paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/an-exploration-of-embodied-visual-exploration
|
An Exploration of Embodied Visual Exploration
|
2001.02192
|
https://arxiv.org/abs/2001.02192v2
|
https://arxiv.org/pdf/2001.02192v2.pdf
|
https://github.com/facebookresearch/exploring_exploration
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/understanding-the-disharmony-between-weight
|
Understanding the Disharmony between Weight Normalization Family and Weight Decay: $ε-$shifted $L_2$ Regularizer
|
1911.05920
|
https://arxiv.org/abs/1911.05920v1
|
https://arxiv.org/pdf/1911.05920v1.pdf
|
https://github.com/implus/PytorchInsight
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/learning-deconvolution-network-for-semantic
|
Learning Deconvolution Network for Semantic Segmentation
|
1505.04366
|
http://arxiv.org/abs/1505.04366v1
|
http://arxiv.org/pdf/1505.04366v1.pdf
|
https://github.com/GoNgXiAoPeNg1/caffeBVLCplus
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/parameter-constrained-transfer-learning-for
|
Parameter-Transferred Wasserstein Generative Adversarial Network (PT-WGAN) for Low-Dose PET Image Denoising
|
1910.06749
|
https://arxiv.org/abs/1910.06749v3
|
https://arxiv.org/pdf/1910.06749v3.pdf
|
https://github.com/90n9-yu/PT-WGAN
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/deep-multi-view-learning-via-task-optimal-cca
|
Deep Multi-View Learning via Task-Optimal CCA
|
1907.07739
|
https://arxiv.org/abs/1907.07739v1
|
https://arxiv.org/pdf/1907.07739v1.pdf
|
https://github.com/hdcouture/TOCCA
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/tar-generalized-forensic-framework-to-detect
|
TAR: Generalized Forensic Framework to Detect Deepfakes using Weakly Supervised Learning
|
2105.06117
|
https://arxiv.org/abs/2105.06117v1
|
https://arxiv.org/pdf/2105.06117v1.pdf
|
https://github.com/Clench/TAR_resAE
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-divide-and-conquer-algorithm-for-quantum
|
A divide-and-conquer algorithm for quantum state preparation
|
2008.01511
|
https://arxiv.org/abs/2008.01511v2
|
https://arxiv.org/pdf/2008.01511v2.pdf
|
https://github.com/adjs/dcsp
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/learning-to-navigate-image-manifolds-induced
|
Learning to navigate image manifolds induced by generative adversarial networks for unsupervised video generation
|
1901.11384
|
http://arxiv.org/abs/1901.11384v1
|
http://arxiv.org/pdf/1901.11384v1.pdf
|
https://github.com/belaalb/frameGAN
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mine-mutual-information-neural-estimation
|
MINE: Mutual Information Neural Estimation
|
1801.04062
|
https://arxiv.org/abs/1801.04062v5
|
https://arxiv.org/pdf/1801.04062v5.pdf
|
https://github.com/mboudiaf/Mutual-Information-Variational-Bounds
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/representation-learning-with-contrastive
|
Representation Learning with Contrastive Predictive Coding
|
1807.03748
|
http://arxiv.org/abs/1807.03748v2
|
http://arxiv.org/pdf/1807.03748v2.pdf
|
https://github.com/mboudiaf/Mutual-Information-Variational-Bounds
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/a-convnet-for-the-2020s
|
A ConvNet for the 2020s
|
2201.03545
|
https://arxiv.org/abs/2201.03545v2
|
https://arxiv.org/pdf/2201.03545v2.pdf
|
https://github.com/keras-team/keras/blob/master/keras/applications/convnext.py
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/vilbert-pretraining-task-agnostic
|
ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks
|
1908.02265
|
https://arxiv.org/abs/1908.02265v1
|
https://arxiv.org/pdf/1908.02265v1.pdf
|
https://github.com/jialinwu17/tmpimgs
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/an-ensemble-based-approach-to-click-through
|
