paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/dsvt-dynamic-sparse-voxel-transformer-with
|
DSVT: Dynamic Sparse Voxel Transformer with Rotated Sets
|
2301.06051
|
https://arxiv.org/abs/2301.06051v2
|
https://arxiv.org/pdf/2301.06051v2.pdf
|
https://github.com/open-mmlab/OpenPCDet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/evaluating-variants-of-wav2vec-2-0-on
|
Evaluating Variants of wav2vec 2.0 on Affective Vocal Burst Tasks
| null |
https://ieeexplore.ieee.org/document/10096552
|
https://ieeexplore.ieee.org/document/10096552
|
https://github.com/bagustris/A-VB2022_CCC
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/flowmur-a-stealthy-and-practical-audio
|
FlowMur: A Stealthy and Practical Audio Backdoor Attack with Limited Knowledge
|
2312.09665
|
https://arxiv.org/abs/2312.09665v2
|
https://arxiv.org/pdf/2312.09665v2.pdf
|
https://github.com/cristinalan/flowmur
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/minigpt-4-enhancing-vision-language
|
MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large Language Models
|
2304.10592
|
https://arxiv.org/abs/2304.10592v2
|
https://arxiv.org/pdf/2304.10592v2.pdf
|
https://github.com/2024-MindSpore-1/Code5/tree/main/advanced_east
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/beta-rank-a-robust-convolutional-filter
|
Beta-Rank: A Robust Convolutional Filter Pruning Method For Imbalanced Medical Image Analysis
|
2304.07461
|
https://arxiv.org/abs/2304.07461v2
|
https://arxiv.org/pdf/2304.07461v2.pdf
|
https://github.com/mohofar/beta-rank
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/sentence-level-multimodal-and-language
|
SONAR: Sentence-Level Multimodal and Language-Agnostic Representations
|
2308.11466
|
https://arxiv.org/abs/2308.11466v2
|
https://arxiv.org/pdf/2308.11466v2.pdf
|
https://github.com/facebookresearch/sonar
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/dive-into-self-supervised-learning-for
|
Dive into Self-Supervised Learning for Medical Image Analysis: Data, Models and Tasks
|
2209.12157
|
https://arxiv.org/abs/2209.12157v2
|
https://arxiv.org/pdf/2209.12157v2.pdf
|
https://github.com/endoluminalsurgicalvision-imr/medical-ssl
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/graph2vec-learning-distributed
|
graph2vec: Learning Distributed Representations of Graphs
|
1707.05005
|
http://arxiv.org/abs/1707.05005v1
|
http://arxiv.org/pdf/1707.05005v1.pdf
|
https://github.com/compnet/pang
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/ml4c-seeing-causality-through-latent-vicinity
|
ML4C: Seeing Causality Through Latent Vicinity
|
2110.00637
|
https://arxiv.org/abs/2110.00637v4
|
https://arxiv.org/pdf/2110.00637v4.pdf
|
https://github.com/microsoft/ml4c
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/uncovering-the-background-induced-bias-in-rgb
|
Uncovering the Background-Induced bias in RGB based 6-DoF Object Pose Estimation
|
2304.08230
|
https://arxiv.org/abs/2304.08230v1
|
https://arxiv.org/pdf/2304.08230v1.pdf
|
https://github.com/elego9/6dp-data-bias
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/enhancing-semantic-correlation-between
|
Enhancing Semantic Correlation between Instances and Relations for Zero-Shot Relation Extraction
| null |
https://www.jstage.jst.go.jp/article/jnlp/30/2/30_304/_article/-char/en
|
https://www.jstage.jst.go.jp/article/jnlp/30/2/30_304/_pdf/-char/en
|
https://github.com/vhientran/Code-ZSRE
| false
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/multiscale-principle-of-relevant-information
|
Multiscale Principle of Relevant Information for Hyperspectral Image Classification
|
1907.06022
|
https://arxiv.org/abs/1907.06022v3
|
https://arxiv.org/pdf/1907.06022v3.pdf
|
https://github.com/SJYuCNEL/Principle-of-Relevant-Information-and-HSI-Classification
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/root-graded-groups
|
Root Graded Groups
|
2404.02042
|
https://arxiv.org/abs/2404.02042v1
|
https://arxiv.org/pdf/2404.02042v1.pdf
|
https://github.com/twiedemann/rootgradedgroups
