paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/random-reshuffling-for-stochastic-gradient
|
Random Reshuffling for Stochastic Gradient Langevin Dynamics
|
2501.16055
|
https://arxiv.org/abs/2501.16055v1
|
https://arxiv.org/pdf/2501.16055v1.pdf
|
https://github.com/lshaw8317/RandomReshuffleSGLD
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/optimizing-near-field-computation-in-the
|
Optimizing Near Field Computation in the MLFMA Algorithm with Data Redundancy and Performance Modeling on a Single GPU
|
2403.01596
|
https://arxiv.org/abs/2403.01596v1
|
https://arxiv.org/pdf/2403.01596v1.pdf
|
https://github.com/mortezamsp/P2P_with_data_redundancy
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/fusionaudio-1-2m-towards-fine-grained-audio
|
FusionAudio-1.2M: Towards Fine-grained Audio Captioning with Multimodal Contextual Fusion
|
2506.01111
|
https://arxiv.org/abs/2506.01111v1
|
https://arxiv.org/pdf/2506.01111v1.pdf
|
https://github.com/satsuki2486441738/fusionaudio
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/fastabx-a-library-for-efficient-computation
|
fastabx: A library for efficient computation of ABX discriminability
|
2505.02692
|
https://arxiv.org/abs/2505.02692v1
|
https://arxiv.org/pdf/2505.02692v1.pdf
|
https://github.com/bootphon/fastabx
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/racnn-residual-attention-convolutional-neural
|
RACNN: Residual Attention Convolutional Neural Network for Near-Field Channel Estimation in 6G Wireless Communications
|
2503.02299
|
https://arxiv.org/abs/2503.02299v3
|
https://arxiv.org/pdf/2503.02299v3.pdf
|
https://github.com/DoHaiSon/RACNN
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/transpl-vq-code-transition-matrices-for
|
TransPL: VQ-Code Transition Matrices for Pseudo-Labeling of Time Series Unsupervised Domain Adaptation
|
2505.09955
|
https://arxiv.org/abs/2505.09955v1
|
https://arxiv.org/pdf/2505.09955v1.pdf
|
https://github.com/eai-lab/transpl
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/an-invitation-to-tropical-alexandrov
|
An Invitation to Tropical Alexandrov Curvature
|
2105.07423
|
https://arxiv.org/abs/2105.07423v3
|
https://arxiv.org/pdf/2105.07423v3.pdf
|
https://github.com/antheamonod/TropAlex
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-multi-modal-neural-geometric-solver-with
|
A Multi-Modal Neural Geometric Solver with Textual Clauses Parsed from Diagram
|
2302.11097
|
https://arxiv.org/abs/2302.11097v2
|
https://arxiv.org/pdf/2302.11097v2.pdf
|
https://github.com/mingliangzhang2018/pgps
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/socialjax-an-evaluation-suite-for-multi-agent
|
SocialJax: An Evaluation Suite for Multi-agent Reinforcement Learning in Sequential Social Dilemmas
|
2503.14576
|
https://arxiv.org/abs/2503.14576v2
|
https://arxiv.org/pdf/2503.14576v2.pdf
|
https://github.com/cooperativex/socialjax
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/seg-zero-reasoning-chain-guided-segmentation
|
Seg-Zero: Reasoning-Chain Guided Segmentation via Cognitive Reinforcement
|
2503.06520
|
https://arxiv.org/abs/2503.06520v1
|
https://arxiv.org/pdf/2503.06520v1.pdf
|
https://github.com/dvlab-research/VisionReasoner
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/mri-super-resolution-reconstruction-using
|
MRI super-resolution reconstruction using efficient diffusion probabilistic model with residual shifting
|
2503.01576
|
https://arxiv.org/abs/2503.01576v2
|
https://arxiv.org/pdf/2503.01576v2.pdf
|
https://github.com/mosaf/res-srdiff
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-hierarchical-prompt-with-structured
|
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
|
2312.06323
|
https://arxiv.org/abs/2312.06323v1
|
https://arxiv.org/pdf/2312.06323v1.pdf
|
https://github.com/vill-lab/2024-aaai-hpt
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/hpt-hierarchically-prompting-vision-language
|
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
