paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/dynamic-graph-cnn-for-learning-on-point
|
Dynamic Graph CNN for Learning on Point Clouds
|
1801.07829
|
https://arxiv.org/abs/1801.07829v2
|
https://arxiv.org/pdf/1801.07829v2.pdf
|
https://gitee.com/gai-shaoyan/mind3d
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/analyzing-noise-models-and-advanced-filtering
|
Analyzing Noise Models and Advanced Filtering Algorithms for Image Enhancement
|
2410.21946
|
https://arxiv.org/abs/2410.21946v2
|
https://arxiv.org/pdf/2410.21946v2.pdf
|
https://github.com/SahilAliAkbar/Image_Noise_Analysis
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/subtractive-aggregation-for-attributed
|
Subtractive Aggregation for Attributed Network Anomaly Detection
| null |
https://dl.acm.org/doi/10.1145/3459637.3482195
|
https://dl.acm.org/doi/10.1145/3459637.3482195
|
https://github.com/betterzhou/AAGNN
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/realtime-person-identification-via-gait
|
Realtime Person Identification via Gait Analysis
|
2404.15312
|
https://arxiv.org/abs/2404.15312v1
|
https://arxiv.org/pdf/2404.15312v1.pdf
|
https://github.com/ahmadrida9999/ahmad
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/fishdbc-flexible-incremental-scalable
|
FISHDBC: Flexible, Incremental, Scalable, Hierarchical Density-Based Clustering for Arbitrary Data and Distance
|
1910.07283
|
https://arxiv.org/abs/1910.07283v1
|
https://arxiv.org/pdf/1910.07283v1.pdf
|
https://github.com/matteodellamico/flexible-clustering
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/discontinuous-response-of-the-epidemic-peak
|
Discontinuous epidemic transition due to limited testing
|
2006.08005
|
https://arxiv.org/abs/2006.08005v3
|
https://arxiv.org/pdf/2006.08005v3.pdf
|
https://github.com/burakbudanur/gridemic
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/heterogeneous-random-forest
|
Heterogeneous Random Forest
|
2410.19022
|
https://arxiv.org/abs/2410.19022v1
|
https://arxiv.org/pdf/2410.19022v1.pdf
|
https://github.com/KimYenny/HeterogeneousRF
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/probing-the-effects-of-broken-symmetries-in
|
Probing the effects of broken symmetries in machine learning
|
2406.17747
|
https://arxiv.org/abs/2406.17747v1
|
https://arxiv.org/pdf/2406.17747v1.pdf
|
https://github.com/spozdn/pet
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/example-based-hypernetworks-for-out-of
|
Example-based Hypernetworks for Out-of-Distribution Generalization
|
2203.14276
|
https://arxiv.org/abs/2203.14276v3
|
https://arxiv.org/pdf/2203.14276v3.pdf
|
https://github.com/tomervolk/hyper-pada
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/conformal-prediction-sets-with-limited-false
|
Conformal Prediction Sets with Limited False Positives
|
2202.07650
|
https://arxiv.org/abs/2202.07650v1
|
https://arxiv.org/pdf/2202.07650v1.pdf
|
https://github.com/ajfisch/conformal-fp
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/contrast-with-reconstruct-contrastive-3d
|
Contrast with Reconstruct: Contrastive 3D Representation Learning Guided by Generative Pretraining
|
2302.02318
|
https://arxiv.org/abs/2302.02318v2
|
https://arxiv.org/pdf/2302.02318v2.pdf
|
https://github.com/runpeidong/act
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/bag-of-words-vs-sequence-vs-graph-vs
|
Are We Really Making Much Progress in Text Classification? A Comparative Review
|
2204.03954
|
https://arxiv.org/abs/2204.03954v6
|
https://arxiv.org/pdf/2204.03954v6.pdf
|
https://github.com/drndr/multilabel-text-clf
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/model-agnostic-meta-learning-for-fast
|
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
|
1703.03400
|
http://arxiv.org/abs/1703.03400v3
|
http://arxiv.org/pdf/1703.03400v3.pdf
|
https://github.com/Mind23-2/MindCode-55
| false
| false
| true
|
mindspore
|
https://paperswithcode.com/paper/can-physics-informed-neural-networks-beat-the
|
Can Physics-Informed Neural Networks beat the Finite Element Method?
