paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/towards-high-performance-video-object
|
Towards High Performance Video Object Detection for Mobiles
|
1804.05830
|
http://arxiv.org/abs/1804.05830v1
|
http://arxiv.org/pdf/1804.05830v1.pdf
|
https://github.com/stanlee321/LightFlow-Keras
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/accurate-3d-localization-for-mav-swarms-by
|
Accurate 3D Localization for MAV Swarms by UWB and IMU Fusion
|
1807.10913
|
http://arxiv.org/abs/1807.10913v1
|
http://arxiv.org/pdf/1807.10913v1.pdf
|
https://github.com/lijx10/uwb-localization
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/photo-realistic-single-image-super-resolution
|
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
|
1609.04802
|
http://arxiv.org/abs/1609.04802v5
|
http://arxiv.org/pdf/1609.04802v5.pdf
|
https://github.com/titu1994/Super-Resolution-using-Generative-Adversarial-Networks
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/structural-learning-of-probabilistic
|
Structural Learning of Probabilistic Sentential Decision Diagrams under Partial Closed-World Assumption
|
2107.12130
|
https://arxiv.org/abs/2107.12130v1
|
https://arxiv.org/pdf/2107.12130v1.pdf
|
https://github.com/IDSIA-papers/2021-TPM
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/classifying-conversation-in-digital
|
Classifying Conversation in Digital Communication
|
1801.10527
|
http://arxiv.org/abs/1801.10527v1
|
http://arxiv.org/pdf/1801.10527v1.pdf
|
https://github.com/empiricalstateofmind/eventgraphs
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/real-time-2d-multi-person-pose-estimation-on
|
Real-time 2D Multi-Person Pose Estimation on CPU: Lightweight OpenPose
|
1811.12004
|
http://arxiv.org/abs/1811.12004v1
|
http://arxiv.org/pdf/1811.12004v1.pdf
|
https://github.com/murdockhou/lightweight_openpose
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/virtual-cnn-branching-efficient-feature
|
Virtual CNN Branching: Efficient Feature Ensemble for Person Re-Identification
|
1803.05872
|
http://arxiv.org/abs/1803.05872v1
|
http://arxiv.org/pdf/1803.05872v1.pdf
|
https://github.com/agongt408/vbranch
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/in-defense-of-the-triplet-loss-for-person-re
|
In Defense of the Triplet Loss for Person Re-Identification
|
1703.07737
|
http://arxiv.org/abs/1703.07737v4
|
http://arxiv.org/pdf/1703.07737v4.pdf
|
https://github.com/agongt408/vbranch
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/pristi-a-conditional-diffusion-framework-for
|
PriSTI: A Conditional Diffusion Framework for Spatiotemporal Imputation
|
2302.09746
|
https://arxiv.org/abs/2302.09746v1
|
https://arxiv.org/pdf/2302.09746v1.pdf
|
https://github.com/lmzzml/pristi
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/mixed-effect-composite-rnn-gp-a-personalized
|
Deep Mixed Effect Model using Gaussian Processes: A Personalized and Reliable Prediction for Healthcare
|
1806.01551
|
https://arxiv.org/abs/1806.01551v3
|
https://arxiv.org/pdf/1806.01551v3.pdf
|
https://github.com/OpenXAIProject/Mixed-Effect-Composite-RNN-Gaussian-Process
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/adversarial-attacks-on-time-series
|
Adversarial Attacks on Time Series
|
1902.10755
|
http://arxiv.org/abs/1902.10755v2
|
http://arxiv.org/pdf/1902.10755v2.pdf
|
https://github.com/titu1994/Adversarial-Attacks-Time-Series
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/prototypical-representation-learning-for-1
|
Prototypical Representation Learning for Relation Extraction
|
2103.11647
|
