paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/dual-invariance-self-training-for-reliable
|
Dual Invariance Self-training for Reliable Semi-supervised Surgical Phase Recognition
|
2501.17628
|
https://arxiv.org/abs/2501.17628v1
|
https://arxiv.org/pdf/2501.17628v1.pdf
|
https://github.com/sahar-nasiri/dist
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/waste-not-want-not-why-rarefying-microbiome
|
Waste Not, Want Not: Why Rarefying Microbiome Data is Inadmissible
|
1310.0424
|
https://arxiv.org/abs/1310.0424v2
|
https://arxiv.org/pdf/1310.0424v2.pdf
|
https://github.com/joey711/phyloseq
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/self-adaptive-training-beyond-empirical-risk
|
Self-Adaptive Training: beyond Empirical Risk Minimization
|
2002.10319
|
https://arxiv.org/abs/2002.10319v2
|
https://arxiv.org/pdf/2002.10319v2.pdf
|
https://github.com/BorealisAI/towards-better-sel-cls
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/stochastic-gradient-descent-with
|
Stochastic Gradient Descent with Preconditioned Polyak Step-size
|
2310.02093
|
https://arxiv.org/abs/2310.02093v1
|
https://arxiv.org/pdf/2310.02093v1.pdf
|
https://github.com/fxrshed/scaledsps
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/turingbench-a-benchmark-environment-for
|
TURINGBENCH: A Benchmark Environment for Turing Test in the Age of Neural Text Generation
|
2109.13296
|
https://arxiv.org/abs/2109.13296v1
|
https://arxiv.org/pdf/2109.13296v1.pdf
|
https://github.com/amritabh/conda-gen-text-detection
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/quantum-accelerated-causal-tomography-circuit
|
A scalable quantum gate-based implementation for causal hypothesis testing
|
2209.02016
|
https://arxiv.org/abs/2209.02016v4
|
https://arxiv.org/pdf/2209.02016v4.pdf
|
https://github.com/advanced-research-centre/qacht
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/integrating-earth-observation-data-into
|
Integrating Earth Observation Data into Causal Inference: Challenges and Opportunities
|
2301.12985
|
https://arxiv.org/abs/2301.12985v1
|
https://arxiv.org/pdf/2301.12985v1.pdf
|
https://github.com/AIandGlobalDevelopmentLab/causalimages-software
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/all-languages-matter-on-the-multilingual
|
All Languages Matter: On the Multilingual Safety of Large Language Models
|
2310.00905
|
https://arxiv.org/abs/2310.00905v2
|
https://arxiv.org/pdf/2310.00905v2.pdf
|
https://github.com/jarviswang94/multilingual_safety_benchmark
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/understanding-in-context-learning-from
|
Understanding In-Context Learning from Repetitions
|
2310.00297
|
https://arxiv.org/abs/2310.00297v3
|
https://arxiv.org/pdf/2310.00297v3.pdf
|
https://github.com/elliottyan/understand-icl-from-repetition
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/an-image-is-worth-16x16-words-transformers-1
|
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
|
2010.11929
|
https://arxiv.org/abs/2010.11929v2
|
https://arxiv.org/pdf/2010.11929v2.pdf
|
https://github.com/uygarkurt/ViT-PyTorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/fedaiot-a-federated-learning-benchmark-for
|
FedAIoT: A Federated Learning Benchmark for Artificial Intelligence of Things
|
2310.00109
|
https://arxiv.org/abs/2310.00109v3
|
https://arxiv.org/pdf/2310.00109v3.pdf
|
https://github.com/aiot-mlsys-lab/fedaiot
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/hydra-multi-head-low-rank-adaptation-for
|
Hydra: Multi-head Low-rank Adaptation for Parameter Efficient Fine-tuning
|
2309.06922
|
https://arxiv.org/abs/2309.06922v1
|
https://arxiv.org/pdf/2309.06922v1.pdf
|
https://github.com/extremebird/hydra
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/mini-gpts-efficient-large-language-models
|
Mini-GPTs: Efficient Large Language Models through Contextual Pruning
|
2312.12682
|
https://arxiv.org/abs/2312.12682v1
|
https://arxiv.org/pdf/2312.12682v1.pdf
|
https://github.com/tval2/contextual-pruning
| false
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/colora-continuous-low-rank-adaptation-for
|
