paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/heterogeneity-and-instability-in-the-stable
|
Heterogeneity and Instability in the Stable Marriage Problem
|
1902.09226
|
http://arxiv.org/abs/1902.09226v1
|
http://arxiv.org/pdf/1902.09226v1.pdf
|
https://github.com/BAFurtado/HISMP
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/attention-based-recurrent-neural-network
|
Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling
|
1609.01454
|
http://arxiv.org/abs/1609.01454v1
|
http://arxiv.org/pdf/1609.01454v1.pdf
|
https://github.com/pengshuang/Joint-Slot-Filling
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-semantics-for-visual-place
|
Learning Semantics for Visual Place Recognition through Multi-Scale Attention
|
2201.09701
|
https://arxiv.org/abs/2201.09701v2
|
https://arxiv.org/pdf/2201.09701v2.pdf
|
https://github.com/valeriopaolicelli/SegVPR
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/sumnet-fully-convolutional-model-for-fast
|
SUMNet: Fully Convolutional Model for Fast Segmentation of Anatomical Structures in Ultrasound Volumes
|
1901.06920
|
http://arxiv.org/abs/1901.06920v1
|
http://arxiv.org/pdf/1901.06920v1.pdf
|
https://github.com/drvelmuruganb/EDD2020-Endoscopy-disease-detection-grand-challenge-2020-
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-symmetric-and-low-energy-locomotion
|
Learning Symmetric and Low-energy Locomotion
|
1801.08093
|
http://arxiv.org/abs/1801.08093v3
|
http://arxiv.org/pdf/1801.08093v3.pdf
|
https://github.com/VincentYu68/SymmetryCurriculumLocomotion
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/improved-techniques-for-training-gans
|
Improved Techniques for Training GANs
|
1606.03498
|
http://arxiv.org/abs/1606.03498v1
|
http://arxiv.org/pdf/1606.03498v1.pdf
|
https://github.com/chameleonTK/continual-learning-for-HAR
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-deep-reinforced-model-for-abstractive
|
A Deep Reinforced Model for Abstractive Summarization
|
1705.04304
|
http://arxiv.org/abs/1705.04304v3
|
http://arxiv.org/pdf/1705.04304v3.pdf
|
https://github.com/AndreyKolomiets/News_Headline_Generation
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/dual-signal-transformation-lstm-network-for
|
Dual-Signal Transformation LSTM Network for Real-Time Noise Suppression
|
2005.07551
|
https://arxiv.org/abs/2005.07551v1
|
https://arxiv.org/pdf/2005.07551v1.pdf
|
https://github.com/breizhn/DTLN
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/fastdvdnet-towards-real-time-video-denoising
|
FastDVDnet: Towards Real-Time Deep Video Denoising Without Flow Estimation
|
1907.01361
|
https://arxiv.org/abs/1907.01361v2
|
https://arxiv.org/pdf/1907.01361v2.pdf
|
https://github.com/samyakjain0112/Video-denoising_tensorflow-core-api-2.0
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/compression-of-deep-convolutional-neural
|
Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile Applications
|
1511.06530
|
http://arxiv.org/abs/1511.06530v2
|
http://arxiv.org/pdf/1511.06530v2.pdf
|
https://github.com/jacobgil/pytorch-tensor-decompositions
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/theory-and-computation-of-electromagnetic
|
Theory and computation of electromagnetic fields and thermomechanical structure interaction for systems undergoing large deformations
|
1803.10551
|
http://arxiv.org/abs/1803.10551v1
|
http://arxiv.org/pdf/1803.10551v1.pdf
|
https://github.com/afqueiruga/EMSI-2018
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/key-value-retrieval-networks-for-task
|
Key-Value Retrieval Networks for Task-Oriented Dialogue
|
1705.05414
|
http://arxiv.org/abs/1705.05414v2
|
http://arxiv.org/pdf/1705.05414v2.pdf
|
https://github.com/garygsw/Nav-NNDial
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/squad-100000-questions-for-machine
|
