paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/precondition-and-effect-reasoning-for-action
|
Precondition and Effect Reasoning for Action Recognition
|
2112.10057
|
https://arxiv.org/abs/2112.10057v2
|
https://arxiv.org/pdf/2112.10057v2.pdf
|
https://github.com/kaiyoo/precondition-and-effect-reasoning-for-action-recognition
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/metaformer-baselines-for-vision
|
MetaFormer Baselines for Vision
|
2210.13452
|
https://arxiv.org/abs/2210.13452v4
|
https://arxiv.org/pdf/2210.13452v4.pdf
|
https://github.com/Westlake-AI/MogaNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/robust-collaborative-3d-object-detection-in
|
Robust Collaborative 3D Object Detection in Presence of Pose Errors
|
2211.07214
|
https://arxiv.org/abs/2211.07214v3
|
https://arxiv.org/pdf/2211.07214v3.pdf
|
https://github.com/yifanlu0227/coalign
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/human-apprenticeship-learning-via-kernel
|
Reward Shaping for Human Learning via Inverse Reinforcement Learning
|
2002.10904
|
https://arxiv.org/abs/2002.10904v3
|
https://arxiv.org/pdf/2002.10904v3.pdf
|
https://github.com/mrucker/kpirl-kla
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/investigating-co-occurrences-of-mitre-att-ck
|
Investigating co-occurrences of MITRE ATT\&CK Techniques
|
2211.06495
|
https://arxiv.org/abs/2211.06495v1
|
https://arxiv.org/pdf/2211.06495v1.pdf
|
https://github.com/brokenquark/ttps-co-occurrence
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/multilinear-algebra-for-distributed-storage
|
Multilinear Algebra for Distributed Storage
|
2006.08911
|
http://arxiv.org/abs/2006.08911v1
|
http://arxiv.org/pdf/2006.08911v1.pdf
|
https://github.com/Symbol1/MoulinDistorage
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/shire-making-fpga-accelerated-middlebox
|
Rosebud: Making FPGA-Accelerated Middlebox Development More Pleasant
|
2201.08978
|
https://arxiv.org/abs/2201.08978v3
|
https://arxiv.org/pdf/2201.08978v3.pdf
|
https://github.com/ucsdsysnet/Shire
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/dual-head-adversarial-training
|
Dual Head Adversarial Training
|
2104.10377
|
https://arxiv.org/abs/2104.10377v2
|
https://arxiv.org/pdf/2104.10377v2.pdf
|
https://github.com/yujingmarkjiang/Dual-Head-Adversarial-Training
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/diffusion-kernel-attention-network-for-brain
|
Diffusion Kernel Attention Network for Brain Disorder Classification
| null |
https://ieeexplore.ieee.org/abstract/document/9763540
|
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9763540
|
https://github.com/seuzjj/Diffusion_kernel_attention_network
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/learning-sources-of-variability-from-high
|
Learning sources of variability from high-dimensional observational studies
|
2307.13868
|
https://arxiv.org/abs/2307.13868v2
|
https://arxiv.org/pdf/2307.13868v2.pdf
|
https://github.com/ebridge2/cdcorr
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/modeling-ideological-agenda-setting-and
|
Modeling Ideological Salience and Framing in Polarized Online Groups with Graph Neural Networks and Structured Sparsity
|
2104.08829
|
https://arxiv.org/abs/2104.08829v3
|
https://arxiv.org/pdf/2104.08829v3.pdf
|
https://github.com/valentinhofmann/slap4slip
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/streaming-pac-bayes-gaussian-process
|
Streaming PAC-Bayes Gaussian process regression with a performance guarantee for online decision making
|
2210.08486
|
https://arxiv.org/abs/2210.08486v2
|
https://arxiv.org/pdf/2210.08486v2.pdf
|
https://github.com/tyliu22/online_pacgp
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/three-dimensional-buoyant-hydraulic-fracture
|
Three-dimensional buoyant hydraulic fracture growth: constant release from a point source
|
2205.07621
|
https://arxiv.org/abs/2205.07621v2