https://arxiv.org/abs/2103.11647v1
|
https://arxiv.org/pdf/2103.11647v1.pdf
|
https://github.com/Alibaba-NLP/ProtoRE
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/sparse-multiway-decomposition-for-analysis
|
Sparse multiway decomposition for analysis and modeling of diffusion imaging and tractography
|
1505.07170
|
http://arxiv.org/abs/1505.07170v1
|
http://arxiv.org/pdf/1505.07170v1.pdf
|
https://github.com/brainlife/app-life
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/attanet-attention-augmented-network-for-fast
|
AttaNet: Attention-Augmented Network for Fast and Accurate Scene Parsing
|
2103.05930
|
https://arxiv.org/abs/2103.05930v1
|
https://arxiv.org/pdf/2103.05930v1.pdf
|
https://github.com/songqi-github/AttaNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/ssd-single-shot-multibox-detector
|
SSD: Single Shot MultiBox Detector
|
1512.02325
|
http://arxiv.org/abs/1512.02325v5
|
http://arxiv.org/pdf/1512.02325v5.pdf
|
https://github.com/nsom/ssd
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/dissent-sentence-representation-learning-from
|
DisSent: Sentence Representation Learning from Explicit Discourse Relations
|
1710.04334
|
https://arxiv.org/abs/1710.04334v4
|
https://arxiv.org/pdf/1710.04334v4.pdf
|
https://github.com/facebookresearch/InferSent
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/pixel-wise-attentional-gating-for
|
Pixel-wise Attentional Gating for Parsimonious Pixel Labeling
|
1805.01556
|
http://arxiv.org/abs/1805.01556v2
|
http://arxiv.org/pdf/1805.01556v2.pdf
|
https://github.com/aimerykong/Pixel-Attentional-Gating
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/chexnet-radiologist-level-pneumonia-detection
|
CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning
|
1711.05225
|
http://arxiv.org/abs/1711.05225v3
|
http://arxiv.org/pdf/1711.05225v3.pdf
|
https://github.com/Azure/AzureChestXRay
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/random-erasing-data-augmentation
|
Random Erasing Data Augmentation
|
1708.04896
|
http://arxiv.org/abs/1708.04896v2
|
http://arxiv.org/pdf/1708.04896v2.pdf
|
https://github.com/NVlabs/DG-Net
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/mnemonic-descent-method-a-recurrent-process-1
|
Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment
| null |
https://www.ibug.doc.ic.ac.uk/media/uploads/documents/trigeorgis2016mnemonic.pdf
|
https://www.ibug.doc.ic.ac.uk/media/uploads/documents/trigeorgis2016mnemonic.pdf
|
https://github.com/trigeorgis/mdm
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/catboost-unbiased-boosting-with-categorical
|
CatBoost: unbiased boosting with categorical features
|
1706.09516
|
http://arxiv.org/abs/1706.09516v5
|
http://arxiv.org/pdf/1706.09516v5.pdf
|
https://github.com/yumoh/catboost_iter
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/unity-a-general-platform-for-intelligent
|
Unity: A General Platform for Intelligent Agents
|
1809.02627
|
https://arxiv.org/abs/1809.02627v2
|
https://arxiv.org/pdf/1809.02627v2.pdf
|
https://github.com/Henreich/ML-Pong
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/if-you-like-it-gan-it-probabilistic
|
If You Like It, GAN It. Probabilistic Multivariate Times Series Forecast With GAN
|
2005.01181
|
https://arxiv.org/abs/2005.01181v1
|
https://arxiv.org/pdf/2005.01181v1.pdf
|
https://github.com/flaviagiammarino/probcast-tensorflow
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/reading-between-the-lines-can-llms-identify
|
Reading between the Lines: Can LLMs Identify Cross-Cultural Communication Gaps?