|
2408.14812
|
https://arxiv.org/abs/2408.14812v1
|
https://arxiv.org/pdf/2408.14812v1.pdf
|
https://github.com/vill-lab/2024-aaai-hpt
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-to-prompt-for-vision-language-models
|
Learning to Prompt for Vision-Language Models
|
2109.01134
|
https://arxiv.org/abs/2109.01134v6
|
https://arxiv.org/pdf/2109.01134v6.pdf
|
https://github.com/vill-lab/2024-aaai-hpt
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/conditional-prompt-learning-for-vision
|
Conditional Prompt Learning for Vision-Language Models
|
2203.05557
|
https://arxiv.org/abs/2203.05557v2
|
https://arxiv.org/pdf/2203.05557v2.pdf
|
https://github.com/vill-lab/2024-aaai-hpt
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/trajectory-class-aware-multi-agent
|
Trajectory-Class-Aware Multi-Agent Reinforcement Learning
|
2503.01440
|
https://arxiv.org/abs/2503.01440v1
|
https://arxiv.org/pdf/2503.01440v1.pdf
|
https://github.com/aailab-kaist/trama
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/nbnet-noise-basis-learning-for-image
|
NBNet: Noise Basis Learning for Image Denoising with Subspace Projection
|
2012.15028
|
https://arxiv.org/abs/2012.15028v2
|
https://arxiv.org/pdf/2012.15028v2.pdf
|
https://github.com/MindSpore-scientific-2/code-4/tree/main/NBNet-Noise-Basis-Learning-for-Image-Denoising-with-Subspace-Projection
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/full-scale-representation-guided-network-for
|
Full-scale Representation Guided Network for Retinal Vessel Segmentation
|
2501.18921
|
https://arxiv.org/abs/2501.18921v1
|
https://arxiv.org/pdf/2501.18921v1.pdf
|
https://github.com/zombasy/fsg-net-pytorch
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/generalized-recorrupted-to-recorrupted-self
|
Generalized Recorrupted-to-Recorrupted: Self-Supervised Learning Beyond Gaussian Noise
|
2412.04648
|
https://arxiv.org/abs/2412.04648v2
|
https://arxiv.org/pdf/2412.04648v2.pdf
|
https://github.com/deepinv/deepinv
| false
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/satori-towards-proactive-ar-assistant-with
|
Satori: Towards Proactive AR Assistant with Belief-Desire-Intention User Modeling
|
2410.16668
|
https://arxiv.org/abs/2410.16668v3
|
https://arxiv.org/pdf/2410.16668v3.pdf
|
https://github.com/vida-nyu/satori-assistance
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/vmts-vision-assisted-teacher-student
|
VMTS: Vision-Assisted Teacher-Student Reinforcement Learning for Multi-Terrain Locomotion in Bipedal Robots
|
2503.07049
|
https://arxiv.org/abs/2503.07049v1
|
https://arxiv.org/pdf/2503.07049v1.pdf
|
https://github.com/chenfu-user/VMTS
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/ethosgpt-mapping-human-value-diversity-to
|
EthosGPT: Mapping Human Value Diversity to Advance Sustainable Development Goals (SDGs)
|
2504.09861
|
https://arxiv.org/abs/2504.09861v1
|
https://arxiv.org/pdf/2504.09861v1.pdf
|
https://github.com/sunshineluyao/EthosGPT
| false
| true
| false
|
none
|
https://paperswithcode.com/paper/q-eval-100k-evaluating-visual-quality-and
|
Q-Eval-100K: Evaluating Visual Quality and Alignment Level for Text-to-Vision Content
|
2503.02357
|
https://arxiv.org/abs/2503.02357v2
|
https://arxiv.org/pdf/2503.02357v2.pdf
|
https://github.com/zzc-1998/q-eval
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/cmmloc-advancing-text-to-pointcloud
|
CMMLoc: Advancing Text-to-PointCloud Localization with Cauchy-Mixture-Model Based Framework
|
2503.02593
|
https://arxiv.org/abs/2503.02593v2
|
https://arxiv.org/pdf/2503.02593v2.pdf
|
https://github.com/kevin301342/cmmloc
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/leveraging-optimization-for-adaptive-attacks
|
Leveraging Optimization for Adaptive Attacks on Image Watermarks
|
2309.16952
|
https://arxiv.org/abs/2309.16952v2
|
https://arxiv.org/pdf/2309.16952v2.pdf
|
https://github.com/nilslukas/adaptive-watermark-attacks
