paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/double-path-networks-for-sequence-to-sequence
|
Double Path Networks for Sequence to Sequence Learning
|
1806.04856
|
http://arxiv.org/abs/1806.04856v2
|
http://arxiv.org/pdf/1806.04856v2.pdf
|
https://github.com/StillKeepTry/Transformer-PyTorch
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/it-takes-four-to-tango-multiagent-self-play
|
It Takes Four to Tango: Multiagent Self Play for Automatic Curriculum Generation
| null |
https://openreview.net/forum?id=q4tZR1Y-UIs
|
https://openreview.net/pdf?id=q4tZR1Y-UIs
|
https://github.com/yuqingd/cusp
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/on-the-effectiveness-of-discretizing
|
On the Effectiveness of Discretizing Quantitative Attributes in Linear Classifiers
|
1701.07114
|
http://arxiv.org/abs/1701.07114v1
|
http://arxiv.org/pdf/1701.07114v1.pdf
|
https://github.com/vedic-partap/Discretization
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/deep-reinforcement-learning-with-double-q
|
Deep Reinforcement Learning with Double Q-learning
|
1509.06461
|
http://arxiv.org/abs/1509.06461v3
|
http://arxiv.org/pdf/1509.06461v3.pdf
|
https://github.com/wmol4/Pytorch_DDQN_Unity_Navigation
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/xnmt-the-extensible-neural-machine
|
XNMT: The eXtensible Neural Machine Translation Toolkit
|
1803.00188
|
http://arxiv.org/abs/1803.00188v1
|
http://arxiv.org/pdf/1803.00188v1.pdf
|
https://github.com/neulab/xnmt
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/generalised-dice-overlap-as-a-deep-learning
|
Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations
|
1707.03237
|
http://arxiv.org/abs/1707.03237v3
|
http://arxiv.org/pdf/1707.03237v3.pdf
|
https://github.com/IAmSuyogJadhav/Brainy
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/uncertainty-sampling-is-preconditioned
|
Uncertainty Sampling is Preconditioned Stochastic Gradient Descent on Zero-One Loss
|
1812.01815
|
http://arxiv.org/abs/1812.01815v1
|
http://arxiv.org/pdf/1812.01815v1.pdf
|
https://worksheets.codalab.org/worksheets/0xf8dfe5bcc1dc408fb54b3cc15a5abce8
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/understanding-black-box-predictions-via
|
Understanding Black-box Predictions via Influence Functions
|
1703.04730
|
https://arxiv.org/abs/1703.04730v3
|
https://arxiv.org/pdf/1703.04730v3.pdf
|
https://worksheets.codalab.org/worksheets/0x2b314dc3536b482dbba02783a24719fd
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/learning-sparse-2d-temporal-adjacent-networks
|
Learning Sparse 2D Temporal Adjacent Networks for Temporal Action Localization
|
1912.03612
|
https://arxiv.org/abs/1912.03612v1
|
https://arxiv.org/pdf/1912.03612v1.pdf
|
https://github.com/researchmm/2D-TAN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/hyper-path-based-representation-learning-for
|
Hyper-Path-Based Representation Learning for Hyper-Networks
|
1908.09152
|
https://arxiv.org/abs/1908.09152v2
|
https://arxiv.org/pdf/1908.09152v2.pdf
|
https://github.com/HKUST-KnowComp/HPHG
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/spike-train-level-backpropagation-for
|
Spike-Train Level Backpropagation for Training Deep Recurrent Spiking Neural Networks
|
1908.06378
|
https://arxiv.org/abs/1908.06378v3
|
https://arxiv.org/pdf/1908.06378v3.pdf
|
https://github.com/stonezwr/ST-RSBP
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/expand-and-compress-exploring-tuning
|
Expand and Compress: Exploring Tuning Principles for Continual Spatio-Temporal Graph Forecasting
|
2410.12593
|
https://arxiv.org/abs/2410.12593v1
|
https://arxiv.org/pdf/2410.12593v1.pdf
|
https://github.com/Onedean/EAC
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/lending-orientation-to-neural-networks-for
|
Lending Orientation to Neural Networks for Cross-view Geo-localization
|
1903.12351
|
