paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/gptfuzzer-red-teaming-large-language-models
|
GPTFUZZER: Red Teaming Large Language Models with Auto-Generated Jailbreak Prompts
|
2309.10253
|
https://arxiv.org/abs/2309.10253v4
|
https://arxiv.org/pdf/2309.10253v4.pdf
|
https://github.com/yang-yan-yang-yan/sop
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/bts-bridging-text-and-sound-modalities-for
|
BTS: Bridging Text and Sound Modalities for Metadata-Aided Respiratory Sound Classification
|
2406.06786
|
https://arxiv.org/abs/2406.06786v2
|
https://arxiv.org/pdf/2406.06786v2.pdf
|
https://github.com/kaen2891/bts
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/lightweight-rgb-d-salient-object-detection
|
Lightweight RGB-D Salient Object Detection from a Speed-Accuracy Tradeoff Perspective
|
2505.04758
|
https://arxiv.org/abs/2505.04758v1
|
https://arxiv.org/pdf/2505.04758v1.pdf
|
https://github.com/duan-song/SATNet
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/omnigenbench-a-benchmark-for-omnipotent
|
OmniGenBench: A Benchmark for Omnipotent Multimodal Generation across 50+ Tasks
|
2505.18775
|
https://arxiv.org/abs/2505.18775v1
|
https://arxiv.org/pdf/2505.18775v1.pdf
|
https://github.com/emilia113/omnigenbench
| true
| true
| true
|
paddle
|
https://paperswithcode.com/paper/inducing-programmatic-skills-for-agentic
|
Inducing Programmatic Skills for Agentic Tasks
|
2504.06821
|
https://arxiv.org/abs/2504.06821v1
|
https://arxiv.org/pdf/2504.06821v1.pdf
|
https://github.com/zorazrw/agent-skill-induction
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/towards-realistic-low-light-image-enhancement
|
Towards Realistic Low-Light Image Enhancement via ISP Driven Data Modeling
|
2504.12204
|
https://arxiv.org/abs/2504.12204v1
|
https://arxiv.org/pdf/2504.12204v1.pdf
|
https://github.com/smbu-mm/llie
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/streamline-without-sacrifice-squeeze-out
|
Streamline Without Sacrifice -- Squeeze out Computation Redundancy in LMM
|
2505.15816
|
https://arxiv.org/abs/2505.15816v1
|
https://arxiv.org/pdf/2505.15816v1.pdf
|
https://github.com/penghao-wu/proxyv
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fuxictr-an-open-benchmark-for-click-through
|
BARS-CTR: Open Benchmarking for Click-Through Rate Prediction
|
2009.05794
|
https://arxiv.org/abs/2009.05794v5
|
https://arxiv.org/pdf/2009.05794v5.pdf
|
https://github.com/reczoo/FuxiCTR
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-survey-on-multilingual-mental-disorders
|
A Survey on Multilingual Mental Disorders Detection from Social Media Data
|
2505.15556
|
https://arxiv.org/abs/2505.15556v1
|
https://arxiv.org/pdf/2505.15556v1.pdf
|
https://github.com/bucuram/multilingual-mental-health-datasets-nlp
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/openseg-r-improving-open-vocabulary
|
OpenSeg-R: Improving Open-Vocabulary Segmentation via Step-by-Step Visual Reasoning
|
2505.16974
|
https://arxiv.org/abs/2505.16974v1
|
https://arxiv.org/pdf/2505.16974v1.pdf
|
https://github.com/hanzy1996/openseg-r
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/edubench-a-comprehensive-benchmarking-dataset
|
EduBench: A Comprehensive Benchmarking Dataset for Evaluating Large Language Models in Diverse Educational Scenarios
|
2505.16160
|
https://arxiv.org/abs/2505.16160v1
|
https://arxiv.org/pdf/2505.16160v1.pdf
|
https://github.com/ybai-nlp/edubench
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/superposition-of-prs-and-pdsch-for-isac
|
Superposition of PRS and PDSCH for ISAC System: Spectral Efficiency Enhancement and Range Ambiguity Elimination
|
2409.20420
|
https://arxiv.org/abs/2409.20420v1
|
https://arxiv.org/pdf/2409.20420v1.pdf
|
https://github.com/Keivan-Khosroshahi/Superposition-of-PRS-and-PDSCH-for-ISAC-system
