paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/fair-learning-with-private-demographic-data
|
Fair Learning with Private Demographic Data
|
2002.11651
|
https://arxiv.org/abs/2002.11651v2
|
https://arxiv.org/pdf/2002.11651v2.pdf
|
https://github.com/husseinmozannar/fairlearn_private_data
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-forward-modelling-approach-to-overcome-psf
|
A forward-modelling approach to overcome PSF smearing and fit flexible models to the chemical structure of galaxies
|
2403.08175
|
https://arxiv.org/abs/2403.08175v1
|
https://arxiv.org/pdf/2403.08175v1.pdf
|
https://github.com/astrobenji/lenstronomy-metals-notebooks
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/randomized-quantization-for-data-agnostic
|
Randomized Quantization: A Generic Augmentation for Data Agnostic Self-supervised Learning
|
2212.08663
|
https://arxiv.org/abs/2212.08663v2
|
https://arxiv.org/pdf/2212.08663v2.pdf
|
https://github.com/pipiPdesu/random_quantize
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/denis-sdn-software-defined-network-slicing
|
DENIS-SDN: Software-Defined Network Slicing Solution for Dense and Ultra-Dense IoT Networks
|
2312.13662
|
https://arxiv.org/abs/2312.13662v1
|
https://arxiv.org/pdf/2312.13662v1.pdf
|
https://github.com/swnrg/denis-sdn
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/phylogenetic-tree-distance-computation-over
|
Phylogenetic tree distance computation over succinct representations
|
2312.14029
|
https://arxiv.org/abs/2312.14029v1
|
https://arxiv.org/pdf/2312.14029v1.pdf
|
https://github.com/pedroparedesbranco/treediff
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/towards-machine-unlearning-benchmarks
|
Towards Machine Unlearning Benchmarks: Forgetting the Personal Identities in Facial Recognition Systems
|
2311.02240
|
https://arxiv.org/abs/2311.02240v2
|
https://arxiv.org/pdf/2311.02240v2.pdf
|
https://github.com/ndb796/machineunlearning
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/generating-continuations-in-multilingual
|
Generating Continuations in Multilingual Idiomatic Contexts
|
2310.20195
|
https://arxiv.org/abs/2310.20195v2
|
https://arxiv.org/pdf/2310.20195v2.pdf
|
https://github.com/portnlp/llm-in-idiomatic-context
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/high-fidelity-multi-qubit-generalized
|
High-fidelity, multi-qubit generalized measurements with dynamic circuits
|
2312.14087
|
https://arxiv.org/abs/2312.14087v2
|
https://arxiv.org/pdf/2312.14087v2.pdf
|
https://github.com/petr-ivashkov/dynamic-circuit-povms
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-contrastive-approach-to-online-change-point
|
A Contrastive Approach to Online Change Point Detection
|
2206.10143
|
https://arxiv.org/abs/2206.10143v3
|
https://arxiv.org/pdf/2206.10143v3.pdf
|
https://github.com/npuchkin/contrastive_change_point_detection_extended
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/multi-label-classification-with-high-rank-and
|
Multi-label Classification with High-rank and High-order Label Correlations
|
2207.04197
|
https://arxiv.org/abs/2207.04197v2
|
https://arxiv.org/pdf/2207.04197v2.pdf
|
https://github.com/chongjie-si/homi
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/investigating-and-scaling-up-code-switching
|
Investigating and Scaling up Code-Switching for Multilingual Language Model Pre-Training
|
2504.01801
|
https://arxiv.org/abs/2504.01801v1
|
https://arxiv.org/pdf/2504.01801v1.pdf
|
https://github.com/zjwang21/syncs
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/massively-parallel-multiview-stereopsis-by
|
Massively Parallel Multiview Stereopsis by Surface Normal Diffusion
| null |
http://openaccess.thecvf.com/content_iccv_2015/html/Galliani_Massively_Parallel_Multiview_ICCV_2015_paper.html
