paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/edtc-a-corpus-for-discourse-level-topic-chain
|
EDTC: A Corpus for Discourse-Level Topic Chain Parsing
| null |
https://aclanthology.org/2021.findings-emnlp.113
|
https://aclanthology.org/2021.findings-emnlp.113.pdf
|
https://github.com/nlp-discourse-soochowu/dtcp
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/writing-style-author-embedding-evaluation
|
Writing Style Author Embedding Evaluation
| null |
https://aclanthology.org/2021.eval4nlp-1.9
|
https://aclanthology.org/2021.eval4nlp-1.9.pdf
|
https://github.com/enzofleur/style_embedding_evaluation
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/countering-the-influence-of-essay-length-in
|
Countering the Influence of Essay Length in Neural Essay Scoring
| null |
https://aclanthology.org/2021.sustainlp-1.4
|
https://aclanthology.org/2021.sustainlp-1.4.pdf
|
https://github.com/sdeva14/sustai21-counter-neural-essay-length
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/unsupervised-monocular-depth-estimation-with
|
Unsupervised Monocular Depth Estimation with Left-Right Consistency
|
1609.03677
|
http://arxiv.org/abs/1609.03677v3
|
http://arxiv.org/pdf/1609.03677v3.pdf
|
https://github.com/xown3197/3D_Pedestrian_Localization_2021ComputerVision
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/unsupervised-monocular-depth-learning-in
|
Unsupervised Monocular Depth Learning in Dynamic Scenes
|
2010.16404
|
https://arxiv.org/abs/2010.16404v2
|
https://arxiv.org/pdf/2010.16404v2.pdf
|
https://github.com/CarloRadice/depth-and-motion-learning
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/smells-in-system-user-interactive-tests
|
Smells in System User Interactive Tests
|
2111.02317
|
https://arxiv.org/abs/2111.02317v1
|
https://arxiv.org/pdf/2111.02317v1.pdf
|
https://github.com/kabinja/suit-smells-replication-package
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/improving-sequence-to-sequence-semantic
|
Improving Sequence-to-Sequence Semantic Parser for Task Oriented Dialog
| null |
https://aclanthology.org/2020.intexsempar-1.3
|
https://aclanthology.org/2020.intexsempar-1.3.pdf
|
https://github.com/cxuan2019/top
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/offensive-language-detection-in-nepali-social
|
Offensive Language Detection in Nepali Social Media
| null |
https://aclanthology.org/2021.woah-1.7
|
https://aclanthology.org/2021.woah-1.7.pdf
|
https://github.com/nowalab/offensive-nepali
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/bert4rec-sequential-recommendation-with
|
BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer
|
1904.06690
|
https://arxiv.org/abs/1904.06690v2
|
https://arxiv.org/pdf/1904.06690v2.pdf
|
https://github.com/vatsalsaglani/bert4rec
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/dual-attention-networks-for-multimodal
|
Dual Attention Networks for Multimodal Reasoning and Matching
|
1611.00471
|
http://arxiv.org/abs/1611.00471v2
|
http://arxiv.org/pdf/1611.00471v2.pdf
|
https://github.com/iammrhelo/pytorch-vqa-dan
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/cnn-architectures-for-large-scale-audio
|
CNN Architectures for Large-Scale Audio Classification
|
1609.09430
|
http://arxiv.org/abs/1609.09430v2
|
http://arxiv.org/pdf/1609.09430v2.pdf
|
https://github.com/stanfordmlgroup/aihc-sum20-lung-sounds
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/spread2rml-constructing-knowledge-graphs-by
|
Spread2RML: Constructing Knowledge Graphs by Predicting RML Mappings on Messy Spreadsheets
|
2110.12829
|
https://arxiv.org/abs/2110.12829v1
|
https://arxiv.org/pdf/2110.12829v1.pdf
|
https://github.com/mschroeder-github/spread2rml
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/polyhedral-mesh-quality-indicator-for-the
|
Polyhedral Mesh Quality Indicator for the Virtual Element Method
|
2112.11365
|
https://arxiv.org/abs/2112.11365v1