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/simple-radiology-vllm-test-time-scaling-with
|
Simple Radiology VLLM Test-time Scaling with Thought Graph Traversal
|
2506.11989
|
https://arxiv.org/abs/2506.11989v1
|
https://arxiv.org/pdf/2506.11989v1.pdf
|
https://github.com/glerium/Thought-Graph-Traversal
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/optimal-transport-based-identity-matching-for
|
Optimal Transport-based Identity Matching for Identity-invariant Facial Expression Recognition
|
2209.12172
|
https://arxiv.org/abs/2209.12172v1
|
https://arxiv.org/pdf/2209.12172v1.pdf
|
https://github.com/tomas-gajarsky/facetorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/synergy-between-3dmm-and-3d-landmarks-for
|
Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry
|
2110.09772
|
https://arxiv.org/abs/2110.09772v3
|
https://arxiv.org/pdf/2110.09772v3.pdf
|
https://github.com/tomas-gajarsky/facetorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/adaface-quality-adaptive-margin-for-face
|
AdaFace: Quality Adaptive Margin for Face Recognition
|
2204.00964
|
https://arxiv.org/abs/2204.00964v2
|
https://arxiv.org/pdf/2204.00964v2.pdf
|
https://github.com/tomas-gajarsky/facetorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/softcot-soft-chain-of-thought-for-efficient
|
SoftCoT: Soft Chain-of-Thought for Efficient Reasoning with LLMs
|
2502.12134
|
https://arxiv.org/abs/2502.12134v1
|
https://arxiv.org/pdf/2502.12134v1.pdf
|
https://github.com/xuyige/softcot
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/eager-llm-enhancing-large-language-models-as
|
EAGER-LLM: Enhancing Large Language Models as Recommenders through Exogenous Behavior-Semantic Integration
|
2502.14735
|
https://arxiv.org/abs/2502.14735v1
|
https://arxiv.org/pdf/2502.14735v1.pdf
|
https://github.com/Indolent-Kawhi/EAGER-LLM
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/camal-optimizing-lsm-trees-via-active
|
CAMAL: Optimizing LSM-trees via Active Learning
|
2409.15130
|
https://arxiv.org/abs/2409.15130v1
|
https://arxiv.org/pdf/2409.15130v1.pdf
|
https://github.com/NTU-Siqiang-Group/CAMAL
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/mitigating-reward-over-optimization-in-direct
|
Mitigating Reward Over-optimization in Direct Alignment Algorithms with Importance Sampling
|
2506.08681
|
https://arxiv.org/abs/2506.08681v2
|
https://arxiv.org/pdf/2506.08681v2.pdf
|
https://github.com/duyhominhnguyen/is-daas
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/data-types-as-a-more-ergonomic-frontend-for
|
Data types as a more ergonomic frontend for Grammar-Guided Genetic Programming
|
2210.04826
|
https://arxiv.org/abs/2210.04826v1
|
https://arxiv.org/pdf/2210.04826v1.pdf
|
https://github.com/alcides/geneticengine
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mac-an-efficient-gradient-preconditioning
|
MAC: An Efficient Gradient Preconditioning using Mean Activation Approximated Curvature
|
2506.08464
|
https://arxiv.org/abs/2506.08464v1
|
https://arxiv.org/pdf/2506.08464v1.pdf
|
https://github.com/hseung88/mac
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/discovering-hierarchical-latent-capabilities
|
Discovering Hierarchical Latent Capabilities of Language Models via Causal Representation Learning
|
2506.10378
|
https://arxiv.org/abs/2506.10378v1
|
https://arxiv.org/pdf/2506.10378v1.pdf
|
https://github.com/hlzhang109/causal-eval
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/videochat-r1-enhancing-spatio-temporal
|
VideoChat-R1: Enhancing Spatio-Temporal Perception via Reinforcement Fine-Tuning
|
2504.06958
|
https://arxiv.org/abs/2504.06958v2
|
https://arxiv.org/pdf/2504.06958v2.pdf
|
https://github.com/opengvlab/videochat-r1
