paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/ranking-aggregation-with-interactive-feedback
|
Ranking Aggregation with Interactive Feedback for Collaborative Person Re-identification
| null |
https://bmvc2022.mpi-inf.mpg.de/386/
|
https://bmvc2022.mpi-inf.mpg.de/0386.pdf
|
https://github.com/2023-MindSpore-1/ms-code-137
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/on-recognizing-texts-of-arbitrary-shapes-with
|
On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention
|
1910.04396
|
https://arxiv.org/abs/1910.04396v1
|
https://arxiv.org/pdf/1910.04396v1.pdf
|
https://github.com/Media-Smart/vedastr
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/on-the-robustness-of-interpretability-methods
|
On the Robustness of Interpretability Methods
|
1806.08049
|
http://arxiv.org/abs/1806.08049v1
|
http://arxiv.org/pdf/1806.08049v1.pdf
|
https://github.com/pytorch/captum
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/efficient-robust-optimal-transport
|
Efficient Robust Optimal Transport with Application to Multi-Label Classification
|
2010.11852
|
https://arxiv.org/abs/2010.11852v2
|
https://arxiv.org/pdf/2010.11852v2.pdf
|
https://github.com/SatyadevNtv/ROT4C
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/comprehensive-view-of-microscopic
|
Comprehensive view of microscopic interactions between DNA-coated colloids
|
2111.06468
|
https://arxiv.org/abs/2111.06468v1
|
https://arxiv.org/pdf/2111.06468v1.pdf
|
https://github.com/smarbach/dnacoatedcolloidsinteractions
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/interpretation-of-neural-networks-is-fragile
|
Interpretation of Neural Networks is Fragile
|
1710.10547
|
http://arxiv.org/abs/1710.10547v2
|
http://arxiv.org/pdf/1710.10547v2.pdf
|
https://github.com/pytorch/captum
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/deep-residual-inception-encoder-decoder-1
|
Deep residual inception encoder-decoder network for amyloid PET harmonization
| null |
https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1002/alz.12564
|
https://alz-journals.onlinelibrary.wiley.com/doi/epdf/10.1002/alz.12564
|
https://github.com/jaygshah/RIED-Net
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/adposition-and-case-supersenses-v2-guidelines
|
Adposition and Case Supersenses v2.6: Guidelines for English
|
1704.02134
|
https://arxiv.org/abs/1704.02134v8
|
https://arxiv.org/pdf/1704.02134v8.pdf
|
https://github.com/nert-gu/streusle
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/bisect-learning-to-split-and-rephrase
|
BiSECT: Learning to Split and Rephrase Sentences with Bitexts
|
2109.05006
|
https://arxiv.org/abs/2109.05006v1
|
https://arxiv.org/pdf/2109.05006v1.pdf
|
https://github.com/mounicam/bisect
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/stiff-neural-ordinary-differential-equations
|
Stiff Neural Ordinary Differential Equations
|
2103.15341
|
https://arxiv.org/abs/2103.15341v3
|
https://arxiv.org/pdf/2103.15341v3.pdf
|
https://github.com/DENG-MIT/StiffNeuralODE
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/dimension-reduction-of-dynamical-systems-on
|
Dimension reduction of dynamical systems on networks with leading and non-leading eigenvectors of adjacency matrices
|
2203.13872
|
https://arxiv.org/abs/2203.13872v2
|
https://arxiv.org/pdf/2203.13872v2.pdf
|
https://github.com/naokimas/nonleading-spectral
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/the-built-in-selection-bias-of-hazard-ratios
|
The built-in selection bias of hazard ratios formalized
|
2210.16550
|
https://arxiv.org/abs/2210.16550v1
|
https://arxiv.org/pdf/2210.16550v1.pdf
|
https://github.com/rajp93/chr
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/informer-beyond-efficient-transformer-for
|
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting
|
2012.07436
|
https://arxiv.org/abs/2012.07436v3
|