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/exploring-the-physical-properties-of-type-ii
|
Exploring the physical properties of Type II Quasar candidates at intermediate redshifts with CIGALE
|
2503.03547
|
https://arxiv.org/abs/2503.03547v1
|
https://arxiv.org/pdf/2503.03547v1.pdf
|
https://github.com/pedro-acunha/AMELIA
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/flexible-and-probabilistic-topology-tracking
|
Flexible and Probabilistic Topology Tracking with Partial Optimal Transport
|
2302.02895
|
https://arxiv.org/abs/2302.02895v3
|
https://arxiv.org/pdf/2302.02895v3.pdf
|
https://github.com/tdavislab/gwmt
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/preference-diffusion-for-recommendation
|
Preference Diffusion for Recommendation
|
2410.13117
|
https://arxiv.org/abs/2410.13117v2
|
https://arxiv.org/pdf/2410.13117v2.pdf
|
https://github.com/lswhim/preferdiff
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/dafi-an-open-source-framework-for-ensemble
|
DAFI: An Open-Source Framework for Ensemble-Based Data Assimilation and Field Inversion
|
2012.02651
|
https://arxiv.org/abs/2012.02651v1
|
https://arxiv.org/pdf/2012.02651v1.pdf
|
https://github.com/xiaoh/DAFI
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/regularized-ensemble-kalman-methods-for
|
Regularized Ensemble Kalman Methods for Inverse Problems
|
1910.01292
|
http://arxiv.org/abs/1910.01292v2
|
http://arxiv.org/pdf/1910.01292v2.pdf
|
https://github.com/xiaoh/DAFI
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/evaluation-of-ensemble-methods-for
|
Evaluation of ensemble methods for quantifying uncertainties in steady-state CFD applications with small ensemble sizes
|
2004.05541
|
http://arxiv.org/abs/2004.05541v1
|
http://arxiv.org/pdf/2004.05541v1.pdf
|
https://github.com/xiaoh/DAFI
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/talk-is-not-always-cheap-promoting-wireless
|
Talk is Not Always Cheap: Promoting Wireless Sensing Models with Text Prompts
|
2504.14621
|
https://arxiv.org/abs/2504.14621v1
|
https://arxiv.org/pdf/2504.14621v1.pdf
|
https://github.com/yangzhenkui/witalk
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fast-deep-learning-for-automatic-modulation
|
Fast Deep Learning for Automatic Modulation Classification
|
1901.05850
|
http://arxiv.org/abs/1901.05850v1
|
http://arxiv.org/pdf/1901.05850v1.pdf
|
https://github.com/dharaspatel/CNN_Signal_Classification
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/visual-sketchpad-sketching-as-a-visual-chain
|
Visual Sketchpad: Sketching as a Visual Chain of Thought for Multimodal Language Models
|
2406.09403
|
https://arxiv.org/abs/2406.09403v3
|
https://arxiv.org/pdf/2406.09403v3.pdf
|
https://github.com/zhaochen0110/openthinkimg
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-comparison-of-the-effects-of-different
|
A comparison of the effects of different methodologies on the statistics learning profiles of prospective primary education teachers from a gender perspective
|
2402.05479
|
https://arxiv.org/abs/2402.05479v1
|
https://arxiv.org/pdf/2402.05479v1.pdf
|
https://github.com/zhaochen0110/openthinkimg
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-retrospective-systematic-study-on
|
A Retrospective Systematic Study on Hierarchical Sparse Query Transformer-assisted Ultrasound Screening for Early Hepatocellular Carcinoma
|
2502.03772
|
https://arxiv.org/abs/2502.03772v1
|
https://arxiv.org/pdf/2502.03772v1.pdf
|
https://github.com/Asunatan/HSQformer
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/every-call-is-precious-global-optimization-of
|
Every Call is Precious: Global Optimization of Black-Box Functions with Unknown Lipschitz Constants
|
2502.04290
|
https://arxiv.org/abs/2502.04290v1
|
https://arxiv.org/pdf/2502.04290v1.pdf
|
https://github.com/fouratifares/ECP
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/medalpaca-an-open-source-collection-of
|