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/tunizi-a-tunisian-arabizi-sentiment-analysis
|
TUNIZI: a Tunisian Arabizi sentiment analysis Dataset
|
2004.14303
|
https://arxiv.org/abs/2004.14303v1
|
https://arxiv.org/pdf/2004.14303v1.pdf
|
https://github.com/ivul-kaust/mole
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/mole-metadata-extraction-and-validation-in
|
MOLE: Metadata Extraction and Validation in Scientific Papers Using LLMs
|
2505.19800
|
https://arxiv.org/abs/2505.19800v1
|
https://arxiv.org/pdf/2505.19800v1.pdf
|
https://github.com/ivul-kaust/mole
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/recommendations-and-reporting-checklist-for
|
Recommendations and Reporting Checklist for Rigorous & Transparent Human Baselines in Model Evaluations
|
2506.13776
|
https://arxiv.org/abs/2506.13776v1
|
https://arxiv.org/pdf/2506.13776v1.pdf
|
https://github.com/kevinlwei/human-baselines
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/political-neutrality-in-ai-is-impossible-but
|
Political Neutrality in AI Is Impossible- But Here Is How to Approximate It
|
2503.05728
|
https://arxiv.org/abs/2503.05728v2
|
https://arxiv.org/pdf/2503.05728v2.pdf
|
https://github.com/jfisher52/approximation_political_neutrality
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/bayesian-variable-selection-in-a-cox
|
Bayesian variable selection in a Cox proportional hazards model with the "Sum of Single Effects" prior
|
2506.06233
|
https://arxiv.org/abs/2506.06233v1
|
https://arxiv.org/pdf/2506.06233v1.pdf
|
https://github.com/yunqiyang0215/survival-susie
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/generalized-interpolating-discrete-diffusion
|
Generalized Interpolating Discrete Diffusion
|
2503.04482
|
https://arxiv.org/abs/2503.04482v1
|
https://arxiv.org/pdf/2503.04482v1.pdf
|
https://github.com/dvruette/gidd
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/zeitenwenden-detecting-changes-in-the-german
|
Zeitenwenden: Detecting changes in the German political discourse
|
2410.17960
|
https://arxiv.org/abs/2410.17960v1
|
https://arxiv.org/pdf/2410.17960v1.pdf
|
https://github.com/JonasRieger/topicalchanges
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/simulating-lepton-number-violation-induced-by
|
Simulating lepton number violation induced by heavy neutrino-antineutrino oscillations at colliders
|
2210.10738
|
https://arxiv.org/abs/2210.10738v2
|
https://arxiv.org/pdf/2210.10738v2.pdf
|
https://github.com/heavy-neutral-leptons/pspss
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/beyond-lepton-number-violation-at-the-hl-lhc
|
Beyond lepton number violation at the HL-LHC: Resolving heavy neutrino-antineutrino oscillations
|
2212.00562
|
https://arxiv.org/abs/2212.00562v2
|
https://arxiv.org/pdf/2212.00562v2.pdf
|
https://github.com/heavy-neutral-leptons/pspss
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/heavy-neutrino-antineutrino-oscillations-at
|
Heavy neutrino-antineutrino oscillations at the FCC-ee
|
2308.07297
|
https://arxiv.org/abs/2308.07297v1
|
https://arxiv.org/pdf/2308.07297v1.pdf
|
https://github.com/heavy-neutral-leptons/pspss
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mobilenetv2-inverted-residuals-and-linear
|
MobileNetV2: Inverted Residuals and Linear Bottlenecks
|
1801.04381
|
http://arxiv.org/abs/1801.04381v4
|
http://arxiv.org/pdf/1801.04381v4.pdf
|
https://github.com/duan-song/SATNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/depth-anything-unleashing-the-power-of-large
|
Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data
|
2401.10891
|
https://arxiv.org/abs/2401.10891v2
|
https://arxiv.org/pdf/2401.10891v2.pdf
|
https://github.com/duan-song/SATNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/maximum-entropy-population-based-training-for-1
|