SQuAD: 100,000+ Questions for Machine Comprehension of Text
|
1606.05250
|
http://arxiv.org/abs/1606.05250v3
|
http://arxiv.org/pdf/1606.05250v3.pdf
|
https://github.com/chrisc36/debias
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/variational-reformulation-of-bayesian-inverse
|
Variational Reformulation of Bayesian Inverse Problems
|
1410.5522
|
http://arxiv.org/abs/1410.5522v1
|
http://arxiv.org/pdf/1410.5522v1.pdf
|
https://github.com/KhurramPirov/bayesian_Inverse
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/non-stationary-bandits-and-meta-learning-with
|
Non-stationary Bandits and Meta-Learning with a Small Set of Optimal Arms
|
2202.13001
|
https://arxiv.org/abs/2202.13001v6
|
https://arxiv.org/pdf/2202.13001v6.pdf
|
https://github.com/duongnhatthang/meta-bandit
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/implicit-quantile-networks-for-distributional
|
Implicit Quantile Networks for Distributional Reinforcement Learning
|
1806.06923
|
http://arxiv.org/abs/1806.06923v1
|
http://arxiv.org/pdf/1806.06923v1.pdf
|
https://github.com/V0LsTeR/DQN_heap
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/simple-random-search-provides-a-competitive
|
Simple random search provides a competitive approach to reinforcement learning
|
1803.07055
|
http://arxiv.org/abs/1803.07055v1
|
http://arxiv.org/pdf/1803.07055v1.pdf
|
https://github.com/AnshMittal1811/AugmentedRandomSearch
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/reinforcement-learning-upside-down-dont
|
Reinforcement Learning Upside Down: Don't Predict Rewards -- Just Map Them to Actions
|
1912.02875
|
https://arxiv.org/abs/1912.02875v2
|
https://arxiv.org/pdf/1912.02875v2.pdf
|
https://github.com/haron1100/Upside-Down-Reinforcement-Learning
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/robust-quantum-entanglement-generation-and
|
Robust Quantum Entanglement Generation and Generation-plus-Storage Protocols with Spin Chains
|
1612.05097
|
http://arxiv.org/abs/1612.05097v2
|
http://arxiv.org/pdf/1612.05097v2.pdf
|
https://github.com/estaremp/spinchain
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/modular-vehicle-control-for-transferring
|
Modular Vehicle Control for Transferring Semantic Information Between Weather Conditions Using GANs
|
1807.01001
|
http://arxiv.org/abs/1807.01001v2
|
http://arxiv.org/pdf/1807.01001v2.pdf
|
https://github.com/pmwenzel/carla-domain-adaptation
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/estimating-causal-effects-in-the-presence-of
|
Estimating the effectiveness of permanent price reductions for competing products using multivariate Bayesian structural time series models
|
2006.12269
|
https://arxiv.org/abs/2006.12269v4
|
https://arxiv.org/pdf/2006.12269v4.pdf
|
https://github.com/FMenchetti/CausalMBSTS
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/higan-cosmic-neutral-hydrogen-with-generative
|
HIGAN: Cosmic Neutral Hydrogen with Generative Adversarial Networks
|
1904.12846
|
http://arxiv.org/abs/1904.12846v1
|
http://arxiv.org/pdf/1904.12846v1.pdf
|
https://github.com/jjzamudio/HIGAN
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/multi-view-low-rank-sparse-subspace
|
Multi-view Low-rank Sparse Subspace Clustering
|
1708.08732
|
http://arxiv.org/abs/1708.08732v1
|
http://arxiv.org/pdf/1708.08732v1.pdf
|
https://github.com/mbrbic/Multi-view-LRSSC
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/rsa-byzantine-robust-stochastic-aggregation
|
RSA: Byzantine-Robust Stochastic Aggregation Methods for Distributed Learning from Heterogeneous Datasets
|
1811.03761
|
https://arxiv.org/abs/1811.03761v2
|
https://arxiv.org/pdf/1811.03761v2.pdf
|
https://github.com/Liepill/RSA-Byzantine
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/neural-spline-flows
|
Neural Spline Flows
|
1906.04032
|
https://arxiv.org/abs/1906.04032v2
|