|
2502.09636
|
https://arxiv.org/abs/2502.09636v2
|
https://arxiv.org/pdf/2502.09636v2.pdf
|
https://github.com/sougata-ub/reading_between_lines
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/semi-supervised-learning-with-deep-generative-1
|
Semi-Supervised Learning with Deep Generative Models
|
1406.5298
|
http://arxiv.org/abs/1406.5298v2
|
http://arxiv.org/pdf/1406.5298v2.pdf
|
https://github.com/enalisnick/stick-breaking_dgms
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/generalised-dice-overlap-as-a-deep-learning
|
Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations
|
1707.03237
|
http://arxiv.org/abs/1707.03237v3
|
http://arxiv.org/pdf/1707.03237v3.pdf
|
https://github.com/neshitov/UNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/crowdsourcing-gaze-data-collection
|
Crowdsourcing Gaze Data Collection
|
1204.3367
|
https://arxiv.org/abs/1204.3367v1
|
https://arxiv.org/pdf/1204.3367v1.pdf
|
https://github.com/turkeyes/codecharts
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/yolo9000-better-faster-stronger
|
YOLO9000: Better, Faster, Stronger
|
1612.08242
|
http://arxiv.org/abs/1612.08242v1
|
http://arxiv.org/pdf/1612.08242v1.pdf
|
https://github.com/trongnghia00/darknet
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/single-shot-refinement-neural-network-for
|
Single-Shot Refinement Neural Network for Object Detection
|
1711.06897
|
http://arxiv.org/abs/1711.06897v3
|
http://arxiv.org/pdf/1711.06897v3.pdf
|
https://github.com/laycoding/FaceDetection
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/pylearn2-a-machine-learning-research-library
|
Pylearn2: a machine learning research library
|
1308.4214
|
http://arxiv.org/abs/1308.4214v1
|
http://arxiv.org/pdf/1308.4214v1.pdf
|
https://github.com/jacobpeplinskiV2/pylearn2
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/which-encoding-is-the-best-for-text
|
Which Encoding is the Best for Text Classification in Chinese, English, Japanese and Korean?
|
1708.02657
|
http://arxiv.org/abs/1708.02657v2
|
http://arxiv.org/pdf/1708.02657v2.pdf
|
https://github.com/zhangxiangxiao/glyph
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/fooling-lidar-perception-via-adversarial
|
Fooling LiDAR Perception via Adversarial Trajectory Perturbation
|
2103.15326
|
https://arxiv.org/abs/2103.15326v2
|
https://arxiv.org/pdf/2103.15326v2.pdf
|
https://github.com/ai4ce/FLAT
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/density-estimation-using-real-nvp
|
Density estimation using Real NVP
|
1605.08803
|
http://arxiv.org/abs/1605.08803v3
|
http://arxiv.org/pdf/1605.08803v3.pdf
|
https://github.com/ANLGBOY/RealNVP-with-PyTorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/graph-to-sequence-learning-using-gated-graph
|
Graph-to-Sequence Learning using Gated Graph Neural Networks
|
1806.09835
|
http://arxiv.org/abs/1806.09835v1
|
http://arxiv.org/pdf/1806.09835v1.pdf
|
https://github.com/beckdaniel/acl2018_graph2seq
| true
| true
| false
|
mxnet
|
https://paperswithcode.com/paper/robust-probabilistic-modeling-with-bayesian
|
Robust Probabilistic Modeling with Bayesian Data Reweighting
|
1606.03860
|
http://arxiv.org/abs/1606.03860v3
|
http://arxiv.org/pdf/1606.03860v3.pdf
|
https://github.com/yixinwang/robust-rpm-public
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/fine-grained-analysis-of-sentence-embeddings
|
Fine-grained Analysis of Sentence Embeddings Using Auxiliary Prediction Tasks
|
1608.04207
|
http://arxiv.org/abs/1608.04207v3
|
http://arxiv.org/pdf/1608.04207v3.pdf
|
https://github.com/facebookresearch/InferSent
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-human-computer-interface-design-for
|
A Human-Computer Interface Design for Quantitative Measure of Regret Theory
|
1810.00462
|
http://arxiv.org/abs/1810.00462v1
