paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/learning-debiased-models-with-dynamic
|
Combating Unknown Bias with Effective Bias-Conflicting Scoring and Gradient Alignment
|
2111.13108
|
https://arxiv.org/abs/2111.13108v2
|
https://arxiv.org/pdf/2111.13108v2.pdf
|
https://github.com/parkgeonyeong/dcwp
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/mud-towards-a-large-scale-and-noise-filtered
|
MUD: Towards a Large-Scale and Noise-Filtered UI Dataset for Modern Style UI Modeling
|
2405.07090
|
https://arxiv.org/abs/2405.07090v1
|
https://arxiv.org/pdf/2405.07090v1.pdf
|
https://github.com/sidongfeng/MUD
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/find-the-funding-entity-linking-with
|
Find the Funding: Entity Linking with Incomplete Funding Knowledge Bases
|
2209.00351
|
https://arxiv.org/abs/2209.00351v2
|
https://arxiv.org/pdf/2209.00351v2.pdf
|
https://github.com/informagi/fund-el
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/dimsum-distributed-and-multilingual
|
DiMSum: Distributed and Multilingual Summarization of Financial Narratives
| null |
https://aclanthology.org/2022.fnp-1.9
|
https://aclanthology.org/2022.fnp-1.9.pdf
|
https://github.com/neeleshkshukla/DiMSum_FNP_2022
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/aesthetic-attribute-assessment-of-images
|
Aesthetic Attribute Assessment of Images Numerically on Mixed Multi-attribute Datasets
|
2207.01806
|
https://arxiv.org/abs/2207.01806v1
|
https://arxiv.org/pdf/2207.01806v1.pdf
|
https://github.com/BestiVictory/Aesthetic-Attribute-Assessment-Model
| false
| false
| true
|
mindspore
|
https://paperswithcode.com/paper/splitee-early-exit-in-deep-neural-networks
|
SplitEE: Early Exit in Deep Neural Networks with Split Computing
|
2309.09195
|
https://arxiv.org/abs/2309.09195v1
|
https://arxiv.org/pdf/2309.09195v1.pdf
|
https://github.com/Div290/SplitEE/blob/main/README.md
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/fourier-series-expansion-based-filter
|
Fourier Series Expansion Based Filter Parametrization for Equivariant Convolutions
|
2107.14519
|
https://arxiv.org/abs/2107.14519v2
|
https://arxiv.org/pdf/2107.14519v2.pdf
|
https://github.com/XieQi2015/F-Conv
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/target-guided-open-domain-conversation-1
|
Target-Guided Open-Domain Conversation Planning
|
2209.09746
|
https://arxiv.org/abs/2209.09746v1
|
https://arxiv.org/pdf/2209.09746v1.pdf
|
https://github.com/y-kishinami/tgcp
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/agreement-or-disagreement-in-noise-tolerant
|
Agreement or Disagreement in Noise-tolerant Mutual Learning?