MedAlpaca -- An Open-Source Collection of Medical Conversational AI Models and Training Data
|
2304.08247
|
https://arxiv.org/abs/2304.08247v2
|
https://arxiv.org/pdf/2304.08247v2.pdf
|
https://github.com/tuneinsight/federated-llms
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/2506-06407
|
TimeWak: Temporal Chained-Hashing Watermark for Time Series Data
|
2506.06407
|
https://arxiv.org/abs/2506.06407v2
|
https://arxiv.org/pdf/2506.06407v2.pdf
|
https://github.com/soizhiwen/TimeWak
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/profiling-electric-vehicles-via-early
|
Profiling Electric Vehicles via Early Charging Voltage Patterns
|
2506.07714
|
https://arxiv.org/abs/2506.07714v1
|
https://arxiv.org/pdf/2506.07714v1.pdf
|
https://github.com/spritz-group/EV-Volt-Auth
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/interactrank-personalized-web-scale-search
|
InteractRank: Personalized Web-Scale Search Pre-Ranking with Cross Interaction Features
|
2504.06609
|
https://arxiv.org/abs/2504.06609v1
|
https://arxiv.org/pdf/2504.06609v1.pdf
|
https://github.com/pinterest/atg-research
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/copyspec-accelerating-llms-with-speculative
|
CopySpec: Accelerating LLMs with Speculative Copy-and-Paste Without Compromising Quality
|
2502.08923
|
https://arxiv.org/abs/2502.08923v1
|
https://arxiv.org/pdf/2502.08923v1.pdf
|
https://github.com/razvandu/copyspec
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/cvalues-measuring-the-values-of-chinese-large
|
CValues: Measuring the Values of Chinese Large Language Models from Safety to Responsibility
|
2307.09705
|
https://arxiv.org/abs/2307.09705v1
|
https://arxiv.org/pdf/2307.09705v1.pdf
|
https://github.com/sunshineluyao/EthosGPT
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/how-well-do-llms-represent-values-across
|
How Well Do LLMs Represent Values Across Cultures? Empirical Analysis of LLM Responses Based on Hofstede Cultural Dimensions
|
2406.14805
|
https://arxiv.org/abs/2406.14805v1
|
https://arxiv.org/pdf/2406.14805v1.pdf
|
https://github.com/sunshineluyao/EthosGPT
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/culturellm-incorporating-cultural-differences
|
CultureLLM: Incorporating Cultural Differences into Large Language Models
|
2402.10946
|
https://arxiv.org/abs/2402.10946v3
|
https://arxiv.org/pdf/2402.10946v3.pdf
|
https://github.com/sunshineluyao/EthosGPT
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/nextou-efficient-topology-aware-u-net-for
|
NexToU: Efficient Topology-Aware U-Net for Medical Image Segmentation
|
2305.15911
|
https://arxiv.org/abs/2305.15911v1
|
https://arxiv.org/pdf/2305.15911v1.pdf
|
https://github.com/PengchengShi1220/AortaSeg24
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/mc-2-a-multilingual-corpus-of-minority
|
MC$^2$: Towards Transparent and Culturally-Aware NLP for Minority Languages in China
|
2311.08348
|
https://arxiv.org/abs/2311.08348v2
|
https://arxiv.org/pdf/2311.08348v2.pdf
|
https://github.com/luciusssss/mc2_corpus
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mganet-a-robust-model-for-quality-enhancement
|
MGANet: A Robust Model for Quality Enhancement of Compressed Video
|
1811.09150
|
http://arxiv.org/abs/1811.09150v4
|
http://arxiv.org/pdf/1811.09150v4.pdf
|
https://github.com/MindSpore-scientific/code-8/tree/main/mgan-mindspore
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/ptwt-the-pytorch-wavelet-toolbox
|
ptwt - The PyTorch Wavelet Toolbox
| null |
https://jmlr.org/papers/v25/23-0636.html
|
https://jmlr.org/papers/volume25/23-0636/23-0636.pdf
|
https://github.com/v0lta/pytorch-wavelet-toolbox
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/scalable-image-coding-for-humans-and-machines
|
Scalable Image Coding for Humans and Machines
|
2107.08373
|
https://arxiv.org/abs/2107.08373v2
|
https://arxiv.org/pdf/2107.08373v2.pdf
|
https://github.com/InterDigitalInc/CompressAI-Vision/blob/main/compressai_vision/codecs/sic_sfu2022.py