|
http://arxiv.org/pdf/1810.00462v1.pdf
|
https://github.com/I2RLab/RegretMeasurement-GUI
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/asynchronous-methods-for-deep-reinforcement
|
Asynchronous Methods for Deep Reinforcement Learning
|
1602.01783
|
http://arxiv.org/abs/1602.01783v2
|
http://arxiv.org/pdf/1602.01783v2.pdf
|
https://github.com/ShibiHe/Q-Optimality-Tightening
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/facenet-a-unified-embedding-for-face
|
FaceNet: A Unified Embedding for Face Recognition and Clustering
|
1503.03832
|
http://arxiv.org/abs/1503.03832v3
|
http://arxiv.org/pdf/1503.03832v3.pdf
|
https://github.com/CharlesPikachu/CharlesFace
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/playgol-learning-programs-through-play
|
Playgol: learning programs through play
|
1904.08993
|
https://arxiv.org/abs/1904.08993v2
|
https://arxiv.org/pdf/1904.08993v2.pdf
|
https://github.com/metagol/metagol
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/richer-convolutional-features-for-edge
|
Richer Convolutional Features for Edge Detection
|
1612.02103
|
https://arxiv.org/abs/1612.02103v3
|
https://arxiv.org/pdf/1612.02103v3.pdf
|
https://github.com/meteorshowers/RCF-pytorch
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/first-steps-toward-camera-model
|
First Steps Toward Camera Model Identification with Convolutional Neural Networks
|
1603.01068
|
http://arxiv.org/abs/1603.01068v2
|
http://arxiv.org/pdf/1603.01068v2.pdf
|
https://github.com/polimi-ispl/camera-model-identification-with-cnn
| false
| false
| false
|
caffe2
|
https://paperswithcode.com/paper/deriving-machine-attention-from-human
|
Deriving Machine Attention from Human Rationales
|
1808.09367
|
http://arxiv.org/abs/1808.09367v1
|
http://arxiv.org/pdf/1808.09367v1.pdf
|
https://github.com/Sein-Jang/Deriving-Machine-Attention-from-Human-Rationales
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/convex-pentagons-that-admit-i-block
|
Convex pentagons that admit $i$-block transitive tilings
|
1510.01186
|
http://arxiv.org/abs/1510.01186v1
|
http://arxiv.org/pdf/1510.01186v1.pdf
|
https://github.com/justinjk007/Pentagonal-tiling
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/learning-to-see-in-the-dark
|
Learning to See in the Dark
|
1805.01934
|
http://arxiv.org/abs/1805.01934v1
|
http://arxiv.org/pdf/1805.01934v1.pdf
|
https://github.com/cydonia999/Learning_to_See_in_the_Dark_PyTorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/improved-adversarial-systems-for-3d-object
|
Improved Adversarial Systems for 3D Object Generation and Reconstruction
|
1707.09557
|
http://arxiv.org/abs/1707.09557v3
|
http://arxiv.org/pdf/1707.09557v3.pdf
|
https://github.com/kingcheng2000/3D-IWGAN
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/uncertainty-aware-joint-salient-object-and
|
Uncertainty-aware Joint Salient Object and Camouflaged Object Detection
|
2104.02628
|
https://arxiv.org/abs/2104.02628v1
|
https://arxiv.org/pdf/2104.02628v1.pdf
|
https://github.com/JingZhang617/Joint_COD_SOD
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/brain-tumor-segmentation-with-deep-neural
|
Brain Tumor Segmentation with Deep Neural Networks
|
1505.03540
|
http://arxiv.org/abs/1505.03540v3
|
http://arxiv.org/pdf/1505.03540v3.pdf
|
https://github.com/IAmSuyogJadhav/Brainy
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/texygen-a-benchmarking-platform-for-text
|
Texygen: A Benchmarking Platform for Text Generation Models
|
1802.01886
|
http://arxiv.org/abs/1802.01886v1
|
http://arxiv.org/pdf/1802.01886v1.pdf
|
https://github.com/geek-ai/Texygen
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/compar-optimized-multi-compiler-for-automatic
|
ComPar: Optimized Multi-Compiler for Automatic OpenMP S2S Parallelization
