paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/a-deep-branching-solver-for-fully-nonlinear
|
A deep branching solver for fully nonlinear partial differential equations
|
2203.03234
|
https://arxiv.org/abs/2203.03234v2
|
https://arxiv.org/pdf/2203.03234v2.pdf
|
https://github.com/nguwijy/deep_branching
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/dependency-parsing-as-mrc-based-span-span
|
Dependency Parsing as MRC-based Span-Span Prediction
|
2105.07654
|
https://arxiv.org/abs/2105.07654v4
|
https://arxiv.org/pdf/2105.07654v4.pdf
|
https://github.com/ShannonAI/mrc-for-dependency-parsing
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/infinitely-divisible-noise-in-the-low-privacy
|
Infinitely Divisible Noise in the Low Privacy Regime
|
2110.06559
|
https://arxiv.org/abs/2110.06559v3
|
https://arxiv.org/pdf/2110.06559v3.pdf
|
https://github.com/rasmus-pagh/alt22-code
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/universal-early-warning-signals-of-phase
|
Universal Early Warning Signals of Phase Transitions in Climate Systems
|
2206.00060
|
https://arxiv.org/abs/2206.00060v2
|
https://arxiv.org/pdf/2206.00060v2.pdf
|
https://github.com/dylewsky/phase_transition_ews
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/a-bregman-learning-framework-for-sparse
|
A Bregman Learning Framework for Sparse Neural Networks
|
2105.04319
|
https://arxiv.org/abs/2105.04319v3
|
https://arxiv.org/pdf/2105.04319v3.pdf
|
https://github.com/TimRoith/BregmanLearning
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/two-finite-element-approaches-for-the-porous
|
Two Finite Element Approaches For The Porous Medium Equation That Are Positivity Preserving And Energy Stable
|
2303.14216
|
https://arxiv.org/abs/2303.14216v1
|
https://arxiv.org/pdf/2303.14216v1.pdf
|
https://github.com/avj-jpg/pme
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/argscichat-a-dataset-for-argumentative
|
ArgSciChat: A Dataset for Argumentative Dialogues on Scientific Papers
|
2202.06690
|
https://arxiv.org/abs/2202.06690v3
|
https://arxiv.org/pdf/2202.06690v3.pdf
|
https://github.com/ukplab/arxiv2022-argscichat
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/simple-baselines-for-image-restoration
|
Simple Baselines for Image Restoration
|
2204.04676
|
https://arxiv.org/abs/2204.04676v4
|
https://arxiv.org/pdf/2204.04676v4.pdf
|
https://github.com/dslisleedh/NAFNet-flax
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/diffusion-probabilistic-models-for-scene
|
Diffusion Probabilistic Models for Scene-Scale 3D Categorical Data
|
2301.00527
|
https://arxiv.org/abs/2301.00527v1
|
https://arxiv.org/pdf/2301.00527v1.pdf
|
https://github.com/zoomin-lee/scene-scale-diffusion
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/video-waterdrop-removal-via-spatio-temporal
|
Video Waterdrop Removal via Spatio-Temporal Fusion in Driving Scenes
|
2302.05916
|
https://arxiv.org/abs/2302.05916v3
|
https://arxiv.org/pdf/2302.05916v3.pdf
|
https://github.com/csqiangwen/Video_Waterdrop_Removal_in_Driving_Scenes
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/quantum-error-mitigation
|
Quantum Error Mitigation
|
2210.00921
|
https://arxiv.org/abs/2210.00921v3
|
https://arxiv.org/pdf/2210.00921v3.pdf
|
https://github.com/fbm2718/QREM
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/improved-error-estimate-for-the-order-of
|
Strong order-one convergence of the Euler method for random ordinary differential equations driven by semi-martingale noises
|
2306.15418
|
https://arxiv.org/abs/2306.15418v7
|
https://arxiv.org/pdf/2306.15418v7.pdf
|
https://github.com/rmsrosa/rode_conv_em
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/tensor-train-thermo-field-memory-kernels-for
|
Tensor-Train Thermo-Field Memory Kernels for Generalized Quantum Master Equations
|
2208.14273
|
https://arxiv.org/abs/2208.14273v2
|
https://arxiv.org/pdf/2208.14273v2.pdf
|
https://github.com/ningyilyu/tt-tfd-gqme
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/instruction-clarification-requests-in
|
Instruction Clarification Requests in Multimodal Collaborative Dialogue Games: Tasks, and an Analysis of the CoDraw Dataset
|
2302.14406