|
2302.04107
|
https://arxiv.org/abs/2302.04107v1
|
https://arxiv.org/pdf/2302.04107v1.pdf
|
https://github.com/tamaragrossmann/fem-vs-pinns
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/maxvit-unet-multi-axis-attention-for-medical
|
MaxViT-UNet: Multi-Axis Attention for Medical Image Segmentation
|
2305.08396
|
https://arxiv.org/abs/2305.08396v5
|
https://arxiv.org/pdf/2305.08396v5.pdf
|
https://github.com/abdul2706/MaxViT-UNet
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/safe-deep-policy-adaptation
|
Safe Deep Policy Adaptation
|
2310.08602
|
https://arxiv.org/abs/2310.08602v3
|
https://arxiv.org/pdf/2310.08602v3.pdf
|
https://github.com/LeCAR-Lab/SafeDPA
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/on-pre-training-for-federated-learning
|
On the Importance and Applicability of Pre-Training for Federated Learning
|
2206.11488
|
https://arxiv.org/abs/2206.11488v3
|
https://arxiv.org/pdf/2206.11488v3.pdf
|
https://github.com/andytu28/fps_pre-training
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/calibrated-out-of-distribution-detection-with
|
Calibrated Out-of-Distribution Detection with a Generic Representation
|
2303.13148
|
https://arxiv.org/abs/2303.13148v2
|
https://arxiv.org/pdf/2303.13148v2.pdf
|
https://github.com/vojirt/grood
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/3d-dda-3d-dual-domain-attention-for-brain
|
3D-DDA: 3D Dual-Domain Attention for Brain Tumor Segmentation
| null |
https://ieeexplore.ieee.org/document/10222602
|
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10222602
|
https://github.com/sowwnn/3DDualDomainAttention
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/fingerprinting-web-servers-through
|
Fingerprinting web servers through Transformer-encoded HTTP response headers
|
2404.00056
|
https://arxiv.org/abs/2404.00056v1
|
https://arxiv.org/pdf/2404.00056v1.pdf
|
https://github.com/Darwinkel/bachelor-thesis-information-science
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/udapter-efficient-domain-adaptation-using
|
UDApter -- Efficient Domain Adaptation Using Adapters
|
2302.03194
|
https://arxiv.org/abs/2302.03194v2
|
https://arxiv.org/pdf/2302.03194v2.pdf
|
https://github.com/declare-lab/domadapter
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/neural-discrete-representation-learning
|
Neural Discrete Representation Learning
|
1711.00937
|
http://arxiv.org/abs/1711.00937v2
|
http://arxiv.org/pdf/1711.00937v2.pdf
|
https://github.com/lucidrains/vector-quantize-pytorch
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/co-active-subspace-methods-for-the-joint
|
Co-Active Subspace Methods for the Joint Analysis of Adjacent Computer Models
|
2311.18146
|
https://arxiv.org/abs/2311.18146v2
|
https://arxiv.org/pdf/2311.18146v2.pdf
|
https://github.com/knrumsey/concordance
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/cam-a-fast-and-efficient-network-for-speaker
|
CAM++: A Fast and Efficient Network for Speaker Verification Using Context-Aware Masking
|
2303.00332
|
https://arxiv.org/abs/2303.00332v3
|
https://arxiv.org/pdf/2303.00332v3.pdf
|
https://github.com/yuyq96/d-tdnn
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/splitnerf-split-sum-approximation-neural
|
SplitNeRF: Split Sum Approximation Neural Field for Joint Geometry, Illumination, and Material Estimation
|
2311.16671
|
https://arxiv.org/abs/2311.16671v1
|
https://arxiv.org/pdf/2311.16671v1.pdf
|
https://github.com/zarzarj/SplitNeRF
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/bayesian-nonparametric-inference-in-pde
|
Bayesian Nonparametric Inference in Elliptic PDEs: Convergence Rates and Implementation
|
2311.18322
|
https://arxiv.org/abs/2311.18322v2
|
https://arxiv.org/pdf/2311.18322v2.pdf
|
https://github.com/mattgiord/bayesian-inverse-problems
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-database-for-perceived-quality-assessment