|
https://arxiv.org/pdf/2112.11365v1.pdf
|
https://github.com/tommasosorgente/vem-indicator-3d-dataset
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/on-the-fly-category-discovery
|
On-the-Fly Category Discovery
| null |
http://openaccess.thecvf.com//content/CVPR2023/html/Du_On-the-Fly_Category_Discovery_CVPR_2023_paper.html
|
http://openaccess.thecvf.com//content/CVPR2023/papers/Du_On-the-Fly_Category_Discovery_CVPR_2023_paper.pdf
|
https://github.com/pris-cv/on-the-fly-category-discovery
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-graph-neural-network-based-approach-for
|
Identifying Possible Rumor Spreaders on Twitter: A Weak Supervised Learning Approach
|
2010.07647
|
https://arxiv.org/abs/2010.07647v2
|
https://arxiv.org/pdf/2010.07647v2.pdf
|
https://github.com/shakshi12/Rumor-Spreaders-using-GNN-approach-PHEME-dataset-
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/non-intrusive-binaural-speech-intelligibility
|
Non-Intrusive Binaural Speech Intelligibility Prediction from Discrete Latent Representations
|
2111.12531
|
https://arxiv.org/abs/2111.12531v2
|
https://arxiv.org/pdf/2111.12531v2.pdf
|
https://github.com/vvvm23/stoi-vqcpc
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/revisiting-graph-neural-networks-all-we-have
|
Revisiting Graph Neural Networks: All We Have is Low-Pass Filters
|
1905.09550
|
https://arxiv.org/abs/1905.09550v2
|
https://arxiv.org/pdf/1905.09550v2.pdf
|
https://github.com/hazdzz/gfNN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/mesoscopic-insights-orchestrating-multi-scale
|
Mesoscopic Insights: Orchestrating Multi-scale & Hybrid Architecture for Image Manipulation Localization
|
2412.13753
|
https://arxiv.org/abs/2412.13753v1
|
https://arxiv.org/pdf/2412.13753v1.pdf
|
https://github.com/scu-zjz/Mesorch
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/multi-behavior-self-supervised-learning-for
|
Multi-behavior Self-supervised Learning for Recommendation
|
2305.18238
|
https://arxiv.org/abs/2305.18238v1
|
https://arxiv.org/pdf/2305.18238v1.pdf
|
https://github.com/scofield666/mbssl
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-great-model-comparison-against-the
|
A GREAT model comparison against the cosmological constant
|
2111.13083
|
https://arxiv.org/abs/2111.13083v2
|
https://arxiv.org/pdf/2111.13083v2.pdf
|
https://github.com/snesseris/great-project
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
|
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
|
1810.04805
|
https://arxiv.org/abs/1810.04805v2
|
https://arxiv.org/pdf/1810.04805v2.pdf
|
https://github.com/geondopark/ckd
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/texttt-py-irt-a-scalable-item-response-theory
|
py-irt: A Scalable Item Response Theory Library for Python
|
2203.01282
|
https://arxiv.org/abs/2203.01282v2
|
https://arxiv.org/pdf/2203.01282v2.pdf
|
https://github.com/nd-ball/py-irt
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/deep-predictive-coding-networks-for-video
|
Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning
|
1605.08104
|
http://arxiv.org/abs/1605.08104v5
|
http://arxiv.org/pdf/1605.08104v5.pdf
|
https://github.com/Mikkil5112/PredNet
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/active-machine-learning-for-spatio-temporal
|
Enhanced spatio-temporal electric load forecasts using less data with active deep learning
|
2012.04407
|
https://arxiv.org/abs/2012.04407v2
|
https://arxiv.org/pdf/2012.04407v2.pdf
|
https://github.com/ArsamAryandoust/DataSelectionMaps
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/video-action-classification-using-prednet
|
PredNet and Predictive Coding: A Critical Review
|
1906.11902
|
https://arxiv.org/abs/1906.11902v3
|
https://arxiv.org/pdf/1906.11902v3.pdf
|
https://github.com/Mikkil5112/PredNet
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/an-end-to-end-trainable-neural-network-for