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/gradient-surgery-for-multi-task-learning-1
|
Gradient Surgery for Multi-Task Learning
|
2001.06782
|
https://arxiv.org/abs/2001.06782v4
|
https://arxiv.org/pdf/2001.06782v4.pdf
|
https://github.com/MindSpore-scientific/code-10/tree/main/PCGrad-mindspore-example
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/pyslam-an-open-source-modular-and-extensible
|
pySLAM: An Open-Source, Modular, and Extensible Framework for SLAM
|
2502.11955
|
https://arxiv.org/abs/2502.11955v2
|
https://arxiv.org/pdf/2502.11955v2.pdf
|
https://github.com/luigifreda/pyslam
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-comprehensive-survey-of-mixture-of-experts
|
A Comprehensive Survey of Mixture-of-Experts: Algorithms, Theory, and Applications
|
2503.07137
|
https://arxiv.org/abs/2503.07137v3
|
https://arxiv.org/pdf/2503.07137v3.pdf
|
https://github.com/deepseek-ai/DeepEP
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/smtpd-a-new-benchmark-for-temporal-prediction
|
SMTPD: A New Benchmark for Temporal Prediction of Social Media Popularity
|
2503.04446
|
https://arxiv.org/abs/2503.04446v1
|
https://arxiv.org/pdf/2503.04446v1.pdf
|
https://github.com/zhuwei321/smtpd
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/khuri-treiman-equations-for-3p-decays-of
|
Khuri-Treiman equations for $3π$ decays of particles with spin
|
1910.03107
|
https://arxiv.org/abs/1910.03107v1
|
https://arxiv.org/pdf/1910.03107v1.pdf
|
https://github.com/dwinney/jpacTriangle
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/navigation-world-models
|
Navigation World Models
|
2412.03572
|
https://arxiv.org/abs/2412.03572v2
|
https://arxiv.org/pdf/2412.03572v2.pdf
|
https://github.com/facebookresearch/nwm
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/inn-par-invertible-neural-network-for-ppg-to
|
INN-PAR: Invertible Neural Network for PPG to ABP Reconstruction
|
2409.09021
|
https://arxiv.org/abs/2409.09021v2
|
https://arxiv.org/pdf/2409.09021v2.pdf
|
https://github.com/soumitra1992/innpar-ppg2abp
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/energy-efficient-federated-learning-for-aiot
|
Energy-Efficient Federated Learning for AIoT using Clustering Methods
|
2505.09704
|
https://arxiv.org/abs/2505.09704v1
|
https://arxiv.org/pdf/2505.09704v1.pdf
|
https://github.com/robertomatheuspp/clustering_ee_fl
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/elucidating-the-design-space-of-diffusion
|
Elucidating the Design Space of Diffusion-Based Generative Models
|
2206.00364
|
https://arxiv.org/abs/2206.00364v2
|
https://arxiv.org/pdf/2206.00364v2.pdf
|
https://github.com/dopplerchase/cira-diff
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/denoising-diffusion-probabilistic-models
|
Denoising Diffusion Probabilistic Models
|
2006.11239
|
https://arxiv.org/abs/2006.11239v2
|
https://arxiv.org/pdf/2006.11239v2.pdf
|
https://github.com/dopplerchase/cira-diff
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/arxivdigestables-synthesizing-scientific
|
ArxivDIGESTables: Synthesizing Scientific Literature into Tables using Language Models
|
2410.22360
|
https://arxiv.org/abs/2410.22360v1
|
https://arxiv.org/pdf/2410.22360v1.pdf
|
https://github.com/allenai/ai2-scholarqa-lib
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/efficient-reasoning-models-a-survey
|
Efficient Reasoning Models: A Survey
|
2504.10903
|
https://arxiv.org/abs/2504.10903v1
|
https://arxiv.org/pdf/2504.10903v1.pdf
|
https://github.com/fscdc/awesome-efficient-reasoning-models
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/perfcam-digital-twinning-for-production-lines
|
PerfCam: Digital Twinning for Production Lines Using 3D Gaussian Splatting and Vision Models
|
2504.18165
|
https://arxiv.org/abs/2504.18165v1
|
https://arxiv.org/pdf/2504.18165v1.pdf
|
https://github.com/AstraZeneca/PerfCam