|
Perceptual Quality Assessment of Virtual Reality Videos in the Wild
|
2206.08751
|
https://arxiv.org/abs/2206.08751v3
|
https://arxiv.org/pdf/2206.08751v3.pdf
|
https://github.com/limuhit/vr-video-quality-in-the-wild
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/the-extended-hoa-format-for-synthesis
|
The Extended HOA Format for Synthesis
|
1912.05793
|
https://arxiv.org/abs/1912.05793v2
|
https://arxiv.org/pdf/1912.05793v2.pdf
|
https://github.com/SYNTCOMP/hoa-tools
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/structure-adaptive-elastic-net
|
Structure Adaptive Elastic-Net
|
2006.02041
|
https://arxiv.org/abs/2006.02041v3
|
https://arxiv.org/pdf/2006.02041v3.pdf
|
https://github.com/sandy-pramanik/saenet
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/predicting-workload-in-virtual-flight
|
Predicting Workload in Virtual Flight Simulations using EEG Features (Including Post-hoc Analysis in Appendix)
|
2412.12428
|
https://arxiv.org/abs/2412.12428v2
|
https://arxiv.org/pdf/2412.12428v2.pdf
|
https://github.com/basverkennis/flight-sim-cognitive-workload-eeg-prediction
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/bayesian-low-rank-adaptation-for-large
|
Bayesian Low-rank Adaptation for Large Language Models
|
2308.13111
|
https://arxiv.org/abs/2308.13111v5
|
https://arxiv.org/pdf/2308.13111v5.pdf
|
https://github.com/maximerobeyns/bayesian_lora
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/multi-correlation-siamese-transformer-network
|
Multi-Correlation Siamese Transformer Network with Dense Connection for 3D Single Object Tracking
|
2312.11051
|
https://arxiv.org/abs/2312.11051v1
|
https://arxiv.org/pdf/2312.11051v1.pdf
|
https://github.com/liangp/mcstn-3dsot
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/organelle-specific-segmentation-spatial
|
Organelle-specific segmentation, spatial analysis, and visualization of volume electron microscopy datasets
|
2303.03876
|
https://arxiv.org/abs/2303.03876v1
|
https://arxiv.org/pdf/2303.03876v1.pdf
|
https://gitlab.com/album-app/album
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/fft-based-dynamic-token-mixer-for-vision
|
FFT-based Dynamic Token Mixer for Vision
|
2303.03932
|
https://arxiv.org/abs/2303.03932v2
|
https://arxiv.org/pdf/2303.03932v2.pdf
|
https://github.com/okojoalg/dfformer
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/integrated-image-and-location-analysis-for
|
Integrated Image and Location Analysis for Wound Classification: A Deep Learning Approach
|
2308.11877
|
https://arxiv.org/abs/2308.11877v2
|
https://arxiv.org/pdf/2308.11877v2.pdf
|
https://github.com/uwm-bigdata/multi-modal-wound-classification-using-images-and-locations
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/rm-e-3-equivariant-actor-critic-methods-for
|
${\rm E}(3)$-Equivariant Actor-Critic Methods for Cooperative Multi-Agent Reinforcement Learning
|
2308.11842
|
https://arxiv.org/abs/2308.11842v3
|
https://arxiv.org/pdf/2308.11842v3.pdf
|
https://github.com/dchen48/e3ac
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/facediffuser-speech-driven-3d-facial
|
FaceDiffuser: Speech-Driven 3D Facial Animation Synthesis Using Diffusion
|
2309.11306
|
https://arxiv.org/abs/2309.11306v1
|
https://arxiv.org/pdf/2309.11306v1.pdf
|
https://github.com/uuembodiedsocialai/FaceDiffuser
| true
| true
| false
|
jax
|
https://paperswithcode.com/paper/wdd-weighted-delta-debugging
|
WDD: Weighted Delta Debugging
|
2411.19410
|
https://arxiv.org/abs/2411.19410v2
|
https://arxiv.org/pdf/2411.19410v2.pdf
|
https://github.com/uw-pluverse/perses
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/the-three-channels-of-many-body-perturbation
|
The three channels of many-body perturbation theory: $GW$, particle-particle, and electron-hole $T$-matrix self-energies
|
2309.04167
|
https://arxiv.org/abs/2309.04167v3
