paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/a-multi-modal-geographic-pre-training-method
|
MGeo: Multi-Modal Geographic Pre-Training Method
|
2301.04283
|
https://arxiv.org/abs/2301.04283v2
|
https://arxiv.org/pdf/2301.04283v2.pdf
|
https://github.com/phantomgrapes/mgeo
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/temos-generating-diverse-human-motions-from
|
TEMOS: Generating diverse human motions from textual descriptions
|
2204.14109
|
https://arxiv.org/abs/2204.14109v2
|
https://arxiv.org/pdf/2204.14109v2.pdf
|
https://github.com/Mathux/TEMOS
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/contrastive-learning-for-improving-asr
|
Contrastive Learning for Improving ASR Robustness in Spoken Language Understanding
|
2205.00693
|
https://arxiv.org/abs/2205.00693v2
|
https://arxiv.org/pdf/2205.00693v2.pdf
|
https://github.com/miulab/spokencse
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mnist-c-a-robustness-benchmark-for-computer
|
MNIST-C: A Robustness Benchmark for Computer Vision
|
1906.02337
|
https://arxiv.org/abs/1906.02337v1
|
https://arxiv.org/pdf/1906.02337v1.pdf
|
https://github.com/testingautomated-usi/fashion-mnist-c
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/prefix-tuning-optimizing-continuous-prompts
|
Prefix-Tuning: Optimizing Continuous Prompts for Generation
|
2101.00190
|
https://arxiv.org/abs/2101.00190v1
|
https://arxiv.org/pdf/2101.00190v1.pdf
|
https://github.com/ga642381/SpeechPrompt
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/generative-spoken-language-modeling-from-raw
|
Generative Spoken Language Modeling from Raw Audio
|
2102.01192
|
https://arxiv.org/abs/2102.01192v2
|
https://arxiv.org/pdf/2102.01192v2.pdf
|
https://github.com/ga642381/SpeechPrompt
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-theoretical-analysis-of
|
Towards Theoretical Analysis of Transformation Complexity of ReLU DNNs
|
2205.01940
|
https://arxiv.org/abs/2205.01940v2
|
https://arxiv.org/pdf/2205.01940v2.pdf
|
https://github.com/sjtu-xai-lab/transformation-complexity
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mad-self-supervised-masked-anomaly-detection
|
MAD: Self-Supervised Masked Anomaly Detection Task for Multivariate Time Series
|
2205.02100
|
https://arxiv.org/abs/2205.02100v1
|
https://arxiv.org/pdf/2205.02100v1.pdf
|
https://github.com/icsdataset/hai
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/emospeech-guiding-fastspeech2-towards
|
EmoSpeech: Guiding FastSpeech2 Towards Emotional Text to Speech
|
2307.00024
|
https://arxiv.org/abs/2307.00024v1
|
https://arxiv.org/pdf/2307.00024v1.pdf
|
https://github.com/deepvk/emospeech
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-to-disambiguate-strongly-interacting
|
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-pixel Part Segmentation
|
2107.00434
|
https://arxiv.org/abs/2107.00434v2
|
https://arxiv.org/pdf/2107.00434v2.pdf
|
https://github.com/zc-alexfan/digit-interacting
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/graph-topology-invariant-gradient-and
|
Graph topology invariant gradient and sampling complexity for decentralized and stochastic optimization
|
2101.00143
|
https://arxiv.org/abs/2101.00143v2
|
https://arxiv.org/pdf/2101.00143v2.pdf
|
https://github.com/Libensemble/libensemble
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/gradient-sliding-for-composite-optimization
|
Gradient Sliding for Composite Optimization
|
1406.0919
|
http://arxiv.org/abs/1406.0919v2
|
http://arxiv.org/pdf/1406.0919v2.pdf
|
https://github.com/Libensemble/libensemble
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/inferring-density-dependent-population
|
Inferring Density-Dependent Population Dynamics Mechanisms through Rate Disambiguation for Logistic Birth-Death Processes
|
2205.05189
|
https://arxiv.org/abs/2205.05189v1