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/dfpn-deformable-frame-prediction-network
|
DFPN: Deformable Frame Prediction Network
|
2105.12794
|
https://arxiv.org/abs/2105.12794v1
|
https://arxiv.org/pdf/2105.12794v1.pdf
|
https://github.com/KUIS-AI-Tekalp-Research-Group/frame-prediction
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/rsafe-incentivizing-proactive-reasoning-to
|
RSafe: Incentivizing proactive reasoning to build robust and adaptive LLM safeguards
|
2506.07736
|
https://arxiv.org/abs/2506.07736v1
|
https://arxiv.org/pdf/2506.07736v1.pdf
|
https://github.com/sophiezheng998/rsafe
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/reinforcement-learning-for-reasoning-in-small
|
Reinforcement Learning for Reasoning in Small LLMs: What Works and What Doesn't
|
2503.16219
|
https://arxiv.org/abs/2503.16219v1
|
https://arxiv.org/pdf/2503.16219v1.pdf
|
https://github.com/knoveleng/open-rs
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/2505-11239
|
Massive-STEPS: Massive Semantic Trajectories for Understanding POI Check-ins -- Dataset and Benchmarks
|
2505.11239
|
https://arxiv.org/abs/2505.11239v2
|
https://arxiv.org/pdf/2505.11239v2.pdf
|
https://github.com/cruiseresearchgroup/massive-steps
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/diffusion-posterior-sampling-for-general
|
Diffusion Posterior Sampling for General Noisy Inverse Problems
|
2209.14687
|
https://arxiv.org/abs/2209.14687v4
|
https://arxiv.org/pdf/2209.14687v4.pdf
|
https://github.com/alexdenker/SteerableConditionalDiffusion
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/rankclip-ranking-consistent-language-image
|
RankCLIP: Ranking-Consistent Language-Image Pretraining
|
2404.09387
|
https://arxiv.org/abs/2404.09387v2
|
https://arxiv.org/pdf/2404.09387v2.pdf
|
https://github.com/jam1ezhang/rankclip
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/estimating-object-physical-properties-from-1
|
Estimating Object Physical Properties from RGB-D Vision and Depth Robot Sensors Using Deep Learning
|
2507.05029
|
https://arxiv.org/abs/2507.05029v1
|
https://arxiv.org/pdf/2507.05029v1.pdf
|
https://github.com/RavineWindteer/Depth-mass-estimator
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/polynomial-description-for-the-t-orbit-spaces
|
Orbit spaces of Weyl groups acting on compact tori: a unified and explicit polynomial description
|
2203.13152
|
https://arxiv.org/abs/2203.13152v2
|
https://arxiv.org/pdf/2203.13152v2.pdf
|
https://github.com/tobiasmetzlaff/generalizedchebyshev
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/adiabatic-replay-for-continual-learning
|
Adiabatic replay for continual learning
|
2303.13157
|
https://arxiv.org/abs/2303.13157v1
|
https://arxiv.org/pdf/2303.13157v1.pdf
|
https://github.com/alexk1704/scclv2
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/semantic-decoupled-spatial-partition-guided
|
Semantic-decoupled Spatial Partition Guided Point-supervised Oriented Object Detection
|
2506.10601
|
https://arxiv.org/abs/2506.10601v1
|
https://arxiv.org/pdf/2506.10601v1.pdf
|
https://github.com/antxinyuan/ssp
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/cradmap-applied-distributed-volumetric
|
CRADMap: Applied Distributed Volumetric Mapping with 5G-Connected Multi-Robots and 4D Radar Perception
|
2503.00262
|
https://arxiv.org/abs/2503.00262v2
|
https://arxiv.org/pdf/2503.00262v2.pdf
|
https://github.com/Maaz-qureshi98/VolumetricMapping
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/hierarchically-accelerated-coverage-path
|
Hierarchically Accelerated Coverage Path Planning for Redundant Manipulators
|
2502.19591
|
https://arxiv.org/abs/2502.19591v1
|
https://arxiv.org/pdf/2502.19591v1.pdf
|
https://github.com/uwgraphics/arm_coverage
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/mom-linear-sequence-modeling-with-mixture-of
|
MoM: Linear Sequence Modeling with Mixture-of-Memories
|
2502.13685
|
https://arxiv.org/abs/2502.13685v2
|