https://arxiv.org/pdf/2012.07436v3.pdf
|
https://github.com/larsbentsen/fftransformer
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/detecting-out-of-distribution-examples-with
|
Detecting Out-of-Distribution Examples with In-distribution Examples and Gram Matrices
|
1912.12510
|
https://arxiv.org/abs/1912.12510v2
|
https://arxiv.org/pdf/1912.12510v2.pdf
|
https://github.com/kobybibas/pnml_ood_detection
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/enhancing-the-reliability-of-out-of
|
Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks
|
1706.02690
|
https://arxiv.org/abs/1706.02690v5
|
https://arxiv.org/pdf/1706.02690v5.pdf
|
https://github.com/kobybibas/pnml_ood_detection
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/a-baseline-for-detecting-misclassified-and
|
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
|
1610.02136
|
http://arxiv.org/abs/1610.02136v3
|
http://arxiv.org/pdf/1610.02136v3.pdf
|
https://github.com/kobybibas/pnml_ood_detection
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/parlai-a-dialog-research-software-platform
|
ParlAI: A Dialog Research Software Platform
|
1705.06476
|
http://arxiv.org/abs/1705.06476v4
|
http://arxiv.org/pdf/1705.06476v4.pdf
|
https://github.com/min942773/parlai_wandb
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/cxr-clip-toward-large-scale-chest-x-ray
|
CXR-CLIP: Toward Large Scale Chest X-ray Language-Image Pre-training
|
2310.13292
|
https://arxiv.org/abs/2310.13292v1
|
https://arxiv.org/pdf/2310.13292v1.pdf
|
https://github.com/kakaobrain/cxr-clip
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/rethinking-the-ill-posedness-of-the-spectral
|
Rethinking the ill-posedness of the spectral function reconstruction -- why is it fundamentally hard and how Artificial Neural Networks can help
|
2201.02564
|
https://arxiv.org/abs/2201.02564v2
|
https://arxiv.org/pdf/2201.02564v2.pdf
|
https://github.com/shuzheshi/spectralfunction
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/towards-consensus-reducing-polarization-by
|
Towards Consensus: Reducing Polarization by Perturbing Social Networks
|
2206.08996
|
https://arxiv.org/abs/2206.08996v2
|
https://arxiv.org/pdf/2206.08996v2.pdf
|
https://github.com/drigobon/minimizing-polarization
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/efficiently-predicting-high-resolution-mass
|
Efficiently predicting high resolution mass spectra with graph neural networks
|
2301.11419
|
https://arxiv.org/abs/2301.11419v1
|
https://arxiv.org/pdf/2301.11419v1.pdf
|
https://github.com/samgoldman97/ms-pred
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/generation-of-microbial-colonies-dataset-with
|
Generation of microbial colonies dataset with deep learning style transfer
|
2111.03789
|
https://arxiv.org/abs/2111.03789v2
|
https://arxiv.org/pdf/2111.03789v2.pdf
|
https://github.com/jarek-pawlowski/microbial-dataset-generation
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-principle-solution-for-enroll-test-mismatch
|
A Principle Solution for Enroll-Test Mismatch in Speaker Recognition
|
2012.12471
|
https://arxiv.org/abs/2012.12471v2
|
https://arxiv.org/pdf/2012.12471v2.pdf
|
https://gitlab.com/csltstu/enroll-test-mismatch
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/data-augmentation-through-monte-carlo
|
Data Augmentation Through Monte Carlo Arithmetic Leads to More Generalizable Classification in Connectomics
|
2109.09649
|
https://arxiv.org/abs/2109.09649v1
|
https://arxiv.org/pdf/2109.09649v1.pdf
|
https://github.com/gkpapers/2021aggregatemca
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/automatic-lane-change-scenario-extraction-and
|
Automatic lane change scenario extraction and generation of scenarios in OpenX format from real-world data
|
2203.07521
|
https://arxiv.org/abs/2203.07521v1
|
https://arxiv.org/pdf/2203.07521v1.pdf
|