https://arxiv.org/pdf/1906.04032v2.pdf
|
https://github.com/johnpjust/nsf
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/speeding-up-convolutional-neural-networks
|
Speeding-up Convolutional Neural Networks Using Fine-tuned CP-Decomposition
|
1412.6553
|
http://arxiv.org/abs/1412.6553v3
|
http://arxiv.org/pdf/1412.6553v3.pdf
|
https://github.com/jacobgil/pytorch-tensor-decompositions
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/generating-adversarial-examples-with
|
Generating Adversarial Examples with Adversarial Networks
|
1801.02610
|
http://arxiv.org/abs/1801.02610v5
|
http://arxiv.org/pdf/1801.02610v5.pdf
|
https://github.com/abahram77/mnistChallenge
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/the-cot-collection-improving-zero-shot-and
|
The CoT Collection: Improving Zero-shot and Few-shot Learning of Language Models via Chain-of-Thought Fine-Tuning
|
2305.14045
|
https://arxiv.org/abs/2305.14045v2
|
https://arxiv.org/pdf/2305.14045v2.pdf
|
https://github.com/kaistai/cot-collection
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mid-flight-propeller-failure-detection-and
|
Mid-flight Propeller Failure Detection and Control of Propeller-deficient Quadcopter using Reinforcement Learning
|
2002.11564
|
https://arxiv.org/abs/2002.11564v2
|
https://arxiv.org/pdf/2002.11564v2.pdf
|
https://github.com/Aakriti05/Prop-Fail-Detect-Control-RL
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/quantum-equilibrium-disequilibrium-asset
|
"Quantum Equilibrium-Disequilibrium": Asset Price Dynamics, Symmetry Breaking, and Defaults as Dissipative Instantons
|
1808.03607
|
http://arxiv.org/abs/1808.03607v2
|
http://arxiv.org/pdf/1808.03607v2.pdf
|
https://github.com/gowen100/Machine-Learning
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/active-learning-for-decision-making-from
|
Active Learning for Decision-Making from Imbalanced Observational Data
|
1904.05268
|
https://arxiv.org/abs/1904.05268v2
|
https://arxiv.org/pdf/1904.05268v2.pdf
|
https://github.com/IirisSundin/active-learning-for-decision-making
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/deep-learning-with-differential-privacy
|
Deep Learning with Differential Privacy
|
1607.00133
|
http://arxiv.org/abs/1607.00133v2
|
http://arxiv.org/pdf/1607.00133v2.pdf
|
https://github.com/sunblaze-ucb/dpml-benchmark
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/graph-attention-networks
|
Graph Attention Networks
|
1710.10903
|
http://arxiv.org/abs/1710.10903v3
|
http://arxiv.org/pdf/1710.10903v3.pdf
|
https://github.com/subercui/pyGConvAT
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/interpretability-beyond-feature-attribution
|
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
|
1711.11279
|
http://arxiv.org/abs/1711.11279v5
|
http://arxiv.org/pdf/1711.11279v5.pdf
|
https://github.com/pytorch/captum
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/variance-reduction-in-sgd-by-distributed
|
Variance Reduction in SGD by Distributed Importance Sampling
|
1511.06481
|
http://arxiv.org/abs/1511.06481v7
|
http://arxiv.org/pdf/1511.06481v7.pdf
|
https://github.com/idiap/importance-sampling
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/text-classification-with-word-embedding
|
Text classification with word embedding regularization and soft similarity measure
|
2003.05019
|
https://arxiv.org/abs/2003.05019v1
|
https://arxiv.org/pdf/2003.05019v1.pdf
|
https://github.com/MIR-MU/regularized-embeddings
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/osvidcap-a-framework-for-the-simultaneous
|
OSVidCap: A Framework for the Simultaneous Recognition and Description of Concurrent Actions in Videos in an Open-Set Scenario
| null |
https://ieeexplore.ieee.org/abstract/document/9552885
|
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9552885
|