|
https://arxiv.org/pdf/2205.05189v1.pdf
|
https://github.com/lhuynhm/birthdeathdisambiguation
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/cic-bart-ssa-controllable-image-captioning
|
CIC-BART-SSA: Controllable Image Captioning with Structured Semantic Augmentation
|
2407.11393
|
https://arxiv.org/abs/2407.11393v2
|
https://arxiv.org/pdf/2407.11393v2.pdf
|
https://github.com/SamsungLabs/CIC-BART-SSA
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/jax-md-end-to-end-differentiable-hardware-1
|
JAX, M.D.: A Framework for Differentiable Physics
|
1912.04232
|
https://arxiv.org/abs/1912.04232v2
|
https://arxiv.org/pdf/1912.04232v2.pdf
|
https://github.com/google/jax-md
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/deep-learning-based-channel-estimation-for-4
|
Deep Learning-based Channel Estimation for Wideband Hybrid MmWave Massive MIMO
|
2205.05202
|
https://arxiv.org/abs/2205.05202v1
|
https://arxiv.org/pdf/2205.05202v1.pdf
|
https://github.com/ericgjb/sbl_unfolding_based_had_mimo_channel_estimation
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/partial-class-activation-attention-for
|
Partial Class Activation Attention for Semantic Segmentation
| null |
http://openaccess.thecvf.com//content/CVPR2022/html/Liu_Partial_Class_Activation_Attention_for_Semantic_Segmentation_CVPR_2022_paper.html
|
http://openaccess.thecvf.com//content/CVPR2022/papers/Liu_Partial_Class_Activation_Attention_for_Semantic_Segmentation_CVPR_2022_paper.pdf
|
https://github.com/lsa1997/pcaa
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/multi-scale-memory-based-video-deblurring
|
Multi-Scale Memory-Based Video Deblurring
|
2204.02977
|
https://arxiv.org/abs/2204.02977v1
|
https://arxiv.org/pdf/2204.02977v1.pdf
|
https://github.com/jibo27/memdeblur
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/far-from-asymptopia
|
Far from Asymptopia
|
2205.03343
|
https://arxiv.org/abs/2205.03343v2
|
https://arxiv.org/pdf/2205.03343v2.pdf
|
https://github.com/mcabbott/atomicpriors.jl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/llm-based-multi-agent-generation-of-semi
|
LLM Based Multi-Agent Generation of Semi-structured Documents from Semantic Templates in the Public Administration Domain
|
2402.14871
|
https://arxiv.org/abs/2402.14871v1
|
https://arxiv.org/pdf/2402.14871v1.pdf
|
https://github.com/michelebri/multi_agent_document_generation
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/two-metrics-on-rooted-unordered-trees-with
|
Two Metrics on Rooted Unordered Trees with Labels
|
2103.11553
|
https://arxiv.org/abs/2103.11553v3
|
https://arxiv.org/pdf/2103.11553v3.pdf
|
https://github.com/yuewangmathbio/treemetric
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/pointdistiller-structured-knowledge
|
PointDistiller: Structured Knowledge Distillation Towards Efficient and Compact 3D Detection
|
2205.11098
|
https://arxiv.org/abs/2205.11098v1
|
https://arxiv.org/pdf/2205.11098v1.pdf
|
https://github.com/runpeidong/pointdistiller
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/pre-trained-vision-language-models-learn
|
Pre-trained Vision-Language Models Learn Discoverable Visual Concepts
|
2404.12652
|
https://arxiv.org/abs/2404.12652v2
|
https://arxiv.org/pdf/2404.12652v2.pdf
|
https://github.com/brown-palm/concept-discovery-and-learning
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/teaching-programming-to-novices-using-the
|
Teaching Programming to Novices Using the codeBoot Online Environment
|
2207.12702
|
https://arxiv.org/abs/2207.12702v1
|
https://arxiv.org/pdf/2207.12702v1.pdf
|
https://github.com/udem-dlteam/codeboot
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/what-causes-optical-flow-networks-to-be
|
Towards Understanding Adversarial Robustness of Optical Flow Networks
|
2103.16255
|
https://arxiv.org/abs/2103.16255v3