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/dense-atomic-construction-of-densely
|
Dense-ATOMIC: Towards Densely-connected ATOMIC with High Knowledge Coverage and Massive Multi-hop Paths
|
2210.07621
|
https://arxiv.org/abs/2210.07621v2
|
https://arxiv.org/pdf/2210.07621v2.pdf
|
https://github.com/nustm/dense-atomic
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/deep-transformer-q-networks-for-partially
|
Deep Transformer Q-Networks for Partially Observable Reinforcement Learning
|
2206.01078
|
https://arxiv.org/abs/2206.01078v2
|
https://arxiv.org/pdf/2206.01078v2.pdf
|
https://github.com/kevslinger/dtqn
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/controlling-class-layout-for-deep-ordinal
|
Controlling Class Layout for Deep Ordinal Classification via Constrained Proxies Learning
|
2303.00396
|
https://arxiv.org/abs/2303.00396v4
|
https://arxiv.org/pdf/2303.00396v4.pdf
|
https://github.com/tenvence/cpl
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/effects-of-spectral-normalization-in-multi
|
Effects of Spectral Normalization in Multi-agent Reinforcement Learning
|
2212.05331
|
https://arxiv.org/abs/2212.05331v2
|
https://arxiv.org/pdf/2212.05331v2.pdf
|
https://github.com/kinalmehta/epymarl_spectral
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/hypertuner-a-cross-layer-multi-objective
|
HyperTuner: A Cross-Layer Multi-Objective Hyperparameter Auto-Tuning Framework for Data Analytic Services
|
2304.10051
|
https://arxiv.org/abs/2304.10051v1
|
https://arxiv.org/pdf/2304.10051v1.pdf
|
https://github.com/zss233-21/hypertuner
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/efficient-multi-order-gated-aggregation
|
MogaNet: Multi-order Gated Aggregation Network
|
2211.03295
|
https://arxiv.org/abs/2211.03295v3
|
https://arxiv.org/pdf/2211.03295v3.pdf
|
https://github.com/Westlake-AI/MogaNet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/decreasing-annotation-burden-of-pairwise
|
Decreasing Annotation Burden of Pairwise Comparisons with Human-in-the-Loop Sorting: Application in Medical Image Artifact Rating
|
2202.04823
|
https://arxiv.org/abs/2202.04823v1
|
https://arxiv.org/pdf/2202.04823v1.pdf
|
https://github.com/gsnlyd/slicelabeler
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/picking-up-quantization-steps-for-compressed
|
Picking Up Quantization Steps for Compressed Image Classification
|
2304.10714
|
https://arxiv.org/abs/2304.10714v1
|
https://arxiv.org/pdf/2304.10714v1.pdf
|
https://github.com/limapku/qsam
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/receval-evaluating-reasoning-chains-via
|
ReCEval: Evaluating Reasoning Chains via Correctness and Informativeness
|
2304.10703
|
https://arxiv.org/abs/2304.10703v2
|
https://arxiv.org/pdf/2304.10703v2.pdf
|
https://github.com/archiki/receval
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/neural-arithmetic-logic-units
|
Neural Arithmetic Logic Units
|
1808.00508
|
http://arxiv.org/abs/1808.00508v1
|
http://arxiv.org/pdf/1808.00508v1.pdf
|
https://github.com/MindSpore-scientific-2/code-5/tree/main/nalu.ms
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/securing-distributed-sgd-against-gradient
|
Securing Distributed SGD against Gradient Leakage Threats
|
2305.06473
|
https://arxiv.org/abs/2305.06473v1
|
https://arxiv.org/pdf/2305.06473v1.pdf
|
https://github.com/git-disl/fed-alphacdp
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/multi-digit-number-recognition-from-street
|
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
|
1312.6082
|
http://arxiv.org/abs/1312.6082v4
|
http://arxiv.org/pdf/1312.6082v4.pdf
|
https://github.com/JennyVanessa/Paddle-SVHN
| false
| false
| true
|
paddle
|
https://paperswithcode.com/paper/one-4-all-neural-potential-fields-for
|
One-4-All: Neural Potential Fields for Embodied Navigation
|
2303.04011
|
https://arxiv.org/abs/2303.04011v3
|
https://arxiv.org/pdf/2303.04011v3.pdf
|
https://github.com/montrealrobotics/one4all
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/uniformerv2-spatiotemporal-learning-by-arming-1
