-strain
|
Matrix-Free Methods for Finite-Strain Elasticity: Automatic Code Generation with No Performance Overhead
|
2505.15535
|
https://arxiv.org/abs/2505.15535v1
|
https://arxiv.org/pdf/2505.15535v1.pdf
|
https://github.com/mwichro/solid-matrix-free
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/a-sequential-benders-based-mixed-integer
|
A Sequential Benders-based Mixed-Integer Quadratic Programming Algorithm
|
2404.11786
|
https://arxiv.org/abs/2404.11786v1
|
https://arxiv.org/pdf/2404.11786v1.pdf
|
https://github.com/minlp-toolbox/camino
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/delgrad-exact-gradients-in-spiking-networks
|
DelGrad: Exact event-based gradients for training delays and weights on spiking neuromorphic hardware
|
2404.19165
|
https://arxiv.org/abs/2404.19165v3
|
https://arxiv.org/pdf/2404.19165v3.pdf
|
https://github.com/JulianGoeltz/fastAndDeep
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/fast-and-deep-neuromorphic-learning-with-time
|
Fast and energy-efficient neuromorphic deep learning with first-spike times
|
1912.11443
|
https://arxiv.org/abs/1912.11443v4
|
https://arxiv.org/pdf/1912.11443v4.pdf
|
https://github.com/JulianGoeltz/fastAndDeep
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/robust-benchmarking-in-noisy-environments
|
Robust benchmarking in noisy environments
|
1608.04295
|
http://arxiv.org/abs/1608.04295v1
|
http://arxiv.org/pdf/1608.04295v1.pdf
|
https://github.com/stdlib-js/utils-timeit
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/using-k-medoids-for-distributed-approximate
|
A Parametrizable Algorithm for Distributed Approximate Similarity Search with Arbitrary Distances
|
2405.13795
|
https://arxiv.org/abs/2405.13795v3
|
https://arxiv.org/pdf/2405.13795v3.pdf
|
https://github.com/elenagarciamorato/PDASC
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/toward-memory-aided-world-models-benchmarking
|
Toward Memory-Aided World Models: Benchmarking via Spatial Consistency
|
2505.22976
|
https://arxiv.org/abs/2505.22976v1
|
https://arxiv.org/pdf/2505.22976v1.pdf
|
https://github.com/kevin-lkw/loopnav
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/design-of-bayesian-clinical-trials-with
|
Design of Bayesian Clinical Trials with Clustered Data and Multiple Endpoints
|
2501.13218
|
https://arxiv.org/abs/2501.13218v2
|
https://arxiv.org/pdf/2501.13218v2.pdf
|
https://github.com/lmhagar/clusterdocs
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/enhancing-large-language-models-through-neuro
|
Enhancing Large Language Models through Neuro-Symbolic Integration and Ontological Reasoning
|
2504.07640
|
https://arxiv.org/abs/2504.07640v1
|
https://arxiv.org/pdf/2504.07640v1.pdf
|
https://github.com/ruslanmv/neuro-symbolic-interaction
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/inflationary-flows-calibrated-bayesian
|
Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models
|
2407.08843
|
https://arxiv.org/abs/2407.08843v3
|
https://arxiv.org/pdf/2407.08843v3.pdf
|
https://github.com/dannyfa/inflationary_flows
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/tracking-changing-probabilities-via-dynamic
|
Tracking Changing Probabilities via Dynamic Learners
|
2402.10142
|
https://arxiv.org/abs/2402.10142v3
|
https://arxiv.org/pdf/2402.10142v3.pdf
|
https://github.com/omadanitet/sparse-moving-averages
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/kblam-knowledge-base-augmented-language-model
|
KBLaM: Knowledge Base augmented Language Model
|
2410.10450
|
https://arxiv.org/abs/2410.10450v1
|
https://arxiv.org/pdf/2410.10450v1.pdf
|
https://github.com/microsoft/KBLaM
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/natural-language-processing-in-ethiopian
|
Natural Language Processing in Ethiopian Languages: Current State, Challenges, and Opportunities