|
2005.13304
|
http://arxiv.org/abs/2005.13304v1
|
http://arxiv.org/pdf/2005.13304v1.pdf
|
https://github.com/Scientific-Computing-Lab-NRCN/compar
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/asynchronous-bidirectional-decoding-for
|
Asynchronous Bidirectional Decoding for Neural Machine Translation
|
1801.05122
|
http://arxiv.org/abs/1801.05122v2
|
http://arxiv.org/pdf/1801.05122v2.pdf
|
https://github.com/DeepLearnXMU/ABD-NMT
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/vr-sgd-a-simple-stochastic-variance-reduction
|
VR-SGD: A Simple Stochastic Variance Reduction Method for Machine Learning
|
1802.09932
|
http://arxiv.org/abs/1802.09932v2
|
http://arxiv.org/pdf/1802.09932v2.pdf
|
https://github.com/jnhujnhu/VR-SGD
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/neural-machine-translation
|
Neural Machine Translation
|
1709.07809
|
http://arxiv.org/abs/1709.07809v1
|
http://arxiv.org/pdf/1709.07809v1.pdf
|
https://github.com/neulab/xnmt
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/stacked-attention-networks-for-image-question
|
Stacked Attention Networks for Image Question Answering
|
1511.02274
|
http://arxiv.org/abs/1511.02274v2
|
http://arxiv.org/pdf/1511.02274v2.pdf
|
https://github.com/zcyang/imageqa-san
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/playing-hard-exploration-games-by-watching
|
Playing hard exploration games by watching YouTube
|
1805.11592
|
http://arxiv.org/abs/1805.11592v2
|
http://arxiv.org/pdf/1805.11592v2.pdf
|
https://github.com/MaxSobolMark/HardRLWithYoutube
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/task-agnostic-continual-learning-using-online
|
Task Agnostic Continual Learning Using Online Variational Bayes
|
1803.10123
|
http://arxiv.org/abs/1803.10123v3
|
http://arxiv.org/pdf/1803.10123v3.pdf
|
https://github.com/taldatech/tf-bgd
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/on-the-design-of-deep-priors-for-unsupervised
|
On the Design of Deep Priors for Unsupervised Audio Restoration
|
2104.07161
|
https://arxiv.org/abs/2104.07161v1
|
https://arxiv.org/pdf/2104.07161v1.pdf
|
https://github.com/vivsivaraman/designaudiopriors
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/decoding-the-style-and-bias-of-song-lyrics
|
Decoding the Style and Bias of Song Lyrics
|
1907.07818
|
https://arxiv.org/abs/1907.07818v1
|
https://arxiv.org/pdf/1907.07818v1.pdf
|
https://github.com/manashpratim/Decoding-the-Style-and-Bias-of-Song-Lyrics
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/improving-the-resolution-of-cnn-feature-maps
|
Improving the Resolution of CNN Feature Maps Efficiently with Multisampling
|
1805.10766
|
https://arxiv.org/abs/1805.10766v2
|
https://arxiv.org/pdf/1805.10766v2.pdf
|
https://github.com/ShayanPersonal/checkered-cnn
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/dual-gaussian-based-variational-subspace
|
Dual Gaussian-based Variational Subspace Disentanglement for Visible-Infrared Person Re-Identification
|
2008.02520
|
https://arxiv.org/abs/2008.02520v1
|
https://arxiv.org/pdf/2008.02520v1.pdf
|
https://github.com/TPCD/DG-VAE
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/multi-level-visual-similarity-based
|
Multi-Level Visual Similarity Based Personalized Tourist Attraction Recommendation Using Geo-Tagged Photos
|
2109.08275
|
https://arxiv.org/abs/2109.08275v2
|
https://arxiv.org/pdf/2109.08275v2.pdf
|
https://github.com/revaludo/MEAL
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/efficient-learning-for-deep-quantum-neural
|
Efficient Learning for Deep Quantum Neural Networks
|
1902.10445
|
http://arxiv.org/abs/1902.10445v1
|
http://arxiv.org/pdf/1902.10445v1.pdf
|
https://github.com/R8monaW/DeepQNN
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/point-classification-with-runge-kutta