|
2203.15317
|
https://arxiv.org/abs/2203.15317v2
|
https://arxiv.org/pdf/2203.15317v2.pdf
|
https://github.com/jiarunliu/mlc
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/perspective-phase-angle-model-for
|
Perspective Phase Angle Model for Polarimetric 3D Reconstruction
|
2207.09629
|
https://arxiv.org/abs/2207.09629v2
|
https://arxiv.org/pdf/2207.09629v2.pdf
|
https://github.com/gcchen97/ppa4p3d
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/hyp-2-loss-beyond-hypersphere-metric-space
|
HyP$^2$ Loss: Beyond Hypersphere Metric Space for Multi-label Image Retrieval
|
2208.06866
|
https://arxiv.org/abs/2208.06866v1
|
https://arxiv.org/pdf/2208.06866v1.pdf
|
https://github.com/jerryxu0129/hyp2-loss
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/classification-of-small-triorthogonal-codes
|
Classification of Small Triorthogonal Codes
|
2107.09684
|
https://arxiv.org/abs/2107.09684v2
|
https://arxiv.org/pdf/2107.09684v2.pdf
|
https://github.com/sgnez/Tri_from_RM
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/multi-partition-embedding-interaction-with
|
Multi-Partition Embedding Interaction with Block Term Format for Knowledge Graph Completion
|
2006.16365
|
https://arxiv.org/abs/2006.16365v2
|
https://arxiv.org/pdf/2006.16365v2.pdf
|
https://github.com/tranhungnghiep/AnalyzeKGE
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/ensemble-of-expanded-ensembles-a-generalized
|
Replica exchange of expanded ensembles: A generalized ensemble approach with enhanced flexibility and parallelizability
|
2308.06938
|
https://arxiv.org/abs/2308.06938v2
|
https://arxiv.org/pdf/2308.06938v2.pdf
|
https://github.com/wehs7661/ensemble_md
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/visualization-guidelines-for-model
|
Are Metrics Enough? Guidelines for Communicating and Visualizing Predictive Models to Subject Matter Experts
|
2205.05749
|
https://arxiv.org/abs/2205.05749v3
|
https://arxiv.org/pdf/2205.05749v3.pdf
|
https://github.com/tuftsvalt/modelcomm
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/bertoldo-the-historical-bert-for-italian
|
BERToldo, the Historical BERT for Italian
| null |
https://aclanthology.org/2022.lt4hala-1.10
|
https://aclanthology.org/2022.lt4hala-1.10.pdf
|
https://github.com/dhfbk/historical-bert
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/tt-bajes-bayesian-inference-of-multimessenger
|
${\tt bajes}$: Bayesian inference of multimessenger astrophysical data, methods and application to gravitational-waves
|
2102.00017
|
https://arxiv.org/abs/2102.00017v2
|
https://arxiv.org/pdf/2102.00017v2.pdf
|
https://github.com/roxgamba/bajes
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/text-alpha-2-discovering-logical-formulaic
|
$\text{Alpha}^2$: Discovering Logical Formulaic Alphas using Deep Reinforcement Learning
|
2406.16505
|
https://arxiv.org/abs/2406.16505v2
|
https://arxiv.org/pdf/2406.16505v2.pdf
|
https://github.com/x35f/alpha2
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/an-image-is-worth-16x16-words-transformers-1
|
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
|
2010.11929
|
https://arxiv.org/abs/2010.11929v2
|
https://arxiv.org/pdf/2010.11929v2.pdf
|
https://github.com/smitheric95/MoCoViT-PyTorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/predicting-hurricane-trajectories-using-a
|
Predicting Hurricane Trajectories using a Recurrent Neural Network
|
1802.02548
|
http://arxiv.org/abs/1802.02548v3
|
http://arxiv.org/pdf/1802.02548v3.pdf
|
https://github.com/stormalytics/hurricane-frocasting
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/behanceqa-a-new-dataset-for-identifying
|
BehanceQA: A New Dataset for Identifying Question-Answer Pairs in Video Transcripts
| null |
https://aclanthology.org/2022.lrec-1.796
|
https://aclanthology.org/2022.lrec-1.796.pdf
|
https://github.com/amirveyseh/behanceqa
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/scalable-computation-of-monge-maps-with
|
Neural Monge Map estimation and its applications
|
2106.03812
|
https://arxiv.org/abs/2106.03812v3
|