|
https://arxiv.org/abs/2302.14406v1
|
https://arxiv.org/pdf/2302.14406v1.pdf
|
https://github.com/briemadu/codraw-icr-v1
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/icnet-for-real-time-semantic-segmentation-on
|
ICNet for Real-Time Semantic Segmentation on High-Resolution Images
|
1704.08545
|
http://arxiv.org/abs/1704.08545v2
|
http://arxiv.org/pdf/1704.08545v2.pdf
|
https://github.com/Bigpingping97/ICNet
| false
| false
| true
|
mindspore
|
https://paperswithcode.com/paper/mntts-an-open-source-mongolian-text-to-speech
|
MnTTS: An Open-Source Mongolian Text-to-Speech Synthesis Dataset and Accompanied Baseline
|
2209.10848
|
https://arxiv.org/abs/2209.10848v1
|
https://arxiv.org/pdf/2209.10848v1.pdf
|
https://github.com/walker-hyf/mntts
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/padl-language-directed-physics-based
|
PADL: Language-Directed Physics-Based Character Control
|
2301.13868
|
https://arxiv.org/abs/2301.13868v1
|
https://arxiv.org/pdf/2301.13868v1.pdf
|
https://github.com/nv-tlabs/padl
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/controllable-3d-generative-adversarial-face
|
Controllable 3D Generative Adversarial Face Model via Disentangling Shape and Appearance
|
2208.14263
|
https://arxiv.org/abs/2208.14263v1
|
https://arxiv.org/pdf/2208.14263v1.pdf
|
https://github.com/aashishrai3799/3DFaceCAM
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/mask-r-cnn
|
Mask R-CNN
|
1703.06870
|
http://arxiv.org/abs/1703.06870v3
|
http://arxiv.org/pdf/1703.06870v3.pdf
|
https://github.com/tensorflow/models/tree/master/official/vision
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/metric-learning-and-adaptive-boundary-for-out
|
Metric Learning and Adaptive Boundary for Out-of-Domain Detection
|
2204.10849
|
https://arxiv.org/abs/2204.10849v1
|
https://arxiv.org/pdf/2204.10849v1.pdf
|
https://github.com/tgargiani/adaptive-boundary
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/mvd-memory-related-vulnerability-detection
|
MVD: Memory-Related Vulnerability Detection Based on Flow-Sensitive Graph Neural Networks
|
2203.02660
|
https://arxiv.org/abs/2203.02660v1
|
https://arxiv.org/pdf/2203.02660v1.pdf
|
https://github.com/MindCode-4/code-14/tree/main/MVD
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/randomrooms-unsupervised-pre-training-from
|
RandomRooms: Unsupervised Pre-training from Synthetic Shapes and Randomized Layouts for 3D Object Detection
|
2108.07794
|
https://arxiv.org/abs/2108.07794v1
|
https://arxiv.org/pdf/2108.07794v1.pdf
|
https://github.com/xuxw98/backtoreality
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/back-to-reality-weakly-supervised-3d-object
|
Back to Reality: Weakly-supervised 3D Object Detection with Shape-guided Label Enhancement
|
2203.05238
|
https://arxiv.org/abs/2203.05238v3
|
https://arxiv.org/pdf/2203.05238v3.pdf
|
https://github.com/xuxw98/backtoreality
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/adaptive-positive-unlabelled-learning-via
|
NIAPU: network-informed adaptive positive-unlabeled learning for disease gene identification
|
2108.06158
|
https://arxiv.org/abs/2108.06158v4
|
https://arxiv.org/pdf/2108.06158v4.pdf
|
https://github.com/andmastro/niapu
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/rethinking-degradation-radiograph-super
|
Rethinking Degradation: Radiograph Super-Resolution via AID-SRGAN
|
2208.03008
|
https://arxiv.org/abs/2208.03008v1
|
https://arxiv.org/pdf/2208.03008v1.pdf
|
https://github.com/yongsongh/aidsrgan-miccai2022
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/variational-deep-embedding-an-unsupervised
|
Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering
|
1611.05148
|
http://arxiv.org/abs/1611.05148v3
|
http://arxiv.org/pdf/1611.05148v3.pdf
|
https://github.com/lupalab/posterior-matching
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/very-deep-vaes-generalize-autoregressive-1
|
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
|
2011.10650
|
https://arxiv.org/abs/2011.10650v2
|
https://arxiv.org/pdf/2011.10650v2.pdf
|
https://github.com/lupalab/posterior-matching
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/neural-discrete-representation-learning