|
2303.14406
|
https://arxiv.org/abs/2303.14406v1
|
https://arxiv.org/pdf/2303.14406v1.pdf
|
https://github.com/EthioNLP/Ethiopian-Language-Survey
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/adapt-an-interactive-procedure-for-multiple
|
AdaPT: An interactive procedure for multiple testing with side information
|
1609.06035
|
http://arxiv.org/abs/1609.06035v4
|
http://arxiv.org/pdf/1609.06035v4.pdf
|
https://github.com/patrickrchao/adaptmt
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/efficient-spatial-dataset-search-over
|
Joinable Search over Multi-source Spatial Datasets: Overlap, Coverage, and Efficiency
|
2311.13383
|
https://arxiv.org/abs/2311.13383v4
|
https://arxiv.org/pdf/2311.13383v4.pdf
|
https://github.com/yangwenzhe/msds_code
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/taming-knowledge-conflicts-in-language-models
|
Taming Knowledge Conflicts in Language Models
|
2503.10996
|
https://arxiv.org/abs/2503.10996v1
|
https://arxiv.org/pdf/2503.10996v1.pdf
|
https://github.com/GaotangLi/JUICE
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/depgraph-towards-any-structural-pruning
|
DepGraph: Towards Any Structural Pruning
|
2301.12900
|
https://arxiv.org/abs/2301.12900v2
|
https://arxiv.org/pdf/2301.12900v2.pdf
|
https://github.com/VainF/Torch-Pruning
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-efficient-convolutional-networks
|
Learning Efficient Convolutional Networks through Network Slimming
|
1708.06519
|
http://arxiv.org/abs/1708.06519v1
|
http://arxiv.org/pdf/1708.06519v1.pdf
|
https://github.com/VainF/Torch-Pruning
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/language-guided-concept-bottleneck-models-for
|
Language Guided Concept Bottleneck Models for Interpretable Continual Learning
|
2503.23283
|
https://arxiv.org/abs/2503.23283v1
|
https://arxiv.org/pdf/2503.23283v1.pdf
|
https://github.com/fishercats/clg-cbm
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/ct-mamba-a-hybrid-convolutional-state-space
|
CT-Mamba: A Hybrid Convolutional State Space Model for Low-Dose CT Denoising
|
2411.07930
|
https://arxiv.org/abs/2411.07930v4
|
https://arxiv.org/pdf/2411.07930v4.pdf
|
https://github.com/zy2219105/ct-mamba
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/high-throughput-precision-phenotyping-of-left
|
High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy with Cardiovascular Deep Learning
|
2106.12511
|
https://arxiv.org/abs/2106.12511v1
|
https://arxiv.org/pdf/2106.12511v1.pdf
|
https://github.com/echonet/lvh
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/open-eyes-then-reason-fine-grained-visual
|
Open Eyes, Then Reason: Fine-grained Visual Mathematical Understanding in MLLMs
|
2501.06430
|
https://arxiv.org/abs/2501.06430v1
|
https://arxiv.org/pdf/2501.06430v1.pdf
|
https://github.com/ai4math-shanzhang/sve-math
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fast-video-generation-with-sliding-tile
|
Fast Video Generation with Sliding Tile Attention
|
2502.04507
|
https://arxiv.org/abs/2502.04507v1
|
https://arxiv.org/pdf/2502.04507v1.pdf
|
https://github.com/hao-ai-lab/fastvideo
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/data-pruning-in-generative-diffusion-models
|
Data Pruning in Generative Diffusion Models
|
2411.12523
|
https://arxiv.org/abs/2411.12523v2
|
https://arxiv.org/pdf/2411.12523v2.pdf
|
https://github.com/briqr/diffusion_data_pruning
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/compass-enhancing-spatial-understanding-in
|
CoMPaSS: Enhancing Spatial Understanding in Text-to-Image Diffusion Models
|
2412.13195
|
https://arxiv.org/abs/2412.13195v1
|
https://arxiv.org/pdf/2412.13195v1.pdf
|
https://github.com/blurgyy/compass
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/demystify-transformers-convolutions-in-modern