|
https://arxiv.org/pdf/2309.04167v3.pdf
|
https://github.com/pfloos/QuAcK
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/generative-adversarial-networks
|
Generative Adversarial Networks
|
1406.2661
|
https://arxiv.org/abs/1406.2661v1
|
https://arxiv.org/pdf/1406.2661v1.pdf
|
https://github.com/2024-MindSpore-1/Code5/tree/main/APDrawingGAN
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/a-simple-baseline-for-batch-active-learning
|
Stochastic Batch Acquisition: A Simple Baseline for Deep Active Learning
|
2106.12059
|
https://arxiv.org/abs/2106.12059v3
|
https://arxiv.org/pdf/2106.12059v3.pdf
|
https://github.com/baal-org/baal
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/head-tail-breaks-a-new-classification-scheme
|
Head/tail Breaks: A New Classification Scheme for Data with a Heavy-tailed Distribution
|
1209.2801
|
https://arxiv.org/abs/1209.2801v1
|
https://arxiv.org/pdf/1209.2801v1.pdf
|
https://github.com/r-spatial/classInt
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/deep-recurrent-q-learning-for-partially
|
Deep Recurrent Q-Learning for Partially Observable MDPs
|
1507.06527
|
http://arxiv.org/abs/1507.06527v4
|
http://arxiv.org/pdf/1507.06527v4.pdf
|
https://github.com/kevslinger/dtqn
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/star-tracking-using-an-event-camera
|
Star Tracking using an Event Camera
|
1812.02895
|
http://arxiv.org/abs/1812.02895v2
|
http://arxiv.org/pdf/1812.02895v2.pdf
|
https://github.com/uzh-rpg/event-based_vision_resources
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/exploiting-structural-and-semantic-context
|
Commonsense Knowledge Base Completion with Structural and Semantic Context
|
1910.02915
|
https://arxiv.org/abs/1910.02915v2
|
https://arxiv.org/pdf/1910.02915v2.pdf
|
https://github.com/allenai/commonsense-kg-completion
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/altered-topological-structure-of-the-brain
|
Altered Topological Structure of the Brain White Matter in Maltreated Children through Topological Data Analysis
|
2304.05908
|
https://arxiv.org/abs/2304.05908v3
|
https://arxiv.org/pdf/2304.05908v3.pdf
|
https://github.com/laplcebeltrami/maltreated
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/phavip-phage-virion-protein-classification
|
PhaVIP: Phage VIrion Protein classification based on chaos game representation and Vision Transformer
|
2301.12422
|
https://arxiv.org/abs/2301.12422v2
|
https://arxiv.org/pdf/2301.12422v2.pdf
|
https://github.com/kennthshang/phavip
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/it-takes-two-to-negotiate-modeling-social
|
It Takes Two to Negotiate: Modeling Social Exchange in Online Multiplayer Games
|
2311.08666
|
https://arxiv.org/abs/2311.08666v1
|
https://arxiv.org/pdf/2311.08666v1.pdf
|
https://github.com/kj2013/claff-diplomacy
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/sculpting-features-from-noise-reward-guided
|
Sculpting Features from Noise: Reward-Guided Hierarchical Diffusion for Task-Optimal Feature Transformation
|
2505.15152
|
https://arxiv.org/abs/2505.15152v1
|
https://arxiv.org/pdf/2505.15152v1.pdf
|
https://github.com/NanxuGong/DIFFT
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/egg-fast-and-extensible-equality-saturation
|
egg: Fast and Extensible Equality Saturation
|
2004.03082
|
https://arxiv.org/abs/2004.03082v3
|
https://arxiv.org/pdf/2004.03082v3.pdf
|
https://github.com/jcberentsen/egg-nog
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/selectivenet-a-deep-neural-network-with-an
|
SelectiveNet: A Deep Neural Network with an Integrated Reject Option
|
1901.09192
|
https://arxiv.org/abs/1901.09192v4
|
https://arxiv.org/pdf/1901.09192v4.pdf
|
https://github.com/BorealisAI/towards-better-sel-cls
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/deep-gamblers-learning-to-abstain-with
|