https://github.com/dkarunakaran/scenario_extraction_framework
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/magnitude-corrected-and-time-aligned
|
Magnitude-Corrected and Time-Aligned Interpolation of Head-Related Transfer Functions
|
2303.09966
|
https://arxiv.org/abs/2303.09966v1
|
https://arxiv.org/pdf/2303.09966v1.pdf
|
https://github.com/audiogroupcologne/supdeq
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/building-a-heterogeneous-large-scale
|
A Sparse and Locally Coherent Morphable Face Model for Dense Semantic Correspondence Across Heterogeneous 3D Faces
|
2006.03840
|
https://arxiv.org/abs/2006.03840v3
|
https://arxiv.org/pdf/2006.03840v3.pdf
|
https://github.com/clferrari/SLC-3DMM
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/workspace-aware-online-grasp-planning
|
Workspace Aware Online Grasp Planning
|
1806.11402
|
http://arxiv.org/abs/1806.11402v1
|
http://arxiv.org/pdf/1806.11402v1.pdf
|
https://github.com/scikit-fmm/scikit-fmm
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/challenges-in-representation-learning-a
|
Challenges in Representation Learning: A report on three machine learning contests
|
1307.0414
|
http://arxiv.org/abs/1307.0414v1
|
http://arxiv.org/pdf/1307.0414v1.pdf
|
https://github.com/justinshenk/fer
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/pc2-pu-patch-correlation-and-position
|
PC$^2$-PU: Patch Correlation and Point Correlation for Effective Point Cloud Upsampling
|
2109.09337
|
https://arxiv.org/abs/2109.09337v3
|
https://arxiv.org/pdf/2109.09337v3.pdf
|
https://github.com/chenlongwhu/pc2-pu
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/roughness-index-and-roughness-distance-for
|
Roughness Index and Roughness Distance for Benchmarking Medical Segmentation
|
2103.12350
|
https://arxiv.org/abs/2103.12350v1
|
https://arxiv.org/pdf/2103.12350v1.pdf
|
https://github.com/Vidhiwar/roughness-index
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/beyond-part-models-person-retrieval-with
|
Beyond Part Models: Person Retrieval with Refined Part Pooling (and a Strong Convolutional Baseline)
|
1711.09349
|
http://arxiv.org/abs/1711.09349v3
|
http://arxiv.org/pdf/1711.09349v3.pdf
|
https://github.com/MindSpore-paper-code-2/code2/tree/main/pcb_rpp
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/the-second-conversational-intelligence
|
The Second Conversational Intelligence Challenge (ConvAI2)
|
1902.00098
|
http://arxiv.org/abs/1902.00098v1
|
http://arxiv.org/pdf/1902.00098v1.pdf
|
https://github.com/af1tang/personaGPT
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-robust-monocular-depth-estimation
|
Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer
|
1907.01341
|
https://arxiv.org/abs/1907.01341v3
|
https://arxiv.org/pdf/1907.01341v3.pdf
|
https://github.com/mindspore-ai/models/tree/master/research/cv/midas
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/the-pragmatics-behind-politics-modelling
|
The Pragmatics behind Politics: Modelling Metaphor, Framing and Emotion in Political Discourse
| null |
https://aclanthology.org/2020.findings-emnlp.402
|
https://aclanthology.org/2020.findings-emnlp.402.pdf
|
https://github.com/littlepea13/mtl_political_discourse
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/insight-into-cloud-processes-from
|
Insight into cloud processes from unsupervised classification with a rotationally invariant autoencoder
|
2211.00860
|
https://arxiv.org/abs/2211.00860v2
|
https://arxiv.org/pdf/2211.00860v2.pdf
|
https://github.com/rdcep/clouds
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/when-is-wall-a-pared-and-when-a-muro
|
When is Wall a Pared and when a Muro? -- Extracting Rules Governing Lexical Selection
|
2109.06014
|
https://arxiv.org/abs/2109.06014v1
|
https://arxiv.org/pdf/2109.06014v1.pdf
|
https://github.com/Aditi138/LexSelection