|
https://arxiv.org/pdf/2103.16255v3.pdf
|
https://github.com/lmb-freiburg/understanding_flow_robustness
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/hierarchical-consistency-regularized-mean
|
Hierarchical Consistency Regularized Mean Teacher for Semi-supervised 3D Left Atrium Segmentation
|
2105.10369
|
https://arxiv.org/abs/2105.10369v2
|
https://arxiv.org/pdf/2105.10369v2.pdf
|
https://github.com/jacobzhaoziyuan/HCR-MT
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/fully-steerable-3d-spherical-neurons
|
Steerable 3D Spherical Neurons
|
2106.13863
|
https://arxiv.org/abs/2106.13863v7
|
https://arxiv.org/pdf/2106.13863v7.pdf
|
https://github.com/pavlo-melnyk/steerable-3d-neurons
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/boxdiff-text-to-image-synthesis-with-training
|
BoxDiff: Text-to-Image Synthesis with Training-Free Box-Constrained Diffusion
|
2307.10816
|
https://arxiv.org/abs/2307.10816v4
|
https://arxiv.org/pdf/2307.10816v4.pdf
|
https://github.com/showlab/boxdiff
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/supracentrality-analysis-of-temporal-networks
|
Supracentrality Analysis of Temporal Networks with Directed Interlayer Coupling
|
1906.06366
|
http://arxiv.org/abs/1906.06366v2
|
http://arxiv.org/pdf/1906.06366v2.pdf
|
https://github.com/taylordr/supracentrality
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/190402059
|
Tunable Eigenvector-Based Centralities for Multiplex and Temporal Networks
|
1904.02059
|
http://arxiv.org/abs/1904.02059v1
|
http://arxiv.org/pdf/1904.02059v1.pdf
|
https://github.com/taylordr/supracentrality
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mascara-systematically-generating-memorable
|
MASCARA: Systematically Generating Memorable And Secure Passphrases
|
2303.09150
|
https://arxiv.org/abs/2303.09150v1
|
https://arxiv.org/pdf/2303.09150v1.pdf
|
https://github.com/mainack/mascara-passphrase-code-data
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/representation-learning-with-contrastive
|
Representation Learning with Contrastive Predictive Coding
|
1807.03748
|
http://arxiv.org/abs/1807.03748v2
|
http://arxiv.org/pdf/1807.03748v2.pdf
|
https://github.com/chorowski-lab/hcpc
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/effective-explanations-for-entity-resolution
|
Effective Explanations for Entity Resolution Models
|
2203.12978
|
https://arxiv.org/abs/2203.12978v2
|
https://arxiv.org/pdf/2203.12978v2.pdf
|
https://github.com/tteofili/certa
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/voxel-field-fusion-for-3d-object-detection
|
Voxel Field Fusion for 3D Object Detection
|
2205.15938
|
https://arxiv.org/abs/2205.15938v1
|
https://arxiv.org/pdf/2205.15938v1.pdf
|
https://github.com/dvlab-research/vff
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/libensemble-a-library-to-coordinate-the
|
libEnsemble: A Library to Coordinate the Concurrent Evaluation of Dynamic Ensembles of Calculations
|
2104.08322
|
https://arxiv.org/abs/2104.08322v1
|
https://arxiv.org/pdf/2104.08322v1.pdf
|
https://github.com/Libensemble/libensemble
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/toward-large-kernel-models
|
Toward Large Kernel Models
|
2302.02605
|
https://arxiv.org/abs/2302.02605v3
|
https://arxiv.org/pdf/2302.02605v3.pdf
|
https://github.com/eigenpro/eigenpro3
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
|
U-Net: Convolutional Networks for Biomedical Image Segmentation
|
1505.04597
|
http://arxiv.org/abs/1505.04597v1
|
http://arxiv.org/pdf/1505.04597v1.pdf
|
https://github.com/VedantDere0104/Pix2Pix_GAN
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/boosting-out-of-distribution-detection-with-1
|
Boosting Out-of-Distribution Detection with Multiple Pre-trained Models
|
2212.12720
|
https://arxiv.org/abs/2212.12720v2
|