http://arxiv.org/abs/1903.12351v1
|
http://arxiv.org/pdf/1903.12351v1.pdf
|
https://github.com/Liumouliu/OriCNN
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/mida-multiple-imputation-using-denoising
|
MIDA: Multiple Imputation using Denoising Autoencoders
|
1705.02737
|
http://arxiv.org/abs/1705.02737v3
|
http://arxiv.org/pdf/1705.02737v3.pdf
|
https://github.com/HarryK24/MIDA-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/encoder-decoder-with-atrous-separable
|
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
|
1802.02611
|
http://arxiv.org/abs/1802.02611v3
|
http://arxiv.org/pdf/1802.02611v3.pdf
|
https://github.com/nolanliou/PeopleSegmentationDemo
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/mobilenetv2-inverted-residuals-and-linear
|
MobileNetV2: Inverted Residuals and Linear Bottlenecks
|
1801.04381
|
http://arxiv.org/abs/1801.04381v4
|
http://arxiv.org/pdf/1801.04381v4.pdf
|
https://github.com/nolanliou/PeopleSegmentationDemo
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/structural-estimation-of-behavioral
|
Structural Estimation of Behavioral Heterogeneity
|
1802.03735
|
http://arxiv.org/abs/1802.03735v2
|
http://arxiv.org/pdf/1802.03735v2.pdf
|
https://github.com/zhentaoshi/behavioral_heterogeneity
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-reduction-of-imitation-learning-and
|
A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning
|
1011.0686
|
http://arxiv.org/abs/1011.0686v3
|
http://arxiv.org/pdf/1011.0686v3.pdf
|
https://github.com/Refefer/Dagger
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/mastering-chess-and-shogi-by-self-play-with-a
|
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
|
1712.01815
|
http://arxiv.org/abs/1712.01815v1
|
http://arxiv.org/pdf/1712.01815v1.pdf
|
https://github.com/intenseG/BSK
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/densely-connected-convolutional-networks
|
Densely Connected Convolutional Networks
|
1608.06993
|
http://arxiv.org/abs/1608.06993v5
|
http://arxiv.org/pdf/1608.06993v5.pdf
|
https://github.com/wangbinglin1995/tianchi
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/taming-pre-trained-language-models-with-n
|
Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation
| null |
https://aclanthology.org/2021.acl-long.259
|
https://aclanthology.org/2021.acl-long.259.pdf
|
https://github.com/shizhediao/t-dna
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/region-of-attraction-for-power-systems-using
|
Region of Attraction for Power Systems using Gaussian Process and Converse Lyapunov Function -- Part I: Theoretical Framework and Off-line Study
|
1906.03590
|
https://arxiv.org/abs/1906.03590v1
|
https://arxiv.org/pdf/1906.03590v1.pdf
|
https://github.com/Chaocas/ROA-for-Power-Systems
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/learning-what-and-where-to-transfer
|
Learning What and Where to Transfer
|
1905.05901
|
https://arxiv.org/abs/1905.05901v1
|
https://arxiv.org/pdf/1905.05901v1.pdf
|
https://github.com/jindongwang/transferlearning
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/topologically-driven-methods-for-construction
|
Topologically Driven Methods for Construction Of Multi-Edge Type (Multigraph with nodes puncturing) Quasi-Cyclic Low-density Parity-check Codes for Wireless Channel, WDM Long-Haul and Archival Holographic Memory
|
2011.14753
|
https://arxiv.org/abs/2011.14753v3
|
https://arxiv.org/pdf/2011.14753v3.pdf
|
https://github.com/Lcrypto/Protograph-Sieving-Method-for-Construction-MET-LDPC-codes
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/face-super-resolution-through-wasserstein
|
Face Super-Resolution Through Wasserstein GANs
|
1705.02438
|
http://arxiv.org/abs/1705.02438v1
|
http://arxiv.org/pdf/1705.02438v1.pdf
|
https://github.com/MandyZChen/srez
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/realistic-evaluation-of-deep-semi-supervised
