paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/mobile-robot-path-planning-in-dynamic
|
Mobile Robot Path Planning in Dynamic Environments through Globally Guided Reinforcement Learning
|
2005.05420
|
https://arxiv.org/abs/2005.05420v2
|
https://arxiv.org/pdf/2005.05420v2.pdf
|
https://github.com/Tushar-ml/G2RL-Path-Planning
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/making-large-language-models-perform-better
|
Making Large Language Models Perform Better in Knowledge Graph Completion
|
2310.06671
|
https://arxiv.org/abs/2310.06671v2
|
https://arxiv.org/pdf/2310.06671v2.pdf
|
https://github.com/zjukg/kopa
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/focalunetr-a-focal-transformer-for-boundary
|
FocalUNETR: A Focal Transformer for Boundary-aware Segmentation of CT Images
|
2210.03189
|
https://arxiv.org/abs/2210.03189v2
|
https://arxiv.org/pdf/2210.03189v2.pdf
|
https://github.com/chengyinlee/focalunetr
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/focal-loss-for-dense-object-detection
|
Focal Loss for Dense Object Detection
|
1708.02002
|
http://arxiv.org/abs/1708.02002v2
|
http://arxiv.org/pdf/1708.02002v2.pdf
|
https://github.com/MindSpore-paper-code-3/code5/tree/main/retinanet_resnet152
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/sight-a-large-annotated-dataset-on-student
|
SIGHT: A Large Annotated Dataset on Student Insights Gathered from Higher Education Transcripts
|
2306.09343
|
https://arxiv.org/abs/2306.09343v1
|
https://arxiv.org/pdf/2306.09343v1.pdf
|
https://github.com/rosewang2008/sight
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/revealing-biases-in-the-sampling-of
|
Revealing biases in the sampling of ecological interaction networks
|
1708.01242
|
http://arxiv.org/abs/1708.01242v1
|
http://arxiv.org/pdf/1708.01242v1.pdf
|
https://github.com/cran/EcoNetGen
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-generative-machine-learning-approach-for
|
A Generative Machine Learning Approach for Improving Precipitation from Earth System Models
|
2406.15026
|
https://arxiv.org/abs/2406.15026v1
|
https://arxiv.org/pdf/2406.15026v1.pdf
|
https://github.com/p-hss/consistency-climate-downscaling
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/clapeyron-jl-an-extensible-open-source-julia
|
Clapeyron.jl: An extensible, open-source fluid-thermodynamics toolkit
|
2201.08927
|
https://arxiv.org/abs/2201.08927v2
|
https://arxiv.org/pdf/2201.08927v2.pdf
|
https://github.com/ClapeyronThermo/Clapeyron.jl
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/laughter-synthesis-using-pseudo-phonetic
|
Laughter Synthesis using Pseudo Phonetic Tokens with a Large-scale In-the-wild Laughter Corpus
|
2305.12442
|
https://arxiv.org/abs/2305.12442v2
|
https://arxiv.org/pdf/2305.12442v2.pdf
|
https://github.com/aria-k-alethia/laughter-synthesis
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/dbf-unet-a-two-stage-framework-for-carotid
|
DBF-UNet: A Two-Stage Framework for Carotid Artery Segmentation with Pseudo-Label Generation
|
2504.00908
|
https://arxiv.org/abs/2504.00908v1
|
https://arxiv.org/pdf/2504.00908v1.pdf
|
https://github.com/haoxuanli-thu/dbf-unet
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-benchmark-dataset-for-understandable
|
Benchmarking Automated Clinical Language Simplification: Dataset, Algorithm, and Evaluation
|
2012.02420
|
https://arxiv.org/abs/2012.02420v2
|
https://arxiv.org/pdf/2012.02420v2.pdf
|
https://github.com/machinelearning4health/medlane
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/beyond-english-centric-multilingual-machine
|
Beyond English-Centric Multilingual Machine Translation
|
2010.11125
|
https://arxiv.org/abs/2010.11125v1
|
https://arxiv.org/pdf/2010.11125v1.pdf
|
https://github.com/xhlulu/dl-translate