Maximum Entropy Population-Based Training for Zero-Shot Human-AI Coordination
|
2112.11701
|
https://arxiv.org/abs/2112.11701v3
|
https://arxiv.org/pdf/2112.11701v3.pdf
|
https://github.com/PKU-Alignment/ProAgent
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/nilmformer-non-intrusive-load-monitoring-that
|
NILMFormer: Non-Intrusive Load Monitoring that Accounts for Non-Stationarity
|
2506.05880
|
https://arxiv.org/abs/2506.05880v1
|
https://arxiv.org/pdf/2506.05880v1.pdf
|
https://github.com/adrienpetralia/nilmformer
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-novel-sampling-theorem-on-the-rotation
|
A novel sampling theorem on the rotation group
|
1508.03101
|
https://arxiv.org/abs/1508.03101v2
|
https://arxiv.org/pdf/1508.03101v2.pdf
|
https://github.com/astro-informatics/so3
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/open-captchaworld-a-comprehensive-web-based
|
Open CaptchaWorld: A Comprehensive Web-based Platform for Testing and Benchmarking Multimodal LLM Agents
|
2505.24878
|
https://arxiv.org/abs/2505.24878v1
|
https://arxiv.org/pdf/2505.24878v1.pdf
|
https://github.com/metaagentx/opencaptchaworld
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/dualthor-a-dual-arm-humanoid-simulation
|
DualTHOR: A Dual-Arm Humanoid Simulation Platform for Contingency-Aware Planning
|
2506.16012
|
https://arxiv.org/abs/2506.16012v1
|
https://arxiv.org/pdf/2506.16012v1.pdf
|
https://github.com/ds199895/dualthor
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/semantic-entropy-probes-robust-and-cheap
|
Semantic Entropy Probes: Robust and Cheap Hallucination Detection in LLMs
|
2406.15927
|
https://arxiv.org/abs/2406.15927v1
|
https://arxiv.org/pdf/2406.15927v1.pdf
|
https://github.com/oatml/semantic-entropy-probes
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/ld-rps-zero-shot-unified-image-restoration
|
LD-RPS: Zero-Shot Unified Image Restoration via Latent Diffusion Recurrent Posterior Sampling
|
2507.00790
|
https://arxiv.org/abs/2507.00790v2
|
https://arxiv.org/pdf/2507.00790v2.pdf
|
https://github.com/amap-ml/ld-rps
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/unified-modal-salient-object-detection-via
|
Unified-modal Salient Object Detection via Adaptive Prompt Learning
|
2311.16835
|
https://arxiv.org/abs/2311.16835v5
|
https://arxiv.org/pdf/2311.16835v5.pdf
|
https://github.com/angknpng/unisod
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/polybin3d-a-suite-of-optimal-and-efficient
|
PolyBin3D: A Suite of Optimal and Efficient Power Spectrum and Bispectrum Estimators for Large-Scale Structure
|
2404.07249
|
https://arxiv.org/abs/2404.07249v2
|
https://arxiv.org/pdf/2404.07249v2.pdf
|
https://github.com/oliverphilcox/polybin3d
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/faster-r-cnn-towards-real-time-object
|
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
|
1506.01497
|
http://arxiv.org/abs/1506.01497v3
|
http://arxiv.org/pdf/1506.01497v3.pdf
|
https://github.com/vincentzhang/faster-rcnn-fcn
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-sparse-graph-structured-lasso-mixed-model
|
A Sparse Graph-Structured Lasso Mixed Model for Genetic Association with Confounding Correction
|
1711.04162
|
https://arxiv.org/abs/1711.04162v2
|
https://arxiv.org/pdf/1711.04162v2.pdf
|
https://github.com/YeWenting/sGLMM
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/guided-saliency-feature-learning-for-person
|
Guided Saliency Feature Learning for Person Re-identification in Crowded Scenes
| null |
https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/6159_ECCV_2020_paper.php
|
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123730358.pdf
|
https://github.com/JDAI-CV/fast-reid
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/optimizing-scoring-function-of-dynamic
|