https://arxiv.org/pdf/2106.03812v3.pdf
|
https://github.com/sbyebss/monge_map_solver
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/convnext-v2-co-designing-and-scaling-convnets
|
ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
|
2301.00808
|
https://arxiv.org/abs/2301.00808v1
|
https://arxiv.org/pdf/2301.00808v1.pdf
|
https://github.com/zibbini/convnext-v2_tensorflow
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/privacy-induces-robustness-information
|
Privacy Induces Robustness: Information-Computation Gaps and Sparse Mean Estimation
|
2211.00724
|
https://arxiv.org/abs/2211.00724v2
|
https://arxiv.org/pdf/2211.00724v2.pdf
|
https://github.com/kristian-georgiev/privacy-induces-robustness
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/stylised-choropleth-maps-for-new-zealand
|
Stylised Choropleth Maps for New Zealand Regions and District Health Boards
|
1912.04435
|
https://arxiv.org/abs/1912.04435v1
|
https://arxiv.org/pdf/1912.04435v1.pdf
|
https://github.com/tslumley/DHBins
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/perturbed-self-distillation-weakly-supervised
|
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation
| null |
http://openaccess.thecvf.com//content/ICCV2021/html/Zhang_Perturbed_Self-Distillation_Weakly_Supervised_Large-Scale_Point_Cloud_Semantic_Segmentation_ICCV_2021_paper.html
|
http://openaccess.thecvf.com//content/ICCV2021/papers/Zhang_Perturbed_Self-Distillation_Weakly_Supervised_Large-Scale_Point_Cloud_Semantic_Segmentation_ICCV_2021_paper.pdf
|
https://github.com/yangyucheng000/PSD_Mindspore
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/progressive-color-transfer-with-dense
|
Progressive Color Transfer with Dense Semantic Correspondences
|
1710.00756
|
http://arxiv.org/abs/1710.00756v2
|
http://arxiv.org/pdf/1710.00756v2.pdf
|
https://github.com/dev-Adrian-Vera/Second_Partial_Project
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/automatic-annotation-of-direct-speech-in
|
Automatic Annotation of Direct Speech in Written French Narratives
|
2306.15634
|
https://arxiv.org/abs/2306.15634v2
|
https://arxiv.org/pdf/2306.15634v2.pdf
|
https://github.com/deezer/aads_french
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/lasso-hyperinterpolation-over-general-regions
|
Lasso hyperinterpolation over general regions
|
2011.00433
|
https://arxiv.org/abs/2011.00433v2
|
https://arxiv.org/pdf/2011.00433v2.pdf
|
https://github.com/HaoNingWu/LassoHyper
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/product-information-extraction-using-chatgpt
|
Product Information Extraction using ChatGPT
|
2306.14921
|
https://arxiv.org/abs/2306.14921v1
|
https://arxiv.org/pdf/2306.14921v1.pdf
|
https://github.com/wbsg-uni-mannheim/pie_chatgpt
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/finding-stable-groups-of-cross-correlated
|
Finding Groups of Cross-Correlated Features in Bi-View Data
|
2009.05079
|
https://arxiv.org/abs/2009.05079v4
|
https://arxiv.org/pdf/2009.05079v4.pdf
|
https://github.com/miheerdew/cbce
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/unsupervised-representation-learning-with-1
|
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
|
1511.06434
|
http://arxiv.org/abs/1511.06434v2
|
http://arxiv.org/pdf/1511.06434v2.pdf
|
https://github.com/MasoumehVahedi/GANs-Model
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/ultra-high-resolution-unpaired-stain
|
Ultra-high-resolution unpaired stain transformation via Kernelized Instance Normalization
|
2208.10730
|
https://arxiv.org/abs/2208.10730v1
|
https://arxiv.org/pdf/2208.10730v1.pdf
|
https://github.com/kaminyou/urust
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/the-spatially-correlative-loss-for-various
|
The Spatially-Correlative Loss for Various Image Translation Tasks
|
2104.00854
|
https://arxiv.org/abs/2104.00854v1
|
https://arxiv.org/pdf/2104.00854v1.pdf
|
https://github.com/kaminyou/urust
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/unpaired-image-to-image-translation-using
|
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