https://github.com/bioinfolabic/OSVidCap
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/fully-convolutional-networks-for-semantic-1
|
Fully Convolutional Networks for Semantic Segmentation
|
1411.4038
|
http://arxiv.org/abs/1411.4038v2
|
http://arxiv.org/pdf/1411.4038v2.pdf
|
https://github.com/SethEBaldwin/FCN
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/multi-agent-actor-critic-for-mixed
|
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
|
1706.02275
|
https://arxiv.org/abs/1706.02275v4
|
https://arxiv.org/pdf/1706.02275v4.pdf
|
https://github.com/thechrisyoon08/marl
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/inductive-document-network-embedding-with
|
Inductive Document Network Embedding with Topic-Word Attention
|
2001.03369
|
https://arxiv.org/abs/2001.03369v1
|
https://arxiv.org/pdf/2001.03369v1.pdf
|
https://github.com/brochier/idne
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/generation-of-point-sets-by-convex
|
Generation of point sets by convex optimization for interpolation in reproducing kernel Hilbert spaces
|
1810.08505
|
http://arxiv.org/abs/1810.08505v1
|
http://arxiv.org/pdf/1810.08505v1.pdf
|
https://github.com/KeTanakaN/mat_points_interp_rkhs
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/sq-vae-variational-bayes-on-discrete
|
SQ-VAE: Variational Bayes on Discrete Representation with Self-annealed Stochastic Quantization
|
2205.07547
|
https://arxiv.org/abs/2205.07547v2
|
https://arxiv.org/pdf/2205.07547v2.pdf
|
https://github.com/sony/sqvae
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/improved-lower-bounds-for-queen-s-domination
|
Improved lower bounds for Queen's Domination via an exactly-solvable relaxation
|
2304.06620
|
https://arxiv.org/abs/2304.06620v1
|
https://arxiv.org/pdf/2304.06620v1.pdf
|
https://github.com/architkarandikar/queens-domination
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/hierarchical-reinforcement-learning-with-5
|
Hierarchical Reinforcement Learning with Timed Subgoals
|
2112.03100
|
https://arxiv.org/abs/2112.03100v1
|
https://arxiv.org/pdf/2112.03100v1.pdf
|
https://github.com/martius-lab/hits
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/convolutional-neural-networks-for-sentence
|
Convolutional Neural Networks for Sentence Classification
|
1408.5882
|
http://arxiv.org/abs/1408.5882v2
|
http://arxiv.org/pdf/1408.5882v2.pdf
|
https://github.com/paper-cat/Sentence-Classifications
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/mimics-a-large-scale-data-collection-for
|
MIMICS: A Large-Scale Data Collection for Search Clarification
|
2006.10174
|
https://arxiv.org/abs/2006.10174v1
|
https://arxiv.org/pdf/2006.10174v1.pdf
|
https://github.com/microsoft/MIMICS
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-low-cost-cryogenic-temperature-measurement
|
A low-cost cryogenic temperature measurement system using Arduino microcontroller
|
1910.09111
|
https://arxiv.org/abs/1910.09111v1
|
https://arxiv.org/pdf/1910.09111v1.pdf
|
https://github.com/kinetic-orange/Low-Cost-Cryogenic-Temperature-Measurement-System
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/betrayed-by-captions-joint-caption-grounding
|
Betrayed by Captions: Joint Caption Grounding and Generation for Open Vocabulary Instance Segmentation
|
2301.00805
|
https://arxiv.org/abs/2301.00805v2
|
https://arxiv.org/pdf/2301.00805v2.pdf
|
https://github.com/jianzongwu/betrayed-by-captions
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/continuous-control-with-deep-reinforcement
|
Continuous control with deep reinforcement learning
|
1509.02971
|
https://arxiv.org/abs/1509.02971v6
|
https://arxiv.org/pdf/1509.02971v6.pdf
|
https://github.com/susan-amin/SparseBaseline1
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/parameter-space-noise-for-exploration
|
Parameter Space Noise for Exploration