|
http://openaccess.thecvf.com/content_iccv_2015/papers/Galliani_Massively_Parallel_Multiview_ICCV_2015_paper.pdf
|
https://github.com/kysucix/gipuma
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/espaloma-0-3-0-machine-learned-molecular
|
Machine-learned molecular mechanics force field for the simulation of protein-ligand systems and beyond
|
2307.07085
|
https://arxiv.org/abs/2307.07085v4
|
https://arxiv.org/pdf/2307.07085v4.pdf
|
https://github.com/openmm/openmmforcefields
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/column-randomized-linear-programs-performance
|
Column-Randomized Linear Programs: Performance Guarantees and Applications
|
2007.10461
|
https://arxiv.org/abs/2007.10461v5
|
https://arxiv.org/pdf/2007.10461v5.pdf
|
https://github.com/yi-chun-akchen/column-randomized_lp
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/motioneditor-editing-video-motion-via-content
|
MotionEditor: Editing Video Motion via Content-Aware Diffusion
|
2311.18830
|
https://arxiv.org/abs/2311.18830v1
|
https://arxiv.org/pdf/2311.18830v1.pdf
|
https://github.com/Francis-Rings/MotionEditor
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/efficient-and-robust-jet-tagging-at-the-lhc
|
Efficient and Robust Jet Tagging at the LHC with Knowledge Distillation
|
2311.14160
|
https://arxiv.org/abs/2311.14160v1
|
https://arxiv.org/pdf/2311.14160v1.pdf
|
https://github.com/ryanliu30/kd4jets
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-multi-modal-contrastive-diffusion-model-for
|
A Multi-Modal Contrastive Diffusion Model for Therapeutic Peptide Generation
|
2312.15665
|
https://arxiv.org/abs/2312.15665v2
|
https://arxiv.org/pdf/2312.15665v2.pdf
|
https://github.com/wyky481l/mmcd
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/next-token-prediction-towards-multimodal
|
Next Token Prediction Towards Multimodal Intelligence: A Comprehensive Survey
|
2412.18619
|
https://arxiv.org/abs/2412.18619v2
|
https://arxiv.org/pdf/2412.18619v2.pdf
|
https://github.com/lmm101/awesome-multimodal-next-token-prediction
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/intuitionism-with-truth-tables-a-decision
|
Intuitionism with Truth Tables: A Decision Procedure for IPL Based on RNmatrices
|
2308.13664
|
https://arxiv.org/abs/2308.13664v2
|
https://arxiv.org/pdf/2308.13664v2.pdf
|
https://github.com/renatoleme/forest
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/mcpns-a-macropixel-collocated-position-and
|
MCPNS: A Macropixel Collocated Position and Its Neighbors Search for Plenoptic 2.0 Video Coding
|
2310.08006
|
https://arxiv.org/abs/2310.08006v3
|
https://arxiv.org/pdf/2310.08006v3.pdf
|
https://github.com/duongvinh/mcpns
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mastering-diverse-domains-through-world
|
Mastering Diverse Domains through World Models
|
2301.04104
|
https://arxiv.org/abs/2301.04104v2
|
https://arxiv.org/pdf/2301.04104v2.pdf
|
https://github.com/Alescontrela/viper_rl
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/prediction-powered-generalization-of-causal
|
Prediction-powered Generalization of Causal Inferences
|
2406.02873
|
https://arxiv.org/abs/2406.02873v1
|
https://arxiv.org/pdf/2406.02873v1.pdf
|
https://github.com/demireal/ppci
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/the-poset-of-normalized-ideals-of-numerical
|
The poset of normalized ideals of numerical semigroups with multiplicity three
|
2407.21697
|
https://arxiv.org/abs/2407.21697v1
|
https://arxiv.org/pdf/2407.21697v1.pdf
|
https://github.com/numerical-semigroups/ideal-class-monoid
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/factorized-linear-discriminant-analysis-for-1
|