|
1703.10593
|
https://arxiv.org/abs/1703.10593v7
|
https://arxiv.org/pdf/1703.10593v7.pdf
|
https://github.com/kaminyou/urust
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/sentimentarcs-a-novel-method-for-self
|
SentimentArcs: A Novel Method for Self-Supervised Sentiment Analysis of Time Series Shows SOTA Transformers Can Struggle Finding Narrative Arcs
|
2110.09454
|
https://arxiv.org/abs/2110.09454v1
|
https://arxiv.org/pdf/2110.09454v1.pdf
|
https://github.com/jon-chun/sentimentarcs_notebooks
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/deep-learning-software-engineering-state-of
|
Deep Learning & Software Engineering: State of Research and Future Directions
|
2009.08525
|
https://arxiv.org/abs/2009.08525v1
|
https://arxiv.org/pdf/2009.08525v1.pdf
|
https://gitlab.com/dlse-workshop/dlse-workshop-community-report
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/posetrans-a-simple-yet-effective-pose
|
PoseTrans: A Simple Yet Effective Pose Transformation Augmentation for Human Pose Estimation
|
2208.07755
|
https://arxiv.org/abs/2208.07755v1
|
https://arxiv.org/pdf/2208.07755v1.pdf
|
https://github.com/wtjiang98/PoseTrans
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/flopping-mode-electron-dipole-spin-resonance
|
Flopping-mode electron dipole spin resonance in the strong-driving regime
|
2208.10548
|
https://arxiv.org/abs/2208.10548v1
|
https://arxiv.org/pdf/2208.10548v1.pdf
|
https://github.com/qutech/qopt-applications
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-time-domain-generalized-wiener-filter-for
|
A Time-domain Real-valued Generalized Wiener Filter for Multi-channel Neural Separation Systems
|
2112.03533
|
https://arxiv.org/abs/2112.03533v2
|
https://arxiv.org/pdf/2112.03533v2.pdf
|
https://github.com/yluo42/TAC
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/on-the-complementarity-between-pre-training-1
|
On the Complementarity between Pre-Training and Random-Initialization for Resource-Rich Machine Translation
|
2209.03316
|
https://arxiv.org/abs/2209.03316v3
|
https://arxiv.org/pdf/2209.03316v3.pdf
|
https://github.com/zanchangtong/ptvsri
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/crowdsourced-fact-checking-at-twitter-how
|
Crowdsourced Fact-Checking at Twitter: How Does the Crowd Compare With Experts?
|
2208.09214
|
https://arxiv.org/abs/2208.09214v1
|
https://arxiv.org/pdf/2208.09214v1.pdf
|
https://github.com/mhmdsaiid/birdwatch
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/privacy-preserving-data-sharing-via
|
Privacy-preserving data sharing via probabilistic modelling
|
1912.04439
|
https://arxiv.org/abs/1912.04439v4
|
https://arxiv.org/pdf/1912.04439v4.pdf
|
https://github.com/DPBayes/twinify
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/multi-objective-representation-learning-for
|
Multi-objective Representation Learning for Scientific Document Retrieval
| null |
https://aclanthology.org/2022.sdp-1.9
|
https://aclanthology.org/2022.sdp-1.9.pdf
|
https://github.com/zetaalphavector/multi-obj-repr-learning
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/revision-transformers-getting-rit-of-no-nos
|
Revision Transformers: Instructing Language Models to Change their Values
|
2210.10332
|
https://arxiv.org/abs/2210.10332v3
|
https://arxiv.org/pdf/2210.10332v3.pdf
|
https://github.com/ml-research/revision-transformer
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/longformer-the-long-document-transformer
|
Longformer: The Long-Document Transformer
|
2004.05150
|
https://arxiv.org/abs/2004.05150v2
|
https://arxiv.org/pdf/2004.05150v2.pdf
|
https://github.com/a-rios/ats-models
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/corrclip-reconstructing-correlations-in-clip
|
CorrCLIP: Reconstructing Correlations in CLIP with Off-the-Shelf Foundation Models for Open-Vocabulary Semantic Segmentation
|
2411.10086
|
https://arxiv.org/abs/2411.10086v1
|
https://arxiv.org/pdf/2411.10086v1.pdf
|
https://github.com/zdk258/CorrCLIP
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/fast-and-accurate-importance-weighting-for