Deep Gamblers: Learning to Abstain with Portfolio Theory
|
1907.00208
|
https://arxiv.org/abs/1907.00208v2
|
https://arxiv.org/pdf/1907.00208v2.pdf
|
https://github.com/BorealisAI/towards-better-sel-cls
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/constyle-v2-a-strong-prompter-for-all-in-one
|
ConStyle v2: A Strong Prompter for All-in-One Image Restoration
|
2406.18242
|
https://arxiv.org/abs/2406.18242v1
|
https://arxiv.org/pdf/2406.18242v1.pdf
|
https://github.com/Dongqi-Fan/ConStyle_v2
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/compressai-a-pytorch-library-and-evaluation
|
CompressAI: a PyTorch library and evaluation platform for end-to-end compression research
|
2011.03029
|
https://arxiv.org/abs/2011.03029v1
|
https://arxiv.org/pdf/2011.03029v1.pdf
|
https://github.com/xinjie-q/ldmic
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/spores-sum-product-optimization-via
|
SPORES: Sum-Product Optimization via Relational Equality Saturation for Large Scale Linear Algebra
|
2002.07951
|
https://arxiv.org/abs/2002.07951v2
|
https://arxiv.org/pdf/2002.07951v2.pdf
|
https://github.com/jcberentsen/egg-nog
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/accommodating-audio-modality-in-clip-for
|
Accommodating Audio Modality in CLIP for Multimodal Processing
|
2303.06591
|
https://arxiv.org/abs/2303.06591v1
|
https://arxiv.org/pdf/2303.06591v1.pdf
|
https://github.com/ludanruan/clip4vla
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/transformer-encoder-with-multiscale-deep
|
Transformer Encoder with Multiscale Deep Learning for Pain Classification Using Physiological Signals
|
2303.06845
|
https://arxiv.org/abs/2303.06845v2
|
https://arxiv.org/pdf/2303.06845v2.pdf
|
https://github.com/zhenyuanlu/painattnnet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/ldmic-learning-based-distributed-multi-view
|
LDMIC: Learning-based Distributed Multi-view Image Coding
|
2301.09799
|
https://arxiv.org/abs/2301.09799v3
|
https://arxiv.org/pdf/2301.09799v3.pdf
|
https://github.com/xinjie-q/ldmic
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/pet-neus-positional-encoding-tri-planes-for
|
PET-NeuS: Positional Encoding Tri-Planes for Neural Surfaces
|
2305.05594
|
https://arxiv.org/abs/2305.05594v1
|
https://arxiv.org/pdf/2305.05594v1.pdf
|
https://github.com/yiqun-wang/pet-neus
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/cosmological-measurements-from-void-galaxy
|
Cosmological measurements from void-galaxy and galaxy-galaxy clustering in the Sloan Digital Sky Survey
|
2303.06143
|
https://arxiv.org/abs/2303.06143v2
|
https://arxiv.org/pdf/2303.06143v2.pdf
|
https://github.com/alexwoodfinden/sdss-void-cosmology
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/transcription-free-filler-word-detection-with
|
Transcription free filler word detection with Neural semi-CRFs
|
2303.06475
|
https://arxiv.org/abs/2303.06475v1
|
https://arxiv.org/pdf/2303.06475v1.pdf
|
https://github.com/gzhu06/Filler-semi-CRF
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/checkerboard-context-model-for-efficient
|
Checkerboard Context Model for Efficient Learned Image Compression
|
2103.15306
|
https://arxiv.org/abs/2103.15306v2
|
https://arxiv.org/pdf/2103.15306v2.pdf
|
https://github.com/xinjie-q/ldmic
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/caloclouds-ii-ultra-fast-geometry-independent
|
CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation
|
2309.05704
|
https://arxiv.org/abs/2309.05704v2
|
https://arxiv.org/pdf/2309.05704v2.pdf
|
https://github.com/flc-qu-hep/caloclouds-2
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/unsupervised-domain-adaptation-for-cardiac
|
Unsupervised Domain Adaptation for Cardiac Segmentation: Towards Structure Mutual Information Maximization
|
2204.09334
|
https://arxiv.org/abs/2204.09334v3
|
https://arxiv.org/pdf/2204.09334v3.pdf
|