|
Realistic Evaluation of Deep Semi-Supervised Learning Algorithms
|
1804.09170
|
https://arxiv.org/abs/1804.09170v4
|
https://arxiv.org/pdf/1804.09170v4.pdf
|
https://github.com/siit-vtt/semi-supervised-learning-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/generalized-low-rank-models
|
Generalized Low Rank Models
|
1410.0342
|
http://arxiv.org/abs/1410.0342v4
|
http://arxiv.org/pdf/1410.0342v4.pdf
|
https://github.com/madeleineudell/LowRankModels.jl
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/predicting-pairwise-relations-with-neural
|
Predicting Pairwise Relations with Neural Similarity Encoders
|
1702.01824
|
http://arxiv.org/abs/1702.01824v2
|
http://arxiv.org/pdf/1702.01824v2.pdf
|
https://github.com/cod3licious/simec
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/s3fd-single-shot-scale-invariant-face
|
S$^3$FD: Single Shot Scale-invariant Face Detector
|
1708.05237
|
http://arxiv.org/abs/1708.05237v3
|
http://arxiv.org/pdf/1708.05237v3.pdf
|
https://github.com/LeeRel1991/SFD
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/the-tatoeba-translation-challenge-realistic
|
The Tatoeba Translation Challenge -- Realistic Data Sets for Low Resource and Multilingual MT
|
2010.06354
|
https://arxiv.org/abs/2010.06354v1
|
https://arxiv.org/pdf/2010.06354v1.pdf
|
https://github.com/Helsinki-NLP/Tatoeba-Challenge
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/learning-the-joint-representation-of
|
Learning the Joint Representation of Heterogeneous Temporal Events for Clinical Endpoint Prediction
|
1803.04837
|
http://arxiv.org/abs/1803.04837v4
|
http://arxiv.org/pdf/1803.04837v4.pdf
|
https://github.com/pkusjh/HELSTM
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/city-wide-analysis-of-electronic-health
|
City-wide Analysis of Electronic Health Records Reveals Gender and Age Biases in the Administration of Known Drug-Drug Interactions
|
1803.03571
|
https://arxiv.org/abs/1803.03571v4
|
https://arxiv.org/pdf/1803.03571v4.pdf
|
https://github.com/rionbr/DDIBlumenau
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/number-parsing-at-a-gigabyte-per-second
|
Number Parsing at a Gigabyte per Second
|
2101.11408
|
https://arxiv.org/abs/2101.11408v9
|
https://arxiv.org/pdf/2101.11408v9.pdf
|
https://github.com/eddelbuettel/rcppfastfloat
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/real-time-monocular-depth-estimation-using
|
Real-Time Monocular Depth Estimation Using Synthetic Data With Domain Adaptation via Image Style Transfer
| null |
http://openaccess.thecvf.com/content_cvpr_2018/html/Atapour-Abarghouei_Real-Time_Monocular_Depth_CVPR_2018_paper.html
|
http://openaccess.thecvf.com/content_cvpr_2018/papers/Atapour-Abarghouei_Real-Time_Monocular_Depth_CVPR_2018_paper.pdf
|
https://github.com/atapour/monocularDepth-Inference
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/science-with-the-cherenkov-telescope-array
|
Science with the Cherenkov Telescope Array
|
1709.07997
|
http://arxiv.org/abs/1709.07997v2
|
http://arxiv.org/pdf/1709.07997v2.pdf
|
https://github.com/UofA-HEAG/CTA-Oz-School
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/self-attention-generative-adversarial
|
Self-Attention Generative Adversarial Networks
|
1805.08318
|
https://arxiv.org/abs/1805.08318v2
|
https://arxiv.org/pdf/1805.08318v2.pdf
|
https://github.com/sdoria/SimpleSelfAttention
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/predicting-fluid-intelligence-of-children
|
Predicting Fluid Intelligence of Children using T1-weighted MR Images and a StackNet
|
1904.07387
|
https://arxiv.org/abs/1904.07387v3
|
https://arxiv.org/pdf/1904.07387v3.pdf
|
https://github.com/pykao/ABCD-MICCAI2019
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-generic-inverted-index-framework-for
|
A Generic Inverted Index Framework for Similarity Search on the GPU - Technical Report