https://arxiv.org/pdf/2502.13685v2.pdf
|
https://github.com/opensparsellms/linear-moe
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/lasp-2-rethinking-sequence-parallelism-for
|
LASP-2: Rethinking Sequence Parallelism for Linear Attention and Its Hybrid
|
2502.07563
|
https://arxiv.org/abs/2502.07563v1
|
https://arxiv.org/pdf/2502.07563v1.pdf
|
https://github.com/opensparsellms/linear-moe
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/clip-adapter-better-vision-language-models
|
CLIP-Adapter: Better Vision-Language Models with Feature Adapters
|
2110.04544
|
https://arxiv.org/abs/2110.04544v2
|
https://arxiv.org/pdf/2110.04544v2.pdf
|
https://github.com/gaopengcuhk/clip-adapter
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/progressive-rendering-distillation-adapting
|
Progressive Rendering Distillation: Adapting Stable Diffusion for Instant Text-to-Mesh Generation without 3D Data
|
2503.21694
|
https://arxiv.org/abs/2503.21694v1
|
https://arxiv.org/pdf/2503.21694v1.pdf
|
https://github.com/theericma/triplaneturbo
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/non-centering-for-discrete-valued-state
|
Non-centering for discrete-valued state transition models: an application to ESBL-producing E. coli transmission in Malawi
|
2504.11836
|
https://arxiv.org/abs/2504.11836v2
|
https://arxiv.org/pdf/2504.11836v2.pdf
|
https://github.com/neilljn/antidote_methods
| true
| true
| false
|
jax
|
https://paperswithcode.com/paper/differentially-private-permutation-tests
|
Differentially Private Permutation Tests: Applications to Kernel Methods
|
2310.19043
|
https://arxiv.org/abs/2310.19043v2
|
https://arxiv.org/pdf/2310.19043v2.pdf
|
https://github.com/antoninschrab/dckernel-paper
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/deep-reinforcement-learning-for-controlled
|
Deep Reinforcement Learning for Controlled Traversing of the Attractor Landscape of Boolean Models in the Context of Cellular Reprogramming
|
2402.08491
|
https://arxiv.org/abs/2402.08491v3
|
https://arxiv.org/pdf/2402.08491v3.pdf
|
https://github.com/jakub-zarzycki2022/gattaca
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/reasoning-towards-fairness-mitigating-bias-in
|
Reasoning Towards Fairness: Mitigating Bias in Language Models through Reasoning-Guided Fine-Tuning
|
2504.05632
|
https://arxiv.org/abs/2504.05632v2
|
https://arxiv.org/pdf/2504.05632v2.pdf
|
https://github.com/Sanchit-404/Reasoing-Towards-Fairness
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/data-driven-learning-of-geometric-scattering-1
|
Data-Driven Learning of Geometric Scattering Networks
|
2010.02415
|
https://arxiv.org/abs/2010.02415v3
|
https://arxiv.org/pdf/2010.02415v3.pdf
|
https://github.com/KrishnaswamyLab/LearnableScattering
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/relational-representation-learning-network
|
Relational Representation Learning Network for Cross-Spectral Image Patch Matching
|
2403.11751
|
https://arxiv.org/abs/2403.11751v3
|
https://arxiv.org/pdf/2403.11751v3.pdf
|
https://github.com/yuchuang1205/rrl-net
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/non-hermitian-numerical-renormalization-group
|
Non-Hermitian Numerical Renormalization Group: Solution of the non-Hermitian Kondo model
|
2504.07019
|
https://arxiv.org/abs/2504.07019v2
|
https://arxiv.org/pdf/2504.07019v2.pdf
|
https://github.com/phillipbc/nonhermitiannrg
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/bayesian-model-averaging-in-causal
|
Bayesian Model Averaging in Causal Instrumental Variable Models
|
2504.13520
|
https://arxiv.org/abs/2504.13520v3
|
https://arxiv.org/pdf/2504.13520v3.pdf
|
https://github.com/gregorsteiner/givbma.jl
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/turning-trash-into-treasure-accelerating
|
Turning Trash into Treasure: Accelerating Inference of Large Language Models with Token Recycling
|
2408.08696
|
https://arxiv.org/abs/2408.08696v2
|