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/stc-antispoofing-systems-for-the-asvspoof2019
|
STC Antispoofing Systems for the ASVspoof2019 Challenge
|
1904.05576
|
http://arxiv.org/abs/1904.05576v1
|
http://arxiv.org/pdf/1904.05576v1.pdf
|
https://github.com/ozora-ogino/LCNN
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/repvgg-making-vgg-style-convnets-great-again
|
RepVGG: Making VGG-style ConvNets Great Again
|
2101.03697
|
https://arxiv.org/abs/2101.03697v3
|
https://arxiv.org/pdf/2101.03697v3.pdf
|
https://github.com/MindSpore-paper-code-2/code2/tree/main/repvgg
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/noisy-networks-for-exploration
|
Noisy Networks for Exploration
|
1706.10295
|
https://arxiv.org/abs/1706.10295v3
|
https://arxiv.org/pdf/1706.10295v3.pdf
|
https://github.com/MOVzeroOne/DQN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/vortex-clustering-polarisation-and
|
Vortex clustering, polarisation and circulation intermittency in classical and quantum turbulence
|
2107.03335
|
https://arxiv.org/abs/2107.03335v2
|
https://arxiv.org/pdf/2107.03335v2.pdf
|
https://github.com/jipolanco/Circulation.jl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-linear-adjustment-based-approach-to
|
A linear adjustment based approach to posterior drift in transfer learning
|
2111.10841
|
https://arxiv.org/abs/2111.10841v2
|
https://arxiv.org/pdf/2111.10841v2.pdf
|
https://github.com/smaityumich/linearly-shifted-transfer
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/towards-prediction-explainability-through
|
The Explanation Game: Towards Prediction Explainability through Sparse Communication
|
2004.13876
|
https://arxiv.org/abs/2004.13876v2
|
https://arxiv.org/pdf/2004.13876v2.pdf
|
https://github.com/deep-spin/spec
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/playing-atari-with-deep-reinforcement
|
Playing Atari with Deep Reinforcement Learning
|
1312.5602
|
http://arxiv.org/abs/1312.5602v1
|
http://arxiv.org/pdf/1312.5602v1.pdf
|
https://github.com/MOVzeroOne/DQN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/dueling-network-architectures-for-deep
|
Dueling Network Architectures for Deep Reinforcement Learning
|
1511.06581
|
http://arxiv.org/abs/1511.06581v3
|
http://arxiv.org/pdf/1511.06581v3.pdf
|
https://github.com/MOVzeroOne/DQN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/deep-reinforcement-learning-with-double-q
|
Deep Reinforcement Learning with Double Q-learning
|
1509.06461
|
http://arxiv.org/abs/1509.06461v3
|
http://arxiv.org/pdf/1509.06461v3.pdf
|
https://github.com/MOVzeroOne/DQN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/gaze-estimation-with-an-ensemble-of-four
|
Gaze Estimation with an Ensemble of Four Architectures
|
2107.01980
|
https://arxiv.org/abs/2107.01980v1
|
https://arxiv.org/pdf/2107.01980v1.pdf
|
https://github.com/VIPL-TAL-GAZE/GAZE2021
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-coherent-unsupervised-model-for-toponym
|
A Coherent Unsupervised Model for Toponym Resolution
|
1805.01952
|
https://arxiv.org/abs/1805.01952v2
|
https://arxiv.org/pdf/1805.01952v2.pdf
|
https://github.com/ehsk/CHF-TopoResolver
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/meta-learning-on-a-sequence-of-imbalanced
|
Meta Learning on a Sequence of Imbalanced Domains with Difficulty Awareness
|
2109.14120
|
https://arxiv.org/abs/2109.14120v1
|
https://arxiv.org/pdf/2109.14120v1.pdf
|
https://github.com/joey-wang123/imbalancemeta
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/transfer-learning-improving-neural-network
|
Transfer learning: Improving neural network based prediction of earthquake ground shaking for an area with insufficient training data
|
2105.05075
|
https://arxiv.org/abs/2105.05075v1
|
https://arxiv.org/pdf/2105.05075v1.pdf
|
https://github.com/djozinovi/TLpredIM
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/snips-voice-platform-an-embedded-spoken