|
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition
|
1507.05717
|
http://arxiv.org/abs/1507.05717v1
|
http://arxiv.org/pdf/1507.05717v1.pdf
|
https://github.com/chandan5362/Indian-Number-Plate-Recognition
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/discodisco-at-the-disrpt2021-shared-task-a
|
DisCoDisCo at the DISRPT2021 Shared Task: A System for Discourse Segmentation, Classification, and Connective Detection
|
2109.09777
|
https://arxiv.org/abs/2109.09777v1
|
https://arxiv.org/pdf/2109.09777v1.pdf
|
https://github.com/gucorpling/discodisco
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/nafs-a-simple-yet-tough-to-beat-baseline-for-1
|
NAFS: A Simple yet Tough-to-beat Baseline for Graph Representation Learning
|
2206.08583
|
https://arxiv.org/abs/2206.08583v1
|
https://arxiv.org/pdf/2206.08583v1.pdf
|
https://github.com/zwt233/NAFS
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/k-2-ie-kernel-method-based-kernel-intensity
|
K$^2$IE: Kernel Method-based Kernel Intensity Estimators for Inhomogeneous Poisson Processes
|
2505.24704
|
https://arxiv.org/abs/2505.24704v1
|
https://arxiv.org/pdf/2505.24704v1.pdf
|
https://github.com/hidkim/k2ie
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/multilingual-controllable-transformer-based
|
Multilingual Controllable Transformer-Based Lexical Simplification
|
2307.02120
|
https://arxiv.org/abs/2307.02120v1
|
https://arxiv.org/pdf/2307.02120v1.pdf
|
https://github.com/kimchengsheang/mtls
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/strong-instance-segmentation-pipeline-for
|
Strong Instance Segmentation Pipeline for MMSports Challenge
|
2209.13899
|
https://arxiv.org/abs/2209.13899v1
|
https://arxiv.org/pdf/2209.13899v1.pdf
|
https://github.com/yjingyu/instanc_segmentation_pro
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-decentralized-framework-for-kernel-pca-with
|
A Decentralized Framework for Kernel PCA with Projection Consensus Constraints
|
2211.15953
|
https://arxiv.org/abs/2211.15953v1
|
https://arxiv.org/pdf/2211.15953v1.pdf
|
https://github.com/yruikk/dkpca-admm
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/open-domain-hierarchical-event-schema
|
Open-Domain Hierarchical Event Schema Induction by Incremental Prompting and Verification
|
2307.01972
|
https://arxiv.org/abs/2307.01972v1
|
https://arxiv.org/pdf/2307.01972v1.pdf
|
https://github.com/raspberryice/inc-schema
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/reverse-image-filtering-using-total
|
Reverse image filtering using total derivative approximation and accelerated gradient descent
|
2112.04121
|
https://arxiv.org/abs/2112.04121v3
|
https://arxiv.org/pdf/2112.04121v3.pdf
|
https://github.com/fergaletto/ReverseFilter_TDA
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/mipi-2022-challenge-on-rgb-tof-depth
|
MIPI 2022 Challenge on RGB+ToF Depth Completion: Dataset and Report
|
2209.07057
|
https://arxiv.org/abs/2209.07057v1
|
https://arxiv.org/pdf/2209.07057v1.pdf
|
https://github.com/mipi-challenge/mipi2022
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mipi-2022-challenge-on-rgbw-sensor-re-mosaic
|
MIPI 2022 Challenge on RGBW Sensor Re-mosaic: Dataset and Report
|
2209.08471
|
https://arxiv.org/abs/2209.08471v1
|
https://arxiv.org/pdf/2209.08471v1.pdf
|
https://github.com/mipi-challenge/mipi2022
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mipi-2022-challenge-on-rgbw-sensor-fusion
|
MIPI 2022 Challenge on RGBW Sensor Fusion: Dataset and Report
|
2209.07530
|
https://arxiv.org/abs/2209.07530v2
|
https://arxiv.org/pdf/2209.07530v2.pdf
|
https://github.com/mipi-challenge/mipi2022
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/cmua-watermark-a-cross-model-universal
|
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes
|
2105.10872
|
https://arxiv.org/abs/2105.10872v2
|
https://arxiv.org/pdf/2105.10872v2.pdf
|