https://arxiv.org/pdf/2212.12720v2.pdf
|
https://github.com/mapleleaf6/zode
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/electrical-impedance-tomography-with-deep
|
Electrical Impedance Tomography with Deep Calderón Method
|
2304.09074
|
https://arxiv.org/abs/2304.09074v2
|
https://arxiv.org/pdf/2304.09074v2.pdf
|
https://github.com/kwancheolshin/deep-calderon-method
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/supmae-supervised-masked-autoencoders-are
|
SupMAE: Supervised Masked Autoencoders Are Efficient Vision Learners
|
2205.14540
|
https://arxiv.org/abs/2205.14540v3
|
https://arxiv.org/pdf/2205.14540v3.pdf
|
https://github.com/cmu-enyac/supmae
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/the-curious-layperson-fine-grained-image
|
The Curious Layperson: Fine-Grained Image Recognition without Expert Labels
|
2111.03651
|
https://arxiv.org/abs/2111.03651v1
|
https://arxiv.org/pdf/2111.03651v1.pdf
|
https://github.com/subhc/clever
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/sharp-shielding-aware-robust-planning-for
|
SHARP: Shielding-Aware Robust Planning for Safe and Efficient Human-Robot Interaction
|
2110.00843
|
https://arxiv.org/abs/2110.00843v3
|
https://arxiv.org/pdf/2110.00843v3.pdf
|
https://github.com/saferoboticslab/sharp
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/unsupervised-cross-lingual-representation-1
|
Unsupervised Cross-lingual Representation Learning at Scale
|
1911.02116
|
https://arxiv.org/abs/1911.02116v2
|
https://arxiv.org/pdf/1911.02116v2.pdf
|
https://github.com/deepset-ai/FARM
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/semantic-conditional-diffusion-networks-for
|
Semantic-Conditional Diffusion Networks for Image Captioning
|
2212.03099
|
https://arxiv.org/abs/2212.03099v1
|
https://arxiv.org/pdf/2212.03099v1.pdf
|
https://github.com/yehli/xmodaler
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/active-uncertainty-learning-for-human-robot
|
Active Uncertainty Reduction for Human-Robot Interaction: An Implicit Dual Control Approach
|
2202.07720
|
https://arxiv.org/abs/2202.07720v2
|
https://arxiv.org/pdf/2202.07720v2.pdf
|
https://github.com/saferoboticslab/sharp
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/tpc-transformation-specific-smoothing-for
|
TPC: Transformation-Specific Smoothing for Point Cloud Models
|
2201.12733
|
https://arxiv.org/abs/2201.12733v5
|
https://arxiv.org/pdf/2201.12733v5.pdf
|
https://github.com/qianhewu/point-cloud-smoothing
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/activeaed-a-human-in-the-loop-improves
|
ActiveAED: A Human in the Loop Improves Annotation Error Detection
|
2305.20045
|
https://arxiv.org/abs/2305.20045v1
|
https://arxiv.org/pdf/2305.20045v1.pdf
|
https://github.com/mainlp/activeaed
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/one-step-detection-paradigm-for-hyperspectral
|
One-Step Detection Paradigm for Hyperspectral Anomaly Detection via Spectral Deviation Relationship Learning
|
2303.12342
|
https://arxiv.org/abs/2303.12342v1
|
https://arxiv.org/pdf/2303.12342v1.pdf
|
https://github.com/Jingtao-Li-CVer/TDD
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/linearity-grafting-relaxed-neuron-pruning
|
Linearity Grafting: Relaxed Neuron Pruning Helps Certifiable Robustness
|
2206.07839
|
https://arxiv.org/abs/2206.07839v1
|
https://arxiv.org/pdf/2206.07839v1.pdf
|
https://github.com/vita-group/linearity-grafting
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/lightseq-accelerated-training-for-transformer
|
LightSeq2: Accelerated Training for Transformer-based Models on GPUs
|
2110.05722
|
https://arxiv.org/abs/2110.05722v3
|
https://arxiv.org/pdf/2110.05722v3.pdf
|
https://github.com/bytedance/lightseq
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/variational-counterdiabatic-driving-of-the
|