Optimizing scoring function of dynamic programming of pairwise profile alignment using derivative free neural network
|
1708.09097
|
http://arxiv.org/abs/1708.09097v2
|
http://arxiv.org/pdf/1708.09097v2.pdf
|
https://github.com/yamada-kd/nepal
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/universal-sentence-encoder
|
Universal Sentence Encoder
|
1803.11175
|
http://arxiv.org/abs/1803.11175v2
|
http://arxiv.org/pdf/1803.11175v2.pdf
|
https://github.com/facebookresearch/InferSent
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/kern
|
KERN
|
1710.09145
|
http://arxiv.org/abs/1710.09145v1
|
http://arxiv.org/pdf/1710.09145v1.pdf
|
https://github.com/casacore/casarest
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/one-shot-mutual-affine-transfer-for
|
Non-Local Representation based Mutual Affine-Transfer Network for Photorealistic Stylization
|
1907.10274
|
https://arxiv.org/abs/1907.10274v2
|
https://arxiv.org/pdf/1907.10274v2.pdf
|
https://github.com/yingutk/NL-MAT
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/tunable-subnetwork-splitting-for-model
|
Tunable Subnetwork Splitting for Model-parallelism of Neural Network Training
|
2009.04053
|
https://arxiv.org/abs/2009.04053v2
|
https://arxiv.org/pdf/2009.04053v2.pdf
|
https://github.com/xianggebenben/TSSM
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/auto-encoding-variational-bayes
|
Auto-Encoding Variational Bayes
|
1312.6114
|
http://arxiv.org/abs/1312.6114v10
|
http://arxiv.org/pdf/1312.6114v10.pdf
|
https://github.com/enalisnick/stick-breaking_dgms
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-batch-noise-contrastive-estimation-approach
|
A Batch Noise Contrastive Estimation Approach for Training Large Vocabulary Language Models
|
1708.05997
|
http://arxiv.org/abs/1708.05997v2
|
http://arxiv.org/pdf/1708.05997v2.pdf
|
https://github.com/Stonesjtu/Pytorch-NCE
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/understanding-convolution-for-semantic
|
Understanding Convolution for Semantic Segmentation
|
1702.08502
|
http://arxiv.org/abs/1702.08502v3
|
http://arxiv.org/pdf/1702.08502v3.pdf
|
https://github.com/leemathew1998/GradientWeight
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/pp-lcnet-a-lightweight-cpu-convolutional
|
PP-LCNet: A Lightweight CPU Convolutional Neural Network
|
2109.15099
|
https://arxiv.org/abs/2109.15099v1
|
https://arxiv.org/pdf/2109.15099v1.pdf
|
https://github.com/leondgarse/keras_cv_attention_models/tree/main/keras_cv_attention_models/mobilenetv3_family
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/deep-speaker-an-end-to-end-neural-speaker
|
Deep Speaker: an End-to-End Neural Speaker Embedding System
|
1705.02304
|
http://arxiv.org/abs/1705.02304v1
|
http://arxiv.org/pdf/1705.02304v1.pdf
|
https://github.com/prajual/Deep_Speaker
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/sol-a-library-for-scalable-online-learning
|
SOL: A Library for Scalable Online Learning Algorithms
|
1610.09083
|
http://arxiv.org/abs/1610.09083v1
|
http://arxiv.org/pdf/1610.09083v1.pdf
|
https://github.com/LIBOL/SOL
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/cross-view-image-synthesis-using-conditional
|
Cross-View Image Synthesis using Conditional GANs
|
1803.03396
|
http://arxiv.org/abs/1803.03396v2
|
http://arxiv.org/pdf/1803.03396v2.pdf
|
https://github.com/kregmi/cross-view-image-synthesis
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/recurrent-memory-networks-for-language
|
Recurrent Memory Networks for Language Modeling
|
1601.01272
|
http://arxiv.org/abs/1601.01272v2
|
http://arxiv.org/pdf/1601.01272v2.pdf
|
https://github.com/simonjisu/NMT
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/machine-learning-quantum-mechanics-and
|
Machine Learning, Quantum Mechanics, and Chemical Compound Space