|
Classification with Runge-Kutta networks and feature space augmentation
|
2104.02369
|
https://arxiv.org/abs/2104.02369v2
|
https://arxiv.org/pdf/2104.02369v2.pdf
|
https://github.com/ElisaGiesecke/augmented-RK-Nets
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/coreference-resolution-with-entity
|
Coreference Resolution with Entity Equalization
| null |
https://aclanthology.org/P19-1066
|
https://aclanthology.org/P19-1066.pdf
|
https://github.com/kkjawz/coref-ee
| false
| true
| false
|
tf
|
https://paperswithcode.com/paper/necola-towards-a-universal-field-level
|
NECOLA: Towards a Universal Field-level Cosmological Emulator
|
2111.02441
|
https://arxiv.org/abs/2111.02441v1
|
https://arxiv.org/pdf/2111.02441v1.pdf
|
https://github.com/HAWinther/MG-PICOLA-PUBLIC
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/perceptual-quality-assessment-of-smartphone
|
Perceptual Quality Assessment of Smartphone Photography
| null |
http://openaccess.thecvf.com/content_CVPR_2020/html/Fang_Perceptual_Quality_Assessment_of_Smartphone_Photography_CVPR_2020_paper.html
|
http://openaccess.thecvf.com/content_CVPR_2020/papers/Fang_Perceptual_Quality_Assessment_of_Smartphone_Photography_CVPR_2020_paper.pdf
|
https://github.com/h4nwei/SPAQ
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/llmjudge-llms-for-relevance-judgments
|
LLMJudge: LLMs for Relevance Judgments
|
2408.08896
|
https://arxiv.org/abs/2408.08896v1
|
https://arxiv.org/pdf/2408.08896v1.pdf
|
https://github.com/llm4eval/LLMJudge
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/mebow-monocular-estimation-of-body-1
|
MEBOW: Monocular Estimation of Body Orientation In the Wild
|
2011.13688
|
https://arxiv.org/abs/2011.13688v1
|
https://arxiv.org/pdf/2011.13688v1.pdf
|
https://github.com/ChenyanWu/MEBOW
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/cr-gan-learning-complete-representations-for
|
CR-GAN: Learning Complete Representations for Multi-view Generation
|
1806.11191
|
http://arxiv.org/abs/1806.11191v1
|
http://arxiv.org/pdf/1806.11191v1.pdf
|
https://github.com/bluer555/CR-GAN
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/sparse-classification-and-phase-transitions-a
|
Sparse Classification and Phase Transitions: A Discrete Optimization Perspective
|
1710.01352
|
http://arxiv.org/abs/1710.01352v1
|
http://arxiv.org/pdf/1710.01352v1.pdf
|
https://github.com/jeanpauphilet/SubsetSelectionCIO.jl
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/variational-dropout-sparsifies-deep-neural
|
Variational Dropout Sparsifies Deep Neural Networks
|
1701.05369
|
http://arxiv.org/abs/1701.05369v3
|
http://arxiv.org/pdf/1701.05369v3.pdf
|
https://github.com/ars-ashuha/variational-dropout-sparsifies-dnn
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/a-neural-algorithm-of-artistic-style
|
A Neural Algorithm of Artistic Style
|
1508.06576
|
http://arxiv.org/abs/1508.06576v2
|
http://arxiv.org/pdf/1508.06576v2.pdf
|
https://github.com/ChetanTayal138/NeuralStyleTransfer
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/deep-image-homography-estimation
|
Deep Image Homography Estimation
|
1606.03798
|
http://arxiv.org/abs/1606.03798v1
|
http://arxiv.org/pdf/1606.03798v1.pdf
|
https://github.com/mazenmel/Deep-homography-estimation-Pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/generative-adversarial-networks
|
Generative Adversarial Networks
|
1406.2661
|
https://arxiv.org/abs/1406.2661v1
|
https://arxiv.org/pdf/1406.2661v1.pdf
|
https://github.com/vaisakh-shaj/DeepLearning
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/keyframe-based-monocular-slam-design-survey
|
Keyframe-based monocular SLAM: design, survey, and future directions
|
1607.00470
|
http://arxiv.org/abs/1607.00470v2
|
http://arxiv.org/pdf/1607.00470v2.pdf