|
Snips Voice Platform: an embedded Spoken Language Understanding system for private-by-design voice interfaces
|
1805.10190
|
http://arxiv.org/abs/1805.10190v3
|
http://arxiv.org/pdf/1805.10190v3.pdf
|
https://github.com/Priyanshiguptaaa/Intent_Recognition_BERT
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/advhat-real-world-adversarial-attack-on
|
AdvHat: Real-world adversarial attack on ArcFace Face ID system
|
1908.08705
|
https://arxiv.org/abs/1908.08705v1
|
https://arxiv.org/pdf/1908.08705v1.pdf
|
https://github.com/MindSpore-paper-code-2/code400/tree/main/Arcface
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/optimizing-memory-efficiency-of-graph
|
Optimizing Memory Efficiency of Graph Neural Networks on Edge Computing Platforms
|
2104.03058
|
https://arxiv.org/abs/2104.03058v2
|
https://arxiv.org/pdf/2104.03058v2.pdf
|
https://github.com/BUAA-CI-Lab/GNN-Feature-Decomposition
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/predictive-world-models-from-real-world
|
Predictive World Models from Real-World Partial Observations
|
2301.04783
|
https://arxiv.org/abs/2301.04783v3
|
https://arxiv.org/pdf/2301.04783v3.pdf
|
https://github.com/robin-karlsson0/predictive-world-models
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/effectiveness-of-optimization-algorithms-in
|
Effectiveness of Optimization Algorithms in Deep Image Classification
|
2110.01598
|
https://arxiv.org/abs/2110.01598v1
|
https://arxiv.org/pdf/2110.01598v1.pdf
|
https://github.com/chuiyunjun/projectCSC413
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/ranking-policy-decisions
|
Ranking Policy Decisions
|
2008.13607
|
https://arxiv.org/abs/2008.13607v3
|
https://arxiv.org/pdf/2008.13607v3.pdf
|
https://github.com/anonuser-532438/policyrankinganon
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/190501999
|
A Benchmark API Call Dataset for Windows PE Malware Classification
|
1905.01999
|
http://arxiv.org/abs/1905.01999v1
|
http://arxiv.org/pdf/1905.01999v1.pdf
|
https://github.com/6700github/awesome-reverse-engineering
| false
| false
| true
|
paddle
|
https://paperswithcode.com/paper/deep-adaptive-input-normalization-for-price
|
Deep Adaptive Input Normalization for Time Series Forecasting
|
1902.07892
|
https://arxiv.org/abs/1902.07892v2
|
https://arxiv.org/pdf/1902.07892v2.pdf
|
https://github.com/vladserkoff/DAIN-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/dpc-unsupervised-deep-point-correspondence
|
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction
|
2110.08636
|
https://arxiv.org/abs/2110.08636v1
|
https://arxiv.org/pdf/2110.08636v1.pdf
|
https://github.com/dvirginz/dpc
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/lossless-compression-with-probabilistic-1
|
Lossless Compression with Probabilistic Circuits
|
2111.11632
|
https://arxiv.org/abs/2111.11632v2
|
https://arxiv.org/pdf/2111.11632v2.pdf
|
https://github.com/juice-jl/pressedjuice.jl
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/putting-nerf-on-a-diet-semantically
|
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis
|
2104.00677
|
https://arxiv.org/abs/2104.00677v1
|
https://arxiv.org/pdf/2104.00677v1.pdf
|
https://github.com/ajayjain/DietNeRF
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/reduce-reformulation-of-mixed-integer
|
ReDUCE: Reformulation of Mixed Integer Programs using Data from Unsupervised Clusters for Learning Efficient Strategies
|
2110.00666
|
https://arxiv.org/abs/2110.00666v1
|
https://arxiv.org/pdf/2110.00666v1.pdf
|
https://github.com/romelaucla/reduce
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/step-by-step-a-hierarchical-framework-for
|
Step by step: a hierarchical framework for multi-hop knowledge graph reasoning with reinforcement learning
| null |
https://doi.org/10.1016/j.knosys.2022.108843
|
https://doi.org/10.1016/j.knosys.2022.108843