|
1706.01905
|
http://arxiv.org/abs/1706.01905v2
|
http://arxiv.org/pdf/1706.01905v2.pdf
|
https://github.com/susan-amin/SparseBaseline1
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/soft-actor-critic-off-policy-maximum-entropy
|
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
|
1801.01290
|
http://arxiv.org/abs/1801.01290v2
|
http://arxiv.org/pdf/1801.01290v2.pdf
|
https://github.com/susan-amin/SparseBaseline1
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-graph-enhanced-click-model-for-web-search-1
|
A Graph-Enhanced Click Model for Web Search
|
2206.08621
|
https://arxiv.org/abs/2206.08621v2
|
https://arxiv.org/pdf/2206.08621v2.pdf
|
https://github.com/chiangel/graphcm
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/distilling-the-knowledge-in-a-neural-network
|
Distilling the Knowledge in a Neural Network
|
1503.02531
|
http://arxiv.org/abs/1503.02531v1
|
http://arxiv.org/pdf/1503.02531v1.pdf
|
https://github.com/robertjkeck2/EmoNet
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/transferability-of-natural-language-inference
|
Transferability of Natural Language Inference to Biomedical Question Answering
|
2007.00217
|
https://arxiv.org/abs/2007.00217v4
|
https://arxiv.org/pdf/2007.00217v4.pdf
|
https://github.com/dmis-lab/bioasq8b
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/deep-learning-to-represent-sub-grid-processes
|
Deep learning to represent sub-grid processes in climate models
|
1806.04731
|
http://arxiv.org/abs/1806.04731v3
|
http://arxiv.org/pdf/1806.04731v3.pdf
|
https://github.com/jordanott/CBRAIN-CAM
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/hololens-2-research-mode-as-a-tool-for
|
HoloLens 2 Research Mode as a Tool for Computer Vision Research
|
2008.11239
|
https://arxiv.org/abs/2008.11239v1
|
https://arxiv.org/pdf/2008.11239v1.pdf
|
https://github.com/microsoft/HoloLens2ForCV
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mcnntunes-tuning-shower-monte-carlo
|
MCNNTUNES: tuning Shower Monte Carlo generators with machine learning
|
2010.02213
|
https://arxiv.org/abs/2010.02213v1
|
https://arxiv.org/pdf/2010.02213v1.pdf
|
https://github.com/N3PDF/mcnntunes
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/counterfactual-variable-control-for-robust
|
Counterfactual Variable Control for Robust and Interpretable Question Answering
|
2010.05581
|
https://arxiv.org/abs/2010.05581v1
|
https://arxiv.org/pdf/2010.05581v1.pdf
|
https://github.com/PluviophileYU/CVC-QA
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/unsuperpoint-end-to-end-unsupervised-interest
|
UnsuperPoint: End-to-end Unsupervised Interest Point Detector and Descriptor
|
1907.04011
|
https://arxiv.org/abs/1907.04011v1
|
https://arxiv.org/pdf/1907.04011v1.pdf
|
https://github.com/kimphys/UnsuperPoint.pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/grzegorczyk-sequence
|
Grzegorczyk sequence
|
1811.09958
|
https://arxiv.org/abs/1811.09958v1
|
https://arxiv.org/pdf/1811.09958v1.pdf
|
https://github.com/koteitan/grzeseq
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/gaussianizing-the-earth-multidimensional
|
Gaussianizing the Earth: Multidimensional Information Measures for Earth Data Analysis
|
2010.06476
|
https://arxiv.org/abs/2010.06476v2
|
https://arxiv.org/pdf/2010.06476v2.pdf
|
https://github.com/IPL-UV/rbig
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/neural-network-based-generation-of-1
|
Neural network based generation of a 1-dimensional stochastic field with turbulent velocity statistics
|
2211.11580
|
https://arxiv.org/abs/2211.11580v3
|
https://arxiv.org/pdf/2211.11580v3.pdf
|
https://github.com/cgranerob/nn-turb
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/adversarial-turing-patterns-from-cellular
|
Adversarial Turing Patterns from Cellular Automata
|
2011.09393
|