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/client-wise-modality-selection-for-balanced
|
Overcome Modal Bias in Multi-modal Federated Learning via Balanced Modality Selection
|
2401.00403
|
https://arxiv.org/abs/2401.00403v2
|
https://arxiv.org/pdf/2401.00403v2.pdf
|
https://github.com/fanyunfeng-bit/balanced-modality-selection-in-mfl
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/no-language-left-behind-scaling-human-1
|
No Language Left Behind: Scaling Human-Centered Machine Translation
|
2207.04672
|
https://arxiv.org/abs/2207.04672v3
|
https://arxiv.org/pdf/2207.04672v3.pdf
|
https://github.com/xhlulu/dl-translate
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/exposurediffusion-learning-to-expose-for-low
|
ExposureDiffusion: Learning to Expose for Low-light Image Enhancement
|
2307.07710
|
https://arxiv.org/abs/2307.07710v2
|
https://arxiv.org/pdf/2307.07710v2.pdf
|
https://github.com/wyf0912/ExposureDiffusion
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/pyvrp-a-high-performance-vrp-solver-package
|
PyVRP: a high-performance VRP solver package
|
2403.13795
|
https://arxiv.org/abs/2403.13795v2
|
https://arxiv.org/pdf/2403.13795v2.pdf
|
https://github.com/informsjoc/2023.0055
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/genetic-programming-for-explainable-manifold
|
Genetic Programming for Explainable Manifold Learning
|
2403.14139
|
https://arxiv.org/abs/2403.14139v2
|
https://arxiv.org/pdf/2403.14139v2.pdf
|
https://github.com/cravies/gp-emal
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/audio-classification-with-dilated-convolution
|
Audio classification with Dilated Convolution with Learnable Spacings
|
2309.13972
|
https://arxiv.org/abs/2309.13972v2
|
https://arxiv.org/pdf/2309.13972v2.pdf
|
https://github.com/k-h-ismail/dcls-audio
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/p1ac-revisiting-absolute-pose-from-a-single
|
P1AC: Revisiting Absolute Pose From a Single Affine Correspondence
|
2011.08790
|
https://arxiv.org/abs/2011.08790v6
|
https://arxiv.org/pdf/2011.08790v6.pdf
|
https://github.com/jonathanventura/p1ac
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/alternate-loss-functions-can-improve-the
|
Alternate Loss Functions for Classification and Robust Regression Can Improve the Accuracy of Artificial Neural Networks
|
2303.09935
|
https://arxiv.org/abs/2303.09935v4
|
https://arxiv.org/pdf/2303.09935v4.pdf
|
https://github.com/arindam-ds/alternate_loss_functions
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/assessing-keyness-using-permutation-tests
|
Assessing Keyness using Permutation Tests
|
2308.13383
|
https://arxiv.org/abs/2308.13383v1
|
https://arxiv.org/pdf/2308.13383v1.pdf
|
https://github.com/thmild/keyperm
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/towards-understanding-and-improving-knowledge
|
Towards Understanding and Improving Knowledge Distillation for Neural Machine Translation
|
2305.08096
|
https://arxiv.org/abs/2305.08096v2
|
https://arxiv.org/pdf/2305.08096v2.pdf
|
https://github.com/songmzhang/nmt-kd
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-one-stop-3d-target-reconstruction-and
|
A One Stop 3D Target Reconstruction and multilevel Segmentation Method
|
2308.06974
|
https://arxiv.org/abs/2308.06974v1
|
https://arxiv.org/pdf/2308.06974v1.pdf
|
https://github.com/ganlab/ostra
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/fully-connected-spatial-temporal-graph-for
|
Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data
|
2309.05305
|
https://arxiv.org/abs/2309.05305v3
|
https://arxiv.org/pdf/2309.05305v3.pdf
|
https://github.com/Frank-Wang-oss/FCSTGNN
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/unsupervised-representation-learning-with-1
|
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
|
1511.06434
|
http://arxiv.org/abs/1511.06434v2