|
Fast and Accurate Importance Weighting for Correcting Sample Bias
|
2209.04215
|
https://arxiv.org/abs/2209.04215v1
|
https://arxiv.org/pdf/2209.04215v1.pdf
|
https://github.com/antoinedemathelin/importance-weighting-network
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/policy-bifurcation-in-safe-reinforcement
|
Policy Bifurcation in Safe Reinforcement Learning
|
2403.12847
|
https://arxiv.org/abs/2403.12847v3
|
https://arxiv.org/pdf/2403.12847v3.pdf
|
https://github.com/thuzouwenjun/mupo
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/exploring-the-potential-of-multimodal-llm
|
Exploring the Potential of Multimodal LLM with Knowledge-Intensive Multimodal ASR
|
2406.10880
|
https://arxiv.org/abs/2406.10880v2
|
https://arxiv.org/pdf/2406.10880v2.pdf
|
https://github.com/yuriak/ms-asr
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mcunetv2-memory-efficient-patch-based
|
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning
|
2110.15352
|
https://arxiv.org/abs/2110.15352v2
|
https://arxiv.org/pdf/2110.15352v2.pdf
|
https://github.com/mit-han-lab/mcunet
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/on-device-training-under-256kb-memory
|
On-Device Training Under 256KB Memory
|
2206.15472
|
https://arxiv.org/abs/2206.15472v4
|
https://arxiv.org/pdf/2206.15472v4.pdf
|
https://github.com/mit-han-lab/mcunet
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/secure-shapley-value-for-cross-silo-federated
|
Secure Shapley Value for Cross-Silo Federated Learning (Technical Report)
|
2209.04856
|
https://arxiv.org/abs/2209.04856v5
|
https://arxiv.org/pdf/2209.04856v5.pdf
|
https://github.com/teijyogen/secsv
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/neural-bayesian-network-understudy
|
Neural Bayesian Network Understudy
|
2211.08243
|
https://arxiv.org/abs/2211.08243v1
|
https://arxiv.org/pdf/2211.08243v1.pdf
|
https://github.com/prabaey/nbn-understudy
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/constraints-on-the-cosmic-expansion-history
|
Constraints on the cosmic expansion history from GWTC-3
|
2111.03604
|
https://arxiv.org/abs/2111.03604v2
|
https://arxiv.org/pdf/2111.03604v2.pdf
|
https://github.com/mariapalfi/gwcosmo_coasting
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/dynamic-multi-scale-convolution-for-dialect
|
Dynamic Multi-scale Convolution for Dialect Identification
|
2108.07787
|
https://arxiv.org/abs/2108.07787v1
|
https://arxiv.org/pdf/2108.07787v1.pdf
|
https://github.com/yuyq96/d-tdnn
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/variational-beam-search-for-online-learning
|
Detecting and Adapting to Irregular Distribution Shifts in Bayesian Online Learning
|
2012.08101
|
https://arxiv.org/abs/2012.08101v3
|
https://arxiv.org/pdf/2012.08101v3.pdf
|
https://github.com/mandt-lab/variational-beam-search
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/improving-children-s-speech-recognition-by
|
Improving Children's Speech Recognition by Fine-tuning Self-supervised Adult Speech Representations
|
2211.07769
|
https://arxiv.org/abs/2211.07769v1
|
https://arxiv.org/pdf/2211.07769v1.pdf
|
https://github.com/monomest/thesis
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/probabilistic-auto-encoder
|
Probabilistic Autoencoder
|
2006.05479
|
https://arxiv.org/abs/2006.05479v4
|
https://arxiv.org/pdf/2006.05479v4.pdf
|
https://github.com/vmboehm/pae-ablation
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/distribution-inference-risks-identifying-and
|
Distribution inference risks: Identifying and mitigating sources of leakage
|
2209.08541
|
https://arxiv.org/abs/2209.08541v1
|
https://arxiv.org/pdf/2209.08541v1.pdf
|
https://github.com/epfl-dlab/property-inference-attacks
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fastclass-a-time-efficient-approach-to-weakly
|
FastClass: A Time-Efficient Approach to Weakly-Supervised Text Classification
|
2212.05506
|
https://arxiv.org/abs/2212.05506v2
|
https://arxiv.org/pdf/2212.05506v2.pdf
|
https://github.com/xiatingyu/fastclass