An Ensemble-based Approach to Click-Through Rate Prediction for Promoted Listings at Etsy
|
1711.01377
|
http://arxiv.org/abs/1711.01377v2
|
http://arxiv.org/pdf/1711.01377v2.pdf
|
https://github.com/cpapadimitriou/Click-Through-Rate-prediction
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/squeezedet-unified-small-low-power-fully
|
SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving
|
1612.01051
|
https://arxiv.org/abs/1612.01051v4
|
https://arxiv.org/pdf/1612.01051v4.pdf
|
https://github.com/vahidkhosh/squeezedet-keras
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/deep-generative-networks-for-sequence
|
Deep Generative Networks For Sequence Prediction
|
1804.06546
|
http://arxiv.org/abs/1804.06546v1
|
http://arxiv.org/pdf/1804.06546v1.pdf
|
https://github.com/mbeissinger/recurrent_gsn
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/android-malware-family-classification-based
|
Android Malware Family Classification Based on Resource Consumption over Time
|
1709.00875
|
https://arxiv.org/abs/1709.00875v1
|
https://arxiv.org/pdf/1709.00875v1.pdf
|
https://github.com/lucamassarelli/AMFC-BRCT
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/grid-tagging-scheme-for-aspect-oriented-fine
|
Grid Tagging Scheme for Aspect-oriented Fine-grained Opinion Extraction
|
2010.04640
|
https://arxiv.org/abs/2010.04640v2
|
https://arxiv.org/pdf/2010.04640v2.pdf
|
https://github.com/l294265421/GTS-ASOTE
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/fcos-fully-convolutional-one-stage-object
|
FCOS: Fully Convolutional One-Stage Object Detection
|
1904.01355
|
https://arxiv.org/abs/1904.01355v5
|
https://arxiv.org/pdf/1904.01355v5.pdf
|
https://github.com/vov-net/VoVNet-FCOS
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/retinal-vessel-segmentation-based-on-fully-1
|
Retinal Vessel Segmentation based on Fully Convolutional Networks
|
1911.09915
|
https://arxiv.org/abs/1911.09915v1
|
https://arxiv.org/pdf/1911.09915v1.pdf
|
https://github.com/americofmoliveira/VesselSegmentation_ESWA
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/sentences-with-gapping-parsing-and
|
Sentences with Gapping: Parsing and Reconstructing Elided Predicates
|
1804.06922
|
http://arxiv.org/abs/1804.06922v1
|
http://arxiv.org/pdf/1804.06922v1.pdf
|
https://github.com/dialogue-evaluation/AGRR-2019
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/an-empirical-comparison-between-stochastic
|
An empirical comparison between stochastic and deterministic centroid initialisation for K-Means variations
|
1908.09946
|
https://arxiv.org/abs/1908.09946v6
|
https://arxiv.org/pdf/1908.09946v6.pdf
|
https://github.com/avouros/clustering-workplace
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/joint-semantic-mining-for-weakly-supervised
|
Joint Semantic Mining for Weakly Supervised RGB-D Salient Object Detection
| null |
http://proceedings.neurips.cc/paper/2021/hash/642e92efb79421734881b53e1e1b18b6-Abstract.html
|
http://proceedings.neurips.cc/paper/2021/file/642e92efb79421734881b53e1e1b18b6-Paper.pdf
|
https://github.com/jiwei0921/jsm
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/fair-dimensionality-reduction-and-iterative
|
Multi-Criteria Dimensionality Reduction with Applications to Fairness
|
1902.11281
|
https://arxiv.org/abs/1902.11281v3
|
https://arxiv.org/pdf/1902.11281v3.pdf
|
https://github.com/SDPforAll/multiCriteriaDimReduction
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/190109195
|
Variational approach to rare event simulation using least-squares regression
|
1901.09195
|
http://arxiv.org/abs/1901.09195v2
|
http://arxiv.org/pdf/1901.09195v2.pdf
|
https://github.com/lorenzrichter/BSDE
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/smart-contract-vulnerabilities-does-anyone
|
Smart Contract Vulnerabilities: Does Anyone Care?