|
https://arxiv.org/pdf/2205.07621v2.pdf
|
https://github.com/GeoEnergyLab-EPFL/PyFrac
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/algorithmic-changes-are-not-enough-evaluating
|
Algorithmic Changes Are Not Enough: Evaluating the Removal of Race Adjustment from the eGFR Equation
|
2404.12812
|
https://arxiv.org/abs/2404.12812v3
|
https://arxiv.org/pdf/2404.12812v3.pdf
|
https://github.com/StanfordHPDS/egfr_equation_shc
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/vine-copula-based-knockoff-generation-for
|
Vine copula based knockoff generation for high-dimensional controlled variable selection
|
2210.11196
|
https://arxiv.org/abs/2210.11196v1
|
https://arxiv.org/pdf/2210.11196v1.pdf
|
https://github.com/maltekurz/vineknockoffs
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/visualsparta-sparse-transformer-fragment
|
VisualSparta: An Embarrassingly Simple Approach to Large-scale Text-to-Image Search with Weighted Bag-of-words
|
2101.00265
|
https://arxiv.org/abs/2101.00265v2
|
https://arxiv.org/pdf/2101.00265v2.pdf
|
https://github.com/soco-ai/SF-QA
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/sparta-efficient-open-domain-question
|
SPARTA: Efficient Open-Domain Question Answering via Sparse Transformer Matching Retrieval
|
2009.13013
|
https://arxiv.org/abs/2009.13013v1
|
https://arxiv.org/pdf/2009.13013v1.pdf
|
https://github.com/soco-ai/SF-QA
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/sf-qa-simple-and-fair-evaluation-library-for
|
SF-QA: Simple and Fair Evaluation Library for Open-domain Question Answering
|
2101.01910
|
https://arxiv.org/abs/2101.01910v2
|
https://arxiv.org/pdf/2101.01910v2.pdf
|
https://github.com/soco-ai/SF-QA
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mitigating-modality-collapse-in-multimodal
|
Mitigating Modality Collapse in Multimodal VAEs via Impartial Optimization
|
2206.04496
|
https://arxiv.org/abs/2206.04496v1
|
https://arxiv.org/pdf/2206.04496v1.pdf
|
https://github.com/adrianjav/impartial-vaes
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/desq-frequent-sequence-mining-with
|
DESQ: Frequent Sequence Mining with Subsequence Constraints
|
1609.08431
|
http://arxiv.org/abs/1609.08431v2
|
http://arxiv.org/pdf/1609.08431v2.pdf
|
https://github.com/zakimjz/cSPADE/blob/master/sequence.cc
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/face-pyramid-vision-transformer
|
Face Pyramid Vision Transformer
|
2210.11974
|
https://arxiv.org/abs/2210.11974v1
|
https://arxiv.org/pdf/2210.11974v1.pdf
|
https://github.com/khawar-islam/fpvt
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/autoprognosis-automated-clinical-prognostic
|
AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning
|
1802.07207
|
http://arxiv.org/abs/1802.07207v1
|
http://arxiv.org/pdf/1802.07207v1.pdf
|
https://github.com/vanderschaarlab/autoprognosis
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/multilingual-generative-language-models-for-1
|
Multilingual Generative Language Models for Zero-Shot Cross-Lingual Event Argument Extraction
|
2203.08308
|
https://arxiv.org/abs/2203.08308v1
|
https://arxiv.org/pdf/2203.08308v1.pdf
|
https://github.com/pluslabnlp/x-gear
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/informask-unsupervised-informative-masking
|
InforMask: Unsupervised Informative Masking for Language Model Pretraining
|
2210.11771
|
https://arxiv.org/abs/2210.11771v1
|
https://arxiv.org/pdf/2210.11771v1.pdf
|
https://github.com/nafissadeq/informask
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/materials-transformers-language-models-for
|
Materials Transformers Language Models for Generative Materials Design: a benchmark study
|
2206.13578
|
https://arxiv.org/abs/2206.13578v1
|
https://arxiv.org/pdf/2206.13578v1.pdf
|
https://github.com/usccolumbia/mtransformer
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/exploring-the-whole-rashomon-set-of-sparse