Variational counterdiabatic driving of the Hubbard model for ground-state preparation
|
2206.07597
|
https://arxiv.org/abs/2206.07597v2
|
https://arxiv.org/pdf/2206.07597v2.pdf
|
https://github.com/qx20211202/hubbardcd
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/self-supervised-learning-for-contextualized
|
Self-Supervised Learning for Contextualized Extractive Summarization
|
1906.04466
|
https://arxiv.org/abs/1906.04466v1
|
https://arxiv.org/pdf/1906.04466v1.pdf
|
https://github.com/minsoo9506/NLP-study
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/sequence-to-sequence-learning-with-neural
|
Sequence to Sequence Learning with Neural Networks
|
1409.3215
|
http://arxiv.org/abs/1409.3215v3
|
http://arxiv.org/pdf/1409.3215v3.pdf
|
https://github.com/minsoo9506/NLP-study
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/efficient-estimation-of-word-representations
|
Efficient Estimation of Word Representations in Vector Space
|
1301.3781
|
http://arxiv.org/abs/1301.3781v3
|
http://arxiv.org/pdf/1301.3781v3.pdf
|
https://github.com/minsoo9506/NLP-study
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/quantum-circuit-autoencoder
|
Quantum Circuit AutoEncoder
|
2307.08446
|
https://arxiv.org/abs/2307.08446v2
|
https://arxiv.org/pdf/2307.08446v2.pdf
|
https://github.com/linke-quantum/qcae-master
| true
| true
| false
|
mindspore
|
https://paperswithcode.com/paper/soft-actor-critic-off-policy-maximum-entropy
|
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
|
1801.01290
|
http://arxiv.org/abs/1801.01290v2
|
http://arxiv.org/pdf/1801.01290v2.pdf
|
https://github.com/facebookresearch/rl/blob/main/examples/sac/sac.py
| false
| false
| false
|
jax
|
https://paperswithcode.com/paper/label-and-distribution-discriminative-dual
|
Dual Representation Learning for Out-of-Distribution Detection
|
2206.09387
|
https://arxiv.org/abs/2206.09387v2
|
https://arxiv.org/pdf/2206.09387v2.pdf
|
https://github.com/lawliet-zzl/drl
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/efficient-and-robust-approximate-nearest
|
Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs
|
1603.09320
|
http://arxiv.org/abs/1603.09320v4
|
http://arxiv.org/pdf/1603.09320v4.pdf
|
https://github.com/evan176/hnswgo
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/agent-based-graph-neural-networks
|
Agent-based Graph Neural Networks
|
2206.11010
|
https://arxiv.org/abs/2206.11010v2
|
https://arxiv.org/pdf/2206.11010v2.pdf
|
https://github.com/karolismart/agentnet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/parametrization-of-gamma-ray-production-cross
|
Parametrization of gamma-ray production cross-sections for pp interactions in a broad proton energy range from the kinematic threshold to PeV energies
|
1406.7369
|
https://arxiv.org/abs/1406.7369v2
|
https://arxiv.org/pdf/1406.7369v2.pdf
|
https://github.com/ervinkafex/LibppGam
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/application-of-a-hybrid-bi-lstm-crf-model-to
|
Application of a Hybrid Bi-LSTM-CRF model to the task of Russian Named Entity Recognition
|
1709.09686
|
http://arxiv.org/abs/1709.09686v2
|
http://arxiv.org/pdf/1709.09686v2.pdf
|
https://github.com/deepmipt/ner
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/a-context-integrated-transformer-based-neural
|
A Context-Integrated Transformer-Based Neural Network for Auction Design
|
2201.12489
|
https://arxiv.org/abs/2201.12489v3
|
https://arxiv.org/pdf/2201.12489v3.pdf
|
https://github.com/zjduan/CITransNet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/dataperf-benchmarks-for-data-centric-ai-1
|
DataPerf: Benchmarks for Data-Centric AI Development
|
2207.10062
|
https://arxiv.org/abs/2207.10062v4
|
https://arxiv.org/pdf/2207.10062v4.pdf
|
https://github.com/mlcommons/dataperf
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/a-permutation-equivariant-neural-network