|
1510.07512
|
http://arxiv.org/abs/1510.07512v3
|
http://arxiv.org/pdf/1510.07512v3.pdf
|
https://github.com/buralin/Data_Science_NL_Potential
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/wisedb-a-learning-based-workload-management
|
WiSeDB: A Learning-based Workload Management Advisor for Cloud Databases
|
1601.08221
|
http://arxiv.org/abs/1601.08221v3
|
http://arxiv.org/pdf/1601.08221v3.pdf
|
https://github.com/RyanMarcus/wisedb
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/cross-lingual-adaptation-using-structural
|
Cross-Lingual Adaptation using Structural Correspondence Learning
|
1008.0716
|
http://arxiv.org/abs/1008.0716v2
|
http://arxiv.org/pdf/1008.0716v2.pdf
|
https://github.com/pprett/bolt
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/mobilenets-efficient-convolutional-neural
|
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
|
1704.04861
|
http://arxiv.org/abs/1704.04861v1
|
http://arxiv.org/pdf/1704.04861v1.pdf
|
https://github.com/Tsejing/object_detection
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/deep-grasp-detection-and-localization-of
|
Deep Grasp: Detection and Localization of Grasps with Deep Neural Networks
|
1802.00520
|
http://arxiv.org/abs/1802.00520v2
|
http://arxiv.org/pdf/1802.00520v2.pdf
|
https://github.com/ivalab/grasp_multiObject
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/self-normalizing-neural-networks
|
Self-Normalizing Neural Networks
|
1706.02515
|
http://arxiv.org/abs/1706.02515v5
|
http://arxiv.org/pdf/1706.02515v5.pdf
|
https://github.com/bioinf-jku/SNNs
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/multiscale-strategies-for-computing-optimal
|
Multiscale Strategies for Computing Optimal Transport
|
1708.02469
|
http://arxiv.org/abs/1708.02469v1
|
http://arxiv.org/pdf/1708.02469v1.pdf
|
https://github.com/samuelgerber/mop
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/191104554
|
Geometry-Aware Neural Rendering
|
1911.04554
|
https://arxiv.org/abs/1911.04554v1
|
https://arxiv.org/pdf/1911.04554v1.pdf
|
https://github.com/josh-tobin/egqn-datasets
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/an-end-to-end-architecture-for-keyword
|
An End-to-End Architecture for Keyword Spotting and Voice Activity Detection
|
1611.09405
|
http://arxiv.org/abs/1611.09405v1
|
http://arxiv.org/pdf/1611.09405v1.pdf
|
https://github.com/taylorlu/AudioKWS
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/hamiltonian-descent-methods
|
Hamiltonian Descent Methods
|
1809.05042
|
http://arxiv.org/abs/1809.05042v1
|
http://arxiv.org/pdf/1809.05042v1.pdf
|
https://github.com/takyamamoto/FirstExplicitMethod-HDM
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-deep-generative-model-for-semi-supervised
|
A Deep Generative Model for Semi-Supervised Classification with Noisy Labels
|
1809.05957
|
http://arxiv.org/abs/1809.05957v1
|
http://arxiv.org/pdf/1809.05957v1.pdf
|
https://github.com/maxime1310/fuzzy_labeling_scRNA
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/leflow-enabling-flexible-fpga-high-level
|
LeFlow: Enabling Flexible FPGA High-Level Synthesis of Tensorflow Deep Neural Networks
|
1807.05317
|
http://arxiv.org/abs/1807.05317v1
|
http://arxiv.org/pdf/1807.05317v1.pdf
|
https://github.com/danielholanda/LeFlow
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/micronnet-a-highly-compact-deep-convolutional
|
MicronNet: A Highly Compact Deep Convolutional Neural Network Architecture for Real-time Embedded Traffic Sign Classification
|
1804.00497
|
http://arxiv.org/abs/1804.00497v3
|
http://arxiv.org/pdf/1804.00497v3.pdf
|
https://github.com/ppriyank/MicronNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/dirichlet-process-gaussian-mixture-model-an
|