|
Demystify Transformers & Convolutions in Modern Image Deep Networks
|
2211.05781
|
https://arxiv.org/abs/2211.05781v3
|
https://arxiv.org/pdf/2211.05781v3.pdf
|
https://github.com/opengvlab/stm-evaluation
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/lcpy-an-open-source-python-package-for
|
lcpy: an open-source python package for parametric and dynamic Life Cycle Assessment and Life Cycle Costing
|
2506.13744
|
https://arxiv.org/abs/2506.13744v1
|
https://arxiv.org/pdf/2506.13744v1.pdf
|
https://github.com/spirdgk/lcpy
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/long-tailed-out-of-distribution-detection
|
Long-Tailed Out-of-Distribution Detection: Prioritizing Attention to Tail
|
2408.06742
|
https://arxiv.org/abs/2408.06742v3
|
https://arxiv.org/pdf/2408.06742v3.pdf
|
https://github.com/inar-design/patt
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/beyond-data-quantity-key-factors-driving
|
Beyond Data Quantity: Key Factors Driving Performance in Multilingual Language Models
|
2412.12500
|
https://arxiv.org/abs/2412.12500v1
|
https://arxiv.org/pdf/2412.12500v1.pdf
|
https://github.com/PortNLP/SHAP-MLLM-Analysis
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/preference-oriented-supervised-fine-tuning
|
Preference-Oriented Supervised Fine-Tuning: Favoring Target Model Over Aligned Large Language Models
|
2412.12865
|
https://arxiv.org/abs/2412.12865v1
|
https://arxiv.org/pdf/2412.12865v1.pdf
|
https://github.com/Savannah120/alignment-handbook-PoFT
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-real-time-system-for-scheduling-and
|
A Real-Time System for Scheduling and Managing UAV Delivery in Urban
|
2412.11590
|
https://arxiv.org/abs/2412.11590v1
|
https://arxiv.org/pdf/2412.11590v1.pdf
|
https://github.com/chengji253/uavdeliverysystem
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/3d-interaction-geometric-pre-training-for
|
3D Interaction Geometric Pre-training for Molecular Relational Learning
|
2412.02957
|
https://arxiv.org/abs/2412.02957v1
|
https://arxiv.org/pdf/2412.02957v1.pdf
|
https://github.com/Namkyeong/3DMRL
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/sfm-free-3d-gaussian-splatting-via
|
SfM-Free 3D Gaussian Splatting via Hierarchical Training
|
2412.01553
|
https://arxiv.org/abs/2412.01553v1
|
https://arxiv.org/pdf/2412.01553v1.pdf
|
https://github.com/jibo27/3dgs_hierarchical_training
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/the-densest-swamp-problem-subhypergraphs-with
|
The Densest SWAMP problem: subhypergraphs with arbitrary monotonic partial edge rewards
|
2506.12998
|
https://arxiv.org/abs/2506.12998v1
|
https://arxiv.org/pdf/2506.12998v1.pdf
|
https://github.com/vedangi/densest-swamp
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/cweval-outcome-driven-evaluation-on
|
CWEval: Outcome-driven Evaluation on Functionality and Security of LLM Code Generation
|
2501.08200
|
https://arxiv.org/abs/2501.08200v1
|
https://arxiv.org/pdf/2501.08200v1.pdf
|
https://github.com/co1lin/cweval
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/the-kfiou-loss-for-rotated-object-detection-1
|
The KFIoU Loss for Rotated Object Detection
|
2201.12558
|
https://arxiv.org/abs/2201.12558v6
|
https://arxiv.org/pdf/2201.12558v6.pdf
|
https://github.com/Jittor/JDet
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/h-vmunet-high-order-vision-mamba-unet-for
|
H-vmunet: High-order Vision Mamba UNet for Medical Image Segmentation
|
2403.13642
|
https://arxiv.org/abs/2403.13642v1
|
https://arxiv.org/pdf/2403.13642v1.pdf
|
https://github.com/wurenkai/h-vmunet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/leveraging-out-of-domain-data-for-domain
|
Can Out-of-Domain data help to Learn Domain-Specific Prompts for Multimodal Misinformation Detection?