CoLoRA: Continuous low-rank adaptation for reduced implicit neural modeling of parameterized partial differential equations
|
2402.14646
|
https://arxiv.org/abs/2402.14646v2
|
https://arxiv.org/pdf/2402.14646v2.pdf
|
https://github.com/julesberman/colora
| true
| true
| false
|
jax
|
https://paperswithcode.com/paper/sublinear-time-opinion-estimation-in-the
|
Sublinear-Time Opinion Estimation in the Friedkin--Johnsen Model
|
2404.16464
|
https://arxiv.org/abs/2404.16464v1
|
https://arxiv.org/pdf/2404.16464v1.pdf
|
https://github.com/stefanresearch/sublinear-time-opinions
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/determination-of-optimal-chain-coupling-made
|
Determination of Optimal Chain Coupling made by Embedding in D-Wave Quantum Annealer
|
2406.03364
|
https://arxiv.org/abs/2406.03364v1
|
https://arxiv.org/pdf/2406.03364v1.pdf
|
https://github.com/hunpyolee/optimizechainstrength
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/population-group-2-0-bringing-the-umls
|
Population Group 2.0: Bringing the UMLS Semantic Network up to Speed
| null |
https://pubmed.ncbi.nlm.nih.gov/40380730/
|
https://ebooks.iospress.nl/doi/10.3233/SHTI250627
|
https://github.com/narenkhatwani/population-group-2.0
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/going-incognito-in-the-metaverse
|
Going Incognito in the Metaverse: Achieving Theoretically Optimal Privacy-Usability Tradeoffs in VR
|
2208.05604
|
https://arxiv.org/abs/2208.05604v5
|
https://arxiv.org/pdf/2208.05604v5.pdf
|
https://github.com/metaguard/metaguard
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/self-normalizing-neural-networks
|
Self-Normalizing Neural Networks
|
1706.02515
|
http://arxiv.org/abs/1706.02515v5
|
http://arxiv.org/pdf/1706.02515v5.pdf
|
https://github.com/2023-MindSpore-4/Code7/tree/main/snn_mlp
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/is-automated-topic-model-evaluation-broken
|
Is Automated Topic Model Evaluation Broken?: The Incoherence of Coherence
|
2107.02173
|
https://arxiv.org/abs/2107.02173v3
|
https://arxiv.org/pdf/2107.02173v3.pdf
|
https://github.com/dominiksinsaarland/evaluating-topic-model-output
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/re-visiting-automated-topic-model-evaluation
|
Revisiting Automated Topic Model Evaluation with Large Language Models
|
2305.12152
|
https://arxiv.org/abs/2305.12152v2
|
https://arxiv.org/pdf/2305.12152v2.pdf
|
https://github.com/dominiksinsaarland/evaluating-topic-model-output
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/randomizing-hypergraphs-preserving-degree
|
Randomizing hypergraphs preserving degree correlation and local clustering
|
2106.12162
|
https://arxiv.org/abs/2106.12162v2
|
https://arxiv.org/pdf/2106.12162v2.pdf
|
https://github.com/kazuibasou/hyper-dk-series
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/identifying-important-group-of-pixels-using
|
Identifying Important Group of Pixels using Interactions
|
2401.03785
|
https://arxiv.org/abs/2401.03785v3
|
https://arxiv.org/pdf/2401.03785v3.pdf
|
https://github.com/kosukesumiyasu/moxi
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/automated-security-response-through-online
|
Automated Security Response through Online Learning with Adaptive Conjectures
|
2402.12499
|
https://arxiv.org/abs/2402.12499v4
|
https://arxiv.org/pdf/2402.12499v4.pdf
|
https://github.com/limmen/csle
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/on-the-minimal-modules-for-exceptional-lie
|
On the minimal modules for exceptional Lie algebras: Jordan blocks and stabilisers
|
1508.02918
|
https://arxiv.org/abs/1508.02918v6
|
https://arxiv.org/pdf/1508.02918v6.pdf
|
https://github.com/davistem/nilpotent_orbits_gap
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/explainable-multimodal-emotion-reasoning
|
Explainable Multimodal Emotion Recognition
|
2306.15401
|
https://arxiv.org/abs/2306.15401v6
|
https://arxiv.org/pdf/2306.15401v6.pdf
|
https://github.com/zeroqiaoba/affectgpt
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/seamlessm4t-massively-multilingual-multimodal
|
SeamlessM4T: Massively Multilingual & Multimodal Machine Translation
|
2308.11596
|
https://arxiv.org/abs/2308.11596v3