|
https://github.com/adioshun/gitBook_DeepSlam
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/fiesta-fast-incremental-euclidean-distance
|
FIESTA: Fast Incremental Euclidean Distance Fields for Online Motion Planning of Aerial Robots
|
1903.02144
|
http://arxiv.org/abs/1903.02144v1
|
http://arxiv.org/pdf/1903.02144v1.pdf
|
https://github.com/HKUST-Aerial-Robotics/FIESTA
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/variational-disentanglement-for-rare-event
|
Variational Disentanglement for Rare Event Modeling
|
2009.08541
|
https://arxiv.org/abs/2009.08541v5
|
https://arxiv.org/pdf/2009.08541v5.pdf
|
https://github.com/zidixiu/VIE
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/lookahead-optimizer-k-steps-forward-1-step
|
Lookahead Optimizer: k steps forward, 1 step back
|
1907.08610
|
https://arxiv.org/abs/1907.08610v2
|
https://arxiv.org/pdf/1907.08610v2.pdf
|
https://github.com/alphadl/lookahead.pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/new-insights-into-black-bodies
|
New insights into black bodies
|
1201.1809
|
https://arxiv.org/abs/1201.1809v2
|
https://arxiv.org/pdf/1201.1809v2.pdf
|
https://github.com/mikecokina/elisa
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/geometry-based-data-generation
|
Geometry-Based Data Generation
|
1802.04927
|
http://arxiv.org/abs/1802.04927v4
|
http://arxiv.org/pdf/1802.04927v4.pdf
|
https://github.com/KrishnaswamyLab/SUGAR
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/reconstructing-functions-and-estimating
|
Reconstructing Functions and Estimating Parameters with Artificial Neural Networks: A Test with the Hubble Parameter and SNe Ia
|
1910.03636
|
https://arxiv.org/abs/1910.03636v5
|
https://arxiv.org/pdf/1910.03636v5.pdf
|
https://github.com/Guo-Jian-Wang/refann
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/object-detectors-emerge-in-deep-scene-cnns
|
Object Detectors Emerge in Deep Scene CNNs
|
1412.6856
|
http://arxiv.org/abs/1412.6856v2
|
http://arxiv.org/pdf/1412.6856v2.pdf
|
https://github.com/JepsonWong/CNN_Visualization
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/deep-reinforcement-learning-with-double-q
|
Deep Reinforcement Learning with Double Q-learning
|
1509.06461
|
http://arxiv.org/abs/1509.06461v3
|
http://arxiv.org/pdf/1509.06461v3.pdf
|
https://github.com/wtingda/DeepRLBreakout
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/prediction-intervals-split-normal-mixture
|
Prediction Intervals: Split Normal Mixture from Quality-Driven Deep Ensembles
|
2007.09670
|
https://arxiv.org/abs/2007.09670v1
|
https://arxiv.org/pdf/2007.09670v1.pdf
|
https://github.com/tarik/pi-snm-qde
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/sequential-stratified-regeneration-mcmc-for
|
Sequential Stratified Regeneration: MCMC for Large State Spaces with an Application to Subgraph Count Estimation
|
2012.03879
|
https://arxiv.org/abs/2012.03879v3
|
https://arxiv.org/pdf/2012.03879v3.pdf
|
https://github.com/dccspeed/ripple
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/yolov4-optimal-speed-and-accuracy-of-object
|
YOLOv4: Optimal Speed and Accuracy of Object Detection
|
2004.10934
|
https://arxiv.org/abs/2004.10934v1
|
https://arxiv.org/pdf/2004.10934v1.pdf
|
https://github.com/hhk7734/tensorflow-yolov4
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/from-monte-carlo-to-las-vegas-improving
|
From Monte Carlo to Las Vegas: Improving Restricted Boltzmann Machine Training Through Stopping Sets
|
1711.08442
|
http://arxiv.org/abs/1711.08442v1
|
http://arxiv.org/pdf/1711.08442v1.pdf
|
https://github.com/PurdueMINDS/MCLV-RBM
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-neural-conversational-model
|
A Neural Conversational Model
|
1506.05869
|
http://arxiv.org/abs/1506.05869v3
|