|
2311.16496
|
https://arxiv.org/abs/2311.16496v4
|
https://arxiv.org/pdf/2311.16496v4.pdf
|
https://github.com/scviab/dpod
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-more-trustworthy-deep-code-models-by
|
Towards More Trustworthy Deep Code Models by Enabling Out-of-Distribution Detection
|
2502.18883
|
https://arxiv.org/abs/2502.18883v1
|
https://arxiv.org/pdf/2502.18883v1.pdf
|
https://github.com/yanyanfu/cood
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/wakemint-detecting-sleepminting
|
WakeMint: Detecting Sleepminting Vulnerabilities in NFT Smart Contracts
|
2502.19032
|
https://arxiv.org/abs/2502.19032v1
|
https://arxiv.org/pdf/2502.19032v1.pdf
|
https://github.com/lei-xiao2/wakemint2
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/icm-assistant-instruction-tuning-multimodal
|
ICM-Assistant: Instruction-tuning Multimodal Large Language Models for Rule-based Explainable Image Content Moderation
|
2412.18216
|
https://arxiv.org/abs/2412.18216v2
|
https://arxiv.org/pdf/2412.18216v2.pdf
|
https://github.com/zhaoyuzhi/icm-assistant
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/structvizor-interactive-profiling-of-semi
|
StructVizor: Interactive Profiling of Semi-Structured Textual Data
|
2503.06500
|
https://arxiv.org/abs/2503.06500v1
|
https://arxiv.org/pdf/2503.06500v1.pdf
|
https://github.com/Amur-N/Semi-structured-Dataset-Collection
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/upc-sentinel-an-accurate-approach-for
|
UPC Sentinel: An Accurate Approach for Detecting Upgradeability Proxy Contracts in Ethereum
|
2501.00674
|
https://arxiv.org/abs/2501.00674v1
|
https://arxiv.org/pdf/2501.00674v1.pdf
|
https://github.com/SAILResearch/replication-24-amir-upc_sentinel
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/mcbench-a-benchmark-suite-for-monte-carlo
|
MCBench: A Benchmark Suite for Monte Carlo Sampling Algorithms
|
2501.03138
|
https://arxiv.org/abs/2501.03138v1
|
https://arxiv.org/pdf/2501.03138v1.pdf
|
https://github.com/tudo-physik-e4/mcbench
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/stability-of-data-dependent-ridge
|
Stability of Data-Dependent Ridge-Regularization for Inverse Problems
|
2406.12289
|
https://arxiv.org/abs/2406.12289v2
|
https://arxiv.org/pdf/2406.12289v2.pdf
|
https://github.com/fabianaltekrueger/dataadaptiverr
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/2408-00109
|
Back to the Continuous Attractor
|
2408.00109
|
https://arxiv.org/abs/2408.00109v3
|
https://arxiv.org/pdf/2408.00109v3.pdf
|
https://github.com/catniplab/back_to_the_continuous_attractor
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/normalizing-batch-normalization-for-long
|
Normalizing Batch Normalization for Long-Tailed Recognition
|
2501.03122
|
https://arxiv.org/abs/2501.03122v1
|
https://arxiv.org/pdf/2501.03122v1.pdf
|
https://github.com/yuxiangbao/nbn
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/generalizable-lightweight-proxy-for-robust-1
|
Generalizable Lightweight Proxy for Robust NAS against Diverse Perturbations
|
2306.05031
|
https://arxiv.org/abs/2306.05031v2
|
https://arxiv.org/pdf/2306.05031v2.pdf
|
https://github.com/hyeonjeongha/mm-poisonrag
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/urinary-tract-infection-detection-in-digital
|
Urinary Tract Infection Detection in Digital Remote Monitoring: Strategies for Managing Participant-Specific Prediction Complexity
|
2502.17484
|
https://arxiv.org/abs/2502.17484v1
|
https://arxiv.org/pdf/2502.17484v1.pdf
|
https://github.com/Kexin-Fan/Multi-Source-Analysing
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/seconnds-secure-outsourced-neural-network
|
SecONNds: Secure Outsourced Neural Network Inference on ImageNet
|
2506.11586
|
https://arxiv.org/abs/2506.11586v1
|
https://arxiv.org/pdf/2506.11586v1.pdf
|
https://github.com/seconnds/seconnds_1_25