|
https://arxiv.org/pdf/2308.11596v3.pdf
|
https://github.com/facebookresearch/seamless_communication
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/deriving-analytical-solutions-using-symbolic-1
|
Deriving Analytical Solutions Using Symbolic Matrix Structural Analysis: Part 2 -- Plane Trusses
|
2411.16573
|
https://arxiv.org/abs/2411.16573v1
|
https://arxiv.org/pdf/2411.16573v1.pdf
|
https://github.com/vplevris/symbolicmsa-2dtrusses
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/simple-pose-rethinking-and-improving-a-bottom
|
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation
|
1911.10529
|
https://arxiv.org/abs/1911.10529v1
|
https://arxiv.org/pdf/1911.10529v1.pdf
|
https://github.com/2023-MindSpore-4/Code11/tree/main/simple_pose
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/heuristic-learning-with-graph-neural-networks
|
Heuristic Learning with Graph Neural Networks: A Unified Framework for Link Prediction
|
2406.07979
|
https://arxiv.org/abs/2406.07979v2
|
https://arxiv.org/pdf/2406.07979v2.pdf
|
https://github.com/LARS-research/HL-GNN
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/taming-diffusion-probabilistic-models-for
|
Taming Diffusion Probabilistic Models for Character Control
|
2404.15121
|
https://arxiv.org/abs/2404.15121v1
|
https://arxiv.org/pdf/2404.15121v1.pdf
|
https://github.com/AIGAnimation/CAMDM
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/on-the-differentiability-of-the-primal-dual
|
On the Differentiability of the Primal-Dual Interior-Point Method
|
2406.11749
|
https://arxiv.org/abs/2406.11749v2
|
https://arxiv.org/pdf/2406.11749v2.pdf
|
https://github.com/kevin-tracy/qpax
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/triggerless-backdoor-attack-for-nlp-tasks
|
Triggerless Backdoor Attack for NLP Tasks with Clean Labels
|
2111.07970
|
https://arxiv.org/abs/2111.07970v2
|
https://arxiv.org/pdf/2111.07970v2.pdf
|
https://github.com/2023-MindSpore-4/Code12/tree/main/ganleilei/CleanLabelBackdoorAttackMindspore-master
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/context-based-interpretable-spatio-temporal
|
Context-based Interpretable Spatio-Temporal Graph Convolutional Network for Human Motion Forecasting
|
2402.19237
|
https://arxiv.org/abs/2402.19237v1
|
https://arxiv.org/pdf/2402.19237v1.pdf
|
https://github.com/qualityminds/cistgcn
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/electron-energization-in-reconnection
|
Electron Energization in Reconnection: Eulerian versus Lagrangian Perspectives
|
2310.17480
|
https://arxiv.org/abs/2310.17480v2
|
https://arxiv.org/pdf/2310.17480v2.pdf
|
https://github.com/ammarhakim/gkyl-paper-inp
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-survey-on-autonomous-driving-datasets-data
|
A Survey on Autonomous Driving Datasets: Statistics, Annotation Quality, and a Future Outlook
|
2401.01454
|
https://arxiv.org/abs/2401.01454v2
|
https://arxiv.org/pdf/2401.01454v2.pdf
|
https://github.com/mingyuliu1/autonomous_driving_datasets
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/logformer-a-pre-train-and-tuning-pipeline-for
|
LogFormer: A Pre-train and Tuning Pipeline for Log Anomaly Detection
|
2401.04749
|
https://arxiv.org/abs/2401.04749v1
|
https://arxiv.org/pdf/2401.04749v1.pdf
|
https://github.com/hc-guo/logformer
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/violation-of-expectation-via-metacognitive
|
Violation of Expectation via Metacognitive Prompting Reduces Theory of Mind Prediction Error in Large Language Models
|
2310.06983
|
https://arxiv.org/abs/2310.06983v1
|
https://arxiv.org/pdf/2310.06983v1.pdf
|
https://github.com/plastic-labs/voe-paper-eval
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/evolution-of-fullerenes-in-circumstellar
|
Evolution of Fullerenes in Circumstellar Envelopes by Carbon Condensation: Insights from Reactive Molecular Dynamics Simulations
|
2310.17095
|
https://arxiv.org/abs/2310.17095v1
|
https://arxiv.org/pdf/2310.17095v1.pdf
|
https://github.com/mengzss/fullerene_evolution
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/flag-hilbert-poincare-series-of-hyperplane
|