|
Neural Discrete Representation Learning
|
1711.00937
|
http://arxiv.org/abs/1711.00937v2
|
http://arxiv.org/pdf/1711.00937v2.pdf
|
https://github.com/lupalab/posterior-matching
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/learning-generative-structure-prior-for-blind
|
Learning Generative Structure Prior for Blind Text Image Super-resolution
|
2303.14726
|
https://arxiv.org/abs/2303.14726v1
|
https://arxiv.org/pdf/2303.14726v1.pdf
|
https://github.com/csxmli2016/marconet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fast-lio-a-fast-robust-lidar-inertial
|
FAST-LIO: A Fast, Robust LiDAR-inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter
|
2010.08196
|
https://arxiv.org/abs/2010.08196v3
|
https://arxiv.org/pdf/2010.08196v3.pdf
|
https://github.com/hku-mars/FAST_LIO
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/llama-open-and-efficient-foundation-language-1
|
LLaMA: Open and Efficient Foundation Language Models
|
2302.13971
|
https://arxiv.org/abs/2302.13971v1
|
https://arxiv.org/pdf/2302.13971v1.pdf
|
https://github.com/MS-P3/code5/tree/main/llama2
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/robust-and-online-lidar-inertial
|
Robust Real-time LiDAR-inertial Initialization
|
2202.11006
|
https://arxiv.org/abs/2202.11006v5
|
https://arxiv.org/pdf/2202.11006v5.pdf
|
https://github.com/hku-mars/FAST_LIO
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/pre-training-of-temporal-convolutional-neural
|
PREP: Pre-training with Temporal Elapse Inference for Popularity Prediction
|
2108.06220
|
https://arxiv.org/abs/2108.06220v2
|
https://arxiv.org/pdf/2108.06220v2.pdf
|
https://github.com/caoqi92/prep
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/when-did-you-become-so-smart-oh-wise-one-1
|
When did you become so smart, oh wise one?! Sarcasm Explanation in Multi-modal Multi-party Dialogues
|
2203.06419
|
https://arxiv.org/abs/2203.06419v1
|
https://arxiv.org/pdf/2203.06419v1.pdf
|
https://github.com/lcs2-iiitd/maf
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fastkassim-a-fast-tree-kernel-based-syntactic
|
FastKASSIM: A Fast Tree Kernel-Based Syntactic Similarity Metric
|
2203.08299
|
https://arxiv.org/abs/2203.08299v4
|
https://arxiv.org/pdf/2203.08299v4.pdf
|
https://github.com/jasonyux/fastkassim
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/learning-from-multiple-annotator-noisy-labels
|
Learning from Multiple Annotator Noisy Labels via Sample-wise Label Fusion
|
2207.11327
|
https://arxiv.org/abs/2207.11327v1
|
https://arxiv.org/pdf/2207.11327v1.pdf
|
https://github.com/zhengqigao/learning-from-multiple-annotator-noisy-labels
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/darts-differentiable-architecture-search
|
DARTS: Differentiable Architecture Search
|
1806.09055
|
http://arxiv.org/abs/1806.09055v2
|
http://arxiv.org/pdf/1806.09055v2.pdf
|
https://github.com/alphadl/darts.pytorch1.1
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/approximate-localised-dihedral-patterns-near
|
Approximate localised dihedral patterns near a Turing instability
|
2203.09363
|
https://arxiv.org/abs/2203.09363v2
|
https://arxiv.org/pdf/2203.09363v2.pdf
|
https://github.com/Dan-Hill95/Localised-Dihedral-Patterns
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/stomanager1-automated-high-throughput-tool-to
|
StoManager1: An Enhanced, Automated, and High-throughput Tool to Measure Leaf Stomata and Guard Cell Metrics Using Empirical and Theoretical Algorithms
|
2304.10450
|
https://arxiv.org/abs/2304.10450v3
|
https://arxiv.org/pdf/2304.10450v3.pdf
|
https://github.com/JiaxinWang123/StoManager1
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/slam-tka-real-time-intra-operative
|
SLAM-TKA: Real-time Intra-operative Measurement of Tibial Resection Plane in Conventional Total Knee Arthroplasty
|
2208.03945
|
https://arxiv.org/abs/2208.03945v1
|
https://arxiv.org/pdf/2208.03945v1.pdf
|
https://github.com/zsustc/calibration
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/gluonts-probabilistic-time-series-models-in
|
GluonTS: Probabilistic Time Series Models in Python
|
1906.05264
|
https://arxiv.org/abs/1906.05264v2
|