|
UniFormerV2: Spatiotemporal Learning by Arming Image ViTs with Video UniFormer
|
2211.09552
|
https://arxiv.org/abs/2211.09552v1
|
https://arxiv.org/pdf/2211.09552v1.pdf
|
https://github.com/innat/UniFormerV2
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/image-and-video-tokenization-with-binary
|
Image and Video Tokenization with Binary Spherical Quantization
|
2406.07548
|
https://arxiv.org/abs/2406.07548v1
|
https://arxiv.org/pdf/2406.07548v1.pdf
|
https://github.com/lucidrains/vector-quantize-pytorch
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/advancing-visual-grounding-with-scene-1
|
Advancing Visual Grounding with Scene Knowledge: Benchmark and Method
|
2307.11558
|
https://arxiv.org/abs/2307.11558v1
|
https://arxiv.org/pdf/2307.11558v1.pdf
|
https://github.com/zhjohnchan/sk-vg
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/rc-autocalib-an-end-to-end-radar-camera
|
RC-AutoCalib: An End-to-End Radar-Camera Automatic Calibration Network
|
2505.22427
|
https://arxiv.org/abs/2505.22427v1
|
https://arxiv.org/pdf/2505.22427v1.pdf
|
https://github.com/nycu-acm/rc-autocalib
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/rethinking-federated-learning-with-domain
|
Rethinking Federated Learning With Domain Shift: A Prototype View
| null |
http://openaccess.thecvf.com//content/CVPR2023/html/Huang_Rethinking_Federated_Learning_With_Domain_Shift_A_Prototype_View_CVPR_2023_paper.html
|
http://openaccess.thecvf.com//content/CVPR2023/papers/Huang_Rethinking_Federated_Learning_With_Domain_Shift_A_Prototype_View_CVPR_2023_paper.pdf
|
https://github.com/wenkehuang/rethinkfl
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/few-shot-class-incremental-learning-via-class
|
Few-Shot Class-Incremental Learning via Class-Aware Bilateral Distillation
| null |
http://openaccess.thecvf.com//content/CVPR2023/html/Zhao_Few-Shot_Class-Incremental_Learning_via_Class-Aware_Bilateral_Distillation_CVPR_2023_paper.html
|
http://openaccess.thecvf.com//content/CVPR2023/papers/Zhao_Few-Shot_Class-Incremental_Learning_via_Class-Aware_Bilateral_Distillation_CVPR_2023_paper.pdf
|
https://github.com/linglanzhao/bidistfscil
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/manifold-aware-self-training-for-unsupervised
|
Manifold-Aware Self-Training for Unsupervised Domain Adaptation on Regressing 6D Object Pose
|
2305.10808
|
https://arxiv.org/abs/2305.10808v2
|
https://arxiv.org/pdf/2305.10808v2.pdf
|
https://github.com/gorilla-lab-scut/mast
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/extracting-low-high-frequency-knowledge-from
|
Extracting Low-/High- Frequency Knowledge from Graph Neural Networks and Injecting it into MLPs: An Effective GNN-to-MLP Distillation Framework
|
2305.10758
|
https://arxiv.org/abs/2305.10758v2
|
https://arxiv.org/pdf/2305.10758v2.pdf
|
https://github.com/lirongwu/ff-g2m
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/cwd30-a-comprehensive-and-holistic-dataset
|
CWD30: A Comprehensive and Holistic Dataset for Crop Weed Recognition in Precision Agriculture
|
2305.10084
|
https://arxiv.org/abs/2305.10084v1
|
https://arxiv.org/pdf/2305.10084v1.pdf
|
https://github.com/mr-talhailyas/cwd30
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mean-field-interacting-multi-type-birth-death
|
Mean-field interacting multi-type birth-death processes with a view to applications in phylodynamics
|
2307.06010
|
https://arxiv.org/abs/2307.06010v2
|
https://arxiv.org/pdf/2307.06010v2.pdf
|
https://github.com/wsdewitt/mfbd
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/linear-transformers-with-learnable-kernel
|
Linear Transformers with Learnable Kernel Functions are Better In-Context Models
|
2402.10644
|
https://arxiv.org/abs/2402.10644v2
|
https://arxiv.org/pdf/2402.10644v2.pdf
|
https://github.com/corl-team/rebased
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/measuring-emergent-capabilities-of-llms-for
|
Measuring Emergent Capabilities of LLMs for Software Engineering: How Far Are We?