|
https://github.com/2023-MindSpore-1/ms-code-4
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/memebusters-at-semeval-2020-task-8-feature
|
Memebusters at SemEval-2020 Task 8: Feature Fusion Model for Sentiment Analysis on Memes Using Transfer Learning
| null |
https://aclanthology.org/2020.semeval-1.154
|
https://aclanthology.org/2020.semeval-1.154.pdf
|
https://github.com/04mayukh/memebusters-at-semeval-2020-task-8-memotion-analysis
| false
| true
| false
|
none
|
https://paperswithcode.com/paper/v2e-from-video-frames-to-realistic-dvs-event
|
v2e: From Video Frames to Realistic DVS Events
|
2006.07722
|
https://arxiv.org/abs/2006.07722v2
|
https://arxiv.org/pdf/2006.07722v2.pdf
|
https://github.com/SensorsINI/v2e_exps_public
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/suod-toward-scalable-unsupervised-outlier
|
SUOD: Toward Scalable Unsupervised Outlier Detection
|
2002.03222
|
https://arxiv.org/abs/2002.03222v1
|
https://arxiv.org/pdf/2002.03222v1.pdf
|
https://github.com/yzhao062/SUOD
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/tackling-multi-answer-open-domain-questions
|
Answering Open-Domain Multi-Answer Questions via a Recall-then-Verify Framework
|
2110.08544
|
https://arxiv.org/abs/2110.08544v2
|
https://arxiv.org/pdf/2110.08544v2.pdf
|
https://github.com/zhihongshao/rectify
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/optimizing-readability-using-genetic
|
Optimizing Readability Using Genetic Algorithms
|
2301.00374
|
https://arxiv.org/abs/2301.00374v1
|
https://arxiv.org/pdf/2301.00374v1.pdf
|
https://github.com/jorge-martinez-gil/oruga
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/regularizing-variational-autoencoder-with
|
Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness
|
2110.12381
|
https://arxiv.org/abs/2110.12381v1
|
https://arxiv.org/pdf/2110.12381v1.pdf
|
https://github.com/smilesdzgk/du-vae
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/conjugate-priors-for-count-and-rounded-data
|
Semiparametric discrete data regression with Monte Carlo inference and prediction
|
2110.12316
|
https://arxiv.org/abs/2110.12316v6
|
https://arxiv.org/pdf/2110.12316v6.pdf
|
https://github.com/drkowal/rSTAR
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/probabilistic-mixture-of-experts-for-1
|
Probabilistic Mixture-of-Experts for Efficient Deep Reinforcement Learning
|
2104.09122
|
https://arxiv.org/abs/2104.09122v1
|
https://arxiv.org/pdf/2104.09122v1.pdf
|
https://github.com/JieRen98/rlkit-pmoe
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/uncertainty-quantification-and-deep-ensembles
|
Uncertainty Quantification and Deep Ensembles
|
2007.08792
|
https://arxiv.org/abs/2007.08792v4
|
https://arxiv.org/pdf/2007.08792v4.pdf
|
https://github.com/rahulrahaman/Uncertainty-Quantification-and-Deep-Ensemble
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/locally-differentially-private-contextual
|
Locally Differentially Private (Contextual) Bandits Learning
|
2006.00701
|
https://arxiv.org/abs/2006.00701v4
|
https://arxiv.org/pdf/2006.00701v4.pdf
|
https://github.com/mindspore-ai/models/tree/master/research/rl/ldp_linucb
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/sample-size-estimation-using-a-latent
|
Sample Size Estimation using a Latent Variable Model for Mixed Outcome Co-Primary, Multiple Primary and Composite Endpoints
|
1912.05258
|
https://arxiv.org/abs/1912.05258v1
|
https://arxiv.org/pdf/1912.05258v1.pdf
|
https://github.com/martinamcm/mult_sampsize
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/layout-and-task-aware-instruction-prompt-for
|
Layout and Task Aware Instruction Prompt for Zero-shot Document Image Question Answering
|
2306.00526
|
https://arxiv.org/abs/2306.00526v4
|
https://arxiv.org/pdf/2306.00526v4.pdf
|
https://github.com/deepopinion/anls_star_metric