https://arxiv.org/pdf/1906.05264v2.pdf
|
https://github.com/WLM1ke/poptimizer
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/layered-rendering-diffusion-model-for-zero
|
Layered Rendering Diffusion Model for Controllable Zero-Shot Image Synthesis
|
2311.18435
|
https://arxiv.org/abs/2311.18435v2
|
https://arxiv.org/pdf/2311.18435v2.pdf
|
https://github.com/syang-lab/layered_rendering_diffusion_model
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/attention-is-all-you-need
|
Attention Is All You Need
|
1706.03762
|
https://arxiv.org/abs/1706.03762v7
|
https://arxiv.org/pdf/1706.03762v7.pdf
|
https://github.com/harenlin/IMDB-Sentiment-Analysis-Using-BERT-Fine-Tuning
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/weakly-supervised-salient-object-detection-2
|
Weakly-Supervised Salient Object Detection Using Point Supervision
|
2203.11652
|
https://arxiv.org/abs/2203.11652v2
|
https://arxiv.org/pdf/2203.11652v2.pdf
|
https://github.com/shuyonggao/psod
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/hierarchically-coordinated-energy-management
|
Hierarchically Coordinated Energy Management for A Regional Multi-microgrid Community
|
2102.03745
|
https://arxiv.org/abs/2102.03745v1
|
https://arxiv.org/pdf/2102.03745v1.pdf
|
https://github.com/juchengquan/Hierarchically_Coordinated_Energy_Management_for_A_Regional_Multi-microgrid_Community
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
|
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
|
1810.04805
|
https://arxiv.org/abs/1810.04805v2
|
https://arxiv.org/pdf/1810.04805v2.pdf
|
https://github.com/harenlin/IMDB-Sentiment-Analysis-Using-BERT-Fine-Tuning
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/spinenet-learning-scale-permuted-backbone-for
|
SpineNet: Learning Scale-Permuted Backbone for Recognition and Localization
|
1912.05027
|
https://arxiv.org/abs/1912.05027v3
|
https://arxiv.org/pdf/1912.05027v3.pdf
|
https://github.com/2023-MindSpore-4/Code14/tree/main/retinanet_resnet152
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/developing-distributed-high-performance
|
Developing Distributed High-performance Computing Capabilities of an Open Science Platform for Robust Epidemic Analysis
|
2304.14244
|
https://arxiv.org/abs/2304.14244v2
|
https://arxiv.org/pdf/2304.14244v2.pdf
|
https://github.com/nsf-resume/2023_parsocial_osprey_example
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/converting-admm-to-a-proximal-gradient-for
|
Converting ADMM to a Proximal Gradient for Efficient Sparse Estimation
|
2104.10911
|
https://arxiv.org/abs/2104.10911v3
|
https://arxiv.org/pdf/2104.10911v3.pdf
|
https://github.com/theveni/scc_tf
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/gazesam-what-you-see-is-what-you-segment
|
GazeSAM: What You See is What You Segment
|
2304.13844
|
https://arxiv.org/abs/2304.13844v1
|
https://arxiv.org/pdf/2304.13844v1.pdf
|
https://github.com/ukaukaaaa/gazesam
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/modeling-users-contextualized-page-wise
|
Modeling Users' Contextualized Page-wise Feedback for Click-Through Rate Prediction in E-commerce Search
|
2203.15542
|
https://arxiv.org/abs/2203.15542v1
|
https://arxiv.org/pdf/2203.15542v1.pdf
|
https://github.com/racp-submission/racp
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/generating-self-contained-and-summary-centric
|
Generating Self-Contained and Summary-Centric Question Answer Pairs via Differentiable Reward Imitation Learning
|
2109.04689
|
https://arxiv.org/abs/2109.04689v1
|
https://arxiv.org/pdf/2109.04689v1.pdf
|
https://github.com/amazon-research/sc2qa-dril
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/self-supervised-leaf-segmentation-under
|
Self-Supervised Leaf Segmentation under Complex Lighting Conditions
|
2203.15943
|
https://arxiv.org/abs/2203.15943v1
|
https://arxiv.org/pdf/2203.15943v1.pdf
|
https://github.com/lxfhfut/self-supervised-leaf-segmentation
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/semantic-line-detection-using-mirror-1
|
Semantic Line Detection Using Mirror Attention and Comparative Ranking and Matching
|
2203.15285
|
https://arxiv.org/abs/2203.15285v1
|