|
1603.08390
|
http://arxiv.org/abs/1603.08390v3
|
http://arxiv.org/pdf/1603.08390v3.pdf
|
https://github.com/SeSaMe-NUS/genie
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/tunability-importance-of-hyperparameters-of
|
Tunability: Importance of Hyperparameters of Machine Learning Algorithms
|
1802.09596
|
http://arxiv.org/abs/1802.09596v3
|
http://arxiv.org/pdf/1802.09596v3.pdf
|
https://github.com/PhilippPro/tunability
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/using-random-effects-to-account-for-high
|
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks
| null |
http://proceedings.neurips.cc/paper/2021/hash/d35b05a832e2bb91f110d54e34e2da79-Abstract.html
|
http://proceedings.neurips.cc/paper/2021/file/d35b05a832e2bb91f110d54e34e2da79-Paper.pdf
|
https://github.com/gsimchoni/lmmnn
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/dsa-more-efficient-budgeted-pruning-via
|
DSA: More Efficient Budgeted Pruning via Differentiable Sparsity Allocation
|
2004.02164
|
https://arxiv.org/abs/2004.02164v5
|
https://arxiv.org/pdf/2004.02164v5.pdf
|
https://github.com/walkerning/differentiable-sparsity-allocation
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
|
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
|
1810.04805
|
https://arxiv.org/abs/1810.04805v2
|
https://arxiv.org/pdf/1810.04805v2.pdf
|
https://github.com/lovedavidsilva/bert_old_version
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/towards-hardware-aware-tractable-learning-of
|
Towards Hardware-Aware Tractable Learning of Probabilistic Models
| null |
http://papers.nips.cc/paper/9525-towards-hardware-aware-tractable-learning-of-probabilistic-models
|
http://papers.nips.cc/paper/9525-towards-hardware-aware-tractable-learning-of-probabilistic-models.pdf
|
https://github.com/laurago894/HwAwareProb
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/detecting-hate-speech-in-multi-modal-memes
|
Detecting Hate Speech in Multi-modal Memes
|
2012.14891
|
https://arxiv.org/abs/2012.14891v1
|
https://arxiv.org/pdf/2012.14891v1.pdf
|
https://github.com/Abhishek0697/Detection-of-Hate-Speech-in-Multimodal-Memes
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/image-to-image-translation-with-conditional
|
Image-to-Image Translation with Conditional Adversarial Networks
|
1611.07004
|
http://arxiv.org/abs/1611.07004v3
|
http://arxiv.org/pdf/1611.07004v3.pdf
|
https://github.com/Vious/LBAM_Pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/skipnet-learning-dynamic-routing-in
|
SkipNet: Learning Dynamic Routing in Convolutional Networks
|
1711.09485
|
http://arxiv.org/abs/1711.09485v2
|
http://arxiv.org/pdf/1711.09485v2.pdf
|
https://github.com/geekJZY/arcticnet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-probabilistic-u-net-for-segmentation-of
|
A Probabilistic U-Net for Segmentation of Ambiguous Images
|
1806.05034
|
http://arxiv.org/abs/1806.05034v4
|
http://arxiv.org/pdf/1806.05034v4.pdf
|
https://github.com/stefanknegt/probabilistic_unet_pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/copy-and-paste-a-simple-but-effective
|
Copy and Paste: A Simple But Effective Initialization Method for Black-Box Adversarial Attacks
|
1906.06086
|
https://arxiv.org/abs/1906.06086v2
|
https://arxiv.org/pdf/1906.06086v2.pdf
|
https://github.com/ttbrunner/blackbox_starting_points
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/integrating-and-querying-similar-tables-from
|
Integrating and querying similar tables from PDF documents using deep learning
|
1901.04672
|
https://arxiv.org/abs/1901.04672v1
|
https://arxiv.org/pdf/1901.04672v1.pdf
|
https://github.com/dhavalpotdar/Bounding-box-Classifier
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/bayesian-sparsification-methods-for-deep
|
Bayesian Sparsification Methods for Deep Complex-valued Networks
|
2003.11413
|
https://arxiv.org/abs/2003.11413v2