Factorized Discriminant Analysis for Genetic Signatures of Neuronal Phenotypes
|
2010.02171
|
https://arxiv.org/abs/2010.02171v7
|
https://arxiv.org/pdf/2010.02171v7.pdf
|
https://github.com/muqiao0626/flda-in-computbiol
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/sequence-only-prediction-of-binding-affinity
|
Sequence-Only Prediction of Binding Affinity Changes: A Robust and Interpretable Model for Antibody Engineering
|
2505.20301
|
https://arxiv.org/abs/2505.20301v1
|
https://arxiv.org/pdf/2505.20301v1.pdf
|
https://github.com/code4luck/protattba
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/construct-3d-hand-skeleton-with-commercial
|
Construct 3D Hand Skeleton with Commercial WiFi
|
2312.15507
|
https://arxiv.org/abs/2312.15507v1
|
https://arxiv.org/pdf/2312.15507v1.pdf
|
https://github.com/sijieji/handfi
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/advancements-in-arabic-grammatical-error
|
Advancements in Arabic Grammatical Error Detection and Correction: An Empirical Investigation
|
2305.14734
|
https://arxiv.org/abs/2305.14734v2
|
https://arxiv.org/pdf/2305.14734v2.pdf
|
https://github.com/camel-lab/arabic-gec
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/benchmarking-optimization-software-with
|
Benchmarking Optimization Software with Performance Profiles
|
cs/0102001
|
https://arxiv.org/abs/cs/0102001v2
|
https://arxiv.org/pdf/cs/0102001v2.pdf
|
https://github.com/corradocoppola97/CMA_v2
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learned-compression-of-encoding-distributions
|
Learned Compression of Encoding Distributions
|
2406.13059
|
https://arxiv.org/abs/2406.13059v1
|
https://arxiv.org/pdf/2406.13059v1.pdf
|
https://github.com/multimedialabsfu/learned-compression-of-encoding-distributions
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/nonlinear-mpc-for-quadrotors-in-close
|
Nonlinear MPC for Quadrotors in Close-Proximity Flight with Neural Network Downwash Prediction
|
2304.07794
|
https://arxiv.org/abs/2304.07794v2
|
https://arxiv.org/pdf/2304.07794v2.pdf
|
https://github.com/li-jinjie/ndp_nmpc_qd
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/signguard-byzantine-robust-federated-learning
|
Byzantine-robust Federated Learning through Collaborative Malicious Gradient Filtering
|
2109.05872
|
https://arxiv.org/abs/2109.05872v2
|
https://arxiv.org/pdf/2109.05872v2.pdf
|
https://github.com/bladesteam/blades
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/andi-the-anomalous-diffusion-challenge
|
AnDi: The Anomalous Diffusion Challenge
|
2003.12036
|
http://arxiv.org/abs/2003.12036v1
|
http://arxiv.org/pdf/2003.12036v1.pdf
|
https://github.com/huangzih/AnDi-Challenge
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/combinatorial-multi-armed-bandit-based
|
Combinatorial Multi-Armed Bandit Based Unknown Worker Recruitment in Heterogeneous Crowdsensing
| null |
https://ieeexplore.ieee.org/document/9155518
|
https://cis.temple.edu/~wu/research/publications/Publication_files/gao_infocom_2020.pdf
|
https://github.com/DURUII/Replica-EUWR
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/transformer-in-transformer-as-backbone-for
|
Transformer in Transformer as Backbone for Deep Reinforcement Learning
|
2212.14538
|
https://arxiv.org/abs/2212.14538v2
|
https://arxiv.org/pdf/2212.14538v2.pdf
|
https://github.com/maohangyu/TIT_open_source
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/naturalcodebench-examining-coding-performance
|
NaturalCodeBench: Examining Coding Performance Mismatch on HumanEval and Natural User Prompts
|
2405.04520
|
https://arxiv.org/abs/2405.04520v1
|
https://arxiv.org/pdf/2405.04520v1.pdf
|
https://github.com/thudm/naturalcodebench
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/improving-gbdt-performance-on-imbalanced