|
Exploring the Whole Rashomon Set of Sparse Decision Trees
|
2209.08040
|
https://arxiv.org/abs/2209.08040v2
|
https://arxiv.org/pdf/2209.08040v2.pdf
|
https://github.com/ubc-systopia/treeFarms
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-hybrid-millimeter-wave-channel-simulator
|
A Hybrid Millimeter-wave Channel Simulator for Joint Communication and Localization
|
2210.11422
|
https://arxiv.org/abs/2210.11422v1
|
https://arxiv.org/pdf/2210.11422v1.pdf
|
https://github.com/dengjunquan/omnisim
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mapping-and-cleaning-open-commonsense
|
Mapping and Cleaning Open Commonsense Knowledge Bases with Generative Translation
|
2306.12766
|
https://arxiv.org/abs/2306.12766v1
|
https://arxiv.org/pdf/2306.12766v1.pdf
|
https://github.com/Aunsiels/GenT
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/a-necessary-condition-for-non-oscillatory-and
|
A necessary condition for non oscillatory and positivity preserving time-integration schemes
|
2211.08905
|
https://arxiv.org/abs/2211.08905v1
|
https://arxiv.org/pdf/2211.08905v1.pdf
|
https://github.com/accdavlo/modified-patankar-oscillations-and-lyapunov-stability
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/physics-informed-machine-learning-of-1
|
Physics-Informed Machine Learning of Dynamical Systems for Efficient Bayesian Inference
|
2209.09349
|
https://arxiv.org/abs/2209.09349v1
|
https://arxiv.org/pdf/2209.09349v1.pdf
|
https://github.com/idaholabresearch/bihnns
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/targeted-active-learning-for-probabilistic
|
Targeted active learning for probabilistic models
|
2210.12122
|
https://arxiv.org/abs/2210.12122v1
|
https://arxiv.org/pdf/2210.12122v1.pdf
|
https://github.com/tansey-lab/pdbal
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/unknown-area-exploration-for-robots-with
|
Unknown area exploration for robots with energy constraints using a modified Butterfly Optimization Algorithm
|
2210.14774
|
https://arxiv.org/abs/2210.14774v1
|
https://arxiv.org/pdf/2210.14774v1.pdf
|
https://github.com/aminehorseman/butterfly-optimization-algorithms
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/scaling-knowledge-graphs-for-automating-ai-of
|
Scaling Knowledge Graphs for Automating AI of Digital Twins
|
2210.14596
|
https://arxiv.org/abs/2210.14596v1
|
https://arxiv.org/pdf/2210.14596v1.pdf
|
https://github.com/ibm/digital-twin-benchmark-model
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/pretrained-audio-neural-networks-for-speech
|
Pretrained audio neural networks for Speech emotion recognition in Portuguese
|
2210.14716
|
https://arxiv.org/abs/2210.14716v1
|
https://arxiv.org/pdf/2210.14716v1.pdf
|
https://github.com/marcelomatheusgauy/pretrained_audio_neural_networks_emotion_recognition
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/benchmarking-language-models-for-code-syntax
|
Benchmarking Language Models for Code Syntax Understanding
|
2210.14473
|
https://arxiv.org/abs/2210.14473v1
|
https://arxiv.org/pdf/2210.14473v1.pdf
|
https://github.com/dashends/codesyntax
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/disentangled-graph-neural-networks-for
|
Disentangled Graph Neural Networks for Session-based Recommendation
|
2201.03482
|
https://arxiv.org/abs/2201.03482v2
|
https://arxiv.org/pdf/2201.03482v2.pdf
|
https://github.com/AnsongLi/Disen-GNN
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/bayesian-inference-with-latent-hamiltonian
|
Bayesian Inference with Latent Hamiltonian Neural Networks
|
2208.06120
|
https://arxiv.org/abs/2208.06120v2
|
https://arxiv.org/pdf/2208.06120v2.pdf
|
https://github.com/idaholabresearch/bihnns
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/an-adversarial-benchmark-for-fake-news
|
An Adversarial Benchmark for Fake News Detection Models
|
2201.00912
|
https://arxiv.org/abs/2201.00912v1
|