https://arxiv.org/pdf/2203.15285v1.pdf
|
https://github.com/dongkwonjin/Semantic-Line-DRM
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mplug-owl-modularization-empowers-large
|
mPLUG-Owl: Modularization Empowers Large Language Models with Multimodality
|
2304.14178
|
https://arxiv.org/abs/2304.14178v3
|
https://arxiv.org/pdf/2304.14178v3.pdf
|
https://github.com/x-plug/mplug-owl
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/collaborative-transformers-for-grounded
|
Collaborative Transformers for Grounded Situation Recognition
|
2203.16518
|
https://arxiv.org/abs/2203.16518v1
|
https://arxiv.org/pdf/2203.16518v1.pdf
|
https://github.com/jhcho99/coformer
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/conditions-for-estimation-of-sensitivities-of
|
Conditions for Estimation of Sensitivities of Voltage Magnitudes to Complex Power Injections
|
2212.01471
|
https://arxiv.org/abs/2212.01471v2
|
https://arxiv.org/pdf/2212.01471v2.pdf
|
https://github.com/samtalki/powersensitivities.jl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/superbench-a-super-resolution-benchmark
|
SuperBench: A Super-Resolution Benchmark Dataset for Scientific Machine Learning
|
2306.14070
|
https://arxiv.org/abs/2306.14070v2
|
https://arxiv.org/pdf/2306.14070v2.pdf
|
https://github.com/erichson/superbench
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/sups-a-simulated-underground-parking-scenario
|
SUPS: A Simulated Underground Parking Scenario Dataset for Autonomous Driving
|
2302.12966
|
https://arxiv.org/abs/2302.12966v1
|
https://arxiv.org/pdf/2302.12966v1.pdf
|
https://github.com/jarvishou829/sups
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/squeezenet-alexnet-level-accuracy-with-50x
|
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
|
1602.07360
|
http://arxiv.org/abs/1602.07360v4
|
http://arxiv.org/pdf/1602.07360v4.pdf
|
https://github.com/MS-Mind/MS-Code-02/tree/main/configs/squeezenet
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/shapley-based-residual-decomposition-for
|
Shapley Based Residual Decomposition for Instance Analysis
|
2305.18818
|
https://arxiv.org/abs/2305.18818v1
|
https://arxiv.org/pdf/2305.18818v1.pdf
|
https://github.com/uilymmot/residual-decomposition
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/multi-view-transformer-for-3d-visual
|
Multi-View Transformer for 3D Visual Grounding
|
2204.02174
|
https://arxiv.org/abs/2204.02174v1
|
https://arxiv.org/pdf/2204.02174v1.pdf
|
https://github.com/sega-hsj/mvt-3dvg
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/generating-molecular-fragmentation-graphs
|
Generating Molecular Fragmentation Graphs with Autoregressive Neural Networks
|
2304.13136
|
https://arxiv.org/abs/2304.13136v2
|
https://arxiv.org/pdf/2304.13136v2.pdf
|
https://github.com/samgoldman97/ms-pred
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/hybrid-ensemble-for-fake-news-detection-an
|
Hybrid Ensemble for Fake News Detection: An attempt
|
2206.13981
|
https://arxiv.org/abs/2206.13981v1
|
https://arxiv.org/pdf/2206.13981v1.pdf
|
https://github.com/singh-l/hybrrid_fn_dat_
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/resurrecting-recurrent-neural-networks-for
|
Resurrecting Recurrent Neural Networks for Long Sequences
|
2303.06349
|
https://arxiv.org/abs/2303.06349v1
|
https://arxiv.org/pdf/2303.06349v1.pdf
|
https://github.com/LuCeHe/lru_unofficial
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/augmenting-photometric-redshift-estimates
|
Augmenting photometric redshift estimates using spectroscopic nearest neighbours
|
2211.01901
|
https://arxiv.org/abs/2211.01901v2
|
https://arxiv.org/pdf/2211.01901v2.pdf
|
https://github.com/tos-1/neznet
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/machine-learning-featurizations-for-ai
|
Machine Learning Featurizations for AI Hacking of Political Systems
|
2110.09231
|
https://arxiv.org/abs/2110.09231v2
|
https://arxiv.org/pdf/2110.09231v2.pdf
|
https://github.com/nesanders/ai_hacking_featurization
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/what-can-we-learn-from-collective-human
|
What Can We Learn from Collective Human Opinions on Natural Language Inference Data?