Flag Hilbert-Poincaré series of hyperplane arrangements and their Igusa zeta functions
|
2103.03640
|
https://arxiv.org/abs/2103.03640v2
|
https://arxiv.org/pdf/2103.03640v2.pdf
|
https://github.com/joshmaglione/hypigu
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/paraphrase-types-for-generation-and-detection
|
Paraphrase Types for Generation and Detection
|
2310.14863
|
https://arxiv.org/abs/2310.14863v3
|
https://arxiv.org/pdf/2310.14863v3.pdf
|
https://github.com/jpwahle/emnlp23-paraphrase-types
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/on-the-representational-capacity-of-recurrent
|
On the Representational Capacity of Recurrent Neural Language Models
|
2310.12942
|
https://arxiv.org/abs/2310.12942v5
|
https://arxiv.org/pdf/2310.12942v5.pdf
|
https://github.com/rycolab/rnn-turing-completeness
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/pruning-for-protection-increasing-jailbreak
|
Pruning for Protection: Increasing Jailbreak Resistance in Aligned LLMs Without Fine-Tuning
|
2401.10862
|
https://arxiv.org/abs/2401.10862v3
|
https://arxiv.org/pdf/2401.10862v3.pdf
|
https://github.com/crystaleye42/eval-safety
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/efficient-graduated-non-convexity-for-pose
|
Efficient Graduated Non-Convexity for Pose Graph Optimization
|
2310.06765
|
https://arxiv.org/abs/2310.06765v1
|
https://arxiv.org/pdf/2310.06765v1.pdf
|
https://github.com/SNU-DLLAB/EGNC-PGO
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/chatvis-automating-scientific-visualization
|
ChatVis: Automating Scientific Visualization with a Large Language Model
|
2410.11863
|
https://arxiv.org/abs/2410.11863v1
|
https://arxiv.org/pdf/2410.11863v1.pdf
|
https://github.com/tanwimallick/chatvis
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/variable-selection-for-partially-linear
|
Robust variable selection for partially linear additive models
|
2401.10869
|
https://arxiv.org/abs/2401.10869v2
|
https://arxiv.org/pdf/2401.10869v2.pdf
|
https://github.com/alemermartinez/rplam-vs
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/multi-task-faces-mtf-data-set-a-legally-and
|
Multi-Task Faces (MTF) Data Set: A Legally and Ethically Compliant Collection of Face Images for Various Classification Tasks
|
2311.11882
|
https://arxiv.org/abs/2311.11882v1
|
https://arxiv.org/pdf/2311.11882v1.pdf
|
https://github.com/ramihaf/mtf_data_set
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/unearthing-a-billion-telegram-posts-about-the
|
Unearthing a Billion Telegram Posts about the 2024 U.S. Presidential Election: Development of a Public Dataset
|
2410.23638
|
https://arxiv.org/abs/2410.23638v1
|
https://arxiv.org/pdf/2410.23638v1.pdf
|
https://github.com/leonardo-blas/usc-tg-24-us-election
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/resnet50-on-cifar-100-without-transfer
|
ResNet50_on_Cifar_100_Without_Transfer_Learning
| null |
https://github.com/batuhan3526/ResNet50_on_Cifar_100_Without_Transfer_Learning/blob/master/abstract.txt
|
https://github.com/batuhan3526/ResNet50_on_Cifar_100_Without_Transfer_Learning/blob/master/abstract.txt
|
https://github.com/2023-MindSpore-4/Code7/tree/main/ssd_resnet50
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/chatgpt-as-data-augmentation-for
|
ChatGPT as Data Augmentation for Compositional Generalization: A Case Study in Open Intent Detection
|
2308.13517
|
https://arxiv.org/abs/2308.13517v1
|
https://arxiv.org/pdf/2308.13517v1.pdf
|
https://github.com/fangyihao/gptaug
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/a-structured-l-bfgs-method-and-its
|
A structured L-BFGS method and its application to inverse problems
|
2310.07296
|
https://arxiv.org/abs/2310.07296v7
|
https://arxiv.org/pdf/2310.07296v7.pdf
|
https://github.com/hariagr/slbfgs
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/neur2sp-neural-two-stage-stochastic
|
Neur2SP: Neural Two-Stage Stochastic Programming
|
2205.12006
|
https://arxiv.org/abs/2205.12006v2
|
https://arxiv.org/pdf/2205.12006v2.pdf
|
https://github.com/khalil-research/neur2ro
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/are-eeg-to-text-models-working
|
Are EEG-to-Text Models Working?