https://github.com/louey233/toward-mutual-information
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-safe-bayesian-optimization-with
|
Towards safe Bayesian optimization with Wiener kernel regression
|
2411.02253
|
https://arxiv.org/abs/2411.02253v3
|
https://arxiv.org/pdf/2411.02253v3.pdf
|
https://github.com/OptCon/SafeBO_WKR
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/the-distributional-hypothesis-does-not-fully
|
The Distributional Hypothesis Does Not Fully Explain the Benefits of Masked Language Model Pretraining
|
2310.16261
|
https://arxiv.org/abs/2310.16261v1
|
https://arxiv.org/pdf/2310.16261v1.pdf
|
https://github.com/usc-tamagotchi/dh-mlm
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/iocr-informed-optical-character-recognition
|
iOCR: Informed Optical Character Recognition for Election Ballot Tallies
|
2208.00865
|
https://arxiv.org/abs/2208.00865v1
|
https://arxiv.org/pdf/2208.00865v1.pdf
|
https://github.com/wolfgarbe/symspell
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/high-dimensional-overdispersed-generalized
|
High-Dimensional Overdispersed Generalized Factor Model with Application to Single-Cell Sequencing Data Analysis
|
2408.11272
|
https://arxiv.org/abs/2408.11272v1
|
https://arxiv.org/pdf/2408.11272v1.pdf
|
https://github.com/feiyoung/GFM
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/evaluating-physics-informed-neural-network
|
Evaluating Physics Informed Neural Network Performance for Seismic Discrimination Between Earthquakes and Explosions
|
2403.04952
|
https://arxiv.org/abs/2403.04952v1
|
https://arxiv.org/pdf/2403.04952v1.pdf
|
https://github.com/qingkaikong/physicsml-pinn-empiricalrelationship
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/harnessing-the-power-of-large-language-model
|
Harnessing the Power of Large Language Model for Uncertainty Aware Graph Processing
|
2404.00589
|
https://arxiv.org/abs/2404.00589v2
|
https://arxiv.org/pdf/2404.00589v2.pdf
|
https://github.com/code4paper-2024/code4paper
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/cm-tts-enhancing-real-time-text-to-speech
|
CM-TTS: Enhancing Real Time Text-to-Speech Synthesis Efficiency through Weighted Samplers and Consistency Models
|
2404.00569
|
https://arxiv.org/abs/2404.00569v1
|
https://arxiv.org/pdf/2404.00569v1.pdf
|
https://github.com/xiangli2022/cm-tts
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/multimedia-generative-script-learning-for
|
Multimedia Generative Script Learning for Task Planning
|
2208.12306
|
https://arxiv.org/abs/2208.12306v3
|
https://arxiv.org/pdf/2208.12306v3.pdf
|
https://github.com/EagleW/Multimedia-Generative-Script-Learning-for-Task-Planning
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/lswinsr-uav-imagery-super-resolution-based-on
|
LSwinSR: UAV Imagery Super-Resolution based on Linear Swin Transformer
|
2303.10232
|
https://arxiv.org/abs/2303.10232v1
|
https://arxiv.org/pdf/2303.10232v1.pdf
|
https://github.com/lironui/geosr
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/short-time-ssvep-data-extension-by-a-novel
|
Short-length SSVEP data extension by a novel generative adversarial networks based framework
|
2301.05599
|
https://arxiv.org/abs/2301.05599v5
|
https://arxiv.org/pdf/2301.05599v5.pdf
|
https://github.com/yudongpan/tegan
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/bridging-the-gap-between-model-explanations
|
Bridging the Gap between Model Explanations in Partially Annotated Multi-label Classification
|
2304.01804
|
https://arxiv.org/abs/2304.01804v1
|
https://arxiv.org/pdf/2304.01804v1.pdf
|
https://github.com/youngwk/bridgegapexplanationpamc
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/one-shot-unsupervised-domain-adaptation-with
|
One-shot Unsupervised Domain Adaptation with Personalized Diffusion Models
|
2303.18080
|
https://arxiv.org/abs/2303.18080v2
|