https://github.com/vdigpku/cmua-watermark
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/measuring-fairness-with-biased-rulers-a
|
Measuring Fairness with Biased Rulers: A Survey on Quantifying Biases in Pretrained Language Models
|
2112.07447
|
https://arxiv.org/abs/2112.07447v1
|
https://arxiv.org/pdf/2112.07447v1.pdf
|
https://github.com/ipieter/biased-rulers
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/investigation-of-the-dead-time-duration-and
|
Dead time duration and active reset influence on the afterpulse probability of InGaAs/InP single-photon avalanche diodes
|
2104.03919
|
https://arxiv.org/abs/2104.03919v4
|
https://arxiv.org/pdf/2104.03919v4.pdf
|
https://github.com/akoziy98/Automated_Stand
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/emnist-an-extension-of-mnist-to-handwritten
|
EMNIST: an extension of MNIST to handwritten letters
|
1702.05373
|
http://arxiv.org/abs/1702.05373v2
|
http://arxiv.org/pdf/1702.05373v2.pdf
|
https://github.com/chuiyunjun/projectCSC413
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-variance-reduced-and-stabilized-proximal
|
A Variance-Reduced and Stabilized Proximal Stochastic Gradient Method with Support Identification Guarantees for Structured Optimization
|
2302.06790
|
https://arxiv.org/abs/2302.06790v1
|
https://arxiv.org/pdf/2302.06790v1.pdf
|
https://github.com/yutong-dai/s-pstorm
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/automatic-evaluation-and-moderation-of-open
|
Automatic Evaluation and Moderation of Open-domain Dialogue Systems
|
2111.02110
|
https://arxiv.org/abs/2111.02110v3
|
https://arxiv.org/pdf/2111.02110v3.pdf
|
https://github.com/lfdharo/DSTC10_Track5_Toxicity
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/automated-grading-of-radiographic-knee
|
Knee arthritis severity measurement using deep learning: a publicly available algorithm with a multi-institutional validation showing radiologist-level performance
|
2203.08914
|
https://arxiv.org/abs/2203.08914v2
|
https://arxiv.org/pdf/2203.08914v2.pdf
|
https://github.com/maciejmazurowski/osteoarthritis-classification
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/investigation-of-the-dependence-of-noise
|
Investigation of the dependence of noise characteristics of SPAD on the gate parameters in sine-wave gated single-photon detectors
|
2103.07363
|
https://arxiv.org/abs/2103.07363v3
|
https://arxiv.org/pdf/2103.07363v3.pdf
|
https://github.com/akoziy98/Automated_Stand
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/investigating-the-coherent-state-detection
|
Investigating the coherent state detection probability of InGaAs/InP SPAD-based single-photon detectors
|
2104.07952
|
https://arxiv.org/abs/2104.07952v1
|
https://arxiv.org/pdf/2104.07952v1.pdf
|
https://github.com/akoziy98/Automated_Stand
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/tensor-renormalization-of-three-dimensional
|
Tensor renormalization of three-dimensional Potts model
|
2201.01789
|
https://arxiv.org/abs/2201.01789v1
|
https://arxiv.org/pdf/2201.01789v1.pdf
|
https://github.com/rgjha/TensorCodes
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/neural-discrete-representation-learning
|
Neural Discrete Representation Learning
|
1711.00937
|
http://arxiv.org/abs/1711.00937v2
|
http://arxiv.org/pdf/1711.00937v2.pdf
|
https://github.com/yhy258/VariationalAutoEncoders-Pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/kaggledbqa-realistic-evaluation-of-text-to
|
KaggleDBQA: Realistic Evaluation of Text-to-SQL Parsers
|
2106.11455
|
https://arxiv.org/abs/2106.11455v1
|
https://arxiv.org/pdf/2106.11455v1.pdf
|
https://github.com/chiahsuan156/KaggleDBQA
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/joint-entropy-search-for-maximally-informed
|
Joint Entropy Search for Maximally-Informed Bayesian Optimization
|
2206.04771
|
https://arxiv.org/abs/2206.04771v5
|