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/deeper-depth-prediction-with-fully
|
Deeper Depth Prediction with Fully Convolutional Residual Networks
|
1606.00373
|
http://arxiv.org/abs/1606.00373v2
|
http://arxiv.org/pdf/1606.00373v2.pdf
|
https://github.com/danielzgsilva/MonoDepthAttacks
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/lindblad-tomography-of-a-superconducting
|
Lindblad Tomography of a Superconducting Quantum Processor
|
2105.02338
|
https://arxiv.org/abs/2105.02338v5
|
https://arxiv.org/pdf/2105.02338v5.pdf
|
https://github.com/jborregaard/Lindblad_tomography
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/new-roads-to-the-small-scale-universe
|
New Roads to the Small-Scale Universe: Measurements of the Clustering of Matter with the High-Redshift UV Galaxy Luminosity Function
|
2110.13161
|
https://arxiv.org/abs/2110.13161v2
|
https://arxiv.org/pdf/2110.13161v2.pdf
|
https://github.com/nnssa/gallumi_public
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/the-jsonlite-package-a-practical-and
|
The jsonlite Package: A Practical and Consistent Mapping Between JSON Data and R Objects
|
1403.2805
|
http://arxiv.org/abs/1403.2805v1
|
http://arxiv.org/pdf/1403.2805v1.pdf
|
https://github.com/behrica/opencpu-clj
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/robust-control-of-partially-specified-boolean
|
Robust Control of Partially Specified Boolean Networks
|
2202.13440
|
https://arxiv.org/abs/2202.13440v1
|
https://arxiv.org/pdf/2202.13440v1.pdf
|
https://github.com/sybila/biodivine-pbn-control
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/gallumi-a-galaxy-luminosity-function-pipeline
|
GALLUMI: A Galaxy Luminosity Function Pipeline for Cosmology and Astrophysics
|
2110.13168
|
https://arxiv.org/abs/2110.13168v3
|
https://arxiv.org/pdf/2110.13168v3.pdf
|
https://github.com/nnssa/gallumi_public
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/time-series-graphical-lasso-and-sparse-var
|
Time Series Graphical Lasso and Sparse VAR Estimation
|
2107.01659
|
https://arxiv.org/abs/2107.01659v1
|
https://arxiv.org/pdf/2107.01659v1.pdf
|
https://github.com/adallak/TSGlasso/blob/main/README.md
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/wiener-filtering-and-pure-e-b-decomposition
|
Wiener filtering and pure E/B decomposition of CMB maps with anisotropic correlated noise
|
1906.10704
|
http://arxiv.org/abs/1906.10704v2
|
http://arxiv.org/pdf/1906.10704v2.pdf
|
https://github.com/doogesh/dante
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/post-hoc-domain-adaptation-via-guided-data
|
Post-Hoc Domain Adaptation via Guided Data Homogenization
|
2104.03624
|
https://arxiv.org/abs/2104.03624v1
|
https://arxiv.org/pdf/2104.03624v1.pdf
|
https://github.com/willisk/GDH
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/mosaicking-to-distill-knowledge-distillation
|
Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data
|
2110.15094
|
https://arxiv.org/abs/2110.15094v1
|
https://arxiv.org/pdf/2110.15094v1.pdf
|
https://github.com/zju-vipa/mosaickd
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/lf-yolo-a-lighter-and-faster-yolo-for-weld
|
LF-YOLO: A Lighter and Faster YOLO for Weld Defect Detection of X-ray Image
|
2110.15045
|
https://arxiv.org/abs/2110.15045v2
|
https://arxiv.org/pdf/2110.15045v2.pdf
|
https://github.com/lmomoy/lf-yolo
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/data-free-network-quantization-with
|
Data-Free Network Quantization With Adversarial Knowledge Distillation
|
2005.04136
|
https://arxiv.org/abs/2005.04136v1
|
https://arxiv.org/pdf/2005.04136v1.pdf
|
https://github.com/zju-vipa/mosaickd
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-from-a-teacher-using-unlabeled-data
|
Learning from a Teacher using Unlabeled Data
|
1911.05275
|
https://arxiv.org/abs/1911.05275v1
|
https://arxiv.org/pdf/1911.05275v1.pdf
|