|
2411.17927
|
https://arxiv.org/abs/2411.17927v1
|
https://arxiv.org/pdf/2411.17927v1.pdf
|
https://github.com/WM-SEMERU/emergent-capabilities
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/measuring-inductive-biases-of-in-context
|
Measuring Inductive Biases of In-Context Learning with Underspecified Demonstrations
|
2305.13299
|
https://arxiv.org/abs/2305.13299v1
|
https://arxiv.org/pdf/2305.13299v1.pdf
|
https://github.com/noviscl/ambigprompt
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/cat-crf-based-asr-toolkit
|
CAT: CRF-based ASR Toolkit
|
1911.08747
|
https://arxiv.org/abs/1911.08747v1
|
https://arxiv.org/pdf/1911.08747v1.pdf
|
https://github.com/thuspmi/cat
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/nuclear-norm-regularized-loop-optimization
|
Nuclear norm regularized loop optimization for tensor network
|
2306.17479
|
https://arxiv.org/abs/2306.17479v4
|
https://arxiv.org/pdf/2306.17479v4.pdf
|
https://github.com/kenjihomma/nnr-tnr
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/modeling-the-q-diversity-in-a-min-max-play
|
Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization
|
2305.12123
|
https://arxiv.org/abs/2305.12123v1
|
https://arxiv.org/pdf/2305.12123v1.pdf
|
https://github.com/cuteythyme/q-diversity
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/explaining-how-transformers-use-context-to
|
Explaining How Transformers Use Context to Build Predictions
|
2305.12535
|
https://arxiv.org/abs/2305.12535v1
|
https://arxiv.org/pdf/2305.12535v1.pdf
|
https://github.com/mt-upc/logit-explanations
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-robust-personalized-dialogue
|
Towards Robust Personalized Dialogue Generation via Order-Insensitive Representation Regularization
|
2305.12782
|
https://arxiv.org/abs/2305.12782v1
|
https://arxiv.org/pdf/2305.12782v1.pdf
|
https://github.com/chanliang/orig
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/can-nli-provide-proper-indirect-supervision
|
Can NLI Provide Proper Indirect Supervision for Low-resource Biomedical Relation Extraction?
|
2212.10784
|
https://arxiv.org/abs/2212.10784v3
|
https://arxiv.org/pdf/2212.10784v3.pdf
|
https://github.com/luka-group/NLI_as_Indirect_Supervision
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/sphere-guided-training-of-neural-implicit
|
Sphere-Guided Training of Neural Implicit Surfaces
|
2209.15511
|
https://arxiv.org/abs/2209.15511v2
|
https://arxiv.org/pdf/2209.15511v2.pdf
|
https://github.com/AndreeaDogaru/SphereGuided
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/adversarial-audio-synthesis
|
Adversarial Audio Synthesis
|
1802.04208
|
http://arxiv.org/abs/1802.04208v3
|
http://arxiv.org/pdf/1802.04208v3.pdf
|
https://github.com/delijingyic/wavegan_phonology
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/nerflix-high-quality-neural-view-synthesis-by
|
NeRFLiX: High-Quality Neural View Synthesis by Learning a Degradation-Driven Inter-viewpoint MiXer
|
2303.06919
|
https://arxiv.org/abs/2303.06919v2
|
https://arxiv.org/pdf/2303.06919v2.pdf
|
https://github.com/redrock303/NeRFLiX_CPVR2023
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/integer-programming-games-a-gentle
|
Integer Programming Games: A Gentle Computational Overview
|
2306.02817
|
https://arxiv.org/abs/2306.02817v2
|
https://arxiv.org/pdf/2306.02817v2.pdf
|
https://github.com/ds4dm/zero
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/rethinking-the-visual-cues-in-audio-visual
|
Rethinking the visual cues in audio-visual speaker extraction
|
2306.02625
|
https://arxiv.org/abs/2306.02625v1
|
https://arxiv.org/pdf/2306.02625v1.pdf
|
https://github.com/mrjunjieli/davse
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/causal-strategic-classification-a-tale-of-two
|
Causal Strategic Classification: A Tale of Two Shifts
|
2302.06280
|
https://arxiv.org/abs/2302.06280v3
|
https://arxiv.org/pdf/2302.06280v3.pdf
|