https://arxiv.org/pdf/2206.04771v5.pdf
|
https://github.com/jointentropysearch/jointentropysearch
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/signal-strength-and-noise-drive-feature-1
|
Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers
|
2201.08893
|
https://arxiv.org/abs/2201.08893v1
|
https://arxiv.org/pdf/2201.08893v1.pdf
|
https://github.com/mwolff31/signal_preference
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-parallel-corpus-of-python-functions-and
|
A parallel corpus of Python functions and documentation strings for automated code documentation and code generation
|
1707.02275
|
http://arxiv.org/abs/1707.02275v1
|
http://arxiv.org/pdf/1707.02275v1.pdf
|
https://github.com/ICSEG/M2TS
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/recommendations-for-datasets-for-source-code
|
Recommendations for Datasets for Source Code Summarization
|
1904.02660
|
http://arxiv.org/abs/1904.02660v1
|
http://arxiv.org/pdf/1904.02660v1.pdf
|
https://github.com/ICSEG/M2TS
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/squeeze-and-excitation-networks
|
Squeeze-and-Excitation Networks
|
1709.01507
|
https://arxiv.org/abs/1709.01507v4
|
https://arxiv.org/pdf/1709.01507v4.pdf
|
https://github.com/mehrdad-noori/brain-tumor-segmentation
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/low-rank-constraints-for-fast-inference-in-1
|
Low-Rank Constraints for Fast Inference in Structured Models
|
2201.02715
|
https://arxiv.org/abs/2201.02715v1
|
https://arxiv.org/pdf/2201.02715v1.pdf
|
https://github.com/justinchiu/low-rank-models
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/spikecv-open-a-continuous-computer-vision-era
|
SpikeCV: Open a Continuous Computer Vision Era
|
2303.11684
|
https://arxiv.org/abs/2303.11684v2
|
https://arxiv.org/pdf/2303.11684v2.pdf
|
https://github.com/zyj061/spikecv
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/dissipativity-based-decentralized-co-design
|
Dissipativity-Based Decentralized Co-Design of Distributed Controllers and Communication Topologies for Vehicular Platoons
|
2312.06472
|
https://arxiv.org/abs/2312.06472v2
|
https://arxiv.org/pdf/2312.06472v2.pdf
|
https://github.com/ndzsong2/longitudinal-vehicular-platoon-simulator
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/online-multi-object-tracking-framework-with
|
Online Multi-Object Tracking Framework with the GMPHD Filter and Occlusion Group Management
|
1907.13347
|
https://arxiv.org/abs/1907.13347v1
|
https://arxiv.org/pdf/1907.13347v1.pdf
|
https://github.com/SonginCV/GMPHD-OGM_Tracker
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/boost-and-skip-a-simple-guidance-free
|
Boost-and-Skip: A Simple Guidance-Free Diffusion for Minority Generation
|
2502.06516
|
https://arxiv.org/abs/2502.06516v2
|
https://arxiv.org/pdf/2502.06516v2.pdf
|
https://github.com/soobin-um/bns
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/projection-of-functionals-and-fast-pricing-of
|
Projection of Functionals and Fast Pricing of Exotic Options
|
2111.03713
|
https://arxiv.org/abs/2111.03713v3
|
https://arxiv.org/pdf/2111.03713v3.pdf
|
https://github.com/valentintissot/klmc
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/parallel-longest-common-subsequence-analysis
|
Parallel Longest Common SubSequence Analysis In Chapel
|
2309.09072
|
https://arxiv.org/abs/2309.09072v1
|
https://arxiv.org/pdf/2309.09072v1.pdf
|
https://github.com/soroushvahidi/parallel-longest-common-subsequence
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/sum-a-benchmark-dataset-of-semantic-urban
|
SUM: A Benchmark Dataset of Semantic Urban Meshes
|
2103.00355
|
https://arxiv.org/abs/2103.00355v2
|
https://arxiv.org/pdf/2103.00355v2.pdf
|
https://github.com/tudelft3d/SUMS-Semantic-Urban-Mesh-Segmentation-public
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/pvg-at-wassa-2021-a-multi-input-multi-task
|