http://arxiv.org/pdf/1506.05869v3.pdf
|
https://github.com/hamil168/Chatbots
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/quantile-propagation-for-wasserstein
|
Quantile Propagation for Wasserstein-Approximate Gaussian Processes
|
1912.10200
|
https://arxiv.org/abs/1912.10200v3
|
https://arxiv.org/pdf/1912.10200v3.pdf
|
https://github.com/RuiZhang2016/Quantile-Propagation-for-Wasserstein-Approximate-Gaussian-Processes
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/linguistic-features-for-readability
|
Linguistic Features for Readability Assessment
|
2006.00377
|
https://arxiv.org/abs/2006.00377v1
|
https://arxiv.org/pdf/2006.00377v1.pdf
|
https://github.com/TovlyDeutsch/Linguistic-Features-for-Readability
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/gain-missing-data-imputation-using-generative
|
GAIN: Missing Data Imputation using Generative Adversarial Nets
|
1806.02920
|
http://arxiv.org/abs/1806.02920v1
|
http://arxiv.org/pdf/1806.02920v1.pdf
|
https://github.com/dhanajitb/GAIN-Pytorch
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/generative-adversarial-networks
|
Generative Adversarial Networks
|
1406.2661
|
https://arxiv.org/abs/1406.2661v1
|
https://arxiv.org/pdf/1406.2661v1.pdf
|
https://github.com/pskrunner14/face-DCGAN
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/seboost-boosting-stochastic-learning-using
|
SEBOOST - Boosting Stochastic Learning Using Subspace Optimization Techniques
|
1609.00629
|
http://arxiv.org/abs/1609.00629v1
|
http://arxiv.org/pdf/1609.00629v1.pdf
|
https://github.com/eladrich/seboost
| true
| true
| false
|
torch
|
https://paperswithcode.com/paper/binarized-neural-networks-training-deep
|
Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1
|
1602.02830
|
http://arxiv.org/abs/1602.02830v3
|
http://arxiv.org/pdf/1602.02830v3.pdf
|
https://github.com/csyhhu/MetaQuant
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/refer360-circ-a-referring-expression
|
Refer360$^\circ$: A Referring Expression Recognition Dataset in 360$^\circ$ Images
| null |
https://aclanthology.org/2020.acl-main.644
|
https://aclanthology.org/2020.acl-main.644.pdf
|
https://github.com/volkancirik/refer360
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/improving-patch-based-scene-text-script
|
Improving patch-based scene text script identification with ensembles of conjoined networks
|
1602.07480
|
http://arxiv.org/abs/1602.07480v2
|
http://arxiv.org/pdf/1602.07480v2.pdf
|
https://github.com/lluisgomez/script_identification
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/ladn-local-adversarial-disentangling-network
|
LADN: Local Adversarial Disentangling Network for Facial Makeup and De-Makeup
|
1904.11272
|
https://arxiv.org/abs/1904.11272v2
|
https://arxiv.org/pdf/1904.11272v2.pdf
|
https://github.com/wangguanzhi/LADN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/stackgan-text-to-photo-realistic-image
|
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks
|
1612.03242
|
http://arxiv.org/abs/1612.03242v2
|
http://arxiv.org/pdf/1612.03242v2.pdf
|
https://github.com/dhirajpatnaik16297/IMG-TXT-Generative-Adversarial-Network
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/atomnas-fine-grained-end-to-end-neural-1
|
AtomNAS: Fine-Grained End-to-End Neural Architecture Search
|
1912.09640
|
https://arxiv.org/abs/1912.09640v2
|
https://arxiv.org/pdf/1912.09640v2.pdf
|
https://github.com/meijieru/AtomNAS
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/deepercut-a-deeper-stronger-and-faster-multi
|
DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model
|
1605.03170
|
http://arxiv.org/abs/1605.03170v3
|
http://arxiv.org/pdf/1605.03170v3.pdf
|
https://github.com/orkqueen/depplabseongil
| false
| false
| true
|
tf
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.