|
https://arxiv.org/pdf/2003.11413v2.pdf
|
https://github.com/ivannz/complex_paper
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/computing-exact-guarantees-for-differential
|
Computing Tight Differential Privacy Guarantees Using FFT
|
1906.03049
|
https://arxiv.org/abs/1906.03049v2
|
https://arxiv.org/pdf/1906.03049v2.pdf
|
https://github.com/DPBayes/PLD-Accountant
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/the-collective-knowledge-project-making-ml
|
The Collective Knowledge project: making ML models more portable and reproducible with open APIs, reusable best practices and MLOps
|
2006.07161
|
https://arxiv.org/abs/2006.07161v2
|
https://arxiv.org/pdf/2006.07161v2.pdf
|
https://github.com/ctuning/cbench
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/stochastic-kinetic-treatment-of-protein
|
Stochastic kinetic treatment of protein aggregation and the effects of macromolecular crowding
|
2102.01569
|
https://arxiv.org/abs/2102.01569v1
|
https://arxiv.org/pdf/2102.01569v1.pdf
|
https://github.com/jljorgenson18/popsim
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/towards-improving-solution-dominance-with
|
Towards Improving Solution Dominance with Incomparability Conditions: A case-study using Generator Itemset Mining
|
1910.00505
|
https://arxiv.org/abs/1910.00505v1
|
https://arxiv.org/pdf/1910.00505v1.pdf
|
https://github.com/stacs-cp/ModRef2019-Dominance
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/restoration-of-non-rigidly-distorted
|
Restoration of Non-rigidly Distorted Underwater Images using a Combination of Compressive Sensing and Local Polynomial Image Representations
|
1908.01940
|
https://arxiv.org/abs/1908.01940v1
|
https://arxiv.org/pdf/1908.01940v1.pdf
|
https://github.com/jeringeo/CompressiveFlows
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/training-deep-autoencoders-for-collaborative
|
Training Deep AutoEncoders for Collaborative Filtering
|
1708.01715
|
http://arxiv.org/abs/1708.01715v3
|
http://arxiv.org/pdf/1708.01715v3.pdf
|
https://github.com/NVIDIA/DeepRecommender
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/boosting-scene-character-recognition-by
|
Boosting Scene Character Recognition by Learning Canonical Forms of Glyphs
|
1907.05577
|
https://arxiv.org/abs/1907.05577v2
|
https://arxiv.org/pdf/1907.05577v2.pdf
|
https://github.com/Actasidiot/CGRN
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/darts-differentiable-architecture-search
|
DARTS: Differentiable Architecture Search
|
1806.09055
|
http://arxiv.org/abs/1806.09055v2
|
http://arxiv.org/pdf/1806.09055v2.pdf
|
https://github.com/abcp4/MyDarts
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/accurate-large-minibatch-sgd-training
|
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
|
1706.02677
|
http://arxiv.org/abs/1706.02677v2
|
http://arxiv.org/pdf/1706.02677v2.pdf
|
https://github.com/abcp4/MyDarts
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-factored-generalized-additive-model-for
|
A Factored Generalized Additive Model for Clinical Decision Support in the Operating Room
|
1907.12596
|
https://arxiv.org/abs/1907.12596v1
|
https://arxiv.org/pdf/1907.12596v1.pdf
|
https://github.com/nostringattached/FGAM
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/joint-discriminative-and-generative-learning
|
Joint Discriminative and Generative Learning for Person Re-identification
|
1904.07223
|
https://arxiv.org/abs/1904.07223v3
|
https://arxiv.org/pdf/1904.07223v3.pdf
|
https://github.com/NVlabs/DG-Net
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/conceptnet-55-an-open-multilingual-graph-of
|
ConceptNet 5.5: An Open Multilingual Graph of General Knowledge
|
1612.03975
|
http://arxiv.org/abs/1612.03975v2
|
http://arxiv.org/pdf/1612.03975v2.pdf
|
https://github.com/shayanray/ApplyingCommonSense