|
2405.06459
|
https://arxiv.org/abs/2405.06459v4
|
https://arxiv.org/pdf/2405.06459v4.pdf
|
https://github.com/mikewangwzhl/eeg-to-text
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/contrastive-modules-with-temporal-attention
|
Contrastive Modules with Temporal Attention for Multi-Task Reinforcement Learning
|
2311.01075
|
https://arxiv.org/abs/2311.01075v1
|
https://arxiv.org/pdf/2311.01075v1.pdf
|
https://github.com/niiceMing/CMTA
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/mutox-universal-multilingual-audio-based
|
MuTox: Universal MUltilingual Audio-based TOXicity Dataset and Zero-shot Detector
|
2401.05060
|
https://arxiv.org/abs/2401.05060v2
|
https://arxiv.org/pdf/2401.05060v2.pdf
|
https://github.com/facebookresearch/seamless_communication
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/adaptive-optimizers-with-sparse-group-lasso-1
|
Adaptive Optimizers with Sparse Group Lasso for Neural Networks in CTR Prediction
|
2107.14432
|
https://arxiv.org/abs/2107.14432v6
|
https://arxiv.org/pdf/2107.14432v6.pdf
|
https://github.com/intelligent-machine-learning/tfplus
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/wasm-icare-a-portable-and-privacy-preserving
|
Wasm-iCARE: a portable and privacy-preserving web module to build, validate, and apply absolute risk models
|
2310.09252
|
https://arxiv.org/abs/2310.09252v1
|
https://arxiv.org/pdf/2310.09252v1.pdf
|
https://github.com/jeyabbalas/wasm-icare
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/time-varying-optimization-of-lti-systems-via
|
Time-Varying Optimization of LTI Systems via Projected Primal-Dual Gradient Flows
|
2101.01799
|
https://arxiv.org/abs/2101.01799v3
|
https://arxiv.org/pdf/2101.01799v3.pdf
|
https://github.com/gianlucaBi/onlinePrimalDual_rampMetering
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/efficient-psf-modeling-with-shopt-jl-a-psf
|
Efficient PSF Modeling with ShOpt.jl: A PSF Benchmarking Study with JWST NIRCam Imaging
|
2401.11625
|
https://arxiv.org/abs/2401.11625v3
|
https://arxiv.org/pdf/2401.11625v3.pdf
|
https://github.com/edwardberman/shopt
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/from-clip-to-dino-visual-encoders-shout-in
|
From CLIP to DINO: Visual Encoders Shout in Multi-modal Large Language Models
|
2310.08825
|
https://arxiv.org/abs/2310.08825v3
|
https://arxiv.org/pdf/2310.08825v3.pdf
|
https://github.com/yuchenliu98/comm
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/metra-scalable-unsupervised-rl-with-metric
|
METRA: Scalable Unsupervised RL with Metric-Aware Abstraction
|
2310.08887
|
https://arxiv.org/abs/2310.08887v2
|
https://arxiv.org/pdf/2310.08887v2.pdf
|
https://github.com/seohongpark/metra
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/self-storm-deep-unrolled-self-supervised
|
Self-STORM: Deep Unrolled Self-Supervised Learning for Super-Resolution Microscopy
|
2403.16974
|
https://arxiv.org/abs/2403.16974v1
|
https://arxiv.org/pdf/2403.16974v1.pdf
|
https://github.com/yairbs/Self-STORM
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/comparative-analysis-of-llama-and-chatgpt
|
Can Large Language Models Understand Molecules?