|
http://arxiv.org/pdf/1511.06434v2.pdf
|
https://github.com/ahmed-alllam/Equinox/blob/main/examples/deep_convolutional_gan.ipynb
| false
| false
| false
|
jax
|
https://paperswithcode.com/paper/consistent-manifold-representation-for
|
Consistent Manifold Representation for Topological Data Analysis
|
1606.02353
|
http://arxiv.org/abs/1606.02353v2
|
http://arxiv.org/pdf/1606.02353v2.pdf
|
https://gitlab.com/datafold-dev/datafold
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/invisible-watermarking-for-audio-generation
|
Invisible Watermarking for Audio Generation Diffusion Models
|
2309.13166
|
https://arxiv.org/abs/2309.13166v2
|
https://arxiv.org/pdf/2309.13166v2.pdf
|
https://github.com/mikiyaxi/watermark-audio-diffusion
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/3d-gres-generalized-3d-referring-expression
|
3D-GRES: Generalized 3D Referring Expression Segmentation
|
2407.20664
|
https://arxiv.org/abs/2407.20664v1
|
https://arxiv.org/pdf/2407.20664v1.pdf
|
https://github.com/sosppxo/3d-gres
| false
| true
| true
|
none
|
https://paperswithcode.com/paper/ummaformer-a-universal-multimodal-adaptive-1
|
UMMAFormer: A Universal Multimodal-adaptive Transformer Framework for Temporal Forgery Localization
|
2308.14395
|
https://arxiv.org/abs/2308.14395v1
|
https://arxiv.org/pdf/2308.14395v1.pdf
|
https://github.com/ymhzyj/UMMAFormer
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/can-gnn-be-good-adapter-for-llms
|
Can GNN be Good Adapter for LLMs?
|
2402.12984
|
https://arxiv.org/abs/2402.12984v1
|
https://arxiv.org/pdf/2402.12984v1.pdf
|
https://github.com/hxttkl/GraphAdapter
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/diffusionret-generative-text-video-retrieval
|
DiffusionRet: Generative Text-Video Retrieval with Diffusion Model
|
2303.09867
|
https://arxiv.org/abs/2303.09867v2
|
https://arxiv.org/pdf/2303.09867v2.pdf
|
https://github.com/jpthu17/diffusionret
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/an-exhaustive-addis-principle-for-online-fwer
|
An exhaustive ADDIS principle for online FWER control
|
2308.13827
|
https://arxiv.org/abs/2308.13827v2
|
https://arxiv.org/pdf/2308.13827v2.pdf
|
https://github.com/fischer23/exhaustive-addis-procedures
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/link-prediction-for-wikipedia-articles-as-a
|
Link Prediction for Wikipedia Articles as a Natural Language Inference Task
|
2308.16469
|
https://arxiv.org/abs/2308.16469v2
|
https://arxiv.org/pdf/2308.16469v2.pdf
|
https://github.com/phanchauthang/dsaa-2023-kaggle
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/video-adverb-retrieval-with-compositional
|
Video-adverb retrieval with compositional adverb-action embeddings
|
2309.15086
|
https://arxiv.org/abs/2309.15086v1
|
https://arxiv.org/pdf/2309.15086v1.pdf
|
https://github.com/ExplainableML/ReGaDa
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/eaglevision-object-level-attribute-multimodal
|
EagleVision: Object-level Attribute Multimodal LLM for Remote Sensing
|
2503.23330
|
https://arxiv.org/abs/2503.23330v1
|
https://arxiv.org/pdf/2503.23330v1.pdf
|
https://github.com/xiangtodayeatswhat/eaglevision
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mila-memory-based-instance-level-adaptation
|
MILA: Memory-Based Instance-Level Adaptation for Cross-Domain Object Detection
| null |
https://arxiv.org/abs/2309.01086v1
|
https://arxiv.org/pdf/2309.01086v1.pdf
|
https://github.com/hitachi-rd-cv/MILA
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/investigating-the-interplay-between-features
|
Investigating the Interplay between Features and Structures in Graph Learning
|
2308.09570
|
https://arxiv.org/abs/2308.09570v1
|
https://arxiv.org/pdf/2308.09570v1.pdf
|
https://github.com/danielecastellana22/feature-structure-interplay-graph-learning