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/slowcal-sgd-slow-query-points-improve-local
|
SLowcal-SGD: Slow Query Points Improve Local-SGD for Stochastic Convex Optimization
|
2304.04169
|
https://arxiv.org/abs/2304.04169v2
|
https://arxiv.org/pdf/2304.04169v2.pdf
|
https://github.com/dahan198/slowcal-sgd
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/figstep-jailbreaking-large-vision-language
|
FigStep: Jailbreaking Large Vision-Language Models via Typographic Visual Prompts
|
2311.05608
|
https://arxiv.org/abs/2311.05608v3
|
https://arxiv.org/pdf/2311.05608v3.pdf
|
https://github.com/thuccslab/figstep
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/generating-structured-outputs-from-language
|
Generating Structured Outputs from Language Models: Benchmark and Studies
|
2501.10868
|
https://arxiv.org/abs/2501.10868v1
|
https://arxiv.org/pdf/2501.10868v1.pdf
|
https://github.com/guidance-ai/llguidance
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/synthetic-data-augmentation-for-enhancing
|
Synthetic Data Augmentation for Enhancing Harmful Algal Bloom Detection with Machine Learning
|
2503.03794
|
https://arxiv.org/abs/2503.03794v1
|
https://arxiv.org/pdf/2503.03794v1.pdf
|
https://github.com/Tonyhrule/Synthetic-HAB-ML-Augmentation
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/evaluating-knowledge-generation-and-self
|
Evaluating Knowledge Generation and Self-Refinement Strategies for LLM-based Column Type Annotation
|
2503.02718
|
https://arxiv.org/abs/2503.02718v1
|
https://arxiv.org/pdf/2503.02718v1.pdf
|
https://github.com/wbsg-uni-mannheim/tabanngpt
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/muble-mujoco-and-blender-simulation
|
MuBlE: MuJoCo and Blender simulation Environment and Benchmark for Task Planning in Robot Manipulation
|
2503.02834
|
https://arxiv.org/abs/2503.02834v1
|
https://arxiv.org/pdf/2503.02834v1.pdf
|
https://github.com/michaal94/muble
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/r2-t2-re-routing-in-test-time-for-multimodal
|
R2-T2: Re-Routing in Test-Time for Multimodal Mixture-of-Experts
|
2502.20395
|
https://arxiv.org/abs/2502.20395v1
|
https://arxiv.org/pdf/2502.20395v1.pdf
|
https://github.com/tianyi-lab/R2-T2
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/reasoning-language-models-a-blueprint
|
Reasoning Language Models: A Blueprint
|
2501.11223
|
https://arxiv.org/abs/2501.11223v3
|
https://arxiv.org/pdf/2501.11223v3.pdf
|
https://github.com/spcl/x1
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/efficient-training-of-large-vision-models-via
|
Efficient Training of Large Vision Models via Advanced Automated Progressive Learning
|
2410.00350
|
https://arxiv.org/abs/2410.00350v1
|
https://arxiv.org/pdf/2410.00350v1.pdf
|
https://github.com/changlin31/autoprog-zero
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/hdee-heterogeneous-domain-expert-ensemble
|
HDEE: Heterogeneous Domain Expert Ensemble
|
2502.19385
|
https://arxiv.org/abs/2502.19385v1
|
https://arxiv.org/pdf/2502.19385v1.pdf
|
https://github.com/gensyn-ai/hdee
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fintsb-a-comprehensive-and-practical
|
FinTSB: A Comprehensive and Practical Benchmark for Financial Time Series Forecasting
|
2502.18834
|
https://arxiv.org/abs/2502.18834v1
|
https://arxiv.org/pdf/2502.18834v1.pdf
|
https://github.com/tongjifinlab/fintsbenchmark
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/sharingan-a-transformer-architecture-for
|
Sharingan: A Transformer Architecture for Multi-Person Gaze Following
| null |
http://openaccess.thecvf.com//content/CVPR2024/html/Tafasca_Sharingan_A_Transformer_Architecture_for_Multi-Person_Gaze_Following_CVPR_2024_paper.html
|
http://openaccess.thecvf.com//content/CVPR2024/papers/Tafasca_Sharingan_A_Transformer_Architecture_for_Multi-Person_Gaze_Following_CVPR_2024_paper.pdf
|
https://github.com/idiap/sharingan