|
2010.03532
|
https://arxiv.org/abs/2010.03532v2
|
https://arxiv.org/pdf/2010.03532v2.pdf
|
https://github.com/easonnie/ChaosNLI
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/simple-adaptive-projection-with-pretrained
|
Constrained Adaptive Projection with Pretrained Features for Anomaly Detection
|
2112.02597
|
https://arxiv.org/abs/2112.02597v2
|
https://arxiv.org/pdf/2112.02597v2.pdf
|
https://github.com/tabguigui/cap
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/distributed-nli-learning-to-predict-human
|
Distributed NLI: Learning to Predict Human Opinion Distributions for Language Reasoning
|
2104.08676
|
https://arxiv.org/abs/2104.08676v2
|
https://arxiv.org/pdf/2104.08676v2.pdf
|
https://github.com/easonnie/ChaosNLI
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/what-you-see-is-what-you-get-distributional
|
What You See is What You Get: Principled Deep Learning via Distributional Generalization
|
2204.03230
|
https://arxiv.org/abs/2204.03230v2
|
https://arxiv.org/pdf/2204.03230v2.pdf
|
https://github.com/yangarbiter/dp-dg
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/regularized-deep-learning-with-a-non-convex
|
Regularized deep learning with nonconvex penalties
|
1909.05142
|
https://arxiv.org/abs/1909.05142v4
|
https://arxiv.org/pdf/1909.05142v4.pdf
|
https://github.com/mjohn5/dnn_laplace_arctan_regularization
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-dual-semantic-aware-recurrent-global
|
A Dual Semantic-Aware Recurrent Global-Adaptive Network For Vision-and-Language Navigation
|
2305.03602
|
https://arxiv.org/abs/2305.03602v2
|
https://arxiv.org/pdf/2305.03602v2.pdf
|
https://github.com/crystalsixone/dsrg
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/rocket-exceptionally-fast-and-accurate-time
|
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels
|
1910.13051
|
https://arxiv.org/abs/1910.13051v1
|
https://arxiv.org/pdf/1910.13051v1.pdf
|
https://github.com/angus924/rocket
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/speechmoe-scaling-to-large-acoustic-models
|
SpeechMoE: Scaling to Large Acoustic Models with Dynamic Routing Mixture of Experts
|
2105.03036
|
https://arxiv.org/abs/2105.03036v1
|
https://arxiv.org/pdf/2105.03036v1.pdf
|
https://github.com/tencent-ailab/3m-asr
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/first-the-worst-finding-better-gender
|
First the worst: Finding better gender translations during beam search
|
2104.07429
|
https://arxiv.org/abs/2104.07429v2
|
https://arxiv.org/pdf/2104.07429v2.pdf
|
https://github.com/dcsaunders/nmt-gender-rerank
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/3m-multi-loss-multi-path-and-multi-level
|
3M: Multi-loss, Multi-path and Multi-level Neural Networks for speech recognition
|
2204.03178
|
https://arxiv.org/abs/2204.03178v2
|
https://arxiv.org/pdf/2204.03178v2.pdf
|
https://github.com/tencent-ailab/3m-asr
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/cohort-state-transition-models-in-r-from
|
An Introductory Tutorial on Cohort State-Transition Models in R Using a Cost-Effectiveness Analysis Example
|
2001.07824
|
https://arxiv.org/abs/2001.07824v4
|
https://arxiv.org/pdf/2001.07824v4.pdf
|
https://github.com/DARTH-git/cohort-modeling-tutorial-timedep
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/parameter-estimation-with-gravitational-waves
|
Parameter estimation with gravitational waves
|
2204.04449
|
https://arxiv.org/abs/2204.04449v1
|
https://arxiv.org/pdf/2204.04449v1.pdf
|
https://github.com/oshaughn/research-projects-rit
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/provable-defense-against-privacy-leakage-in
|