https://arxiv.org/abs/2011.09393v3
|
https://arxiv.org/pdf/2011.09393v3.pdf
|
https://github.com/NurislamT/advTuring
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/relating-reading-visualization-and-coding
|
Relating Reading, Visualization, and Coding forNew Programmers: A Neuroimaging Study
|
2102.12376
|
https://arxiv.org/abs/2102.12376v1
|
https://arxiv.org/pdf/2102.12376v1.pdf
|
https://github.com/CelloCorgi/ICSE_fNIRS2021
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/synchronous-counting-and-computational
|
Synchronous Counting and Computational Algorithm Design
|
1304.5719
|
https://arxiv.org/abs/1304.5719v2
|
https://arxiv.org/pdf/1304.5719v2.pdf
|
https://github.com/suomela/counting
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/self-critical-sequence-training-for-image
|
Self-critical Sequence Training for Image Captioning
|
1612.00563
|
http://arxiv.org/abs/1612.00563v2
|
http://arxiv.org/pdf/1612.00563v2.pdf
|
https://github.com/FJSam/SelfCritical_ImageCaptioning
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/katie-for-parton-level-event-generation-with
|
KaTie: for parton-level event generation with k_T-dependent initial states
|
1611.00680
|
http://arxiv.org/abs/1611.00680v3
|
http://arxiv.org/pdf/1611.00680v3.pdf
|
https://bitbucket.org/hameren/katie
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/searching-for-electromagnetic-counterpart-of
|
Searching for electromagnetic counterpart of LIGO gravitational waves in the Fermi GBM data with ADWO
|
1603.06611
|
http://arxiv.org/abs/1603.06611v2
|
http://arxiv.org/pdf/1603.06611v2.pdf
|
https://github.com/zbagoly/ADWO
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/asymptotics-for-the-late-arrivals-problem
|
Asymptotics for the Late Arrivals Problem
|
1302.1999
|
http://arxiv.org/abs/1302.1999v6
|
http://arxiv.org/pdf/1302.1999v6.pdf
|
https://github.com/clancia/EDA
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/robust-watermarking-of-neural-network-with
|
Robust Watermarking of Neural Network with Exponential Weighting
|
1901.06151
|
http://arxiv.org/abs/1901.06151v1
|
http://arxiv.org/pdf/1901.06151v1.pdf
|
https://github.com/dunky11/exponential-weighting-watermarking
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/deeppicker-a-deep-learning-approach-for-fully
|
DeepPicker: a Deep Learning Approach for Fully Automated Particle Picking in Cryo-EM
|
1605.01838
|
http://arxiv.org/abs/1605.01838v1
|
http://arxiv.org/pdf/1605.01838v1.pdf
|
https://github.com/nejyeah/DeepPicker-python
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/global-optimality-in-model-predictive-control
|
Global optimality in model predictive control via hidden invariant convexity
|
2007.07062
|
https://arxiv.org/abs/2007.07062v2
|
https://arxiv.org/pdf/2007.07062v2.pdf
|
https://github.com/jbaayen/homotopy-example
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/combinatorial-reductions-for-the-stanley
|
Combinatorial Reductions for the Stanley Depth of $I$ and $S/I$
|
1702.00781
|
http://arxiv.org/abs/1702.00781v3
|
http://arxiv.org/pdf/1702.00781v3.pdf
|
https://github.com/mitchkeller/stanley-depth
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/real-time-machine-learning-the-missing-pieces
|
Real-Time Machine Learning: The Missing Pieces
|
1703.03924
|
http://arxiv.org/abs/1703.03924v2
|
http://arxiv.org/pdf/1703.03924v2.pdf
|
https://github.com/AmeerHajAli/ray2
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/tune-a-research-platform-for-distributed
|
Tune: A Research Platform for Distributed Model Selection and Training
|
1807.05118
|
http://arxiv.org/abs/1807.05118v1
|
http://arxiv.org/pdf/1807.05118v1.pdf
|
https://github.com/AmeerHajAli/ray2
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/tf-locoformer-transformer-with-local-modeling
|