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/realtabformer-generating-realistic-relational
|
REaLTabFormer: Generating Realistic Relational and Tabular Data using Transformers
|
2302.02041
|
https://arxiv.org/abs/2302.02041v1
|
https://arxiv.org/pdf/2302.02041v1.pdf
|
https://github.com/worldbank/realtabformer
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/deep-common-feature-mining-for-efficient
|
Deep Common Feature Mining for Efficient Video Semantic Segmentation
|
2403.02689
|
https://arxiv.org/abs/2403.02689v2
|
https://arxiv.org/pdf/2403.02689v2.pdf
|
https://github.com/buaahugegun/dcfm
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/tpch-tensor-interacted-projection-and
|
TPCH: Tensor-interacted Projection and Cooperative Hashing for Multi-view Clustering
|
2412.18847
|
https://arxiv.org/abs/2412.18847v1
|
https://arxiv.org/pdf/2412.18847v1.pdf
|
https://github.com/jankin-wang/tpch
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/semi-truths-a-large-scale-dataset-of-ai
|
Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors
|
2411.07472
|
https://arxiv.org/abs/2411.07472v1
|
https://arxiv.org/pdf/2411.07472v1.pdf
|
https://github.com/j-kruk/semitruths
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/invariant-derivations-and-trace-bounds
|
Invariant derivations and trace bounds
|
2312.03101
|
https://arxiv.org/abs/2312.03101v4
|
https://arxiv.org/pdf/2312.03101v4.pdf
|
https://github.com/skipgaribaldi/invariant-derivations
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/sampling-is-all-you-need-on-modeling-long
|
Sampling Is All You Need on Modeling Long-Term User Behaviors for CTR Prediction
|
2205.10249
|
https://arxiv.org/abs/2205.10249v2
|
https://arxiv.org/pdf/2205.10249v2.pdf
|
https://github.com/reczoo/FuxiCTR
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/edicho-consistent-image-editing-in-the-wild
|
Edicho: Consistent Image Editing in the Wild
|
2412.21079
|
https://arxiv.org/abs/2412.21079v3
|
https://arxiv.org/pdf/2412.21079v3.pdf
|
https://github.com/ezioby/edicho
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/exploiting-music-source-separation-for
|
Exploiting Music Source Separation for Automatic Lyrics Transcription with Whisper
|
2506.15514
|
https://arxiv.org/abs/2506.15514v1
|
https://arxiv.org/pdf/2506.15514v1.pdf
|
https://github.com/jaza-syed/mss-alt
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/adversarial-attacks-on-robotic-vision
|
Adversarial Attacks on Robotic Vision Language Action Models
|
2506.03350
|
https://arxiv.org/abs/2506.03350v1
|
https://arxiv.org/pdf/2506.03350v1.pdf
|
https://github.com/eliotjones1/robogcg
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/navigating-image-restoration-with-var-s
|
Navigating Image Restoration with VAR's Distribution Alignment Prior
| null |
http://openaccess.thecvf.com//content/CVPR2025/html/Wang_Navigating_Image_Restoration_with_VARs_Distribution_Alignment_Prior_CVPR_2025_paper.html
|
http://openaccess.thecvf.com//content/CVPR2025/papers/Wang_Navigating_Image_Restoration_with_VARs_Distribution_Alignment_Prior_CVPR_2025_paper.pdf
|
https://github.com/siywang541/Varformer
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/causal-aware-large-language-models-enhancing
|
Causal-aware Large Language Models: Enhancing Decision-Making Through Learning, Adapting and Acting
|
2505.24710
|
https://arxiv.org/abs/2505.24710v1
|
https://arxiv.org/pdf/2505.24710v1.pdf
|
https://github.com/dmirlab-group/causal-aware_llms
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/nfisis-new-perspectives-on-fuzzy-inference
|
NFISiS: New Perspectives on Fuzzy Inference Systems for Renewable Energy Forecasting
|
2506.06285
|
https://arxiv.org/abs/2506.06285v1
|
https://arxiv.org/pdf/2506.06285v1.pdf
|
https://github.com/kaikerochaalves/NFISiS_PyPi
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/identifying-spurious-correlations-using