Provable Defense against Privacy Leakage in Federated Learning from Representation Perspective
|
2012.06043
|
https://arxiv.org/abs/2012.06043v1
|
https://arxiv.org/pdf/2012.06043v1.pdf
|
https://github.com/eth-sri/bayes-framework-leakage
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/accurate-clinical-toxicity-prediction-using
|
Accurate Clinical Toxicity Prediction using Multi-task Deep Neural Nets and Contrastive Molecular Explanations
|
2204.06614
|
https://arxiv.org/abs/2204.06614v1
|
https://arxiv.org/pdf/2204.06614v1.pdf
|
https://github.com/IBM/Contrastive-Explanation-Method
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/an-image-is-worth-16x16-words-transformers-1
|
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
|
2010.11929
|
https://arxiv.org/abs/2010.11929v2
|
https://arxiv.org/pdf/2010.11929v2.pdf
|
https://github.com/uzi0espil/research-papers-implementation/tree/master/Vision%20Transformer
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/efficient-estimation-of-pairwise-effective
|
Efficient Estimation of Pairwise Effective Resistance
|
2312.06123
|
https://arxiv.org/abs/2312.06123v1
|
https://arxiv.org/pdf/2312.06123v1.pdf
|
https://github.com/anryyang/geer
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/fine-tuning-discrete-diffusion-models-via
|
Fine-Tuning Discrete Diffusion Models via Reward Optimization with Applications to DNA and Protein Design
|
2410.13643
|
https://arxiv.org/abs/2410.13643v1
|
https://arxiv.org/pdf/2410.13643v1.pdf
|
https://github.com/chenyuwang-monica/drakes
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/comprehending-and-ordering-semantics-for-1
|
Comprehending and Ordering Semantics for Image Captioning
|
2206.06930
|
https://arxiv.org/abs/2206.06930v1
|
https://arxiv.org/pdf/2206.06930v1.pdf
|
https://github.com/yehli/xmodaler
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/rejuvenating-low-frequency-words-making-the
|
Rejuvenating Low-Frequency Words: Making the Most of Parallel Data in Non-Autoregressive Translation
|
2106.00903
|
https://arxiv.org/abs/2106.00903v2
|
https://arxiv.org/pdf/2106.00903v2.pdf
|
https://github.com/alphadl/rlfw-nat
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/pseudo-numerical-methods-for-diffusion-models-1
|
Pseudo Numerical Methods for Diffusion Models on Manifolds
|
2202.09778
|
https://arxiv.org/abs/2202.09778v2
|
https://arxiv.org/pdf/2202.09778v2.pdf
|
https://github.com/compvis/latent-diffusion
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/behrt-transformer-for-electronic-health
|
BEHRT: Transformer for Electronic Health Records
|
1907.09538
|
https://arxiv.org/abs/1907.09538v1
|
https://arxiv.org/pdf/1907.09538v1.pdf
|
https://github.com/yikuanli/BEHRT
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/parallelization-of-the-symplectic-massive
|
Parallelization of the Symplectic Massive Body Algorithm (SyMBA) $N$-body Code
|
2304.07325
|
https://arxiv.org/abs/2304.07325v1
|
https://arxiv.org/pdf/2304.07325v1.pdf
|
https://github.com/tommylauch/swift_symbap_pub
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/specnet2-orthogonalization-free-spectral
|
SpecNet2: Orthogonalization-free spectral embedding by neural networks
|
2206.06644
|
https://arxiv.org/abs/2206.06644v1
|
https://arxiv.org/pdf/2206.06644v1.pdf
|
https://github.com/ziyuchen7/specnet2
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/detectordetective-investigating-the-effects
|
DetectorDetective: Investigating the Effects of Adversarial Examples on Object Detectors
| null |
http://openaccess.thecvf.com//content/CVPR2022/html/Vellaichamy_DetectorDetective_Investigating_the_Effects_of_Adversarial_Examples_on_Object_Detectors_CVPR_2022_paper.html