https://arxiv.org/pdf/2201.00912v1.pdf
|
https://github.com/ljyflores/fake-news-explainability
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/deep-kernelized-dense-geometric-matching
|
DKM: Dense Kernelized Feature Matching for Geometry Estimation
|
2202.00667
|
https://arxiv.org/abs/2202.00667v3
|
https://arxiv.org/pdf/2202.00667v3.pdf
|
https://github.com/parskatt/dkm
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/waver-writing-style-agnostic-video-retrieval
|
WAVER: Writing-style Agnostic Text-Video Retrieval via Distilling Vision-Language Models Through Open-Vocabulary Knowledge
|
2312.09507
|
https://arxiv.org/abs/2312.09507v3
|
https://arxiv.org/pdf/2312.09507v3.pdf
|
https://github.com/fsoft-aic/waver
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/beta-embeddings-for-multi-hop-logical
|
Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs
|
2010.11465
|
https://arxiv.org/abs/2010.11465v1
|
https://arxiv.org/pdf/2010.11465v1.pdf
|
https://github.com/uclnlp/cqd
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/dis-inhibitory-neuronal-circuits-can-control
|
Dis-inhibitory neuronal circuits can control the sign of synaptic plasticity
|
2310.19614
|
https://arxiv.org/abs/2310.19614v2
|
https://arxiv.org/pdf/2310.19614v2.pdf
|
https://github.com/fmi-basel/disinhibitory-control
| true
| true
| false
|
jax
|
https://paperswithcode.com/paper/longitudinal-multimodal-transformer
|
Longitudinal Multimodal Transformer Integrating Imaging and Latent Clinical Signatures From Routine EHRs for Pulmonary Nodule Classification
|
2304.02836
|
https://arxiv.org/abs/2304.02836v5
|
https://arxiv.org/pdf/2304.02836v5.pdf
|
https://github.com/masilab/lmsignatures
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/pointflow-3d-point-cloud-generation-with
|
PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows
|
1906.12320
|
https://arxiv.org/abs/1906.12320v3
|
https://arxiv.org/pdf/1906.12320v3.pdf
|
https://github.com/visinf/s2-flow
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/ice-viscosity-governs-hydraulic-fracture-that
|
Ice viscosity governs hydraulic fracture that causes rapid drainage of supraglacial lakes
|
2409.05478
|
https://arxiv.org/abs/2409.05478v1
|
https://arxiv.org/pdf/2409.05478v1.pdf
|
https://github.com/T-Hageman/MATLAB_IceHydroFrac
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/pix4point-image-pretrained-transformers-for
|
Pix4Point: Image Pretrained Standard Transformers for 3D Point Cloud Understanding
|
2208.12259
|
https://arxiv.org/abs/2208.12259v3
|
https://arxiv.org/pdf/2208.12259v3.pdf
|
https://github.com/guochengqian/pix4point
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/learning-to-use-chopsticks-in-diverse-styles
|
Learning to Use Chopsticks in Diverse Gripping Styles
|
2205.14313
|
https://arxiv.org/abs/2205.14313v3
|
https://arxiv.org/pdf/2205.14313v3.pdf
|
https://github.com/chopsticks-research2022/learning2usechopsticks
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/new-mgcamb-tests-of-gravity-with-cosmomc-and
|
New MGCAMB tests of gravity with CosmoMC and Cobaya
|
2305.05667
|
https://arxiv.org/abs/2305.05667v2
|
https://arxiv.org/pdf/2305.05667v2.pdf
|
https://github.com/sfu-cosmo/MGCAMB
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/benchmarking-automl-algorithms-on-a
|
Benchmarking AutoML algorithms on a collection of synthetic classification problems
|
2212.02704
|
https://arxiv.org/abs/2212.02704v3
|
https://arxiv.org/pdf/2212.02704v3.pdf
|
https://github.com/perib/automl_digen_benchmark
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/rmmdet-road-side-multitype-and-multigroup
|
RMMDet: Road-Side Multitype and Multigroup Sensor Detection System for Autonomous Driving
|
2303.05203
|
https://arxiv.org/abs/2303.05203v3
|
https://arxiv.org/pdf/2303.05203v3.pdf
|
https://github.com/OrangeSodahub/CRLFnet