|
Identifying Spurious Correlations using Counterfactual Alignment
|
2312.02186
|
https://arxiv.org/abs/2312.02186v3
|
https://arxiv.org/pdf/2312.02186v3.pdf
|
https://github.com/ieee8023/latentshift
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/cooperative-open-ended-learning-framework-for
|
Cooperative Open-ended Learning Framework for Zero-shot Coordination
|
2302.04831
|
https://arxiv.org/abs/2302.04831v4
|
https://arxiv.org/pdf/2302.04831v4.pdf
|
https://github.com/PKU-Alignment/ProAgent
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/optimal-group-fair-classifiers-from-linear
|
A Unified Post-Processing Framework for Group Fairness in Classification
|
2405.04025
|
https://arxiv.org/abs/2405.04025v2
|
https://arxiv.org/pdf/2405.04025v2.pdf
|
https://github.com/rxian/fair-classification
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/teaching-lmms-for-image-quality-scoring-and
|
Teaching LMMs for Image Quality Scoring and Interpreting
|
2503.09197
|
https://arxiv.org/abs/2503.09197v1
|
https://arxiv.org/pdf/2503.09197v1.pdf
|
https://github.com/q-future/q-sit
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/pretraining-language-models-to-ponder-in
|
Pretraining Language Models to Ponder in Continuous Space
|
2505.20674
|
https://arxiv.org/abs/2505.20674v1
|
https://arxiv.org/pdf/2505.20674v1.pdf
|
https://github.com/lumia-group/ponderinglm
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fading-in-the-flow-suppression-of-cold-gas
|
Fading in the Flow: Suppression of cold gas growth in expanding galactic outflows
|
2506.08545
|
https://arxiv.org/abs/2506.08545v2
|
https://arxiv.org/pdf/2506.08545v2.pdf
|
https://github.com/dutta-alankar/cloud-crushing_PLUTO
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/group-robust-sample-reweighting-for
|
Group-robust Sample Reweighting for Subpopulation Shifts via Influence Functions
|
2503.07315
|
https://arxiv.org/abs/2503.07315v1
|
https://arxiv.org/pdf/2503.07315v1.pdf
|
https://github.com/qiaoruiyt/gsr
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/planetesimal-impact-vapor-plumes-and-nebular
|
Planetesimal Impact Vapor Plumes and Nebular Shocks form Chondritic Mixtures
|
2503.05636
|
https://arxiv.org/abs/2503.05636v1
|
https://arxiv.org/pdf/2503.05636v1.pdf
|
https://github.com/ststewart/ivans
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/chatbench-from-static-benchmarks-to-human-ai
|
ChatBench: From Static Benchmarks to Human-AI Evaluation
|
2504.07114
|
https://arxiv.org/abs/2504.07114v1
|
https://arxiv.org/pdf/2504.07114v1.pdf
|
https://github.com/serinachang5/interactive-eval
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/infofusion-controller-informed-trrt-star-with
|
InfoFusion Controller: Informed TRRT Star with Mutual Information based on Fusion of Pure Pursuit and MPC for Enhanced Path Planning
|
2503.06010
|
https://arxiv.org/abs/2503.06010v1
|
https://arxiv.org/pdf/2503.06010v1.pdf
|
https://github.com/drawingprocess/infofusioncontroller
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/generator-a-long-context-generative-genomic
|
GENERator: A Long-Context Generative Genomic Foundation Model
|
2502.07272
|
https://arxiv.org/abs/2502.07272v3
|
https://arxiv.org/pdf/2502.07272v3.pdf
|
https://github.com/generteam/generator
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/controller-distillation-reduces-fragile-brain
|
Controller Distillation Reduces Fragile Brain-Body Co-Adaptation and Enables Migrations in MAP-Elites
|
2504.06523
|
https://arxiv.org/abs/2504.06523v1
|
https://arxiv.org/pdf/2504.06523v1.pdf
|
https://github.com/mertan-a/pollination
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/holistic-fusion-task-and-setup-agnostic-robot
|
Holistic Fusion: Task- and Setup-Agnostic Robot Localization and State Estimation with Factor Graphs
|
2504.06479
|
https://arxiv.org/abs/2504.06479v1