Dirichlet Process Gaussian-mixture model: An application to localizing coalescing binary neutron stars with gravitational-wave observations
|
1801.08009
|
http://arxiv.org/abs/1801.08009v2
|
http://arxiv.org/pdf/1801.08009v2.pdf
|
https://github.com/thaines/helit
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
|
U-Net: Convolutional Networks for Biomedical Image Segmentation
|
1505.04597
|
http://arxiv.org/abs/1505.04597v1
|
http://arxiv.org/pdf/1505.04597v1.pdf
|
https://github.com/IAmSuyogJadhav/Brainy
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/cad-pu-a-curvature-adaptive-deep-learning
|
CAD-PU: A Curvature-Adaptive Deep Learning Solution for Point Set Upsampling
|
2009.04660
|
https://arxiv.org/abs/2009.04660v1
|
https://arxiv.org/pdf/2009.04660v1.pdf
|
https://github.com/JiehongLin/CAD-PU
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/lf-net-learning-local-features-from-images
|
LF-Net: Learning Local Features from Images
|
1805.09662
|
http://arxiv.org/abs/1805.09662v2
|
http://arxiv.org/pdf/1805.09662v2.pdf
|
https://github.com/vcg-uvic/lf-net-release
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/ai-imu-dead-reckoning
|
AI-IMU Dead-Reckoning
|
1904.06064
|
http://arxiv.org/abs/1904.06064v1
|
http://arxiv.org/pdf/1904.06064v1.pdf
|
https://github.com/mbrossar/RINS-W
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/superpoint-self-supervised-interest-point
|
SuperPoint: Self-Supervised Interest Point Detection and Description
|
1712.07629
|
http://arxiv.org/abs/1712.07629v4
|
http://arxiv.org/pdf/1712.07629v4.pdf
|
https://github.com/tzvikif/SuperGlue
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/superglue-learning-feature-matching-with
|
SuperGlue: Learning Feature Matching with Graph Neural Networks
|
1911.11763
|
https://arxiv.org/abs/1911.11763v2
|
https://arxiv.org/pdf/1911.11763v2.pdf
|
https://github.com/tzvikif/SuperGlue
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/combining-markov-random-fields-and
|
Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis
|
1601.04589
|
http://arxiv.org/abs/1601.04589v1
|
http://arxiv.org/pdf/1601.04589v1.pdf
|
https://github.com/paulwarkentin/pytorch-neural-doodle
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/scalable-twin-neural-networks-for
|
Scalable Twin Neural Networks for Classification of Unbalanced Data
|
1705.00347
|
http://arxiv.org/abs/1705.00347v2
|
http://arxiv.org/pdf/1705.00347v2.pdf
|
https://github.com/panthimanshu/twinNeuralNets
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/choosing-the-sample-with-lowest-loss-makes
|
Choosing the Sample with Lowest Loss makes SGD Robust
|
2001.03316
|
https://arxiv.org/abs/2001.03316v1
|
https://arxiv.org/pdf/2001.03316v1.pdf
|
https://github.com/vatsal2020/mkl
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/exposure-a-white-box-photo-post-processing
|
Exposure: A White-Box Photo Post-Processing Framework
|
1709.09602
|
http://arxiv.org/abs/1709.09602v2
|
http://arxiv.org/pdf/1709.09602v2.pdf
|
https://github.com/yuanming-hu/exposure
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/learning-the-population-dynamics-of-technical
|
Learning the dynamics of technical trading strategies
|
1903.02228
|
https://arxiv.org/abs/1903.02228v3
|
https://arxiv.org/pdf/1903.02228v3.pdf
|
https://github.com/NJ-Murphy/Learning-Technical-Trading
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/nonparametric-variable-importance-using-an
|
Nonparametric variable importance using an augmented neural network with multi-task learning
| null |
https://icml.cc/Conferences/2018/Schedule?showEvent=2042
|
http://proceedings.mlr.press/v80/feng18a/feng18a.pdf
|
https://github.com/jjfeng/nnet_var_import
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/monotonic-chunkwise-attention-1
|
Monotonic Chunkwise Attention
| null |