|
A Permutation-Equivariant Neural Network Architecture For Auction Design
|
2003.01497
|
https://arxiv.org/abs/2003.01497v4
|
https://arxiv.org/pdf/2003.01497v4.pdf
|
https://github.com/zjduan/CITransNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/plingo-a-system-for-probabilistic-reasoning
|
plingo: A system for probabilistic reasoning in clingo based on lpmln
|
2206.11515
|
https://arxiv.org/abs/2206.11515v4
|
https://arxiv.org/pdf/2206.11515v4.pdf
|
https://github.com/potassco/plingo
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/objective-robustness-in-deep-reinforcement
|
Goal Misgeneralization in Deep Reinforcement Learning
|
2105.14111
|
https://arxiv.org/abs/2105.14111v7
|
https://arxiv.org/pdf/2105.14111v7.pdf
|
https://github.com/JacobPfau/procgenAISC
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/keras-gpt-copilot-integrating-the-power-of
|
Keras GPT Copilot: Integrating the Power of Large Language Models in Deep Learning Model Development
| null |
https://doi.org/10.5281/zenodo.7935183
|
https://doi.org/10.5281/zenodo.7935183
|
https://github.com/fabprezja/keras-gpt-copilot
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/diffusion-deformable-model-for-4d-temporal
|
Diffusion Deformable Model for 4D Temporal Medical Image Generation
|
2206.13295
|
https://arxiv.org/abs/2206.13295v1
|
https://arxiv.org/pdf/2206.13295v1.pdf
|
https://github.com/torchddm/ddm
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/tracer-extreme-attention-guided-salient
|
TRACER: Extreme Attention Guided Salient Object Tracing Network
|
2112.07380
|
https://arxiv.org/abs/2112.07380v2
|
https://arxiv.org/pdf/2112.07380v2.pdf
|
https://github.com/Karel911/TRACER
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/optimizing-task-waiting-times-in-dynamic
|
Optimizing Task Waiting Times in Dynamic Vehicle Routing
|
2307.03984
|
https://arxiv.org/abs/2307.03984v1
|
https://arxiv.org/pdf/2307.03984v1.pdf
|
https://github.com/arminsadeghi/mdvrp-optimal-policy
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/tico-transformation-invariance-and-covariance
|
TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning
|
2206.10698
|
https://arxiv.org/abs/2206.10698v2
|
https://arxiv.org/pdf/2206.10698v2.pdf
|
https://github.com/sayannag/TiCo-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/refined-semantic-enhancement-towards
|
Refined Semantic Enhancement towards Frequency Diffusion for Video Captioning
|
2211.15076
|
https://arxiv.org/abs/2211.15076v2
|
https://arxiv.org/pdf/2211.15076v2.pdf
|
https://github.com/lzp870/rsfd
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/self-supervised-semantic-segmentation-1
|
Self-supervised Semantic Segmentation: Consistency over Transformation
|
2309.00143
|
https://arxiv.org/abs/2309.00143v1
|
https://arxiv.org/pdf/2309.00143v1.pdf
|
https://github.com/mindflow-institue/ssct
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/machine-learning-the-trilinear-and-light
|
Machine learning the trilinear and light-quark Yukawa couplings from Higgs pair kinematic shapes
|
2207.04157
|
https://arxiv.org/abs/2207.04157v2
|
https://arxiv.org/pdf/2207.04157v2.pdf
|
https://github.com/talismanbrandi/IML-diHiggs
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/normalizing-flows-on-tori-and-spheres
|
Normalizing Flows on Tori and Spheres
|
2002.02428
|
https://arxiv.org/abs/2002.02428v2
|
https://arxiv.org/pdf/2002.02428v2.pdf
|
https://github.com/ryushinn/flows-on-sphere
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/adapterhub-a-framework-for-adapting
|
AdapterHub: A Framework for Adapting Transformers
|
2007.07779
|
https://arxiv.org/abs/2007.07779v3
|
https://arxiv.org/pdf/2007.07779v3.pdf
|
https://github.com/parovicm/badx