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/is-data-all-that-matters-the-role-of-control
|
Is Data All That Matters? The Role of Control Frequency for Learning-Based Sampled-Data Control of Uncertain Systems
|
2403.09504
|
https://arxiv.org/abs/2403.09504v1
|
https://arxiv.org/pdf/2403.09504v1.pdf
|
https://github.com/ralfroemer99/lb_sd
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/exploring-the-use-of-webassembly-in-hpc
|
Exploring the Use of WebAssembly in HPC
|
2301.03982
|
https://arxiv.org/abs/2301.03982v1
|
https://arxiv.org/pdf/2301.03982v1.pdf
|
https://github.com/kky-fury/mpiwasm
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mediar-harmony-of-data-centric-and-model
|
MEDIAR: Harmony of Data-Centric and Model-Centric for Multi-Modality Microscopy
|
2212.03465
|
https://arxiv.org/abs/2212.03465v1
|
https://arxiv.org/pdf/2212.03465v1.pdf
|
https://github.com/lee-gihun/mediar
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/stochastic-nucleosome-disassembly-mediated-by
|
Stochastic nucleosome disassembly mediated by remodelers and histone fragmentation
|
2309.02736
|
https://arxiv.org/abs/2309.02736v1
|
https://arxiv.org/pdf/2309.02736v1.pdf
|
https://github.com/hsianktin/histone
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/continual-llava-continual-instruction-tuning
|
Continual LLaVA: Continual Instruction Tuning in Large Vision-Language Models
|
2411.02564
|
https://arxiv.org/abs/2411.02564v2
|
https://arxiv.org/pdf/2411.02564v2.pdf
|
https://github.com/mengcaopku/continual-llava
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/spatiotemporal-convolutional-network-for-time
|
Spatiotemporal information conversion machine for time-series prediction
|
2107.01353
|
https://arxiv.org/abs/2107.01353v2
|
https://arxiv.org/pdf/2107.01353v2.pdf
|
https://github.com/mahp-scut/sticm
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/plausible-extractive-rationalization-through
|
Plausible Extractive Rationalization through Semi-Supervised Entailment Signal
|
2402.08479
|
https://arxiv.org/abs/2402.08479v5
|
https://arxiv.org/pdf/2402.08479v5.pdf
|
https://github.com/wj210/NLI_ETP
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/improving-named-entity-recognition-by
|
Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning
|
2105.03654
|
https://arxiv.org/abs/2105.03654v3
|
https://arxiv.org/pdf/2105.03654v3.pdf
|
https://github.com/modelscope/adaseq
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/finding-badly-drawn-bunnies
|
Finding Badly Drawn Bunnies
| null |
http://openaccess.thecvf.com//content/CVPR2022/html/Yang_Finding_Badly_Drawn_Bunnies_CVPR_2022_paper.html
|
http://openaccess.thecvf.com//content/CVPR2022/papers/Yang_Finding_Badly_Drawn_Bunnies_CVPR_2022_paper.pdf
|
https://github.com/yanglan0225/SketchX-Quantifying-Sketch-Quality
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/pre-trained-language-models-for-interactive
|
Pre-Trained Language Models for Interactive Decision-Making
|
2202.01771
|
https://arxiv.org/abs/2202.01771v4
|
https://arxiv.org/pdf/2202.01771v4.pdf
|
https://github.com/xavierpuigf/virtualhome
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/cheap-and-deterministic-inference-for-deep
|
Cheap and Deterministic Inference for Deep State-Space Models of Interacting Dynamical Systems
|
2305.01773
|
https://arxiv.org/abs/2305.01773v1
|
https://arxiv.org/pdf/2305.01773v1.pdf
|
https://github.com/boschresearch/deterministic-graph-deep-state-space-models
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/combined-mechanistic-and-machine-learning
|
Combined mechanistic and machine learning method for construction of oil reservoir permeability map consistent with well test measurements
|
2301.02585
|
https://arxiv.org/abs/2301.02585v1
|
https://arxiv.org/pdf/2301.02585v1.pdf
|
https://github.com/evgenii-kanin/data_fusion_hdm_ml
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/improved-pothole-detection-using-yolov7-and