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/training-deep-autoencoders-for-collaborative
|
Training Deep AutoEncoders for Collaborative Filtering
|
1708.01715
|
http://arxiv.org/abs/1708.01715v3
|
http://arxiv.org/pdf/1708.01715v3.pdf
|
https://github.com/yrbahn/Deep-AutoEncoders-for-Collaborative-Filtering
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/decoupled-deep-neural-network-for-semi
|
Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation
|
1506.04924
|
http://arxiv.org/abs/1506.04924v2
|
http://arxiv.org/pdf/1506.04924v2.pdf
|
https://github.com/GoNgXiAoPeNg1/caffeBVLCplus
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/exploration-by-random-network-distillation
|
Exploration by Random Network Distillation
|
1810.12894
|
http://arxiv.org/abs/1810.12894v1
|
http://arxiv.org/pdf/1810.12894v1.pdf
|
https://github.com/kngwyu/intrinsic-rewards
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/rethinking-graph-autoencoder-models-for
|
Rethinking Graph Auto-Encoder Models for Attributed Graph Clustering
|
2107.08562
|
https://arxiv.org/abs/2107.08562v3
|
https://arxiv.org/pdf/2107.08562v3.pdf
|
https://github.com/nairouz/R-GAE
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-finnish-news-corpus-for-named-entity
|
A Finnish News Corpus for Named Entity Recognition
|
1908.04212
|
https://arxiv.org/abs/1908.04212v1
|
https://arxiv.org/pdf/1908.04212v1.pdf
|
https://github.com/mpsilfve/finer-data
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/unsupervised-efficient-and-semantic-expertise
|
Unsupervised, Efficient and Semantic Expertise Retrieval
|
1608.06651
|
http://arxiv.org/abs/1608.06651v2
|
http://arxiv.org/pdf/1608.06651v2.pdf
|
https://github.com/cvangysel/SERT
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/efficient-neural-architecture-search-via-1
|
Efficient Neural Architecture Search via Parameter Sharing
|
1802.03268
|
http://arxiv.org/abs/1802.03268v2
|
http://arxiv.org/pdf/1802.03268v2.pdf
|
https://github.com/MengTianjian/enas-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/improving-unsupervised-defect-segmentation-by
|
Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders
|
1807.02011
|
http://arxiv.org/abs/1807.02011v3
|
http://arxiv.org/pdf/1807.02011v3.pdf
|
https://github.com/daxiaHuang/Unsupervised_Defect_Segmentation
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/attention-is-all-you-need
|
Attention Is All You Need
|
1706.03762
|
https://arxiv.org/abs/1706.03762v7
|
https://arxiv.org/pdf/1706.03762v7.pdf
|
https://github.com/tbmoon/LANL_Earthquake_Prediction
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/the-impact-of-modelling-choices-on-modelling
|
The impact of modelling choices on modelling outcomes: a spatio-temporal study of the association between COVID-19 spread and environmental conditions in Catalonia (Spain)
|
2009.12625
|
https://arxiv.org/abs/2009.12625v1
|
https://arxiv.org/pdf/2009.12625v1.pdf
|
https://github.com/albrizre/COVID_Catalonia
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-quantum-approximate-optimization-algorithm-1
|
A Quantum Approximate Optimization Algorithm
|
1411.4028
|
http://arxiv.org/abs/1411.4028v1
|
http://arxiv.org/pdf/1411.4028v1.pdf
|
https://github.com/Lucaman99/Cirq-Quantum-Computing
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/u-gat-it-unsupervised-generative-attentional
|
U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation
|
1907.10830
|
https://arxiv.org/abs/1907.10830v4
|
https://arxiv.org/pdf/1907.10830v4.pdf
|
https://github.com/wkcn/UGATIT-mxnet
| false
| false
| true
|
mxnet
|
https://paperswithcode.com/paper/label-noise-reduction-in-entity-typing-by
|
Label Noise Reduction in Entity Typing by Heterogeneous Partial-Label Embedding
|
1602.05307
|
http://arxiv.org/abs/1602.05307v1
|
http://arxiv.org/pdf/1602.05307v1.pdf
|
https://github.com/shanzhenren/AFET