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/automatic-pull-request-title-generation
|
Automatic Pull Request Title Generation
|
2206.10430
|
https://arxiv.org/abs/2206.10430v2
|
https://arxiv.org/pdf/2206.10430v2.pdf
|
https://github.com/soarsmu/prtiger
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/trajectron-multi-agent-generative-trajectory
|
Trajectron++: Dynamically-Feasible Trajectory Forecasting With Heterogeneous Data
|
2001.03093
|
https://arxiv.org/abs/2001.03093v5
|
https://arxiv.org/pdf/2001.03093v5.pdf
|
https://github.com/nvr-avg/adaptive-prediction
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/neural-networks-on-random-graphs
|
Analyzing Neural Networks Based on Random Graphs
|
2002.08104
|
https://arxiv.org/abs/2002.08104v3
|
https://arxiv.org/pdf/2002.08104v3.pdf
|
https://github.com/rmldj/random-graph-nn-paper
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/the-problem-of-human-label-variation-on
|
The 'Problem' of Human Label Variation: On Ground Truth in Data, Modeling and Evaluation
|
2211.02570
|
https://arxiv.org/abs/2211.02570v1
|
https://arxiv.org/pdf/2211.02570v1.pdf
|
https://github.com/mainlp/awesome-human-label-variation
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/masked-autoencoders-that-listen
|
Masked Autoencoders that Listen
|
2207.06405
|
https://arxiv.org/abs/2207.06405v3
|
https://arxiv.org/pdf/2207.06405v3.pdf
|
https://github.com/facebookresearch/audiomae
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-tutorial-on-time-dependent-cohort-state
|
A Tutorial on Time-Dependent Cohort State-Transition Models in R using a Cost-Effectiveness Analysis Example
|
2108.13552
|
https://arxiv.org/abs/2108.13552v2
|
https://arxiv.org/pdf/2108.13552v2.pdf
|
https://github.com/DARTH-git/cohort-modeling-tutorial-timedep
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/pidloc-cross-view-pose-optimization-network
|
PIDLoc: Cross-View Pose Optimization Network Inspired by PID Controllers
| null |
http://openaccess.thecvf.com//content/CVPR2025/html/Lee_PIDLoc_Cross-View_Pose_Optimization_Network_Inspired_by_PID_Controllers_CVPR_2025_paper.html
|
http://openaccess.thecvf.com//content/CVPR2025/papers/Lee_PIDLoc_Cross-View_Pose_Optimization_Network_Inspired_by_PID_Controllers_CVPR_2025_paper.pdf
|
https://github.com/url-kaist/pidloc
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/real-world-image-dehazing-with-improved-joint
|
Real-world image dehazing with improved joint enhancement and exposure fusion
| null |
https://www.sciencedirect.com/science/article/pii/S1047320322002401
|
https://www.sciencedirect.com/science/article/pii/S1047320322002401
|
https://github.com/nhk21/Real-world-image-dehazing-with-improved-joint-enhancement-and-exposure-fusion
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/a-k-cdot-p-effective-hamiltonian-generator
|
A $k\cdot p$ effective Hamiltonian generator
|
2104.08493
|
https://arxiv.org/abs/2104.08493v1
|
https://arxiv.org/pdf/2104.08493v1.pdf
|
https://github.com/yjiang-iop/kdotp-generator
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/custom-pretrainings-and-adapted-3d-convnext
|
COVID Detection and Severity Prediction with 3D-ConvNeXt and Custom Pretrainings
|
2206.15073
|
https://arxiv.org/abs/2206.15073v2
|
https://arxiv.org/pdf/2206.15073v2.pdf
|
https://github.com/kiedani/submission_2nd_covid19_competition
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/motion-style-transfer-modular-low-rank
|
Motion Style Transfer: Modular Low-Rank Adaptation for Deep Motion Forecasting
|
2211.03165
|
https://arxiv.org/abs/2211.03165v1
|
https://arxiv.org/pdf/2211.03165v1.pdf
|
https://github.com/vita-epfl/motion-style-transfer
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/skeleton-based-action-recognition-via
|
Skeleton-based Action Recognition via Temporal-Channel Aggregation
|
2205.15936
|