TF-Locoformer: Transformer with Local Modeling by Convolution for Speech Separation and Enhancement
|
2408.03440
|
https://arxiv.org/abs/2408.03440v1
|
https://arxiv.org/pdf/2408.03440v1.pdf
|
https://github.com/merlresearch/tf-locoformer
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/word-alignment-by-fine-tuning-embeddings-on
|
Word Alignment by Fine-tuning Embeddings on Parallel Corpora
|
2101.08231
|
https://arxiv.org/abs/2101.08231v4
|
https://arxiv.org/pdf/2101.08231v4.pdf
|
https://github.com/BramVanroy/astred
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/functional-central-limit-theorems-for-rough
|
Functional central limit theorems for rough volatility
|
1711.03078
|
https://arxiv.org/abs/1711.03078v4
|
https://arxiv.org/pdf/1711.03078v4.pdf
|
https://github.com/amuguruza/RoughFCLT
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/realtime-multi-person-2d-pose-estimation
|
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
|
1611.08050
|
http://arxiv.org/abs/1611.08050v2
|
http://arxiv.org/pdf/1611.08050v2.pdf
|
https://github.com/saadbutt32/Conversion-of-Pakistan-Sign-Languag-into-Text-and-Speech-using-OpenPose-and-Machine-Learning
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/preventing-extreme-polarization-of-political
|
Preventing Extreme Polarization of Political Attitudes
|
2103.06492
|
https://arxiv.org/abs/2103.06492v2
|
https://arxiv.org/pdf/2103.06492v2.pdf
|
https://github.com/jdaymude/AttractionRepulsionModel
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/fast-meningioma-segmentation-in-t1-weighted
|
Fast meningioma segmentation in T1-weighted MRI volumes using a lightweight 3D deep learning architecture
|
2010.07002
|
https://arxiv.org/abs/2010.07002v1
|
https://arxiv.org/pdf/2010.07002v1.pdf
|
https://github.com/andreped/PLS-Net
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/removing-word-level-spurious-alignment
|
Removing Word-Level Spurious Alignment between Images and Pseudo-Captions in Unsupervised Image Captioning
|
2104.13872
|
https://arxiv.org/abs/2104.13872v2
|
https://arxiv.org/pdf/2104.13872v2.pdf
|
https://github.com/ukyh/RemovingSpuriousAlignment
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/radioactive-data-tracing-through-training
|
Radioactive data: tracing through training
|
2002.00937
|
https://arxiv.org/abs/2002.00937v1
|
https://arxiv.org/pdf/2002.00937v1.pdf
|
https://github.com/facebookresearch/radioactive_data
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/pricing-and-energy-trading-in-peer-to-peer
|
Pricing and Energy Trading in Peer-to-peer Zero Marginal-cost Microgrids
|
2103.13530
|
https://arxiv.org/abs/2103.13530v4
|
https://arxiv.org/pdf/2103.13530v4.pdf
|
https://github.com/Energy-MAC/P2P-Pricing-Paper
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/network-clique-cover-approximation-to-analyze
|
Network clique cover approximation to analyze complex contagions through group interactions
|
2101.03618
|
https://arxiv.org/abs/2101.03618v3
|
https://arxiv.org/pdf/2101.03618v3.pdf
|
https://github.com/giubuig/DisjointCliqueCover.jl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/controlling-for-unknown-confounders-in
|
Estimation of Causal Effects in the Presence of Unobserved Confounding in the Alzheimer's Continuum
|
2006.13135
|
https://arxiv.org/abs/2006.13135v4
|
https://arxiv.org/pdf/2006.13135v4.pdf
|
https://github.com/ai-med/causal-effects-in-alzheimers-continuum
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/structured-ensembles-an-approach-to-reduce
|
Structured Ensembles: an Approach to Reduce the Memory Footprint of Ensemble Methods
|
2105.02551
|
https://arxiv.org/abs/2105.02551v2
|
https://arxiv.org/pdf/2105.02551v2.pdf
|
https://github.com/jaryP/StructuredEnsemble
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/benchmarking-graph-neural-networks