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/formalizing-distribution-inference-risks
|
Formalizing Distribution Inference Risks
|
2106.03699
|
https://arxiv.org/abs/2106.03699v4
|
https://arxiv.org/pdf/2106.03699v4.pdf
|
https://github.com/epfl-dlab/property-inference-attacks
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-a-perceptual-evaluation-framework-for
|
Towards a Perceptual Evaluation Framework for Lighting Estimation
|
2312.04334
|
https://arxiv.org/abs/2312.04334v3
|
https://arxiv.org/pdf/2312.04334v3.pdf
|
https://github.com/JustineGiroux/Lightsome
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/improving-rare-word-translation-with
|
Improving Rare Word Translation With Dictionaries and Attention Masking
|
2408.09075
|
https://arxiv.org/abs/2408.09075v2
|
https://arxiv.org/pdf/2408.09075v2.pdf
|
https://github.com/kennethsible/dictionary-attention
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/high-stable-and-accurate-vehicle-selection
|
High stable and accurate vehicle selection scheme based on federated edge learning in vehicular networks
|
2208.01890
|
https://arxiv.org/abs/2208.01890v2
|
https://arxiv.org/pdf/2208.01890v2.pdf
|
https://github.com/qiongwu86/Vehicle-selection
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/interactively-generating-explanations-for
|
Interactively Providing Explanations for Transformer Language Models
|
2110.02058
|
https://arxiv.org/abs/2110.02058v4
|
https://arxiv.org/pdf/2110.02058v4.pdf
|
https://github.com/felifri/xaitransformer
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/usln-a-statistically-guided-lightweight
|
USLN: A statistically guided lightweight network for underwater image enhancement via dual-statistic white balance and multi-color space stretch
|
2209.02221
|
https://arxiv.org/abs/2209.02221v1
|
https://arxiv.org/pdf/2209.02221v1.pdf
|
https://github.com/deepxzy/usln
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/rethinking-causal-relationships-learning-in
|
Rethinking Causal Relationships Learning in Graph Neural Networks
|
2312.09613
|
https://arxiv.org/abs/2312.09613v1
|
https://arxiv.org/pdf/2312.09613v1.pdf
|
https://github.com/yaoyao-yaoyao-cell/crcg
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/gnmr-a-provable-one-line-algorithm-for-low
|
GNMR: A provable one-line algorithm for low rank matrix recovery
|
2106.12933
|
https://arxiv.org/abs/2106.12933v3
|
https://arxiv.org/pdf/2106.12933v3.pdf
|
https://github.com/pizilber/GNMR
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/learning-from-the-dark-boosting-graph
|
Learning from the Dark: Boosting Graph Convolutional Neural Networks with Diverse Negative Samples
|
2210.00728
|
https://arxiv.org/abs/2210.00728v1
|
https://arxiv.org/pdf/2210.00728v1.pdf
|
https://github.com/Wei9711/NegGCNs
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/towards-reliable-predictive-analytics-a
|
Towards reliable predictive analytics: a generalized calibration framework
|
2309.08559
|
https://arxiv.org/abs/2309.08559v1
|
https://arxiv.org/pdf/2309.08559v1.pdf
|
https://github.com/bavodc/papergeneralizedcalibrationcurves
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/privileged-knowledge-distillation-for-sim-to
|
Bridging the Sim-to-Real Gap from the Information Bottleneck Perspective
|
2305.18464
|
https://arxiv.org/abs/2305.18464v2
|
https://arxiv.org/pdf/2305.18464v2.pdf
|
https://github.com/tinnerhrhe/HIB_Policy
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/leandojo-theorem-proving-with-retrieval-1
|
LeanDojo: Theorem Proving with Retrieval-Augmented Language Models
|
2306.15626
|
https://arxiv.org/abs/2306.15626v2
|
https://arxiv.org/pdf/2306.15626v2.pdf
|
https://github.com/lean-dojo/leandojochatgpt
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/motor-crosslinking-augments-elasticity-in
|
Motor crosslinking augments elasticity in active nematics
|
2308.16831
|
https://arxiv.org/abs/2308.16831v1
|
https://arxiv.org/pdf/2308.16831v1.pdf
|
https://github.com/gardel-lab/responsefunction