https://github.com/guyhorowitz/csc
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/undercover-deepfakes-detecting-fake-segments
|
Undercover Deepfakes: Detecting Fake Segments in Videos
|
2305.06564
|
https://arxiv.org/abs/2305.06564v4
|
https://arxiv.org/pdf/2305.06564v4.pdf
|
https://github.com/sanjaysaha1311/temporal-deepfake-segmentation
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/answering-questions-over-knowledge-graphs
|
Domain Specific Question Answering Over Knowledge Graphs Using Logical Programming and Large Language Models
|
2303.02206
|
https://arxiv.org/abs/2303.02206v2
|
https://arxiv.org/pdf/2303.02206v2.pdf
|
https://github.com/navidmdn/logic_based_qa
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/instance-aware-dynamic-prompt-tuning-for-pre
|
Instance-aware Dynamic Prompt Tuning for Pre-trained Point Cloud Models
|
2304.07221
|
https://arxiv.org/abs/2304.07221v2
|
https://arxiv.org/pdf/2304.07221v2.pdf
|
https://github.com/zyh16143998882/aaai24-pointfemae
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/ma2cl-masked-attentive-contrastive-learning
|
MA2CL:Masked Attentive Contrastive Learning for Multi-Agent Reinforcement Learning
|
2306.02006
|
https://arxiv.org/abs/2306.02006v1
|
https://arxiv.org/pdf/2306.02006v1.pdf
|
https://github.com/ustchlsong/ma2cl
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/imbalanced-graph-classification-with-multi
|
Imbalanced Graph Classification with Multi-scale Oversampling Graph Neural Networks
|
2405.04903
|
https://arxiv.org/abs/2405.04903v2
|
https://arxiv.org/pdf/2405.04903v2.pdf
|
https://github.com/rongrongma/mosgnn
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/biomedical-entity-linking-as-multiple-choice
|
Biomedical Entity Linking as Multiple Choice Question Answering
|
2402.15189
|
https://arxiv.org/abs/2402.15189v2
|
https://arxiv.org/pdf/2402.15189v2.pdf
|
https://github.com/lzxlin/bioelqa
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/spectral-temporal-graph-neural-network-for-1
|
Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting
|
2103.07719
|
https://arxiv.org/abs/2103.07719v1
|
https://arxiv.org/pdf/2103.07719v1.pdf
|
https://github.com/microsoft/StemGNN
| false
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/unified-attentional-generative-adversarial
|
Unified Attentional Generative Adversarial Network for Brain Tumor Segmentation From Multimodal Unpaired Images
|
1907.03548
|
https://arxiv.org/abs/1907.03548v1
|
https://arxiv.org/pdf/1907.03548v1.pdf
|
https://github.com/maloadba/mgenseg_2d
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/m-genseg-domain-adaptation-for-target
|
M-GenSeg: Domain Adaptation For Target Modality Tumor Segmentation With Annotation-Efficient Supervision
|
2212.07276
|
https://arxiv.org/abs/2212.07276v2
|
https://arxiv.org/pdf/2212.07276v2.pdf
|
https://github.com/maloadba/mgenseg_2d
| true
| true
| false
|
jax
|
https://paperswithcode.com/paper/transunet-transformers-make-strong-encoders
|
TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation
|
2102.04306
|
https://arxiv.org/abs/2102.04306v1
|
https://arxiv.org/pdf/2102.04306v1.pdf
|
https://github.com/maloadba/mgenseg_2d
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/unified-schemes-for-directive-based-gpu
|
Unified schemes for directive-based GPU offloading
|
2411.18889
|
https://arxiv.org/abs/2411.18889v1
|
https://arxiv.org/pdf/2411.18889v1.pdf
|
https://github.com/ymiki-repo/solomon
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/citysim-a-drone-based-vehicle-trajectory
|
CitySim: A Drone-Based Vehicle Trajectory Dataset for Safety Oriented Research and Digital Twins
|
2208.11036
|
https://arxiv.org/abs/2208.11036v2
|
https://arxiv.org/pdf/2208.11036v2.pdf
|
https://github.com/ozheng1993/ucf-sst-citysim-dataset
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/structural-restrictions-in-local-causal
|