https://arxiv.org/pdf/2303.18080v2.pdf
|
https://github.com/yasserben/datum
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/reliaavatar-a-robust-real-time-avatar
|
ReliaAvatar: A Robust Real-Time Avatar Animator with Integrated Motion Prediction
|
2407.02129
|
https://arxiv.org/abs/2407.02129v1
|
https://arxiv.org/pdf/2407.02129v1.pdf
|
https://github.com/MindSpore-scientific-2/code-7/tree/main/DocREfiner
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/learning-to-defer-to-multiple-experts
|
Learning to Defer to Multiple Experts: Consistent Surrogate Losses, Confidence Calibration, and Conformal Ensembles
|
2210.16955
|
https://arxiv.org/abs/2210.16955v2
|
https://arxiv.org/pdf/2210.16955v2.pdf
|
https://github.com/rajevv/multi_l2d
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/translist-a-transformer-based-linguistically
|
TransLIST: A Transformer-Based Linguistically Informed Sanskrit Tokenizer
|
2210.11753
|
https://arxiv.org/abs/2210.11753v1
|
https://arxiv.org/pdf/2210.11753v1.pdf
|
https://github.com/rsingha108/translist
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/q-net-query-informed-few-shot-medical-image
|
Q-Net: Query-Informed Few-Shot Medical Image Segmentation
|
2208.11451
|
https://arxiv.org/abs/2208.11451v3
|
https://arxiv.org/pdf/2208.11451v3.pdf
|
https://github.com/zjlab-ammi/q-net
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/self-supervision-with-superpixels-training
|
Self-Supervision with Superpixels: Training Few-shot Medical Image Segmentation without Annotation
|
2007.09886
|
https://arxiv.org/abs/2007.09886v2
|
https://arxiv.org/pdf/2007.09886v2.pdf
|
https://github.com/zjlab-ammi/q-net
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/damo-nlp-at-semeval-2023-task-2-a-unified
|
DAMO-NLP at SemEval-2023 Task 2: A Unified Retrieval-augmented System for Multilingual Named Entity Recognition
|
2305.03688
|
https://arxiv.org/abs/2305.03688v3
|
https://arxiv.org/pdf/2305.03688v3.pdf
|
https://github.com/modelscope/adaseq
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/hipool-modeling-long-documents-using-graph
|
HiPool: Modeling Long Documents Using Graph Neural Networks
|
2305.03319
|
https://arxiv.org/abs/2305.03319v2
|
https://arxiv.org/pdf/2305.03319v2.pdf
|
https://github.com/irenezihuili/hipool
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/factuality-enhanced-language-models-for-open
|
Factuality Enhanced Language Models for Open-Ended Text Generation
|
2206.04624
|
https://arxiv.org/abs/2206.04624v3
|
https://arxiv.org/pdf/2206.04624v3.pdf
|
https://github.com/triton-inference-server/fastertransformer_backend
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/suspected-undeclared-use-of-artificial
|
Suspected Undeclared Use of Artificial Intelligence in the Academic Literature: An Analysis of the Academ-AI Dataset
|
2411.15218
|
https://arxiv.org/abs/2411.15218v1
|
https://arxiv.org/pdf/2411.15218v1.pdf
|
https://github.com/alex-glynn/academ-ai-analysis
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/black-hole-spectroscopy-by-mode-cleaning
|
Black hole spectroscopy by mode cleaning
|
2301.06705
|
https://arxiv.org/abs/2301.06705v2
|
https://arxiv.org/pdf/2301.06705v2.pdf
|
https://github.com/sizheng-ma/qnm_filter
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/towards-a-coq-formalization-of-a-quantified
|
Towards a Coq formalization of a quantified modal logic
|
2206.03358
|
https://arxiv.org/abs/2206.03358v2
|
https://arxiv.org/pdf/2206.03358v2.pdf
|
https://gitlab.com/ana-borges/QRC1-Coq
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/optical-aberration-correction-in
|
Optical Aberration Correction in Postprocessing using Imaging Simulation
|
2305.05867
|
https://arxiv.org/abs/2305.05867v1
|
https://arxiv.org/pdf/2305.05867v1.pdf
|
https://github.com/tangeego/imagingsimulation