|
2402.00024
|
https://arxiv.org/abs/2402.00024v3
|
https://arxiv.org/pdf/2402.00024v3.pdf
|
https://github.com/sshaghayeghs/llama-vs-gpt
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/cosmos-web-the-over-abundance-and-physical
|
COSMOS-Web: The over-abundance and physical nature of "little red dots"--Implications for early galaxy and SMBH assembly
|
2406.10341
|
https://arxiv.org/abs/2406.10341v1
|
https://arxiv.org/pdf/2406.10341v1.pdf
|
https://github.com/hollisakins/akins24_cw
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/leveraging-adversarial-detection-to-enable
|
BreakHammer: Enhancing RowHammer Mitigations by Carefully Throttling Suspect Threads
|
2404.13477
|
https://arxiv.org/abs/2404.13477v2
|
https://arxiv.org/pdf/2404.13477v2.pdf
|
https://github.com/cmu-safari/breakhammer
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/crossmoco-multi-modal-momentum-contrastive
|
CrossMoCo: Multi-modal Momentum Contrastive Learning for Point Cloud
| null |
https://ieeexplore.ieee.org/abstract/document/10229841
|
https://ieeexplore.ieee.org/abstract/document/10229841
|
https://github.com/snehaputul/CrossMoCo
| false
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/apollo-unified-adapter-and-prompt-learning
|
APoLLo: Unified Adapter and Prompt Learning for Vision Language Models
|
2312.01564
|
https://arxiv.org/abs/2312.01564v1
|
https://arxiv.org/pdf/2312.01564v1.pdf
|
https://github.com/schowdhury671/APoLLo
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/look-at-me-no-replay-surprisenet-anomaly
|
Look At Me, No Replay! SurpriseNet: Anomaly Detection Inspired Class Incremental Learning
|
2310.20052
|
https://arxiv.org/abs/2310.20052v1
|
https://arxiv.org/pdf/2310.20052v1.pdf
|
https://github.com/tachyonicclock/surprisenet-cikm-23
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/histopathological-image-analysis-with-style
|
Histopathological Image Analysis with Style-Augmented Feature Domain Mixing for Improved Generalization
|
2310.20638
|
https://arxiv.org/abs/2310.20638v1
|
https://arxiv.org/pdf/2310.20638v1.pdf
|
https://github.com/vaibhav-khamankar/fusestyle
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/bias-against-93-stigmatized-groups-in-masked
|
Bias Against 93 Stigmatized Groups in Masked Language Models and Downstream Sentiment Classification Tasks
|
2306.05550
|
https://arxiv.org/abs/2306.05550v1
|
https://arxiv.org/pdf/2306.05550v1.pdf
|
https://github.com/mooniem/mlms_bias_stigmas
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/prefix-tree-decoding-for-predicting-mass
|
Prefix-Tree Decoding for Predicting Mass Spectra from Molecules
|
2303.06470
|
https://arxiv.org/abs/2303.06470v3
|
https://arxiv.org/pdf/2303.06470v3.pdf
|
https://github.com/samgoldman97/ms-pred
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/dataset-and-benchmark-for-urdu-natural-scenes
|
Dataset and Benchmark for Urdu Natural Scenes Text Detection, Recognition and Visual Question Answering
|
2405.12533
|
https://arxiv.org/abs/2405.12533v1
|
https://arxiv.org/pdf/2405.12533v1.pdf
|
https://github.com/hiba-meiruan/urdu-vqa-dataset-
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mind-the-gap-between-prototypes-and-images-in
|
Mind the Gap Between Prototypes and Images in Cross-domain Finetuning
|
2410.12474
|
https://arxiv.org/abs/2410.12474v2
|
https://arxiv.org/pdf/2410.12474v2.pdf
|
https://github.com/tmlr-group/CoPA
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/aligning-llms-with-domain-invariant-reward
|
Aligning LLMs with Domain Invariant Reward Models
|
2501.00911
|
https://arxiv.org/abs/2501.00911v1
|
https://arxiv.org/pdf/2501.00911v1.pdf
|
https://github.com/portal-cornell/dial
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/data-driven-study-of-composition-dependent
|
Data-driven study of composition-dependent phase compatibility in NiTi shape memory alloys
|
2402.12520
|
https://arxiv.org/abs/2402.12520v1
|
https://arxiv.org/pdf/2402.12520v1.pdf
|
https://github.com/sinazadeh/phase-compatibility-model-niti