Structural restrictions in local causal discovery: identifying direct causes of a target variable
|
2307.16048
|
https://arxiv.org/abs/2307.16048v4
|
https://arxiv.org/pdf/2307.16048v4.pdf
|
https://github.com/jurobodik/structural-restrictions-in-local-causal-discovery
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/the-art-of-conversation-measuring-phonetic
|
The ART of Conversation: Measuring Phonetic Convergence and Deliberate Imitation in L2-Speech with a Siamese RNN
|
2306.05088
|
https://arxiv.org/abs/2306.05088v1
|
https://arxiv.org/pdf/2306.05088v1.pdf
|
https://github.com/byronthecoder/S-RNN-4-ART
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/distributionally-invariant-learning
|
Enhancing Distributional Stability among Sub-populations
|
2206.02990
|
https://arxiv.org/abs/2206.02990v2
|
https://arxiv.org/pdf/2206.02990v2.pdf
|
https://github.com/ljsthu/srm
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/jgat-a-joint-spatio-temporal-graph-attention
|
JGAT: a joint spatio-temporal graph attention model for brain decoding
|
2306.05286
|
https://arxiv.org/abs/2306.05286v1
|
https://arxiv.org/pdf/2306.05286v1.pdf
|
https://github.com/brainml-gt/jgat
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/logprecis-unleashing-language-models-for
|
LogPrécis: Unleashing Language Models for Automated Malicious Log Analysis
|
2307.08309
|
https://arxiv.org/abs/2307.08309v3
|
https://arxiv.org/pdf/2307.08309v3.pdf
|
https://github.com/smartdata-polito/logprecis
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/rank-aware-negative-training-for-semi
|
Rank-Aware Negative Training for Semi-Supervised Text Classification
|
2306.07621
|
https://arxiv.org/abs/2306.07621v1
|
https://arxiv.org/pdf/2306.07621v1.pdf
|
https://github.com/amurtadha/rnt
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/questioning-the-survey-responses-of-large
|
Questioning the Survey Responses of Large Language Models
|
2306.07951
|
https://arxiv.org/abs/2306.07951v4
|
https://arxiv.org/pdf/2306.07951v4.pdf
|
https://github.com/socialfoundations/surveying-language-models
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/king-generating-safety-critical-driving
|
KING: Generating Safety-Critical Driving Scenarios for Robust Imitation via Kinematics Gradients
|
2204.13683
|
https://arxiv.org/abs/2204.13683v1
|
https://arxiv.org/pdf/2204.13683v1.pdf
|
https://github.com/autonomousvision/king
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/experimental-study-of-alfven-wave-reflection
|
Experimental study of Alfvén wave reflection from an Alfvén-speed gradient relevant to the solar coronal holes
|
2402.06193
|
https://arxiv.org/abs/2402.06193v1
|
https://arxiv.org/pdf/2402.06193v1.pdf
|
https://github.com/ammarhakim/gkyl-paper-inp
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/from-nerflix-to-nerflix-a-general-nerf
|
From NeRFLiX to NeRFLiX++: A General NeRF-Agnostic Restorer Paradigm
|
2306.06388
|
https://arxiv.org/abs/2306.06388v3
|
https://arxiv.org/pdf/2306.06388v3.pdf
|
https://github.com/redrock303/NeRFLiX_CPVR2023
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/training-like-a-medical-resident-universal
|
Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation
|
2306.02416
|
https://arxiv.org/abs/2306.02416v3
|
https://arxiv.org/pdf/2306.02416v3.pdf
|
https://github.com/yhygao/universal-medical-image-segmentation
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/joint-adjustment-image-steganography-networks
|
Joint adjustment image steganography networks
| null |
https://www.sciencedirect.com/science/article/abs/pii/S0923596523001042
|
https://www.sciencedirect.com/science/article/abs/pii/S0923596523001042
|
https://github.com/zhangle408/Joint-adjustment-image-steganography-networks
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/towards-principled-representation-learning-1
|
Towards Principled Representation Learning from Videos for Reinforcement Learning