|
Improved Pothole Detection Using YOLOv7 and ESRGAN
|
2401.08588
|
https://arxiv.org/abs/2401.08588v1
|
https://arxiv.org/pdf/2401.08588v1.pdf
|
https://gitlab.com/Ryukijano/ESRGAN_AND_YOLOV7
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/y-chromosome-of-aisin-gioro-the-imperial
|
Y Chromosome of Aisin Gioro, the Imperial House of Qing Dynasty
|
1412.6274
|
https://arxiv.org/abs/1412.6274v1
|
https://arxiv.org/pdf/1412.6274v1.pdf
|
https://github.com/jk-ice-cream/cirosantilli
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/ai-fairness-360-an-extensible-toolkit-for
|
AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias
|
1810.01943
|
http://arxiv.org/abs/1810.01943v1
|
http://arxiv.org/pdf/1810.01943v1.pdf
|
https://github.com/datalab-georgetown/fairness-and-missing-values
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/adversarial-online-multi-task-reinforcement
|
Adversarial Online Multi-Task Reinforcement Learning
|
2301.04268
|
https://arxiv.org/abs/2301.04268v1
|
https://arxiv.org/pdf/2301.04268v1.pdf
|
https://github.com/ngmq/adversarial-online-multi-task-reinforcement-learning
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-joint-bayesian-hierarchical-model-for
|
A joint Bayesian hierarchical model for estimating SARS-CoV-2 diagnostic and subgenomic RNA viral dynamics and seroconversion
|
2301.03714
|
https://arxiv.org/abs/2301.03714v1
|
https://arxiv.org/pdf/2301.03714v1.pdf
|
https://github.com/dq0708/joint_vl_sero
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/algebraic-variety-models-for-high-rank-matrix
|
Algebraic Variety Models for High-Rank Matrix Completion
|
1703.09631
|
http://arxiv.org/abs/1703.09631v1
|
http://arxiv.org/pdf/1703.09631v1.pdf
|
https://github.com/gregongie/vmc
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/truncated-marginal-neural-ratio-estimation
|
Truncated Marginal Neural Ratio Estimation
|
2107.01214
|
https://arxiv.org/abs/2107.01214v2
|
https://arxiv.org/pdf/2107.01214v2.pdf
|
https://github.com/undark-lab/swyft
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/autoprognosis-2-0-democratizing-diagnostic
|
AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in Healthcare with Automated Machine Learning
|
2210.12090
|
https://arxiv.org/abs/2210.12090v1
|
https://arxiv.org/pdf/2210.12090v1.pdf
|
https://github.com/vanderschaarlab/autoprognosis
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/optimizing-feature-extraction-for-symbolic
|
Optimizing Feature Extraction for Symbolic Music
|
2307.05107
|
https://arxiv.org/abs/2307.05107v1
|
https://arxiv.org/pdf/2307.05107v1.pdf
|
https://github.com/didoneproject/music_symbolic_features
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/bayesian-temporal-factorization-for
|
Bayesian Temporal Factorization for Multidimensional Time Series Prediction
|
1910.06366
|
https://arxiv.org/abs/1910.06366v2
|
https://arxiv.org/pdf/1910.06366v2.pdf
|
https://github.com/xinychen/transdim
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/aerial-base-station-placement-leveraging
|
Aerial Base Station Placement Leveraging Radio Tomographic Maps
|
2109.07372
|
https://arxiv.org/abs/2109.07372v2
|
https://arxiv.org/pdf/2109.07372v2.pdf
|
https://github.com/uiano/abs_placement_via_radio_maps
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/tsdownsample-high-performance-time-series
|
tsdownsample: high-performance time series downsampling for scalable visualization
|
2307.05389
|
https://arxiv.org/abs/2307.05389v1
|
https://arxiv.org/pdf/2307.05389v1.pdf
|
https://github.com/predict-idlab/tsdownsample
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/graph-neural-networks-in-computer-vision
|
Graph Neural Networks in Computer Vision -- Architectures, Datasets and Common Approaches
|
2212.10207
|
https://arxiv.org/abs/2212.10207v1
|
https://arxiv.org/pdf/2212.10207v1.pdf
|