PVG at WASSA 2021: A Multi-Input, Multi-Task, Transformer-Based Architecture for Empathy and Distress Prediction
|
2103.03296
|
https://arxiv.org/abs/2103.03296v1
|
https://arxiv.org/pdf/2103.03296v1.pdf
|
https://github.com/mr-atharva-kulkarni/EACL-WASSA-2021-Empathy-Distress
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/cocon-a-data-set-on-combined-contextualized
|
CoCon: A Data Set on Combined Contextualized Research Artifact Use
|
2303.15193
|
https://arxiv.org/abs/2303.15193v1
|
https://arxiv.org/pdf/2303.15193v1.pdf
|
https://github.com/illdepence/contextgraph
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/deep-generative-framework-for-interactive-3d
|
Deep Generative Framework for Interactive 3D Terrain Authoring and Manipulation
|
2201.02369
|
https://arxiv.org/abs/2201.02369v1
|
https://arxiv.org/pdf/2201.02369v1.pdf
|
https://github.com/Shanthika/TerrainAuthoring-Pytorch
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/scaled-yolov4-scaling-cross-stage-partial
|
Scaled-YOLOv4: Scaling Cross Stage Partial Network
|
2011.08036
|
https://arxiv.org/abs/2011.08036v2
|
https://arxiv.org/pdf/2011.08036v2.pdf
|
https://github.com/xyuan-wyze/darknet
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/cspnet-a-new-backbone-that-can-enhance
|
CSPNet: A New Backbone that can Enhance Learning Capability of CNN
|
1911.11929
|
https://arxiv.org/abs/1911.11929v1
|
https://arxiv.org/pdf/1911.11929v1.pdf
|
https://github.com/xyuan-wyze/darknet
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/yolov3-an-incremental-improvement
|
YOLOv3: An Incremental Improvement
|
1804.02767
|
http://arxiv.org/abs/1804.02767v1
|
http://arxiv.org/pdf/1804.02767v1.pdf
|
https://github.com/xyuan-wyze/darknet
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/neural-ocr-post-hoc-correction-of-historical
|
Neural OCR Post-Hoc Correction of Historical Corpora
|
2102.00583
|
https://arxiv.org/abs/2102.00583v1
|
https://arxiv.org/pdf/2102.00583v1.pdf
|
https://github.com/GarfieldLyu/OCR_POST_DE
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/yolov4-optimal-speed-and-accuracy-of-object
|
YOLOv4: Optimal Speed and Accuracy of Object Detection
|
2004.10934
|
https://arxiv.org/abs/2004.10934v1
|
https://arxiv.org/pdf/2004.10934v1.pdf
|
https://github.com/xyuan-wyze/darknet
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/detect-influential-points-of-feature-rankings
|
Detect influential points of feature rankings
|
2303.10516
|
https://arxiv.org/abs/2303.10516v1
|
https://arxiv.org/pdf/2303.10516v1.pdf
|
https://github.com/shuostat/ips_on_feature_rankings
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/probing-pre-trained-language-models-for-cross
|
Probing Pre-Trained Language Models for Cross-Cultural Differences in Values
|
2203.13722
|
https://arxiv.org/abs/2203.13722v2
|
https://arxiv.org/pdf/2203.13722v2.pdf
|
https://github.com/copenlu/value-probing
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/deep-graph-neural-networks-with-shallow-1
|
Deep Graph Neural Networks with Shallow Subgraph Samplers
|
2012.01380
|
https://arxiv.org/abs/2012.01380v3
|
https://arxiv.org/pdf/2012.01380v3.pdf
|
https://github.com/facebookresearch/shaDow_GNN
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/vector-based-data-improves-left-right-eye
|
Vector-Based Data Improves Left-Right Eye-Tracking Classifier Performance After a Covariate Distributional Shift
|
2208.00465
|
https://arxiv.org/abs/2208.00465v1
|
https://arxiv.org/pdf/2208.00465v1.pdf
|
https://github.com/brianxiang123/eegetcovariatedistributionalshift
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-state-distribution-matching-approach-to-non
|
A State-Distribution Matching Approach to Non-Episodic Reinforcement Learning
|
2205.05212
|
https://arxiv.org/abs/2205.05212v1
|
https://arxiv.org/pdf/2205.05212v1.pdf
|
https://github.com/architsharma97/medal