|
2403.13765
|
https://arxiv.org/abs/2403.13765v1
|
https://arxiv.org/pdf/2403.13765v1.pdf
|
https://github.com/microsoft/intrepid
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/unclocklike-biological-oscillators-with
|
Unclocklike oscillators with frequency memory for the entrainment of biological clocks
|
2405.05180
|
https://arxiv.org/abs/2405.05180v2
|
https://arxiv.org/pdf/2405.05180v2.pdf
|
https://github.com/cmdenis/2024-frequency-memory
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/diffnet-diffusion-parameter-mapping-network
|
DIFFnet: Diffusion parameter mapping network generalized for input diffusion gradient schemes and bvalues
|
2102.02463
|
https://arxiv.org/abs/2102.02463v1
|
https://arxiv.org/pdf/2102.02463v1.pdf
|
https://github.com/SNU-LIST/DIFFnet
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/learning-conditional-attributes-for-1
|
Learning Conditional Attributes for Compositional Zero-Shot Learning
|
2305.17940
|
https://arxiv.org/abs/2305.17940v2
|
https://arxiv.org/pdf/2305.17940v2.pdf
|
https://github.com/wqshmzh/canet-czsl
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/ddfm-denoising-diffusion-model-for-multi
|
DDFM: Denoising Diffusion Model for Multi-Modality Image Fusion
|
2303.06840
|
https://arxiv.org/abs/2303.06840v2
|
https://arxiv.org/pdf/2303.06840v2.pdf
|
https://github.com/zhaozixiang1228/mmif-cddfuse
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/the-ricci-flatness-that-lurks-in-weight
|
The Ricci-flatness that lurks in weight
|
2403.00697
|
https://arxiv.org/abs/2403.00697v1
|
https://arxiv.org/pdf/2403.00697v1.pdf
|
https://github.com/diego-conti/skoll
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/learning-modulated-transformation-in-gans
|
Learning Modulated Transformation in GANs
| null |
https://openreview.net/forum?id=h8vJVABiBP
|
https://openreview.net/pdf?id=h8vJVABiBP
|
https://github.com/limbo0000/mtm
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-picture-of-the-space-of-typical-learnable
|
A picture of the space of typical learnable tasks
|
2210.17011
|
https://arxiv.org/abs/2210.17011v4
|
https://arxiv.org/pdf/2210.17011v4.pdf
|
https://github.com/grasp-lyrl/low-dimensional-deepnets
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/enhancing-privacy-in-federated-learning-1
|
Enhancing Privacy in Federated Learning: Secure Aggregation for Real-World Healthcare Applications
|
2409.00974
|
https://arxiv.org/abs/2409.00974v1
|
https://arxiv.org/pdf/2409.00974v1.pdf
|
https://github.com/fedbiomed/fedbiomed
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/multi-task-graph-neural-networks-for
|
Multi-task graph neural networks for simultaneous prediction of global and atomic properties in ferromagnetic systems
|
2202.01954
|
https://arxiv.org/abs/2202.01954v1
|
https://arxiv.org/pdf/2202.01954v1.pdf
|
https://github.com/ornl/hydragnn
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/hatebert-retraining-bert-for-abusive-language
|
HateBERT: Retraining BERT for Abusive Language Detection in English
|
2010.12472
|
https://arxiv.org/abs/2010.12472v2
|
https://arxiv.org/pdf/2010.12472v2.pdf
|
https://github.com/tommasoc80/HateBERT
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/ghostshiftaddnet-more-features-from-energy
|
GhostShiftAddNet: More Features from Energy-Efficient Operations
|
2109.09495
|
https://arxiv.org/abs/2109.09495v3
|
https://arxiv.org/pdf/2109.09495v3.pdf
|
https://github.com/MindSpore-paper-code-3/code7/tree/main/ghostnet_quant
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/improving-variational-autoencoder-estimation
|
Improving Variational Autoencoder Estimation from Incomplete Data with Mixture Variational Families
|
2403.03069
|
https://arxiv.org/abs/2403.03069v2
|
https://arxiv.org/pdf/2403.03069v2.pdf
|
https://github.com/vsimkus/demiss-vae
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/navigating-data-heterogeneity-in-federated