https://arxiv.org/pdf/2408.08696v2.pdf
|
https://github.com/luowaterbi/tokenrecycling
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/using-time-structure-to-estimate-causal
|
Using Time Structure to Estimate Causal Effects
|
2504.11076
|
https://arxiv.org/abs/2504.11076v2
|
https://arxiv.org/pdf/2504.11076v2.pdf
|
https://gitlab.com/dlr-dw/using_time_structure_to_estimate_causal_effects_code
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-combined-channel-approach-for-decoding
|
A Combined Channel Approach for Decoding Intracranial EEG Signals: Enhancing Accuracy through Spatial Information Integration
|
2412.06336
|
https://arxiv.org/abs/2412.06336v1
|
https://arxiv.org/pdf/2412.06336v1.pdf
|
https://github.com/Navid-Ziaei/combined-channel-iEEG-decoder
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/cfics-graph-based-classification-of-common
|
CFiCS: Graph-Based Classification of Common Factors and Microcounseling Skills
|
2503.22277
|
https://arxiv.org/abs/2503.22277v1
|
https://arxiv.org/pdf/2503.22277v1.pdf
|
https://github.com/smidtfab/CFiCS
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/federated-semantic-learning-for-privacy
|
Federated Semantic Learning for Privacy-preserving Cross-domain Recommendation
|
2503.23026
|
https://arxiv.org/abs/2503.23026v1
|
https://arxiv.org/pdf/2503.23026v1.pdf
|
https://github.com/sapphire-star/ffmsr
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/instantid-zero-shot-identity-preserving
|
InstantID: Zero-shot Identity-Preserving Generation in Seconds
|
2401.07519
|
https://arxiv.org/abs/2401.07519v2
|
https://arxiv.org/pdf/2401.07519v2.pdf
|
https://github.com/instantx-research/instantid
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/moving-object-segmentation-in-point-cloud
|
Moving Object Segmentation in Point Cloud Data using Hidden Markov Models
|
2410.18638
|
https://arxiv.org/abs/2410.18638v1
|
https://arxiv.org/pdf/2410.18638v1.pdf
|
https://github.com/vb44/hmm-mos
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/omniesi-a-unified-framework-for-enzyme
|
OmniESI: A unified framework for enzyme-substrate interaction prediction with progressive conditional deep learning
|
2506.17963
|
https://arxiv.org/abs/2506.17963v1
|
https://arxiv.org/pdf/2506.17963v1.pdf
|
https://github.com/hong-yu-zhang/omniesi
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/how-is-llm-reasoning-distracted-by-irrelevant
|
How Is LLM Reasoning Distracted by Irrelevant Context? An Analysis Using a Controlled Benchmark
|
2505.18761
|
https://arxiv.org/abs/2505.18761v1
|
https://arxiv.org/pdf/2505.18761v1.pdf
|
https://github.com/mlyann/gsm-dc
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/counterfactual-query-rewriting-to-use
|
Counterfactual Query Rewriting to Use Historical Relevance Feedback
|
2502.03891
|
https://arxiv.org/abs/2502.03891v1
|
https://arxiv.org/pdf/2502.03891v1.pdf
|
https://github.com/webis-de/ecir25-counterfactual-query-rewriting
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/sundial-a-family-of-highly-capable-time
|
Sundial: A Family of Highly Capable Time Series Foundation Models
|
2502.00816
|
https://arxiv.org/abs/2502.00816v1
|
https://arxiv.org/pdf/2502.00816v1.pdf
|
https://github.com/thuml/Sundial
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/why-should-adversarial-perturbations-be
|
Why Should Adversarial Perturbations be Imperceptible? Rethink the Research Paradigm in Adversarial NLP
|
2210.10683
|
https://arxiv.org/abs/2210.10683v1
|
https://arxiv.org/pdf/2210.10683v1.pdf
|
https://github.com/yang-yan-yang-yan/sop
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/sop-unlock-the-power-of-social-facilitation
|
SeqAR: Jailbreak LLMs with Sequential Auto-Generated Characters
|
2407.01902
|
https://arxiv.org/abs/2407.01902v2
|
https://arxiv.org/pdf/2407.01902v2.pdf
|
https://github.com/yang-yan-yang-yan/sop
| true
| true
| true
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.