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/quantifying-the-benefits-of-carbon-aware
|
On the Limitations of Carbon-Aware Temporal and Spatial Workload Shifting in the Cloud
|
2306.06502
|
https://arxiv.org/abs/2306.06502v2
|
https://arxiv.org/pdf/2306.06502v2.pdf
|
https://github.com/umassos/decarbonization-potential
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/190503381
|
AutoAssist: A Framework to Accelerate Training of Deep Neural Networks
|
1905.03381
|
https://arxiv.org/abs/1905.03381v1
|
https://arxiv.org/pdf/1905.03381v1.pdf
|
https://github.com/zhangjiong724/autoassist-exp
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/hide-and-seek-privacy-challenge
|
Hide-and-Seek Privacy Challenge
|
2007.12087
|
https://arxiv.org/abs/2007.12087v2
|
https://arxiv.org/pdf/2007.12087v2.pdf
|
https://github.com/vanderschaarlab/hide-and-seek-submissions
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/real-time-and-interactive-tools-for-vocal
|
Real-time and interactive tools for vocal training based on an analytic signal with a cosine series envelope
|
1909.03650
|
https://arxiv.org/abs/1909.03650v1
|
https://arxiv.org/pdf/1909.03650v1.pdf
|
https://github.com/HidekiKawahara/voiceRTFB
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/mixnet-mixed-depthwise-convolutional-kernels
|
MixConv: Mixed Depthwise Convolutional Kernels
|
1907.09595
|
https://arxiv.org/abs/1907.09595v3
|
https://arxiv.org/pdf/1907.09595v3.pdf
|
https://github.com/zsef123/MixNet-PyTorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-ros-multi-ontology-references-services-owl
|
A ROS multi-ontology references services: OWL reasoners and application prototyping issues
|
1706.10151
|
https://arxiv.org/abs/1706.10151v2
|
https://arxiv.org/pdf/1706.10151v2.pdf
|
https://github.com/EmaroLab/injected_armor_pkgs
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/faster-r-cnn-towards-real-time-object
|
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
|
1506.01497
|
http://arxiv.org/abs/1506.01497v3
|
http://arxiv.org/pdf/1506.01497v3.pdf
|
https://github.com/lincaiming/py-faster-rcnn-update
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/noisy-as-clean-learning-unsupervised
|
Noisy-As-Clean: Learning Self-supervised Denoising from the Corrupted Image
|
1906.06878
|
https://arxiv.org/abs/1906.06878v4
|
https://arxiv.org/pdf/1906.06878v4.pdf
|
https://github.com/csjunxu/Noisy-As-Clean
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/four-things-everyone-should-know-to-improve
|
Four Things Everyone Should Know to Improve Batch Normalization
|
1906.03548
|
https://arxiv.org/abs/1906.03548v2
|
https://arxiv.org/pdf/1906.03548v2.pdf
|
https://github.com/nixx14/Ghost-BatchNormalisation-
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/gated-graph-sequence-neural-networks
|
Gated Graph Sequence Neural Networks
|
1511.05493
|
http://arxiv.org/abs/1511.05493v4
|
http://arxiv.org/pdf/1511.05493v4.pdf
|
https://github.com/entslscheia/GGNN_Reasoning
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/edge-labeling-based-directed-gated-graph
|
Edge-Labeling based Directed Gated Graph Network for Few-shot Learning
|
2101.11299
|
https://arxiv.org/abs/2101.11299v1
|
https://arxiv.org/pdf/2101.11299v1.pdf
|
https://github.com/zpx16900/DGGN
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/190409331
|
Looking Beyond Label Noise: Shifted Label Distribution Matters in Distantly Supervised Relation Extraction
|
1904.09331
|
https://arxiv.org/abs/1904.09331v2
|
https://arxiv.org/pdf/1904.09331v2.pdf
|
https://github.com/INK-USC/shifted-label-distribution
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/semi-discrete-optimization-through-semi
|
Semi-discrete optimization through semi-discrete optimal transport: a framework for neural architecture search
|
2006.15221
|
https://arxiv.org/abs/2006.15221v2
|
https://arxiv.org/pdf/2006.15221v2.pdf