|
Navigating Data Heterogeneity in Federated Learning A Semi-Supervised Federated Object Detection
|
2310.17097
|
https://arxiv.org/abs/2310.17097v3
|
https://arxiv.org/pdf/2310.17097v3.pdf
|
https://github.com/Kthyeon/ssfod
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/actnn-reducing-training-memory-footprint-via
|
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training
|
2104.14129
|
https://arxiv.org/abs/2104.14129v2
|
https://arxiv.org/pdf/2104.14129v2.pdf
|
https://github.com/zirui-ray-liu/exact
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/improving-retrieval-augmented-large-language
|
Improving Retrieval-Augmented Large Language Models via Data Importance Learning
|
2307.03027
|
https://arxiv.org/abs/2307.03027v1
|
https://arxiv.org/pdf/2307.03027v1.pdf
|
https://github.com/amsterdata/ragbooster
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/robust-unmanned-surface-vehicle-navigation
|
Robust Unmanned Surface Vehicle Navigation with Distributional Reinforcement Learning
|
2307.16240
|
https://arxiv.org/abs/2307.16240v1
|
https://arxiv.org/pdf/2307.16240v1.pdf
|
https://github.com/robustfieldautonomylab/distributional_rl_navigation
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/dealing-with-observability-in-interaction
|
Dealing with observability in interaction-based Offline Runtime Verification of Distributed Systems
|
2212.09324
|
https://arxiv.org/abs/2212.09324v1
|
https://arxiv.org/pdf/2212.09324v1.pdf
|
https://github.com/erwanm974/hibou_3sat_benchmark_experiment
| false
| true
| false
|
none
|
https://paperswithcode.com/paper/multi-label-noise-transition-matrix
|
Multi-Label Noise Transition Matrix Estimation with Label Correlations: Theory and Algorithm
|
2309.12706
|
https://arxiv.org/abs/2309.12706v1
|
https://arxiv.org/pdf/2309.12706v1.pdf
|
https://github.com/tmllab/Multi-Label-T
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/tp-gmot-tracking-generic-multiple-object-by
|
TP-GMOT: Tracking Generic Multiple Object by Textual Prompt with Motion-Appearance Cost (MAC) SORT
|
2409.02490
|
https://arxiv.org/abs/2409.02490v1
|
https://arxiv.org/pdf/2409.02490v1.pdf
|
https://github.com/Fsoft-AIC/TP-GMOT
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/mer-2023-multi-label-learning-modality
|
MER 2023: Multi-label Learning, Modality Robustness, and Semi-Supervised Learning
|
2304.08981
|
https://arxiv.org/abs/2304.08981v2
|
https://arxiv.org/pdf/2304.08981v2.pdf
|
https://github.com/zeroqiaoba/affectgpt
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/video-object-segmentation-aware-video-frame
|
Video Object Segmentation-aware Video Frame Interpolation
| null |
http://openaccess.thecvf.com//content/ICCV2023/html/Yoo_Video_Object_Segmentation-aware_Video_Frame_Interpolation_ICCV_2023_paper.html
|
http://openaccess.thecvf.com//content/ICCV2023/papers/Yoo_Video_Object_Segmentation-aware_Video_Frame_Interpolation_ICCV_2023_paper.pdf
|
https://github.com/junsang7777/vos-vfi
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/rssl-semi-supervised-learning-in-r
|
RSSL: Semi-supervised Learning in R
|
1612.07993
|
http://arxiv.org/abs/1612.07993v1
|
http://arxiv.org/pdf/1612.07993v1.pdf
|
https://github.com/cran/RSSL
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/lp-musiccaps-llm-based-pseudo-music
|
LP-MusicCaps: LLM-Based Pseudo Music Captioning
|
2307.16372
|
https://arxiv.org/abs/2307.16372v1
|
https://arxiv.org/pdf/2307.16372v1.pdf
|
https://github.com/seungheondoh/lp-music-caps
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/av-pedaware-self-supervised-audio-visual
|
AV-PedAware: Self-Supervised Audio-Visual Fusion for Dynamic Pedestrian Awareness
|
2411.06789
|
https://arxiv.org/abs/2411.06789v2
|
https://arxiv.org/pdf/2411.06789v2.pdf
|
https://github.com/yizhuoyang/AV-PedAware
| true
| false
| false
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.