|
Benchmarking Graph Neural Networks
|
2003.00982
|
https://arxiv.org/abs/2003.00982v5
|
https://arxiv.org/pdf/2003.00982v5.pdf
|
https://github.com/PaddlePaddle/PGL/tree/master/examples/GaAN
| false
| false
| true
|
paddle
|
https://paperswithcode.com/paper/a-feasibility-study-of-a-hyperparameter
|
A hyperparameter-tuning approach to automated inverse planning
|
2105.07024
|
https://arxiv.org/abs/2105.07024v2
|
https://arxiv.org/pdf/2105.07024v2.pdf
|
https://github.com/kels271828/RayBay
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/xai-n-sensor-based-robot-navigation-using
|
XAI-N: Sensor-based Robot Navigation using Expert Policies and Decision Trees
|
2104.10818
|
https://arxiv.org/abs/2104.10818v2
|
https://arxiv.org/pdf/2104.10818v2.pdf
|
https://github.com/AMR-/JackalCrowdEnv
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/soft-actor-critic-for-discrete-action
|
Soft Actor-Critic for Discrete Action Settings
|
1910.07207
|
https://arxiv.org/abs/1910.07207v2
|
https://arxiv.org/pdf/1910.07207v2.pdf
|
https://github.com/Bigpig4396/PyTorch-Soft-Actor-Critic-SAC
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/sample-condensation-in-online-continual
|
Sample Condensation in Online Continual Learning
|
2206.11849
|
https://arxiv.org/abs/2206.11849v1
|
https://arxiv.org/pdf/2206.11849v1.pdf
|
https://github.com/MattiaSangermano/OLCGM
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-categorical-archive-of-chatgpt-failures
|
A Categorical Archive of ChatGPT Failures
|
2302.03494
|
https://arxiv.org/abs/2302.03494v8
|
https://arxiv.org/pdf/2302.03494v8.pdf
|
https://github.com/aliborji/chatgpt_failures
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/the-impact-of-technologies-in-political
|
The Impact of Technologies in Political Campaigns
|
1909.07644
|
http://arxiv.org/abs/1909.07644v1
|
http://arxiv.org/pdf/1909.07644v1.pdf
|
https://github.com/moritzhoferer/moritzhoferer
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/binary-search-trees-for-generalized
|
Binary search trees for generalized measurement
|
0712.2665
|
https://arxiv.org/abs/0712.2665v1
|
https://arxiv.org/pdf/0712.2665v1.pdf
|
https://github.com/petr-ivashkov/dynamic-circuit-povms
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/leveraging-local-distributions-in-mendelian
|
Leveraging Local Distributions in Mendelian Randomization: Uncertain Opinions are Invalid
|
2402.02329
|
https://arxiv.org/abs/2402.02329v1
|
https://arxiv.org/pdf/2402.02329v1.pdf
|
https://github.com/saili0103/mr-local
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/one-model-packs-thousands-of-items-with
|
One model Packs Thousands of Items with Recurrent Conditional Query Learning
|
2111.06726
|
https://arxiv.org/abs/2111.06726v1
|
https://arxiv.org/pdf/2111.06726v1.pdf
|
https://github.com/dongdongbh/RCQL
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/able-nerf-attention-based-rendering-with
|
ABLE-NeRF: Attention-Based Rendering with Learnable Embeddings for Neural Radiance Field
|
2303.13817
|
https://arxiv.org/abs/2303.13817v1
|
https://arxiv.org/pdf/2303.13817v1.pdf
|
https://github.com/tangzj/able-nerf
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/spontaneous-conformal-symmetry-breaking-and-a
|
Spontaneous conformal symmetry breaking and a massless Wu-Yang monopole
|
1707.05325
|
http://arxiv.org/abs/1707.05325v1
|
http://arxiv.org/pdf/1707.05325v1.pdf
|
https://github.com/gillioz/SUSY-algebra
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/warm-starting-cma-es-for-hyperparameter
|
Warm Starting CMA-ES for Hyperparameter Optimization
|
2012.06932
|
https://arxiv.org/abs/2012.06932v1
|
https://arxiv.org/pdf/2012.06932v1.pdf
|
https://github.com/c-bata/benchmark-warm-starting-cmaes
| false
| false
| true
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.