|
https://github.com/bibliotecadebabel/EvAI
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/weakly-supervised-cell-instance-segmentation
|
Weakly Supervised Cell Instance Segmentation by Propagating from Detection Response
|
1911.13077
|
https://arxiv.org/abs/1911.13077v1
|
https://arxiv.org/pdf/1911.13077v1.pdf
|
https://github.com/naivete5656/WSISPDR
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-common-semantic-space-for-monolingual-and
|
A Common Semantic Space for Monolingual and Cross-Lingual Meta-Embeddings
|
2001.06381
|
https://arxiv.org/abs/2001.06381v2
|
https://arxiv.org/pdf/2001.06381v2.pdf
|
https://github.com/ikergarcia1996/MVM-Embeddings
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/privacy-preserving-deep-visual-recognition-an
|
Privacy-Preserving Deep Action Recognition: An Adversarial Learning Framework and A New Dataset
|
1906.05675
|
https://arxiv.org/abs/1906.05675v6
|
https://arxiv.org/pdf/1906.05675v6.pdf
|
https://github.com/TAMU-VITA/Privacy-AdversarialLearning
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/learning-to-generate-time-lapse-videos-using
|
Learning to Generate Time-Lapse Videos Using Multi-Stage Dynamic Generative Adversarial Networks
|
1709.07592
|
http://arxiv.org/abs/1709.07592v3
|
http://arxiv.org/pdf/1709.07592v3.pdf
|
https://github.com/CompVis/image2video-synthesis-using-cINNs
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/simple-online-and-realtime-tracking-with-a
|
Simple Online and Realtime Tracking with a Deep Association Metric
|
1703.07402
|
http://arxiv.org/abs/1703.07402v1
|
http://arxiv.org/pdf/1703.07402v1.pdf
|
https://github.com/MacherLabs/deep_sort
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/attention-is-all-you-need
|
Attention Is All You Need
|
1706.03762
|
https://arxiv.org/abs/1706.03762v7
|
https://arxiv.org/pdf/1706.03762v7.pdf
|
https://github.com/enhuiz/transformer-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/aspect-level-sentiment-classification-with-1
|
Aspect Level Sentiment Classification with Deep Memory Network
|
1605.08900
|
http://arxiv.org/abs/1605.08900v2
|
http://arxiv.org/pdf/1605.08900v2.pdf
|
https://github.com/ridakadri14/AspectBasedSentimentAnalysis
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/g-tad-sub-graph-localization-for-temporal
|
G-TAD: Sub-Graph Localization for Temporal Action Detection
|
1911.11462
|
https://arxiv.org/abs/1911.11462v2
|
https://arxiv.org/pdf/1911.11462v2.pdf
|
https://github.com/812618101/TAL-Demo
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/deep-concept-wise-temporal-convolutional
|
Deep Concept-wise Temporal Convolutional Networks for Action Localization
|
1908.09442
|
https://arxiv.org/abs/1908.09442v1
|
https://arxiv.org/pdf/1908.09442v1.pdf
|
https://github.com/812618101/TAL-Demo
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/towards-cooperative-data-rate-prediction-for
|
Towards Cooperative Data Rate Prediction for Future Mobile and Vehicular 6G Networks
|
2001.09452
|
https://arxiv.org/abs/2001.09452v1
|
https://arxiv.org/pdf/2001.09452v1.pdf
|
https://github.com/falkenber9/falcon
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/normalized-wasserstein-distance-for-mixture
|
Normalized Wasserstein Distance for Mixture Distributions with Applications in Adversarial Learning and Domain Adaptation
|
1902.00415
|
https://arxiv.org/abs/1902.00415v2
|
https://arxiv.org/pdf/1902.00415v2.pdf
|
https://github.com/yogeshbalaji/Normalized-Wasserstein
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/deepar-probabilistic-forecasting-with
|
DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks
|
1704.04110
|
http://arxiv.org/abs/1704.04110v3
|
http://arxiv.org/pdf/1704.04110v3.pdf
|
https://github.com/Timbasa/Sample_GluonTS
| false
| false
| true
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.