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/masked-motion-predictors-are-strong-3d-action
|
Masked Motion Predictors are Strong 3D Action Representation Learners
|
2308.07092
|
https://arxiv.org/abs/2308.07092v1
|
https://arxiv.org/pdf/2308.07092v1.pdf
|
https://github.com/maoyunyao/mamp
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/advancing-vision-transformers-with-group-mix
|
Advancing Vision Transformers with Group-Mix Attention
|
2311.15157
|
https://arxiv.org/abs/2311.15157v1
|
https://arxiv.org/pdf/2311.15157v1.pdf
|
https://github.com/ailab-cvc/groupmixformer
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-contrastive-knowledge-transfer-framework
|
A Contrastive Knowledge Transfer Framework for Model Compression and Transfer Learning
|
2303.07599
|
https://arxiv.org/abs/2303.07599v1
|
https://arxiv.org/pdf/2303.07599v1.pdf
|
https://github.com/kaiqi123/cktf
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/measuring-complex-refractive-index-through
|
Measuring complex refractive index through deeplearning-enabled optical reflectometry
| null |
https://iopscience.iop.org/article/10.1088/2053-1583/acc59b
|
https://scholar.google.com/scholar_url?url=https://iopscience.iop.org/article/10.1088/2053-1583/acc59b/pdf%3Fcasa_token%3DJFntSMpPW5YAAAAA:00qHoX_1d3Ut8J9SVbIlQ0-TlyOCIw5ZNmAIWhhw1Ypdj1v3MMxbZUzoLn-OAt2smr3hHUuZDCPrbCbuiVykoPIZrRJC&hl=en&sa=T&oi=ucasa&ct=ucasa&ei=v3kqZsDlCe2R6rQPt66KqAQ&scisig=AFWwaeY3pnqlcMbnZM64FtFG_Hzv
|
https://github.com/tigerwang3133/ReflectoNet
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/ask-me-in-english-instead-cross-lingual
|
Better to Ask in English: Cross-Lingual Evaluation of Large Language Models for Healthcare Queries
|
2310.13132
|
https://arxiv.org/abs/2310.13132v2
|
https://arxiv.org/pdf/2310.13132v2.pdf
|
https://github.com/claws-lab/XLingEval
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/pixels-progressive-image-xemplar-based
|
PIXELS: Progressive Image Xemplar-based Editing with Latent Surgery
|
2501.09826
|
https://arxiv.org/abs/2501.09826v1
|
https://arxiv.org/pdf/2501.09826v1.pdf
|
https://github.com/amazon-science/pixels
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/methods-for-systematic-study-of-nuclear
|
Methods for systematic study of nuclear structure in high-energy collisions
|
2302.14026
|
https://arxiv.org/abs/2302.14026v1
|
https://arxiv.org/pdf/2302.14026v1.pdf
|
https://github.com/mluzum/isobar-sampler
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-quic-implementation-for-ns-3
|
A QUIC Implementation for ns-3
|
1902.06121
|
https://arxiv.org/abs/1902.06121v2
|
https://arxiv.org/pdf/1902.06121v2.pdf
|
https://github.com/signetlabdei/quic
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/studying-short-range-nuclear-correlations
|
Studying short-range nuclear correlations using relativistic heavy-ion collisions
|
2312.10129
|
https://arxiv.org/abs/2312.10129v1
|
https://arxiv.org/pdf/2312.10129v1.pdf
|
https://github.com/mluzum/isobar-sampler
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/reusing-convolutional-neural-network-models
|
Reusing Convolutional Neural Network Models through Modularization and Composition
|
2311.04438
|
https://arxiv.org/abs/2311.04438v1
|
https://arxiv.org/pdf/2311.04438v1.pdf
|
https://github.com/qibinhang/cnnsplitter
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/conformal-prediction-interval-for-dynamic
|
Conformal prediction interval for dynamic time-series
|
2010.09107
|
https://arxiv.org/abs/2010.09107v9
|
https://arxiv.org/pdf/2010.09107v9.pdf
|
https://github.com/hamrel-cxu/EnbPI
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/conformal-anomaly-detection-on-spatio
|
Conformal Anomaly Detection on Spatio-Temporal Observations with Missing Data
|
2105.11886
|