|
Improving GBDT Performance on Imbalanced Datasets: An Empirical Study of Class-Balanced Loss Functions
|
2407.14381
|
https://arxiv.org/abs/2407.14381v1
|
https://arxiv.org/pdf/2407.14381v1.pdf
|
https://github.com/Luojiaqimath/ClassbalancedLoss4GBDT
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/reliable-object-tracking-by-multimodal-hybrid
|
Reliable Object Tracking by Multimodal Hybrid Feature Extraction and Transformer-Based Fusion
|
2405.17903
|
https://arxiv.org/abs/2405.17903v1
|
https://arxiv.org/pdf/2405.17903v1.pdf
|
https://github.com/GuoLab-UESTC/MMHT
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/uncovering-emergent-spacetime-supersymmetry
|
Uncovering Emergent Spacetime Supersymmetry with Rydberg Atom Arrays
|
2407.08194
|
https://arxiv.org/abs/2407.08194v3
|
https://arxiv.org/pdf/2407.08194v3.pdf
|
https://github.com/chengshul/RydbergSUSY
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/strategic-evaluation-in-optimizing-the
|
Strategic Evaluation in Optimizing the Internal Supply Chain Using TOPSIS: Evidence In A Coil Winding Machine Manufacturer
|
2007.10121
|
https://arxiv.org/abs/2007.10121v1
|
https://arxiv.org/pdf/2007.10121v1.pdf
|
https://github.com/hcshipra/researchpublication
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/provably-fast-convergence-of-independent
|
Provably Fast Convergence of Independent Natural Policy Gradient for Markov Potential Games
| null |
https://openreview.net/forum?id=mA7nTGXjD3
|
https://openreview.net/pdf?id=mA7nTGXjD3
|
https://github.com/sundave1998/independent-npg-mpg
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/adversarial-counterfactual-environment-model
|
Adversarial Counterfactual Environment Model Learning
| null |
https://openreview.net/forum?id=rHAX0LRwk8
|
https://openreview.net/pdf?id=rHAX0LRwk8
|
https://github.com/xionghuichen/galileo
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/memory-encoding-model
|
Memory Encoding Model
|
2308.01175
|
https://arxiv.org/abs/2308.01175v1
|
https://arxiv.org/pdf/2308.01175v1.pdf
|
https://github.com/huzeyann/MemoryEncodingModel
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/can-mass-change-the-diffusion-coefficient-of
|
Mass changes the diffusion coefficient of particles with ligand-receptor contacts in the overdamped limit
|
2112.05266
|
https://arxiv.org/abs/2112.05266v2
|
https://arxiv.org/pdf/2112.05266v2.pdf
|
https://github.com/smarbach/dnacoatedcolloidsinteractions
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-machine-learning-approach-for-computing
|
A machine learning approach for computing solar flare locations in X-rays on-board Solar Orbiter/STIX
|
2408.16642
|
https://arxiv.org/abs/2408.16642v1
|
https://arxiv.org/pdf/2408.16642v1.pdf
|
https://github.com/paolomassa/STX_CFL_NN
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/autoregressive-omni-aware-outpainting-for
|
Autoregressive Omni-Aware Outpainting for Open-Vocabulary 360-Degree Image Generation
|
2309.03467
|
https://arxiv.org/abs/2309.03467v2
|
https://arxiv.org/pdf/2309.03467v2.pdf
|
https://github.com/zhuqiangLu/AOG-NET-360
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/riemannian-preconditioned-algorithms-for
|
Riemannian preconditioned algorithms for tensor completion via tensor ring decomposition
|
2302.14456
|
https://arxiv.org/abs/2302.14456v2
|
https://arxiv.org/pdf/2302.14456v2.pdf
|
https://github.com/jimmypeng1998/lrtctr
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/chatillusion-efficient-aligning-interleaved
|
M$^{2}$Chat: Empowering VLM for Multimodal LLM Interleaved Text-Image Generation
|
2311.17963
|
https://arxiv.org/abs/2311.17963v2
|
https://arxiv.org/pdf/2311.17963v2.pdf
|