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/floquet-theory-and-stability-for-hamiltonian
|
Floquet theory and stability for Hamiltonian partial differential equations
|
2309.03962
|
https://arxiv.org/abs/2309.03962v1
|
https://arxiv.org/pdf/2309.03962v1.pdf
|
https://github.com/JaredCBronski/Hamiltonian-Floquet
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/ideal-improved-dense-local-contrastive
|
IDEAL: Improved DEnse locAL Contrastive Learning for Semi-Supervised Medical Image Segmentation
|
2210.15075
|
https://arxiv.org/abs/2210.15075v2
|
https://arxiv.org/pdf/2210.15075v2.pdf
|
https://github.com/rohit-kundu/ideal-icassp23
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/on-a-three-dimensional-and-two-four
|
On a three-dimensional and two four-dimensional oncolytic viro-therapy models
|
2210.00401
|
https://arxiv.org/abs/2210.00401v1
|
https://arxiv.org/pdf/2210.00401v1.pdf
|
https://github.com/rim-adenane/oncolytic-viro-therapy-models-m
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/pesotif-a-challenging-visual-dataset-for
|
PeSOTIF: a Challenging Visual Dataset for Perception SOTIF Problems in Long-tail Traffic Scenarios
|
2211.03402
|
https://arxiv.org/abs/2211.03402v1
|
https://arxiv.org/pdf/2211.03402v1.pdf
|
https://github.com/sotif-avlab/pesotif
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mmdetection-open-mmlab-detection-toolbox-and
|
MMDetection: Open MMLab Detection Toolbox and Benchmark
|
1906.07155
|
https://arxiv.org/abs/1906.07155v1
|
https://arxiv.org/pdf/1906.07155v1.pdf
|
https://github.com/sotif-avlab/pesotif
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/bert-and-pals-projected-attention-layers-for
|
BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning
|
1902.02671
|
https://arxiv.org/abs/1902.02671v2
|
https://arxiv.org/pdf/1902.02671v2.pdf
|
https://github.com/josselinsomervilleroberts/ptsl
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/sotif-entropy-online-sotif-risk
|
SOTIF Entropy: Online SOTIF Risk Quantification and Mitigation for Autonomous Driving
|
2211.04009
|
https://arxiv.org/abs/2211.04009v1
|
https://arxiv.org/pdf/2211.04009v1.pdf
|
https://github.com/sotif-avlab/pesotif
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/odd-a-benchmark-dataset-for-the-nlp-based
|
ODD: A Benchmark Dataset for the Natural Language Processing based Opioid Related Aberrant Behavior Detection
|
2307.02591
|
https://arxiv.org/abs/2307.02591v4
|
https://arxiv.org/pdf/2307.02591v4.pdf
|
https://github.com/soon91jae/orab_mimic
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/convnext-v2-co-designing-and-scaling-convnets
|
ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
|
2301.00808
|
https://arxiv.org/abs/2301.00808v1
|
https://arxiv.org/pdf/2301.00808v1.pdf
|
https://github.com/facebookresearch/convnext-v2
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/text2traj2text-learning-by-synthesis
|
Text2Traj2Text: Learning-by-Synthesis Framework for Contextual Captioning of Human Movement Trajectories
|
2409.12670
|
https://arxiv.org/abs/2409.12670v1
|
https://arxiv.org/pdf/2409.12670v1.pdf
|
https://github.com/cyberagentailab/text2traj2text
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/qmes-derivation-mathematica-package-for-the
|
QMeS-Derivation: Mathematica package for the symbolic derivation of functional equations
|
2102.01410
|
https://arxiv.org/abs/2102.01410v2
|
https://arxiv.org/pdf/2102.01410v2.pdf
|
https://github.com/QMeS-toolbox/QMeS-Derivation
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/integrative-imaging-informatics-for-cancer
|
Integrative Imaging Informatics for Cancer Research: Workflow Automation for Neuro-oncology (I3CR-WANO)
|
2210.03151
|
https://arxiv.org/abs/2210.03151v1
|
https://arxiv.org/pdf/2210.03151v1.pdf
|
https://github.com/satrajitgithub/nrg_ai_neuroonco_segment
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/hyperparameter-optimization-as-a-service-on
|
Hyperparameter Optimization as a Service on INFN Cloud
|
2301.05522
|
https://arxiv.org/abs/2301.05522v3
|
https://arxiv.org/pdf/2301.05522v3.pdf
|