https://arxiv.org/abs/2105.11886v2
|
https://arxiv.org/pdf/2105.11886v2.pdf
|
https://github.com/hamrel-cxu/EnbPI
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/slowfast-networks-for-video-recognition
|
SlowFast Networks for Video Recognition
|
1812.03982
|
https://arxiv.org/abs/1812.03982v3
|
https://arxiv.org/pdf/1812.03982v3.pdf
|
https://github.com/tianfr/semantic-flow
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/well-tempered-teleparallel-horndeski
|
Well-tempered teleparallel Horndeski cosmology: a teleparallel variation to the cosmological constant problem
|
2107.08762
|
https://arxiv.org/abs/2107.08762v3
|
https://arxiv.org/pdf/2107.08762v3.pdf
|
https://github.com/reggiebernardo/notebooks
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/stealth-black-hole-perturbations-in-kinetic
|
Stealth black hole perturbations in kinetic gravity braiding
|
2007.06006
|
https://arxiv.org/abs/2007.06006v4
|
https://arxiv.org/pdf/2007.06006v4.pdf
|
https://github.com/reggiebernardo/notebooks
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/policy-optimization-in-a-noisy-neighborhood-1
|
Policy Optimization in a Noisy Neighborhood: On Return Landscapes in Continuous Control
|
2309.14597
|
https://arxiv.org/abs/2309.14597v3
|
https://arxiv.org/pdf/2309.14597v3.pdf
|
https://github.com/nathanrahn/return-landscapes
| true
| true
| false
|
jax
|
https://paperswithcode.com/paper/gated-attention-coding-for-training-high
|
Gated Attention Coding for Training High-performance and Efficient Spiking Neural Networks
|
2308.06582
|
https://arxiv.org/abs/2308.06582v2
|
https://arxiv.org/pdf/2308.06582v2.pdf
|
https://github.com/bollossom/GAC
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-zero-few-shot-anomaly-classification-and
|
APRIL-GAN: A Zero-/Few-Shot Anomaly Classification and Segmentation Method for CVPR 2023 VAND Workshop Challenge Tracks 1&2: 1st Place on Zero-shot AD and 4th Place on Few-shot AD
|
2305.17382
|
https://arxiv.org/abs/2305.17382v3
|
https://arxiv.org/pdf/2305.17382v3.pdf
|
https://github.com/hq-deng/AnoVL
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/grad-cam-visual-explanations-from-deep
|
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
|
1610.02391
|
https://arxiv.org/abs/1610.02391v4
|
https://arxiv.org/pdf/1610.02391v4.pdf
|
https://github.com/pytorch/captum
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-important-features-through
|
Learning Important Features Through Propagating Activation Differences
|
1704.02685
|
https://arxiv.org/abs/1704.02685v2
|
https://arxiv.org/pdf/1704.02685v2.pdf
|
https://github.com/pytorch/captum
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/captum-a-unified-and-generic-model
|
Captum: A unified and generic model interpretability library for PyTorch
|
2009.07896
|
https://arxiv.org/abs/2009.07896v1
|
https://arxiv.org/pdf/2009.07896v1.pdf
|
https://github.com/pytorch/captum
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/axiomatic-attribution-for-deep-networks
|
Axiomatic Attribution for Deep Networks
|
1703.01365
|
http://arxiv.org/abs/1703.01365v2
|
http://arxiv.org/pdf/1703.01365v2.pdf
|
https://github.com/pytorch/captum
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/visualizing-and-understanding-convolutional
|
Visualizing and Understanding Convolutional Networks
|
1311.2901
|
http://arxiv.org/abs/1311.2901v3
|
http://arxiv.org/pdf/1311.2901v3.pdf
|
https://github.com/pytorch/captum
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/smoothgrad-removing-noise-by-adding-noise
|
SmoothGrad: removing noise by adding noise
|
1706.03825
|
http://arxiv.org/abs/1706.03825v1
|
http://arxiv.org/pdf/1706.03825v1.pdf
|
https://github.com/pytorch/captum
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/how-important-is-a-neuron
|
How Important Is a Neuron?