https://github.com/litwellchi/chatillusion
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-graph-theoretic-framework-for-understanding-1
|
A Graph-Theoretic Framework for Understanding Open-World Semi-Supervised Learning
|
2311.03524
|
https://arxiv.org/abs/2311.03524v1
|
https://arxiv.org/pdf/2311.03524v1.pdf
|
https://github.com/deeplearning-wisc/sorl
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/learning-anatomically-consistent-embedding
|
Learning Anatomically Consistent Embedding for Chest Radiography
|
2312.00335
|
https://arxiv.org/abs/2312.00335v2
|
https://arxiv.org/pdf/2312.00335v2.pdf
|
https://github.com/jlianglab/peac
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/introducing-rhetorical-parallelism-detection
|
Introducing Rhetorical Parallelism Detection: A New Task with Datasets, Metrics, and Baselines
|
2312.00100
|
https://arxiv.org/abs/2312.00100v1
|
https://arxiv.org/pdf/2312.00100v1.pdf
|
https://github.com/mythologos/augustinian-sermon-parallelisms
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/introducing-rhetorical-parallelism-detection
|
Introducing Rhetorical Parallelism Detection: A New Task with Datasets, Metrics, and Baselines
|
2312.00100
|
https://arxiv.org/abs/2312.00100v1
|
https://arxiv.org/pdf/2312.00100v1.pdf
|
https://github.com/mythologos/paibi-student-essays
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/introducing-rhetorical-parallelism-detection
|
Introducing Rhetorical Parallelism Detection: A New Task with Datasets, Metrics, and Baselines
|
2312.00100
|
https://arxiv.org/abs/2312.00100v1
|
https://arxiv.org/pdf/2312.00100v1.pdf
|
https://github.com/mythologos/intro-rpd
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/on-filter-generalization-for-music-bandwidth
|
On Filter Generalization for Music Bandwidth Extension Using Deep Neural Networks
|
2011.07274
|
https://arxiv.org/abs/2011.07274v2
|
https://arxiv.org/pdf/2011.07274v2.pdf
|
https://github.com/serkansulun/deep-music-enhancer
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/logic-of-thought-empowering-large-language
|
Logic-of-Thought: Empowering Large Language Models with Logic Programs for Solving Puzzles in Natural Language
|
2505.16114
|
https://arxiv.org/abs/2505.16114v1
|
https://arxiv.org/pdf/2505.16114v1.pdf
|
https://github.com/naiqili/logic-of-thought
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/predict-the-next-word-humans-exhibit
|
Predict the Next Word: Humans exhibit uncertainty in this task and language models _____
|
2402.17527
|
https://arxiv.org/abs/2402.17527v2
|
https://arxiv.org/pdf/2402.17527v2.pdf
|
https://github.com/evgeniael/predict_next_word
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/constructive-proofs-of-existence-and
|
Constructive proofs of existence and stability of solitary waves in the Whitham and capillary-gravity Whitham equations
|
2403.18718
|
https://arxiv.org/abs/2403.18718v3
|
https://arxiv.org/pdf/2403.18718v3.pdf
|
https://github.com/matthieucadiot/whithamsoliton.jl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/c-nerf-representing-scene-changes-as
|
C-NERF: Representing Scene Changes as Directional Consistency Difference-based NeRF
|
2312.02751
|
https://arxiv.org/abs/2312.02751v2
|
https://arxiv.org/pdf/2312.02751v2.pdf
|
https://github.com/c-nerf/c-nerf
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/adnet-lane-shape-prediction-via-anchor
|
ADNet: Lane Shape Prediction via Anchor Decomposition
|
2308.10481
|
https://arxiv.org/abs/2308.10481v1
|
https://arxiv.org/pdf/2308.10481v1.pdf
|
https://github.com/code-implementation1/Code2/tree/main/ADNet
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/can-we-learn-communication-efficient
|
Can We Learn Communication-Efficient Optimizers?