https://github.com/mkrzywda/graph-neural-networks-in-computer-vision---architectures-datasets-and-common-approaches
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/precise-and-efficient-modeling-of-stellar
|
Precise and efficient modeling of stellar-activity-affected solar spectra using SOAP-GPU
|
2412.13500
|
https://arxiv.org/abs/2412.13500v1
|
https://arxiv.org/pdf/2412.13500v1.pdf
|
https://github.com/yinanzhao21/soap_gpu
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/an-effective-open-image-theorem-for-products
|
An effective open image theorem for products of principally polarized abelian varieties
|
2212.11472
|
https://arxiv.org/abs/2212.11472v5
|
https://arxiv.org/pdf/2212.11472v5.pdf
|
https://github.com/maylejacobj/productsecs
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/linearity-of-relation-decoding-in-transformer
|
Linearity of Relation Decoding in Transformer Language Models
|
2308.09124
|
https://arxiv.org/abs/2308.09124v2
|
https://arxiv.org/pdf/2308.09124v2.pdf
|
https://github.com/chanind/linear-relational
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/skit-s2i-an-indian-accented-speech-to-intent
|
Skit-S2I: An Indian Accented Speech to Intent dataset
|
2212.13015
|
https://arxiv.org/abs/2212.13015v1
|
https://arxiv.org/pdf/2212.13015v1.pdf
|
https://github.com/skit-ai/speech-to-intent-dataset
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/code-and-named-entity-recognition-in
|
Code and Named Entity Recognition in StackOverflow
|
2005.01634
|
https://arxiv.org/abs/2005.01634v3
|
https://arxiv.org/pdf/2005.01634v3.pdf
|
https://github.com/jeniyat/StackOverflowNER
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/red-teaming-language-models-to-reduce-harms
|
Red Teaming Language Models to Reduce Harms: Methods, Scaling Behaviors, and Lessons Learned
|
2209.07858
|
https://arxiv.org/abs/2209.07858v2
|
https://arxiv.org/pdf/2209.07858v2.pdf
|
https://github.com/lyqcom/red30
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/llm-voting-human-choices-and-ai-collective
|
LLM Voting: Human Choices and AI Collective Decision Making
|
2402.01766
|
https://arxiv.org/abs/2402.01766v3
|
https://arxiv.org/pdf/2402.01766v3.pdf
|
https://github.com/ethz-coss/LLM_voting
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/a-new-formula-for-the-determinant-and-bounds
|
A New Formula for the Determinant and Bounds on Its Tensor and Waring Ranks
|
2301.06586
|
https://arxiv.org/abs/2301.06586v2
|
https://arxiv.org/pdf/2301.06586v2.pdf
|
https://gitlab.com/apgoucher/det4f2
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/socially-aware-robot-crowd-navigation-with
|
Intention Aware Robot Crowd Navigation with Attention-Based Interaction Graph
|
2203.01821
|
https://arxiv.org/abs/2203.01821v4
|
https://arxiv.org/pdf/2203.01821v4.pdf
|
https://github.com/Shuijing725/CrowdNav_Prediction_AttnGraph
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/draw-all-your-imagine-a-holistic-benchmark
|
Draw ALL Your Imagine: A Holistic Benchmark and Agent Framework for Complex Instruction-based Image Generation
|
2505.24787
|
https://arxiv.org/abs/2505.24787v1
|
https://arxiv.org/pdf/2505.24787v1.pdf
|
https://github.com/yczhou001/longbench-t2i
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/pointpillars-fast-encoders-for-object
|
PointPillars: Fast Encoders for Object Detection from Point Clouds
|
1812.05784
|
https://arxiv.org/abs/1812.05784v2
|
https://arxiv.org/pdf/1812.05784v2.pdf
|
https://gitee.com/gai-shaoyan/mind3d
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/group-free-3d-object-detection-via
|
Group-Free 3D Object Detection via Transformers
|
2104.00678
|
https://arxiv.org/abs/2104.00678v2
|
https://arxiv.org/pdf/2104.00678v2.pdf
|
https://gitee.com/gai-shaoyan/mind3d
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/long-tail-detection-with-effective-class
|