|
1805.12233
|
http://arxiv.org/abs/1805.12233v1
|
http://arxiv.org/pdf/1805.12233v1.pdf
|
https://github.com/pytorch/captum
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/computationally-efficient-measures-of
|
Computationally Efficient Measures of Internal Neuron Importance
|
1807.09946
|
http://arxiv.org/abs/1807.09946v1
|
http://arxiv.org/pdf/1807.09946v1.pdf
|
https://github.com/pytorch/captum
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/influence-directed-explanations-for-deep
|
Influence-Directed Explanations for Deep Convolutional Networks
|
1802.03788
|
http://arxiv.org/abs/1802.03788v2
|
http://arxiv.org/pdf/1802.03788v2.pdf
|
https://github.com/pytorch/captum
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/how-sensitive-are-sensitivity-based
|
On the (In)fidelity and Sensitivity for Explanations
|
1901.09392
|
https://arxiv.org/abs/1901.09392v4
|
https://arxiv.org/pdf/1901.09392v4.pdf
|
https://github.com/pytorch/captum
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/feature-dropout-revisiting-the-role-of
|
Feature Dropout: Revisiting the Role of Augmentations in Contrastive Learning
| null |
https://openreview.net/forum?id=M7hijAPA4B
|
https://openreview.net/pdf?id=M7hijAPA4B
|
https://github.com/xiluohe/feature-dropout
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/estimating-training-data-influence-by
|
Estimating Training Data Influence by Tracing Gradient Descent
|
2002.08484
|
https://arxiv.org/abs/2002.08484v3
|
https://arxiv.org/pdf/2002.08484v3.pdf
|
https://github.com/pytorch/captum
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/improving-online-continual-learning
|
Improving Online Continual Learning Performance and Stability with Temporal Ensembles
|
2306.16817
|
https://arxiv.org/abs/2306.16817v2
|
https://arxiv.org/pdf/2306.16817v2.pdf
|
https://github.com/albinsou/online_ema
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/reading-between-the-lines-modeling-user
|
Reading Between the Lines: Modeling User Behavior and Costs in AI-Assisted Programming
|
2210.14306
|
https://arxiv.org/abs/2210.14306v5
|
https://arxiv.org/pdf/2210.14306v5.pdf
|
https://github.com/microsoft/coderec_programming_states
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/self-similarity-based-and-novelty-based-loss
|
Self-Similarity-Based and Novelty-based loss for music structure analysis
|
2309.02243
|
https://arxiv.org/abs/2309.02243v1
|
https://arxiv.org/pdf/2309.02243v1.pdf
|
https://github.com/geoffroypeeters/ssmnet_ISMIR2023
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/enhancing-joint-multiple-intent-detection-and
|
Enhancing Joint Multiple Intent Detection and Slot Filling with Global Intent-Slot Co-occurrence
| null |
https://aclanthology.org/2022.emnlp-main.543/
|
https://aclanthology.org/2022.emnlp-main.543.pdf
|
https://github.com/smxiao/GISCo
| false
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/task-oriented-communication-for-edge-video
|
Task-Oriented Communication for Edge Video Analytics
|
2211.14049
|
https://arxiv.org/abs/2211.14049v3
|
https://arxiv.org/pdf/2211.14049v3.pdf
|
https://github.com/shaojiawei07/tocom-tem
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/task-oriented-communication-for-multi-device
|
Task-Oriented Communication for Multi-Device Cooperative Edge Inference
|
2109.00172
|
https://arxiv.org/abs/2109.00172v3
|
https://arxiv.org/pdf/2109.00172v3.pdf
|
https://github.com/shaojiawei07/tocom-tem
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/few-shot-medical-image-segmentation-via-a
|
Few-Shot Medical Image Segmentation via a Region-enhanced Prototypical Transformer
|
2309.04825
|
https://arxiv.org/abs/2309.04825v1
|
https://arxiv.org/pdf/2309.04825v1.pdf
|
https://github.com/yazhouzhu19/rpt
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/parameter-efficient-language-model-tuning
|
Parameter-Efficient Language Model Tuning with Active Learning in Low-Resource Settings
|
2305.14576
|