|
https://arxiv.org/pdf/2504.06479v1.pdf
|
https://github.com/leggedrobotics/holistic_fusion
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/enforcement-agents-enhancing-accountability
|
Enforcement Agents: Enhancing Accountability and Resilience in Multi-Agent AI Frameworks
|
2504.04070
|
https://arxiv.org/abs/2504.04070v1
|
https://arxiv.org/pdf/2504.04070v1.pdf
|
https://github.com/SAGAR-TAMANG/Enforcement-Agents
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/frnet-frustum-range-networks-for-scalable
|
FRNet: Frustum-Range Networks for Scalable LiDAR Segmentation
|
2312.04484
|
https://arxiv.org/abs/2312.04484v3
|
https://arxiv.org/pdf/2312.04484v3.pdf
|
https://github.com/Xiangxu-0103/FRNet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/boosting-relational-deep-learning-with
|
Boosting Relational Deep Learning with Pretrained Tabular Models
|
2504.04934
|
https://arxiv.org/abs/2504.04934v1
|
https://arxiv.org/pdf/2504.04934v1.pdf
|
https://github.com/AntonioLonga/LightRDL
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/continual-deep-reinforcement-learning-with
|
Continual Deep Reinforcement Learning with Task-Agnostic Policy Distillation
|
2411.16532
|
https://arxiv.org/abs/2411.16532v1
|
https://arxiv.org/pdf/2411.16532v1.pdf
|
https://github.com/wabbajack1/tapd
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/darkelf-a-python-package-for-dark-matter
|
DarkELF: A python package for dark matter scattering in dielectric targets
|
2104.12786
|
https://arxiv.org/abs/2104.12786v1
|
https://arxiv.org/pdf/2104.12786v1.pdf
|
https://github.com/tongylin/DarkELF
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/dark-matter-direct-detection-from-the-single
|
Dark matter direct detection from the single phonon to the nuclear recoil regime
|
2205.02250
|
https://arxiv.org/abs/2205.02250v2
|
https://arxiv.org/pdf/2205.02250v2.pdf
|
https://github.com/tongylin/DarkELF
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/segagent-exploring-pixel-understanding-1
|
SegAgent: Exploring Pixel Understanding Capabilities in MLLMs by Imitating Human Annotator Trajectories
|
2503.08625
|
https://arxiv.org/abs/2503.08625v1
|
https://arxiv.org/pdf/2503.08625v1.pdf
|
https://github.com/aim-uofa/SegAgent
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/rsar-restricted-state-angle-resolver-and
|
RSAR: Restricted State Angle Resolver and Rotated SAR Benchmark
|
2501.04440
|
https://arxiv.org/abs/2501.04440v1
|
https://arxiv.org/pdf/2501.04440v1.pdf
|
https://github.com/visionxlab/earth-adapter
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/earth-adapter-bridge-the-geospatial-domain
|
Earth-Adapter: Bridge the Geospatial Domain Gaps with Mixture of Frequency Adaptation
|
2504.06220
|
https://arxiv.org/abs/2504.06220v3
|
https://arxiv.org/pdf/2504.06220v3.pdf
|
https://github.com/visionxlab/earth-adapter
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/cyberllminstruct-a-new-dataset-for-analysing
|
CyberLLMInstruct: A New Dataset for Analysing Safety of Fine-Tuned LLMs Using Cyber Security Data
|
2503.09334
|
https://arxiv.org/abs/2503.09334v2
|
https://arxiv.org/pdf/2503.09334v2.pdf
|
https://github.com/adelsamir01/cyberllminstruct
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/growing-black-hole-hair-in-nonminimally
|
Growing black-hole hair in nonminimally coupled biscalar gravity
|
2501.14034
|
https://arxiv.org/abs/2501.14034v1
|
https://arxiv.org/pdf/2501.14034v1.pdf
|
https://bitbucket.org/canuda/canuda_axidilaton
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/the-kodaira-dimension-of-hilbert-modular
|
The Kodaira dimension of Hilbert modular threefolds
|
2501.15719
|
https://arxiv.org/abs/2501.15719v1
|
https://arxiv.org/pdf/2501.15719v1.pdf
|
https://github.com/adammlogan/hilbert-modular-threefolds
| true
| true
| false
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.