|
2312.02204
|
https://arxiv.org/abs/2312.02204v1
|
https://arxiv.org/pdf/2312.02204v1.pdf
|
https://github.com/lefameuxbeding/learned_aggregation
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/seva-leveraging-sketches-to-evaluate-1
|
SEVA: Leveraging sketches to evaluate alignment between human and machine visual abstraction
|
2312.03035
|
https://arxiv.org/abs/2312.03035v1
|
https://arxiv.org/pdf/2312.03035v1.pdf
|
https://github.com/cogtoolslab/visual_abstractions_benchmarking_public2023
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/improving-bias-mitigation-through-bias
|
Improving Bias Mitigation through Bias Experts in Natural Language Understanding
|
2312.03577
|
https://arxiv.org/abs/2312.03577v1
|
https://arxiv.org/pdf/2312.03577v1.pdf
|
https://github.com/jej127/bias-experts
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/flashattention-fast-and-memory-efficient
|
FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness
|
2205.14135
|
https://arxiv.org/abs/2205.14135v2
|
https://arxiv.org/pdf/2205.14135v2.pdf
|
https://github.com/alibaba/megatron-llama
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/how-good-is-open-bicycle-infrastructure-data
|
How Good Is Open Bicycle Infrastructure Data? A Countrywide Case Study of Denmark
|
2312.02632
|
https://arxiv.org/abs/2312.02632v1
|
https://arxiv.org/pdf/2312.02632v1.pdf
|
https://github.com/anerv/bikedna_big
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/continual-driving-policy-optimization-with
|
Continual Driving Policy Optimization with Closed-Loop Individualized Curricula
|
2309.14209
|
https://arxiv.org/abs/2309.14209v4
|
https://arxiv.org/pdf/2309.14209v4.pdf
|
https://github.com/YizhouXu-THU/CLIC
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/combining-counting-processes-and
|
Combining Counting Processes and Classification Improves a Stopping Rule for Technology Assisted Review
|
2312.03171
|
https://arxiv.org/abs/2312.03171v1
|
https://arxiv.org/pdf/2312.03171v1.pdf
|
https://github.com/reembinhezam/tar_stopping_cp_clf
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/masked-autoencoders-are-scalable-vision
|
Masked Autoencoders Are Scalable Vision Learners
|
2111.06377
|
https://arxiv.org/abs/2111.06377v2
|
https://arxiv.org/pdf/2111.06377v2.pdf
|
https://github.com/facebookresearch/multimodal
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/flava-a-foundational-language-and-vision
|
FLAVA: A Foundational Language And Vision Alignment Model
|
2112.04482
|
https://arxiv.org/abs/2112.04482v3
|
https://arxiv.org/pdf/2112.04482v3.pdf
|
https://github.com/facebookresearch/multimodal
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/hierarchical-text-conditional-image
|
Hierarchical Text-Conditional Image Generation with CLIP Latents
|
2204.06125
|
https://arxiv.org/abs/2204.06125v1
|
https://arxiv.org/pdf/2204.06125v1.pdf
|
https://github.com/facebookresearch/multimodal
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/coca-contrastive-captioners-are-image-text
|
CoCa: Contrastive Captioners are Image-Text Foundation Models
|
2205.01917
|
https://arxiv.org/abs/2205.01917v2
|
https://arxiv.org/pdf/2205.01917v2.pdf
|
https://github.com/facebookresearch/multimodal
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/blip-2-bootstrapping-language-image-pre
|
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
|
2301.12597
|
https://arxiv.org/abs/2301.12597v3
|
https://arxiv.org/pdf/2301.12597v3.pdf
|
https://github.com/facebookresearch/multimodal
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/align-before-fuse-vision-and-language
|
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation
|
2107.07651
|
https://arxiv.org/abs/2107.07651v2
|
https://arxiv.org/pdf/2107.07651v2.pdf
|
https://github.com/facebookresearch/multimodal
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/diffusion-models-beat-gans-on-image
|
Diffusion Models Beat GANs on Image Classification
|
2307.08702
|
https://arxiv.org/abs/2307.08702v1
|
https://arxiv.org/pdf/2307.08702v1.pdf
|
https://github.com/soumik-kanad/diffssl
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/tracking-with-human-intent-reasoning
|
Tracking with Human-Intent Reasoning
|
2312.17448
|
https://arxiv.org/abs/2312.17448v1