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/universal-representation-learning-from
|
Universal Representation Learning from Multiple Domains for Few-shot Classification
|
2103.13841
|
https://arxiv.org/abs/2103.13841v1
|
https://arxiv.org/pdf/2103.13841v1.pdf
|
https://github.com/tmlr-group/CoPA
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/meta-dataset-a-dataset-of-datasets-for
|
Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples
|
1903.03096
|
https://arxiv.org/abs/1903.03096v4
|
https://arxiv.org/pdf/1903.03096v4.pdf
|
https://github.com/tmlr-group/CoPA
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/unleashing-the-creative-mind-language-model
|
Unleashing the Creative Mind: Language Model As Hierarchical Policy For Improved Exploration on Challenging Problem Solving
|
2311.00694
|
https://arxiv.org/abs/2311.00694v2
|
https://arxiv.org/pdf/2311.00694v2.pdf
|
https://github.com/lz1oceani/llm-as-hierarchical-policy
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/event-causality-is-key-to-computational-story
|
Event Causality Is Key to Computational Story Understanding
|
2311.09648
|
https://arxiv.org/abs/2311.09648v2
|
https://arxiv.org/pdf/2311.09648v2.pdf
|
https://github.com/insundaycathy/event-causality-extraction
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/chemplaskin-a-general-purpose-program-for
|
ChemPlasKin: a general-purpose program for unified gas and plasma kinetics simulations
|
2405.04224
|
https://arxiv.org/abs/2405.04224v1
|
https://arxiv.org/pdf/2405.04224v1.pdf
|
https://github.com/ShaoX96/ChemPlasKin
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/distributed-statistical-machine-learning-in
|
Distributed Statistical Machine Learning in Adversarial Settings: Byzantine Gradient Descent
|
1705.05491
|
http://arxiv.org/abs/1705.05491v2
|
http://arxiv.org/pdf/1705.05491v2.pdf
|
https://github.com/bladesteam/blades
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/smaller-language-models-are-capable-of
|
Smaller Language Models are capable of selecting Instruction-Tuning Training Data for Larger Language Models
|
2402.10430
|
https://arxiv.org/abs/2402.10430v1
|
https://arxiv.org/pdf/2402.10430v1.pdf
|
https://github.com/dheeraj7596/small2large
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/hierspeech-bridging-the-gap-between-semantic
|
HierSpeech++: Bridging the Gap between Semantic and Acoustic Representation of Speech by Hierarchical Variational Inference for Zero-shot Speech Synthesis
|
2311.12454
|
https://arxiv.org/abs/2311.12454v2
|
https://arxiv.org/pdf/2311.12454v2.pdf
|
https://github.com/sh-lee-prml/hierspeechpp
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/readme-bridging-medical-jargon-and-lay
|
README: Bridging Medical Jargon and Lay Understanding for Patient Education through Data-Centric NLP
|
2312.15561
|
https://arxiv.org/abs/2312.15561v5
|
https://arxiv.org/pdf/2312.15561v5.pdf
|
https://github.com/seasonyao/noteaid-readme
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/unsupervised-discovery-of-interpretable-3
|
Unsupervised discovery of Interpretable Visual Concepts
|
2309.00018
|
https://arxiv.org/abs/2309.00018v2
|
https://arxiv.org/pdf/2309.00018v2.pdf
|
https://github.com/carolmazini/unsupervised-ivc
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/wear-a-multimodal-dataset-for-wearable-and
|
WEAR: An Outdoor Sports Dataset for Wearable and Egocentric Activity Recognition
|
2304.05088
|
https://arxiv.org/abs/2304.05088v4
|
https://arxiv.org/pdf/2304.05088v4.pdf
|
https://github.com/mariusbock/wear
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/bridging-the-gap-between-domain-specific
|
Bridging the Gap Between Domain-specific Frameworks and Multiple Hardware Devices
|
2405.12491
|
https://arxiv.org/abs/2405.12491v1
|
https://arxiv.org/pdf/2405.12491v1.pdf
|
https://github.com/benchcouncil/bridger
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/mm-sap-a-comprehensive-benchmark-for
|