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/collective-filters-a-new-approach-to-analyze
|
Quasinormal-mode filters: a new approach to analyze the gravitational-wave ringdown of binary black-hole mergers
|
2207.10870
|
https://arxiv.org/abs/2207.10870v2
|
https://arxiv.org/pdf/2207.10870v2.pdf
|
https://github.com/sizheng-ma/qnm_filter
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/video-object-segmentation-in-panoptic-wild
|
Video Object Segmentation in Panoptic Wild Scenes
|
2305.04470
|
https://arxiv.org/abs/2305.04470v2
|
https://arxiv.org/pdf/2305.04470v2.pdf
|
https://github.com/yoxu515/viposeg-benchmark
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-new-particle-pusher-with-hadronic
|
A New Particle Pusher with Hadronic Interactions for Modeling Multimessenger Emission from Compact Objects
|
2410.22781
|
https://arxiv.org/abs/2410.22781v1
|
https://arxiv.org/pdf/2410.22781v1.pdf
|
https://github.com/Mynghao/pusher-library
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/a-virtual-reality-training-system-for
|
A Virtual Reality Training System for Automotive Engines Assembly and Disassembly
|
2311.02108
|
https://arxiv.org/abs/2311.02108v1
|
https://arxiv.org/pdf/2311.02108v1.pdf
|
https://github.com/ladissonlai/sustech_vrengine
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/cone-unsupervised-contrastive-opinion
|
Cone: Unsupervised Contrastive Opinion Extraction
|
2305.04599
|
https://arxiv.org/abs/2305.04599v1
|
https://arxiv.org/pdf/2305.04599v1.pdf
|
https://github.com/blpxspg/cone
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/scidasynth-interactive-structured-knowledge
|
SciDaSynth: Interactive Structured Knowledge Extraction and Synthesis from Scientific Literature with Large Language Model
|
2404.13765
|
https://arxiv.org/abs/2404.13765v1
|
https://arxiv.org/pdf/2404.13765v1.pdf
|
https://github.com/xingbow/SciDaEx
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/actively-discovering-new-slots-for-task
|
Actively Discovering New Slots for Task-oriented Conversation
|
2305.04049
|
https://arxiv.org/abs/2305.04049v1
|
https://arxiv.org/pdf/2305.04049v1.pdf
|
https://github.com/newslotdetection/newslotdetection
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/multi-scale-deformable-alignment-and-content
|
Multi-Scale Deformable Alignment and Content-Adaptive Inference for Flexible-Rate Bi-Directional Video Compression
|
2306.16544
|
https://arxiv.org/abs/2306.16544v1
|
https://arxiv.org/pdf/2306.16544v1.pdf
|
https://github.com/KUIS-AI-Tekalp-Research-Group/video-compression
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/characterizing-deep-learning-package-supply
|
Characterizing Deep Learning Package Supply Chains in PyPI: Domains, Clusters, and Disengagement
|
2306.16307
|
https://arxiv.org/abs/2306.16307v2
|
https://arxiv.org/pdf/2306.16307v2.pdf
|
https://github.com/gaokai320/pypi-dlsc
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/backprop-free-reinforcement-learning-with
|
Backprop-Free Reinforcement Learning with Active Neural Generative Coding
|
2107.07046
|
https://arxiv.org/abs/2107.07046v1
|
https://arxiv.org/pdf/2107.07046v1.pdf
|
https://github.com/ago109/active-neural-generative-coding
| true
| false
| false
|
jax
|
https://paperswithcode.com/paper/nine-year-wilkinson-microwave-anisotropy-1
|
Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results
|
1212.5225
|
https://arxiv.org/abs/1212.5225v3
|
https://arxiv.org/pdf/1212.5225v3.pdf
|
https://github.com/htjense/pywmap
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/learning-based-lossless-point-cloud-geometry
|
Learning-based Lossless Point Cloud Geometry Coding using Sparse Tensors
|
2204.05043
|
https://arxiv.org/abs/2204.05043v2
|
https://arxiv.org/pdf/2204.05043v2.pdf
|
https://github.com/Weafre/CNeT
| false
| false
| true
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.