|
https://arxiv.org/pdf/2312.17448v1.pdf
|
https://github.com/jiawen-zhu/trackgpt
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-transformer-based-neural-architecture
|
A Transformer-based Neural Architecture Search Method
|
2505.01314
|
https://arxiv.org/abs/2505.01314v1
|
https://arxiv.org/pdf/2505.01314v1.pdf
|
https://github.com/ra225/mo-trans
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/tissue-cross-section-and-pen-marking
|
Tissue Cross-Section and Pen Marking Segmentation in Whole Slide Images
|
2401.13511
|
https://arxiv.org/abs/2401.13511v1
|
https://arxiv.org/pdf/2401.13511v1.pdf
|
https://github.com/rtlucassen/slidesegmenter
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-to-detect-multi-class-anomalies-with
|
Learning to Detect Multi-class Anomalies with Just One Normal Image Prompt
|
2505.09264
|
https://arxiv.org/abs/2505.09264v1
|
https://arxiv.org/pdf/2505.09264v1.pdf
|
https://github.com/gaobb/onenip
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/modeling-sequential-sentence-relation-to
|
Modeling Sequential Sentence Relation to Improve Cross-lingual Dense Retrieval
|
2302.01626
|
https://arxiv.org/abs/2302.01626v1
|
https://arxiv.org/pdf/2302.01626v1.pdf
|
https://github.com/shunyuzh/MSM
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/understanding-the-effect-of-model-compression
|
Understanding the Effect of Model Compression on Social Bias in Large Language Models
|
2312.05662
|
https://arxiv.org/abs/2312.05662v2
|
https://arxiv.org/pdf/2312.05662v2.pdf
|
https://github.com/gsgoncalves/emnlp2023_llm_compression_and_social_bias
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/sharpness-aware-quantization-for-deep-neural
|
Sharpness-aware Quantization for Deep Neural Networks
|
2111.12273
|
https://arxiv.org/abs/2111.12273v5
|
https://arxiv.org/pdf/2111.12273v5.pdf
|
https://github.com/yangyucheng000/Paper-3/tree/main/SharpDRO-ms
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/udifftext-a-unified-framework-for-high
|
UDiffText: A Unified Framework for High-quality Text Synthesis in Arbitrary Images via Character-aware Diffusion Models
|
2312.04884
|
https://arxiv.org/abs/2312.04884v1
|
https://arxiv.org/pdf/2312.04884v1.pdf
|
https://github.com/zym-pku/udifftext
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/language-models-are-few-shot-learners
|
Language Models are Few-Shot Learners
|
2005.14165
|
https://arxiv.org/abs/2005.14165v4
|
https://arxiv.org/pdf/2005.14165v4.pdf
|
https://github.com/asahi417/lmppl
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/exploring-the-limits-of-transfer-learning
|
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
|
1910.10683
|
https://arxiv.org/abs/1910.10683v4
|
https://arxiv.org/pdf/1910.10683v4.pdf
|
https://github.com/asahi417/lmppl
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/the-merit-of-river-network-topology-for
|
The Merit of River Network Topology for Neural Flood Forecasting
|
2405.19836
|
https://arxiv.org/abs/2405.19836v1
|
https://arxiv.org/pdf/2405.19836v1.pdf
|
https://github.com/nkirschi/neural-flood-forecasting
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/solving-token-gradient-conflict-in-mixture-of
|
Solving Token Gradient Conflict in Mixture-of-Experts for Large Vision-Language Model
|
2406.19905
|
https://arxiv.org/abs/2406.19905v2
|
https://arxiv.org/pdf/2406.19905v2.pdf
|
https://github.com/longrongyang/stgc
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/radar-perception-in-autonomous-driving-1
|
Exploring Radar Data Representations in Autonomous Driving: A Comprehensive Review
|
2312.04861
|
https://arxiv.org/abs/2312.04861v3
|
https://arxiv.org/pdf/2312.04861v3.pdf
|
https://github.com/Radar-Camera-Fusion/Awesome-Radar-Perception
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/can-large-language-model-comprehend-ancient
|
Can Large Language Model Comprehend Ancient Chinese? A Preliminary Test on ACLUE
|
2310.09550
|
https://arxiv.org/abs/2310.09550v1
|
https://arxiv.org/pdf/2310.09550v1.pdf
|
https://github.com/isen-zhang/aclue
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/cross-domain-few-shot-learning-via-adaptive
|
Cross-Domain Few-Shot Learning via Adaptive Transformer Networks
|
2401.13987