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/deep-learning-through-the-lens-of-example
|
Deep Learning Through the Lens of Example Difficulty
|
2106.09647
|
https://arxiv.org/abs/2106.09647v2
|
https://arxiv.org/pdf/2106.09647v2.pdf
|
https://github.com/pengbohua/AngularGap/tree/12dad1ec18d3c15a41835c3c342f82051d895ccc/standard_curriculum_learning/prediction_depth
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/end-to-end-learning-for-self-driving-cars
|
End to End Learning for Self-Driving Cars
|
1604.07316
|
http://arxiv.org/abs/1604.07316v1
|
http://arxiv.org/pdf/1604.07316v1.pdf
|
https://github.com/drtupe/Behavioral_Cloning
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/collective-explainable-ai-explaining
|
Collective eXplainable AI: Explaining Cooperative Strategies and Agent Contribution in Multiagent Reinforcement Learning with Shapley Values
|
2110.01307
|
https://arxiv.org/abs/2110.01307v1
|
https://arxiv.org/pdf/2110.01307v1.pdf
|
https://github.com/fabien-couthouis/xai-in-rl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-multi-agent-reinforcement-learning-model-of
|
A multi-agent reinforcement learning model of common-pool resource appropriation
|
1707.06600
|
http://arxiv.org/abs/1707.06600v2
|
http://arxiv.org/pdf/1707.06600v2.pdf
|
https://github.com/fabien-couthouis/xai-in-rl
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/msccl-microsoft-collective-communication
|
GC3: An Optimizing Compiler for GPU Collective Communication
|
2201.11840
|
https://arxiv.org/abs/2201.11840v3
|
https://arxiv.org/pdf/2201.11840v3.pdf
|
https://github.com/microsoft/msccl-tools
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/llama-open-and-efficient-foundation-language-1
|
LLaMA: Open and Efficient Foundation Language Models
|
2302.13971
|
https://arxiv.org/abs/2302.13971v1
|
https://arxiv.org/pdf/2302.13971v1.pdf
|
https://github.com/xiaoman-zhang/PMC-VQA
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-cooperation-graph-approach-for-multiagent
|
A Cooperation Graph Approach for Multiagent Sparse Reward Reinforcement Learning
|
2208.03002
|
https://arxiv.org/abs/2208.03002v1
|
https://arxiv.org/pdf/2208.03002v1.pdf
|
https://github.com/binary-husky/hmp2g
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/metrics-quantization-and-registration-in
|
Metrics, quantization and registration in varifold spaces
|
1903.11196
|
https://arxiv.org/abs/1903.11196v1
|
https://arxiv.org/pdf/1903.11196v1.pdf
|
https://github.com/charoncode/Var_LDDMM
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/mastering-visual-continuous-control-improved
|
Mastering Visual Continuous Control: Improved Data-Augmented Reinforcement Learning
|
2107.09645
|
https://arxiv.org/abs/2107.09645v1
|
https://arxiv.org/pdf/2107.09645v1.pdf
|
https://github.com/architsharma97/medal
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/generative-modeling-with-optimal-transport
|
Generative Modeling with Optimal Transport Maps
|
2110.02999
|
https://arxiv.org/abs/2110.02999v2
|
https://arxiv.org/pdf/2110.02999v2.pdf
|
https://github.com/LituRout/OptimalTransportModeling
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/structural-temporal-graph-neural-networks-for
|
Structural Temporal Graph Neural Networks for Anomaly Detection in Dynamic Graphs
|
2005.07427
|
https://arxiv.org/abs/2005.07427v2
|
https://arxiv.org/pdf/2005.07427v2.pdf
|
https://github.com/KnowledgeDiscovery/StrGNN
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/predrnn-towards-a-resolution-of-the-deep-in
|
PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning
|
1804.06300
|
http://arxiv.org/abs/1804.06300v2
|
http://arxiv.org/pdf/1804.06300v2.pdf
|
https://github.com/mindspore-ai/models/tree/master/official/cv/predrnn%2B%2B
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/comparison-of-spatio-temporal-models-for
|