Long-tail Detection with Effective Class-Margins
|
2301.09724
|
https://arxiv.org/abs/2301.09724v1
|
https://arxiv.org/pdf/2301.09724v1.pdf
|
https://github.com/janghyuncho/ecm-loss
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/exploring-simple-3d-multi-object-tracking-for
|
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving
|
2108.10312
|
https://arxiv.org/abs/2108.10312v1
|
https://arxiv.org/pdf/2108.10312v1.pdf
|
https://gitee.com/gai-shaoyan/mind3d
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/eagermot-3d-multi-object-tracking-via-sensor
|
EagerMOT: 3D Multi-Object Tracking via Sensor Fusion
|
2104.14682
|
https://arxiv.org/abs/2104.14682v1
|
https://arxiv.org/pdf/2104.14682v1.pdf
|
https://gitee.com/gai-shaoyan/mind3d
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/attention-based-lstm-for-aspect-level
|
Attention-based LSTM for Aspect-level Sentiment Classification
| null |
https://aclanthology.org/D16-1058
|
https://aclanthology.org/D16-1058.pdf
|
https://github.com/mindspore-courses/ABSA-MindSpore
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/near-linear-time-algorithm-to-detect
|
Near linear time algorithm to detect community structures in large-scale networks
|
0709.2938
|
http://arxiv.org/abs/0709.2938v1
|
http://arxiv.org/pdf/0709.2938v1.pdf
|
https://github.com/ionicf/copra-communities-openmp
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/finding-overlapping-communities-in-networks
|
Finding overlapping communities in networks by label propagation
|
0910.5516
|
http://arxiv.org/abs/0910.5516v3
|
http://arxiv.org/pdf/0910.5516v3.pdf
|
https://github.com/ionicf/copra-communities-openmp
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/self-driving-multimodal-studies-at-user
|
Self-driving Multimodal Studies at User Facilities
|
2301.09177
|
https://arxiv.org/abs/2301.09177v1
|
https://arxiv.org/pdf/2301.09177v1.pdf
|
https://github.com/nsls-ii-pdf/mmm-experiments
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/near-linear-time-algorithm-to-detect
|
Near linear time algorithm to detect community structures in large-scale networks
|
0709.2938
|
http://arxiv.org/abs/0709.2938v1
|
http://arxiv.org/pdf/0709.2938v1.pdf
|
https://github.com/ionicf/rak-communities-openmp
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/solving-graph-problems-with-single-photons
|
Solving graph problems with single-photons and linear optics
|
2301.09594
|
https://arxiv.org/abs/2301.09594v2
|
https://arxiv.org/pdf/2301.09594v2.pdf
|
https://github.com/quandela/matrix-encoding-problems
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/debiasing-should-be-good-and-bad-measuring
|
Debiasing should be Good and Bad: Measuring the Consistency of Debiasing Techniques in Language Models
|
2305.14307
|
https://arxiv.org/abs/2305.14307v1
|
https://arxiv.org/pdf/2305.14307v1.pdf
|
https://github.com/Robert-Morabito/Instructive-Debiasing
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/transformation-networks-for-target-oriented
|
Transformation Networks for Target-Oriented Sentiment Classification
|
1805.01086
|
http://arxiv.org/abs/1805.01086v1
|
http://arxiv.org/pdf/1805.01086v1.pdf
|
https://github.com/mindspore-courses/ABSA-MindSpore
| false
| false
| true
|
mindspore
|
https://paperswithcode.com/paper/plug-and-play-diffusion-features-for-text
|
Plug-and-Play Diffusion Features for Text-Driven Image-to-Image Translation
|
2211.12572
|
https://arxiv.org/abs/2211.12572v1
|
https://arxiv.org/pdf/2211.12572v1.pdf
|
https://github.com/MichalGeyer/plug-and-play
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/adn-artifact-disentanglement-network-for
|
ADN: Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction
|
1908.01104
|
https://arxiv.org/abs/1908.01104v4
|
https://arxiv.org/pdf/1908.01104v4.pdf
|
https://github.com/ruanyuhui/adn-qsdl
| false
| false
| true
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.