https://arxiv.org/abs/2305.14576v2
|
https://arxiv.org/pdf/2305.14576v2.pdf
|
https://github.com/josipjukic/adapter-al
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/llm4plc-harnessing-large-language-models-for
|
LLM4PLC: Harnessing Large Language Models for Verifiable Programming of PLCs in Industrial Control Systems
|
2401.05443
|
https://arxiv.org/abs/2401.05443v1
|
https://arxiv.org/pdf/2401.05443v1.pdf
|
https://github.com/AICPS/LLM_4_PLC
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/multiview-detection-with-feature-perspective
|
Multiview Detection with Feature Perspective Transformation
|
2007.07247
|
https://arxiv.org/abs/2007.07247v2
|
https://arxiv.org/pdf/2007.07247v2.pdf
|
https://github.com/shaojiawei07/tocom-tem
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/controlling-large-language-models-to-generate
|
Large Language Models for Code: Security Hardening and Adversarial Testing
|
2302.05319
|
https://arxiv.org/abs/2302.05319v5
|
https://arxiv.org/pdf/2302.05319v5.pdf
|
https://github.com/eth-sri/sven
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-conversational-paradigm-for-program
|
CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis
|
2203.13474
|
https://arxiv.org/abs/2203.13474v5
|
https://arxiv.org/pdf/2203.13474v5.pdf
|
https://github.com/eth-sri/sven
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/event-stream-based-visual-object-tracking-a
|
Event Stream-based Visual Object Tracking: A High-Resolution Benchmark Dataset and A Novel Baseline
|
2309.14611
|
https://arxiv.org/abs/2309.14611v1
|
https://arxiv.org/pdf/2309.14611v1.pdf
|
https://github.com/event-ahu/coesot
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/treating-motion-as-option-with-output
|
Treating Motion as Option with Output Selection for Unsupervised Video Object Segmentation
|
2309.14786
|
https://arxiv.org/abs/2309.14786v1
|
https://arxiv.org/pdf/2309.14786v1.pdf
|
https://github.com/suhwan-cho/tmo
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/formalmath-benchmarking-formal-mathematical
|
FormalMATH: Benchmarking Formal Mathematical Reasoning of Large Language Models
|
2505.02735
|
https://arxiv.org/abs/2505.02735v1
|
https://arxiv.org/pdf/2505.02735v1.pdf
|
https://github.com/sphere-ai-lab/formalmath-bench
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/catch-me-if-you-search-when-contextual-web
|
Catch Me if You Search: When Contextual Web Search Results Affect the Detection of Hallucinations
|
2504.01153
|
https://arxiv.org/abs/2504.01153v3
|
https://arxiv.org/pdf/2504.01153v3.pdf
|
https://github.com/MahjabinNahar/CatchMeIfYouSearch
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/llama-open-and-efficient-foundation-language-1
|
LLaMA: Open and Efficient Foundation Language Models
|
2302.13971
|
https://arxiv.org/abs/2302.13971v1
|
https://arxiv.org/pdf/2302.13971v1.pdf
|
https://github.com/xzhang97666/alpacare
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/llama-2-open-foundation-and-fine-tuned-chat
|
Llama 2: Open Foundation and Fine-Tuned Chat Models
|
2307.09288
|
https://arxiv.org/abs/2307.09288v2
|
https://arxiv.org/pdf/2307.09288v2.pdf
|
https://github.com/xzhang97666/alpacare
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/efficiently-modeling-long-sequences-with-1
|
Efficiently Modeling Long Sequences with Structured State Spaces
|
2111.00396
|
https://arxiv.org/abs/2111.00396v3
|
https://arxiv.org/pdf/2111.00396v3.pdf
|
https://github.com/nicolaszucchet/minimal-lru
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/resurrecting-recurrent-neural-networks-for
|
Resurrecting Recurrent Neural Networks for Long Sequences
|
2303.06349
|
https://arxiv.org/abs/2303.06349v1
|
https://arxiv.org/pdf/2303.06349v1.pdf
|
https://github.com/nicolaszucchet/minimal-lru
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/classification-of-influenza-hemagglutinin
|
Classification of Influenza Hemagglutinin Protein Sequences using Convolutional Neural Networks