Comparison of Spatio-Temporal Models for Human Motion and Pose Forecasting in Face-to-Face Interaction Scenarios
|
2203.03245
|
https://arxiv.org/abs/2203.03245v1
|
https://arxiv.org/pdf/2203.03245v1.pdf
|
https://github.com/crisie/udiva
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/dynamic-mlp-for-fine-grained-image
|
Dynamic MLP for Fine-Grained Image Classification by Leveraging Geographical and Temporal Information
|
2203.03253
|
https://arxiv.org/abs/2203.03253v1
|
https://arxiv.org/pdf/2203.03253v1.pdf
|
https://github.com/ylingfeng/dynamicmlp
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-unified-framework-for-masked-and-mask-free
|
A Unified Framework for Masked and Mask-Free Face Recognition via Feature Rectification
|
2202.07358
|
https://arxiv.org/abs/2202.07358v1
|
https://arxiv.org/pdf/2202.07358v1.pdf
|
https://github.com/haoosz/ffr-net
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/bashexplainer-retrieval-augmented-bash-code
|
BashExplainer: Retrieval-Augmented Bash Code Comment Generation based on Fine-tuned CodeBERT
|
2206.13325
|
https://arxiv.org/abs/2206.13325v1
|
https://arxiv.org/pdf/2206.13325v1.pdf
|
https://github.com/NTDXYG/BASHEXPLAINER
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/generative-invertible-quantum-neural-networks
|
Generative Invertible Quantum Neural Networks
|
2302.12906
|
https://arxiv.org/abs/2302.12906v3
|
https://arxiv.org/pdf/2302.12906v3.pdf
|
https://gitlab.com/RussellA/quantumML
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/nedmp-neural-enhanced-dynamic-message-passing
|
NEDMP: Neural Enhanced Dynamic Message Passing
|
2202.06496
|
https://arxiv.org/abs/2202.06496v1
|
https://arxiv.org/pdf/2202.06496v1.pdf
|
https://github.com/feigsss/nedmp
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/distributing-persistent-homology-via-spectral
|
Distributing Persistent Homology via Spectral Sequences
|
1907.05228
|
https://arxiv.org/abs/1907.05228v1
|
https://arxiv.org/pdf/1907.05228v1.pdf
|
https://github.com/atorras1618/PerMaViss
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/r-local-sensing-improved-algorithm-and
|
r-local sensing: Improved algorithm and applications
|
2110.14034
|
https://arxiv.org/abs/2110.14034v3
|
https://arxiv.org/pdf/2110.14034v3.pdf
|
https://github.com/aabbas02/proximal-alt-min-for-uls-udgp
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/communication-efficient-zeroth-order
|
Communication-Efficient Zeroth-Order Distributed Online Optimization: Algorithm, Theory, and Applications
|
2306.05655
|
https://arxiv.org/abs/2306.05655v1
|
https://arxiv.org/pdf/2306.05655v1.pdf
|
https://github.com/sunses-hub/fed-ef-zo-sgd
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/denoising-diffusion-probabilistic-models
|
Denoising Diffusion Probabilistic Models
|
2006.11239
|
https://arxiv.org/abs/2006.11239v2
|
https://arxiv.org/pdf/2006.11239v2.pdf
|
https://github.com/keonlee9420/DiffGAN-TTS
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/tackling-the-generative-learning-trilemma-1
|
Tackling the Generative Learning Trilemma with Denoising Diffusion GANs
|
2112.07804
|
https://arxiv.org/abs/2112.07804v2
|
https://arxiv.org/pdf/2112.07804v2.pdf
|
https://github.com/keonlee9420/DiffGAN-TTS
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/diffsinger-diffusion-acoustic-model-for
|
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism
|
2105.02446
|
https://arxiv.org/abs/2105.02446v6
|
https://arxiv.org/pdf/2105.02446v6.pdf
|
https://github.com/keonlee9420/DiffGAN-TTS
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/divide-and-conquer-text-semantic-matching-1
|
Divide and Conquer: Text Semantic Matching with Disentangled Keywords and Intents
|
2203.02898
|
https://arxiv.org/abs/2203.02898v1
|
https://arxiv.org/pdf/2203.02898v1.pdf
|
https://github.com/rowitzou/dc-match
| true
| true
| true
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.