|
http://openaccess.thecvf.com//content/CVPR2022/papers/Vellaichamy_DetectorDetective_Investigating_the_Effects_of_Adversarial_Examples_on_Object_Detectors_CVPR_2022_paper.pdf
|
https://github.com/poloclub/detector-detective
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/dynapicker-dynamic-convolutional-neural
|
Real-time Earthquake Monitoring using Deep Learning: a case study on Turkey Earthquake Aftershock Sequence
|
2211.09539
|
https://arxiv.org/abs/2211.09539v2
|
https://arxiv.org/pdf/2211.09539v2.pdf
|
https://github.com/srivastavaresearchgroup/saipy
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-novel-facial-emotion-recognition-model
|
A novel facial emotion recognition model using segmentation VGG-19 architecture
| null |
https://link.springer.com/article/10.1007/s41870-023-01184-z
|
https://link.springer.com/article/10.1007/s41870-023-01184-z
|
https://github.com/VigneshS10/Segmentation-VGG19
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/the-universality-in-urban-commuting-across
|
The universality in urban commuting across and within cities
|
2204.12865
|
https://arxiv.org/abs/2204.12865v1
|
https://arxiv.org/pdf/2204.12865v1.pdf
|
https://github.com/leiii/commute
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/masked-spectrogram-prediction-for-self
|
Masked Spectrogram Prediction For Self-Supervised Audio Pre-Training
|
2204.12768
|
https://arxiv.org/abs/2204.12768v1
|
https://arxiv.org/pdf/2204.12768v1.pdf
|
https://github.com/wanghelin1997/maskspec
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/prompt-tuning-for-discriminative-pre-trained-1
|
Prompt Tuning for Discriminative Pre-trained Language Models
|
2205.11166
|
https://arxiv.org/abs/2205.11166v1
|
https://arxiv.org/pdf/2205.11166v1.pdf
|
https://github.com/thunlp/dpt
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/i-learn-to-diffuse-or-data-alchemy-101-a
|
I Learn to Diffuse, or Data Alchemy 101: a Mnemonic Manifesto
|
2208.03998
|
https://arxiv.org/abs/2208.03998v2
|
https://arxiv.org/pdf/2208.03998v2.pdf
|
https://github.com/alembics/disco-diffusion
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/occlusion-robust-face-alignment-using-a
|
Occlusion-Robust Face Alignment Using a Viewpoint-Invariant Hierarchical Network Architecture
| null |
http://openaccess.thecvf.com//content/CVPR2022/html/Zhu_Occlusion-Robust_Face_Alignment_Using_a_Viewpoint-Invariant_Hierarchical_Network_Architecture_CVPR_2022_paper.html
|
http://openaccess.thecvf.com//content/CVPR2022/papers/Zhu_Occlusion-Robust_Face_Alignment_Using_a_Viewpoint-Invariant_Hierarchical_Network_Architecture_CVPR_2022_paper.pdf
|
https://github.com/zhuccly/glomface-face-alignment
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/show-deconfound-and-tell-image-captioning
|
Show, Deconfound and Tell: Image Captioning With Causal Inference
| null |
http://openaccess.thecvf.com//content/CVPR2022/html/Liu_Show_Deconfound_and_Tell_Image_Captioning_With_Causal_Inference_CVPR_2022_paper.html
|
http://openaccess.thecvf.com//content/CVPR2022/papers/Liu_Show_Deconfound_and_Tell_Image_Captioning_With_Causal_Inference_CVPR_2022_paper.pdf
|
https://github.com/cumtgg/ciic
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/hafix-history-augmented-large-language-models
|
HAFix: History-Augmented Large Language Models for Bug Fixing
|
2501.09135
|
https://arxiv.org/abs/2501.09135v1
|
https://arxiv.org/pdf/2501.09135v1.pdf
|
https://github.com/sailresearch/hafix-history-augmented-llms-for-bug-fixing
| true
| true
| false
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.