|
2108.04240
|
https://arxiv.org/abs/2108.04240v1
|
https://arxiv.org/pdf/2108.04240v1.pdf
|
https://gitlab.com/charalambos.chrysostomou/embc21_influenza
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/a-simple-latent-diffusion-approach-for
|
A Simple Latent Diffusion Approach for Panoptic Segmentation and Mask Inpainting
|
2401.10227
|
https://arxiv.org/abs/2401.10227v2
|
https://arxiv.org/pdf/2401.10227v2.pdf
|
https://github.com/segments-ai/latent-diffusion-segmentation
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/counterfactual-prediction-under-selective
|
Counterfactual Prediction Under Selective Confounding
|
2310.14064
|
https://arxiv.org/abs/2310.14064v1
|
https://arxiv.org/pdf/2310.14064v1.pdf
|
https://github.com/sohaib730/causalml
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/svdd-2024-the-inaugural-singing-voice
|
SVDD 2024: The Inaugural Singing Voice Deepfake Detection Challenge
|
2408.16132
|
https://arxiv.org/abs/2408.16132v2
|
https://arxiv.org/pdf/2408.16132v2.pdf
|
https://github.com/svddchallenge/ctrsvdd2024_baseline
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/from-chebnet-to-chebgibbsnet-1
|
From ChebNet to ChebGibbsNet
|
2412.01789
|
https://arxiv.org/abs/2412.01789v1
|
https://arxiv.org/pdf/2412.01789v1.pdf
|
https://github.com/hazdzz/ChebGibbsNet
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/attention-guided-residual-u-net-with-se
|
Attention-Guided Residual U-Net with SE Connection and ASPP for Watershed-Based Cell Segmentation in Microscopy Images
| null |
https://doi.org/10.1089/cmb.2023.0446
|
https://doi.org/10.1089/cmb.2023.0446
|
https://github.com/jovialniyo93/cell-segmentation
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/how-large-language-models-are-transforming
|
How Large Language Models are Transforming Machine-Paraphrased Plagiarism
|
2210.03568
|
https://arxiv.org/abs/2210.03568v3
|
https://arxiv.org/pdf/2210.03568v3.pdf
|
https://github.com/jpwahle/emnlp23-paraphrase-types
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/ssd-single-shot-multibox-detector
|
SSD: Single Shot MultiBox Detector
|
1512.02325
|
http://arxiv.org/abs/1512.02325v5
|
http://arxiv.org/pdf/1512.02325v5.pdf
|
https://github.com/lufficc/SSD
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/colmap-pcd-an-open-source-tool-for-fine-image
|
Colmap-PCD: An Open-source Tool for Fine Image-to-point cloud Registration
|
2310.05504
|
https://arxiv.org/abs/2310.05504v1
|
https://arxiv.org/pdf/2310.05504v1.pdf
|
https://github.com/xiaobaiiiiii/colmap-pcd
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/commander-s-intent-a-dataset-and-modeling
|
A Computational Interface to Translate Strategic Intent from Unstructured Language in a Low-Data Setting
|
2208.08374
|
https://arxiv.org/abs/2208.08374v2
|
https://arxiv.org/pdf/2208.08374v2.pdf
|
https://github.com/anonymousturtle433/anonymized-code
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/an-interpretable-clustering-approach-to
|
An interpretable clustering approach to safety climate analysis: examining driver group distinction in safety climate perceptions
|
2310.19841
|
https://arxiv.org/abs/2310.19841v1
|
https://arxiv.org/pdf/2310.19841v1.pdf
|
https://github.com/nus-dbe/truck-driver-safety-climate
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/self-supervised-one-shot-learning-for
|
Self-Supervised One-Shot Learning for Automatic Segmentation of StyleGAN Images
|
2303.05639
|
https://arxiv.org/abs/2303.05639v3
|
https://arxiv.org/pdf/2303.05639v3.pdf
|
https://github.com/avm-debatr/ganecdotes
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/self-instruct-aligning-language-model-with
|
Self-Instruct: Aligning Language Models with Self-Generated Instructions
|
2212.10560
|
https://arxiv.org/abs/2212.10560v2
|
https://arxiv.org/pdf/2212.10560v2.pdf
|
https://github.com/xzhang97666/alpacare
| false
| false
| true
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.