MM-SAP: A Comprehensive Benchmark for Assessing Self-Awareness of Multimodal Large Language Models in Perception
|
2401.07529
|
https://arxiv.org/abs/2401.07529v3
|
https://arxiv.org/pdf/2401.07529v3.pdf
|
https://github.com/yhwmz/mm-sap
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/asgir-audio-spectrogram-transformer-guided
|
ASGIR: Audio Spectrogram Transformer Guided Classification And Information Retrieval For Birds
|
2407.18927
|
https://arxiv.org/abs/2407.18927v1
|
https://arxiv.org/pdf/2407.18927v1.pdf
|
https://github.com/mainsample1234/as-gir
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/gohberg-semencul-estimation-of-toeplitz
|
Gohberg-Semencul Estimation of Toeplitz Structured Covariance Matrices and Their Inverses
|
2311.14995
|
https://arxiv.org/abs/2311.14995v1
|
https://arxiv.org/pdf/2311.14995v1.pdf
|
https://github.com/beneboeck/toep-cov-estimation
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-self-attentive-model-for-knowledge-tracing
|
A Self-Attentive model for Knowledge Tracing
|
1907.06837
|
https://arxiv.org/abs/1907.06837v1
|
https://arxiv.org/pdf/1907.06837v1.pdf
|
https://github.com/nanzhaogang/contrib/tree/master/application/a-self-attentive-model-for-knowledge-tracing
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/zo-adamu-optimizer-adapting-perturbation-by
|
ZO-AdaMU Optimizer: Adapting Perturbation by the Momentum and Uncertainty in Zeroth-order Optimization
|
2312.15184
|
https://arxiv.org/abs/2312.15184v1
|
https://arxiv.org/pdf/2312.15184v1.pdf
|
https://github.com/mathisall/zo-adamu
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/grokformer-graph-fourier-kolmogorov-arnold
|
GrokFormer: Graph Fourier Kolmogorov-Arnold Transformers
|
2411.17296
|
https://arxiv.org/abs/2411.17296v1
|
https://arxiv.org/pdf/2411.17296v1.pdf
|
https://github.com/GGA23/GrokFormer
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/fine-tuning-language-models-with-just-forward-1
|
Fine-Tuning Language Models with Just Forward Passes
|
2305.17333
|
https://arxiv.org/abs/2305.17333v3
|
https://arxiv.org/pdf/2305.17333v3.pdf
|
https://github.com/mathisall/zo-adamu
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/sfpnet-sparse-focal-point-network-for
|
SFPNet: Sparse Focal Point Network for Semantic Segmentation on General LiDAR Point Clouds
|
2407.11569
|
https://arxiv.org/abs/2407.11569v1
|
https://arxiv.org/pdf/2407.11569v1.pdf
|
https://github.com/Cavendish518/SFPNet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-non-robocentric-dynamic-landing-of
|
Towards Non-Robocentric Dynamic Landing of Quadrotor UAVs
|
2401.11445
|
https://arxiv.org/abs/2401.11445v1
|
https://arxiv.org/pdf/2401.11445v1.pdf
|
https://github.com/hkpolyu-uav/alan
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/couler-unified-machine-learning-workflow
|
Couler: Unified Machine Learning Workflow Optimization in Cloud
|
2403.07608
|
https://arxiv.org/abs/2403.07608v1
|
https://arxiv.org/pdf/2403.07608v1.pdf
|
https://github.com/couler-proj/couler
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/the-mass-profiles-of-dwarf-galaxies-from-dark
|
The mass profiles of dwarf galaxies from Dark Energy Survey lensing
|
2311.14659
|
https://arxiv.org/abs/2311.14659v1
|
https://arxiv.org/pdf/2311.14659v1.pdf
|
https://github.com/aamon/dwarf-lensing
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/rapid-training-of-deep-neural-networks
|
Rapid training of deep neural networks without skip connections or normalization layers using Deep Kernel Shaping
|
2110.01765
|
https://arxiv.org/abs/2110.01765v1
|
https://arxiv.org/pdf/2110.01765v1.pdf
|
https://github.com/ml-jku/convex-init
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/wav2vec-2-0-a-framework-for-self-supervised
|
wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations
|
2006.11477
|
https://arxiv.org/abs/2006.11477v3
|
https://arxiv.org/pdf/2006.11477v3.pdf
|
https://github.com/sh-lee-prml/hierspeechpp
| false
| false
| true
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.