https://github.com/zju-vipa/mosaickd
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/cross-domain-object-detection-by-target
|
Cross Domain Object Detection by Target-Perceived Dual Branch Distillation
|
2205.01291
|
https://arxiv.org/abs/2205.01291v1
|
https://arxiv.org/pdf/2205.01291v1.pdf
|
https://github.com/feobi1999/tdd
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/opt-open-pre-trained-transformer-language
|
OPT: Open Pre-trained Transformer Language Models
|
2205.01068
|
https://arxiv.org/abs/2205.01068v4
|
https://arxiv.org/pdf/2205.01068v4.pdf
|
https://github.com/MindCode-4/code-2/tree/main/opt
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/adapttext-a-novel-framework-for-domain
|
AdaptText: A Novel Framework for Domain-Independent Automated Sinhala Text Classification
| null |
https://ieeexplore.ieee.org/document/9605861
|
https://ieeexplore.ieee.org/document/9605861
|
https://github.com/yathindrakodithuwakku/AdaptText
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/towards-unifying-feature-attribution-and
|
Towards Unifying Feature Attribution and Counterfactual Explanations: Different Means to the Same End
|
2011.04917
|
https://arxiv.org/abs/2011.04917v3
|
https://arxiv.org/pdf/2011.04917v3.pdf
|
https://github.com/interpretml/DiCE
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/web-based-elicitation-of-human-perception-on
|
Human-in-the-Loop Mixup
|
2211.01202
|
https://arxiv.org/abs/2211.01202v3
|
https://arxiv.org/pdf/2211.01202v3.pdf
|
https://github.com/cambridge-mlg/hill-mixup
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/augmenting-english-adjective-senses-with
|
Augmenting English Adjective Senses with Supersenses
| null |
https://aclanthology.org/L14-1073
|
https://aclanthology.org/L14-1073.pdf
|
https://github.com/ytsvetko/adjective_supersense_classifier
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/ugc-vqa-benchmarking-blind-video-quality
|
UGC-VQA: Benchmarking Blind Video Quality Assessment for User Generated Content
|
2005.14354
|
https://arxiv.org/abs/2005.14354v2
|
https://arxiv.org/pdf/2005.14354v2.pdf
|
https://github.com/tu184044109/VIDEVAL_release
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/last-iterate-convergence-of-optimistic
|
Last-Iterate Convergence of Optimistic Gradient Method for Monotone Variational Inequalities
|
2205.08446
|
https://arxiv.org/abs/2205.08446v2
|
https://arxiv.org/pdf/2205.08446v2.pdf
|
https://github.com/eduardgorbunov/potentials_and_last_iter_convergence_for_vips
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/random-search-and-reproducibility-for-neural
|
Random Search and Reproducibility for Neural Architecture Search
|
1902.07638
|
https://arxiv.org/abs/1902.07638v3
|
https://arxiv.org/pdf/1902.07638v3.pdf
|
https://github.com/microsoft/nn-meter
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/cross-modal-contrastive-learning-for-1
|
Cross-modal Contrastive Learning for Multimodal Fake News Detection
|
2302.14057
|
https://arxiv.org/abs/2302.14057v2
|
https://arxiv.org/pdf/2302.14057v2.pdf
|
https://github.com/wishever/coolant
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/it-doesnt-look-good-for-a-date-transforming
|
“It doesn’t look good for a date”: Transforming Critiques into Preferences for Conversational Recommendation Systems
| null |
https://aclanthology.org/2021.emnlp-main.145
|
https://aclanthology.org/2021.emnlp-main.145.pdf
|
https://github.com/vbursztyn/critique-to-preference-emnlp2021
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/contrastive-aligned-joint-learning-for
|
Contrastive Aligned Joint Learning for Multilingual Summarization
| null |
https://aclanthology.org/2021.findings-acl.242
|
https://aclanthology.org/2021.findings-acl.242.pdf
|
https://github.com/brxx122/calms
| true
| true
| false
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.