https://openreview.net/forum?id=Hko85plCW
|
https://openreview.net/pdf?id=Hko85plCW
|
https://github.com/craffel/mocha
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/convolutional-radio-modulation-recognition
|
Convolutional Radio Modulation Recognition Networks
|
1602.04105
|
http://arxiv.org/abs/1602.04105v3
|
http://arxiv.org/pdf/1602.04105v3.pdf
|
https://github.com/randaller/cnn-rtlsdr
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/densely-connected-attention-propagation-for
|
Densely Connected Attention Propagation for Reading Comprehension
|
1811.04210
|
http://arxiv.org/abs/1811.04210v2
|
http://arxiv.org/pdf/1811.04210v2.pdf
|
https://github.com/vanzytay/NIPS2018_DECAPROP
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/magnet-a-two-pronged-defense-against
|
MagNet: a Two-Pronged Defense against Adversarial Examples
|
1705.09064
|
http://arxiv.org/abs/1705.09064v2
|
http://arxiv.org/pdf/1705.09064v2.pdf
|
https://github.com/GokulKarthik/MagNet.pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/senteval-an-evaluation-toolkit-for-universal
|
SentEval: An Evaluation Toolkit for Universal Sentence Representations
|
1803.05449
|
http://arxiv.org/abs/1803.05449v1
|
http://arxiv.org/pdf/1803.05449v1.pdf
|
https://github.com/facebookresearch/InferSent
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-general-purpose-distributed-sentence
|
Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning
|
1804.00079
|
http://arxiv.org/abs/1804.00079v1
|
http://arxiv.org/pdf/1804.00079v1.pdf
|
https://github.com/facebookresearch/InferSent
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/unsupervised-monocular-depth-estimation-with
|
Unsupervised Monocular Depth Estimation with Left-Right Consistency
|
1609.03677
|
http://arxiv.org/abs/1609.03677v3
|
http://arxiv.org/pdf/1609.03677v3.pdf
|
https://github.com/Lebhoryi/learn_monodepth
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/dual-generator-generative-adversarial
|
Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
|
1901.04604
|
http://arxiv.org/abs/1901.04604v1
|
http://arxiv.org/pdf/1901.04604v1.pdf
|
https://github.com/Ha0Tang/AsymmetricGAN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/on-causal-and-anticausal-learning
|
On Causal and Anticausal Learning
|
1206.6471
|
http://arxiv.org/abs/1206.6471v1
|
http://arxiv.org/pdf/1206.6471v1.pdf
|
https://github.com/causalitas/causalitas.github.io
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/latent-weights-do-not-exist-rethinking
|
Latent Weights Do Not Exist: Rethinking Binarized Neural Network Optimization
|
1906.02107
|
https://arxiv.org/abs/1906.02107v2
|
https://arxiv.org/pdf/1906.02107v2.pdf
|
https://github.com/nikvaessen/Rethinking-Binarized-Neural-Network-Optimization
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/super-slomo-high-quality-estimation-of
|
Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation
|
1712.00080
|
http://arxiv.org/abs/1712.00080v2
|
http://arxiv.org/pdf/1712.00080v2.pdf
|
https://github.com/susomena/DeepSlowMotion
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/enriching-pre-trained-language-model-with
|
Enriching Pre-trained Language Model with Entity Information for Relation Classification
|
1905.08284
|
https://arxiv.org/abs/1905.08284v1
|
https://arxiv.org/pdf/1905.08284v1.pdf
|
https://github.com/onehaitao/R-BERT-relation-extraction
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/deep-learning-for-case-based-reasoning
|
Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network that Explains Its Predictions
|
1710.04806
|
http://arxiv.org/abs/1710.04806v2
|
http://arxiv.org/pdf/1710.04806v2.pdf
|
https://github.com/OscarcarLi/PrototypeDL
| true
| true
| false
|
tf
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.