https://github.com/landerlini/hopaas_client
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/a-multi-head-model-for-continual-learning-via
|
A Multi-Head Model for Continual Learning via Out-of-Distribution Replay
|
2208.09734
|
https://arxiv.org/abs/2208.09734v1
|
https://arxiv.org/pdf/2208.09734v1.pdf
|
https://github.com/k-gyuhak/clom
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/self-supervised-predictive-convolutional
|
Self-Supervised Predictive Convolutional Attentive Block for Anomaly Detection
|
2111.09099
|
https://arxiv.org/abs/2111.09099v6
|
https://arxiv.org/pdf/2111.09099v6.pdf
|
https://github.com/wasve/DRAEM-SSPCAB
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/ds-k3dom-3-d-dynamic-occupancy-mapping-with
|
DS-K3DOM: 3-D Dynamic Occupancy Mapping with Kernel Inference and Dempster-Shafer Evidential Theory
|
2209.07764
|
https://arxiv.org/abs/2209.07764v2
|
https://arxiv.org/pdf/2209.07764v2.pdf
|
https://github.com/JuyeopHan/dsk3dom_public
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition
|
Deep Residual Learning for Image Recognition
|
1512.03385
|
http://arxiv.org/abs/1512.03385v1
|
http://arxiv.org/pdf/1512.03385v1.pdf
|
https://github.com/code-implementation1/Code5/tree/main/lresnet100e_ir
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/diffmatch-diffusion-model-for-dense-matching
|
Diffusion Model for Dense Matching
|
2305.19094
|
https://arxiv.org/abs/2305.19094v2
|
https://arxiv.org/pdf/2305.19094v2.pdf
|
https://github.com/KU-CVLAB/DiffMatch
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/cute-lock-behavioral-and-structural-multi-key
|
Cute-Lock: Behavioral and Structural Multi-Key Logic Locking Using Time Base Keys
|
2501.17402
|
https://arxiv.org/abs/2501.17402v1
|
https://arxiv.org/pdf/2501.17402v1.pdf
|
https://github.com/cars-lab-repo/cute-lock
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/desed-dialogue-based-explanation-for-sentence
|
DESED: Dialogue-based Explanation for Sentence-level Event Detection
| null |
https://aclanthology.org/2022.coling-1.219
|
https://aclanthology.org/2022.coling-1.219.pdf
|
https://github.com/ydongd/desed
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/mc-mlp-multiple-coordinate-frames-in-all-mlp
|
MC-MLP:Multiple Coordinate Frames in all-MLP Architecture for Vision
|
2304.03917
|
https://arxiv.org/abs/2304.03917v1
|
https://arxiv.org/pdf/2304.03917v1.pdf
|
https://github.com/zzm11/mc-mlp
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/rigorous-dynamical-mean-field-theory-for
|
Rigorous dynamical mean field theory for stochastic gradient descent methods
|
2210.06591
|
https://arxiv.org/abs/2210.06591v3
|
https://arxiv.org/pdf/2210.06591v3.pdf
|
https://github.com/spoc-group/rigorous-dynamical-mean-field-theory
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/utilizing-supervised-models-to-infer
|
CROWDLAB: Supervised learning to infer consensus labels and quality scores for data with multiple annotators
|
2210.06812
|
https://arxiv.org/abs/2210.06812v2
|
https://arxiv.org/pdf/2210.06812v2.pdf
|
https://github.com/cleanlab/multiannotator-benchmarks
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/convolutional-conditional-neural-processes-1
|
Convolutional Conditional Neural Processes
|
1910.13556
|
https://arxiv.org/abs/1910.13556v5
|
https://arxiv.org/pdf/1910.13556v5.pdf
|
https://github.com/peterholderrieth/steerable_cnps
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/divide-and-contrast-source-free-domain
|
Divide and Contrast: Source-free Domain Adaptation via Adaptive Contrastive Learning
|
2211.06612
|
https://arxiv.org/abs/2211.06612v1
|
https://arxiv.org/pdf/2211.06612v1.pdf
|
https://github.com/zyezhang/dac
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/pkcam-previous-knowledge-channel-attention-1
|
PKCAM: Previous Knowledge Channel Attention Module
|
2211.07521
|
https://arxiv.org/abs/2211.07521v2
|
https://arxiv.org/pdf/2211.07521v2.pdf
|
https://github.com/eslambakr/emca
| true
| true
| false
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.