https://arxiv.org/abs/2205.15936v2
|
https://arxiv.org/pdf/2205.15936v2.pdf
|
https://github.com/OrdinaryQin/TCA-GCN
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/building-a-relation-extraction-baseline-for
|
Building a Relation Extraction Baseline for Gene-Disease Associations: A Reproducibility Study
|
2207.06226
|
https://arxiv.org/abs/2207.06226v1
|
https://arxiv.org/pdf/2207.06226v1.pdf
|
https://github.com/mntlra/dexter
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/voxel-r-cnn-towards-high-performance-voxel
|
Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection
|
2012.15712
|
https://arxiv.org/abs/2012.15712v2
|
https://arxiv.org/pdf/2012.15712v2.pdf
|
https://github.com/open-mmlab/OpenPCDet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mppnet-multi-frame-feature-intertwining-with
|
MPPNet: Multi-Frame Feature Intertwining with Proxy Points for 3D Temporal Object Detection
|
2205.05979
|
https://arxiv.org/abs/2205.05979v2
|
https://arxiv.org/pdf/2205.05979v2.pdf
|
https://github.com/open-mmlab/OpenPCDet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/spatial-aggregation-with-respect-to-a
|
Spatial Aggregation with Respect to a Population Distribution
|
2207.06700
|
https://arxiv.org/abs/2207.06700v1
|
https://arxiv.org/pdf/2207.06700v1.pdf
|
https://github.com/paigejo/summer
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-little-fog-for-a-large-turn
|
A Little Fog for a Large Turn
|
2001.05873
|
https://arxiv.org/abs/2001.05873v1
|
https://arxiv.org/pdf/2001.05873v1.pdf
|
https://github.com/SullyChen/Autopilot-TensorFlow
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/tt-ggxy-a-flexible-library-to-compute-gluon
|
{\tt ggxy}: a flexible library to compute gluon-induced cross sections
|
2506.04323
|
https://arxiv.org/abs/2506.04323v1
|
https://arxiv.org/pdf/2506.04323v1.pdf
|
https://gitlab.com/ggxy/ggxy-release
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/evaluating-coreference-resolvers-on-community
|
Evaluating Coreference Resolvers on Community-based Question Answering: From Rule-based to State of the Art
| null |
https://aclanthology.org/2022.crac-1.7
|
https://aclanthology.org/2022.crac-1.7.pdf
|
https://github.com/haixiachai/coref_cqa
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/improving-bridging-reference-resolution-using
|
Improving Bridging Reference Resolution using Continuous Essentiality from Crowdsourcing
| null |
https://aclanthology.org/2022.crac-1.8
|
https://aclanthology.org/2022.crac-1.8.pdf
|
https://github.com/nobu-g/bridging-resolution
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/watermark-vaccine-adversarial-attacks-to
|
Watermark Vaccine: Adversarial Attacks to Prevent Watermark Removal
|
2207.08178
|
https://arxiv.org/abs/2207.08178v1
|
https://arxiv.org/pdf/2207.08178v1.pdf
|
https://github.com/thinwayliu/watermark-vaccine
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-to-infer-from-unlabeled-data-a-semi
|
Learning to Infer from Unlabeled Data: A Semi-supervised Learning Approach for Robust Natural Language Inference
|
2211.02971
|
https://arxiv.org/abs/2211.02971v1
|
https://arxiv.org/pdf/2211.02971v1.pdf
|
https://github.com/msadat3/ssl_for_nli
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/semi-supervised-vision-transformers
|
Semi-Supervised Vision Transformers
|
2111.11067
|
https://arxiv.org/abs/2111.11067v2
|
https://arxiv.org/pdf/2111.11067v2.pdf
|
https://github.com/wengzejia1/semiformer
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/does-thermal-data-make-the-detection-systems
|
Does Thermal data make the detection systems more reliable?
|
2111.05191
|
https://arxiv.org/abs/2111.05191v1
|
https://arxiv.org/pdf/2111.05191v1.pdf
|
https://github.com/neurai-lab/mmc
| true
| true
| true
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.