|
https://arxiv.org/abs/2401.13987v1
|
https://arxiv.org/pdf/2401.13987v1.pdf
|
https://github.com/naeem-paeedeh/adapter
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/multi-view-neural-3d-reconstruction-of-micro
|
Multi-View Neural 3D Reconstruction of Micro-/Nanostructures with Atomic Force Microscopy
|
2401.11541
|
https://arxiv.org/abs/2401.11541v1
|
https://arxiv.org/pdf/2401.11541v1.pdf
|
https://github.com/zju3dv/mvn-afm
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/rlcoder-reinforcement-learning-for-repository
|
RLCoder: Reinforcement Learning for Repository-Level Code Completion
|
2407.19487
|
https://arxiv.org/abs/2407.19487v1
|
https://arxiv.org/pdf/2407.19487v1.pdf
|
https://github.com/DeepSoftwareAnalytics/RLCoder
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/morphable-diffusion-3d-consistent-diffusion
|
Morphable Diffusion: 3D-Consistent Diffusion for Single-image Avatar Creation
|
2401.04728
|
https://arxiv.org/abs/2401.04728v2
|
https://arxiv.org/pdf/2401.04728v2.pdf
|
https://github.com/xiyichen/morphablediffusion
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/eagles-efficient-accelerated-3d-gaussians
|
EAGLES: Efficient Accelerated 3D Gaussians with Lightweight EncodingS
|
2312.04564
|
https://arxiv.org/abs/2312.04564v3
|
https://arxiv.org/pdf/2312.04564v3.pdf
|
https://github.com/sharath-girish/efficientgaussian
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/deblurgan-blind-motion-deblurring-using
|
DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks
|
1711.07064
|
http://arxiv.org/abs/1711.07064v4
|
http://arxiv.org/pdf/1711.07064v4.pdf
|
https://github.com/pablodz/deblurgan
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/alpacare-instruction-tuned-large-language
|
AlpaCare:Instruction-tuned Large Language Models for Medical Application
|
2310.14558
|
https://arxiv.org/abs/2310.14558v6
|
https://arxiv.org/pdf/2310.14558v6.pdf
|
https://github.com/xzhang97666/alpacare
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/eyetrans-merging-human-and-machine-attention
|
EyeTrans: Merging Human and Machine Attention for Neural Code Summarization
|
2402.14096
|
https://arxiv.org/abs/2402.14096v3
|
https://arxiv.org/pdf/2402.14096v3.pdf
|
https://zenodo.org/record/10684985
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/cross-domain-random-pre-training-with
|
Cross-domain Random Pre-training with Prototypes for Reinforcement Learning
|
2302.05614
|
https://arxiv.org/abs/2302.05614v3
|
https://arxiv.org/pdf/2302.05614v3.pdf
|
https://github.com/liuxin0824/crptpro
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/towards-a-sat-encoding-for-quantum-circuits-a
|
Towards a SAT Encoding for Quantum Circuits: A Journey From Classical Circuits to Clifford Circuits and Beyond
|
2203.00698
|
https://arxiv.org/abs/2203.00698v1
|
https://arxiv.org/pdf/2203.00698v1.pdf
|
https://github.com/lucasberent/qsatencoder
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/quokka-an-open-source-large-language-model
|
Quokka: An Open-source Large Language Model ChatBot for Material Science
|
2401.01089
|
https://arxiv.org/abs/2401.01089v1
|
https://arxiv.org/pdf/2401.01089v1.pdf
|
https://github.com/xianjun-yang/quokka
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/more-is-more-addition-bias-in-large-language
|
More is More: Addition Bias in Large Language Models
|
2409.02569
|
https://arxiv.org/abs/2409.02569v1
|
https://arxiv.org/pdf/2409.02569v1.pdf
|
https://github.com/LucaSantagata/More-is-More-Addition-Bias-in-Large-Language-Models
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/ecc-polypdet-enhanced-centernet-with
|
ECC-PolypDet: Enhanced CenterNet with Contrastive Learning for Automatic Polyp Detection
|
2401.04961
|
https://arxiv.org/abs/2401.04961v1
|
https://arxiv.org/pdf/2401.04961v1.pdf
|
https://github.com/yuncheng97/ecc-polypdet
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/haltingvt-adaptive-token-halting-transformer
|
HaltingVT: Adaptive Token Halting Transformer for Efficient Video Recognition
|
2401.04975
|
https://arxiv.org/abs/2401.04975v1
|
https://arxiv.org/pdf/2401.04975v1.pdf
|
https://github.com/dun-research/haltingvt
| true
| true
| false
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.