|
1902.06710
|
http://arxiv.org/abs/1902.06710v2
|
http://arxiv.org/pdf/1902.06710v2.pdf
|
https://github.com/danhper/evm-analyzer
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/proximal-mean-field-for-neural-network
|
Proximal Mean-field for Neural Network Quantization
|
1812.04353
|
https://arxiv.org/abs/1812.04353v3
|
https://arxiv.org/pdf/1812.04353v3.pdf
|
https://github.com/tajanthan/pmf
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/development-and-application-of-a
|
Development and Application of a Decentralized Domain Name Service
|
2412.01959
|
https://arxiv.org/abs/2412.01959v2
|
https://arxiv.org/pdf/2412.01959v2.pdf
|
https://github.com/GY19A/ddns
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/joint-ranking-svm-and-binary-relevance-with
|
Joint Ranking SVM and Binary Relevance with Robust Low-Rank Learning for Multi-Label Classification
|
1911.01658
|
https://arxiv.org/abs/1911.01658v1
|
https://arxiv.org/pdf/1911.01658v1.pdf
|
https://github.com/GuoqiangWoodrowWu/RBRL
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/scale-wise-convolution-for-image-restoration
|
Scale-wise Convolution for Image Restoration
|
1912.09028
|
https://arxiv.org/abs/1912.09028v1
|
https://arxiv.org/pdf/1912.09028v1.pdf
|
https://github.com/ychfan/scn
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/deep-convolutional-neural-networks-for-12
|
Deep Convolutional Neural Networks for Thermal Infrared Object Tracking
| null |
https://www.sciencedirect.com/science/article/abs/pii/S0950705117303544
|
https://www.researchgate.net/publication/318714772_Deep_Convolutional_Neural_Networks_for_Thermal_Infrared_Object_Tracking
|
https://github.com/QiaoLiuHit/MCFTS
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/facenet-a-unified-embedding-for-face
|
FaceNet: A Unified Embedding for Face Recognition and Clustering
|
1503.03832
|
http://arxiv.org/abs/1503.03832v3
|
http://arxiv.org/pdf/1503.03832v3.pdf
|
https://github.com/flora-zyx/SJNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/measuring-spatial-allocative-efficiency-in
|
Measuring Spatial Allocative Efficiency in Basketball
|
1912.05129
|
https://arxiv.org/abs/1912.05129v2
|
https://arxiv.org/pdf/1912.05129v2.pdf
|
https://github.com/nsandholtz/lpl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-neural-algorithm-of-artistic-style
|
A Neural Algorithm of Artistic Style
|
1508.06576
|
http://arxiv.org/abs/1508.06576v2
|
http://arxiv.org/pdf/1508.06576v2.pdf
|
https://github.com/karuj/StyleTransfer
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/generalized-latency-performance-estimation
|
Generalized Latency Performance Estimation for Once-For-All Neural Architecture Search
|
2101.00732
|
https://arxiv.org/abs/2101.00732v1
|
https://arxiv.org/pdf/2101.00732v1.pdf
|
https://github.com/RhythmSyed/NAS_PerformanceEstimation
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/physically-disentangled-intra-and-inter
|
Physically Disentangled Intra- and Inter-Domain Adaptation for Varicolored Haze Removal
| null |
http://openaccess.thecvf.com//content/CVPR2022/html/Li_Physically_Disentangled_Intra-_and_Inter-Domain_Adaptation_for_Varicolored_Haze_Removal_CVPR_2022_paper.html
|
http://openaccess.thecvf.com//content/CVPR2022/papers/Li_Physically_Disentangled_Intra-_and_Inter-Domain_Adaptation_for_Varicolored_Haze_Removal_CVPR_2022_paper.pdf
|
https://github.com/huayuuu/pdi2a-cvpr2022
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/boosted-cascaded-convnets-for-multilabel
|
Boosted Cascaded Convnets for Multilabel Classification of Thoracic Diseases in Chest Radiographs
|
1711.08760
|
http://arxiv.org/abs/1711.08760v1
|
http://arxiv.org/pdf/1711.08760v1.pdf
|
https://github.com/Azure/AzureChestXRay
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/bayesian-segnet-model-uncertainty-in-deep
|
Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding
|
1511.02680
|
http://arxiv.org/abs/1511.02680v2
|
http://arxiv.org/pdf/1511.02680v2.pdf
|
https://github.com/SkyWa7ch3r/ImageSegmentation
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/encoder-decoder-with-atrous-separable
|
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
|
1802.02611
|
http://arxiv.org/abs/1802.02611v3
|
http://arxiv.org/pdf/1802.02611v3.pdf
|
https://github.com/SkyWa7ch3r/ImageSegmentation
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/fast-scnn-fast-semantic-segmentation-network
|
Fast-SCNN: Fast Semantic Segmentation Network
|
1902.04502
|
http://arxiv.org/abs/1902.04502v1
|
http://arxiv.org/pdf/1902.04502v1.pdf
|
https://github.com/SkyWa7ch3r/ImageSegmentation
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/drop-an-octave-reducing-spatial-redundancy-in
|
Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution
|
1904.05049
|
https://arxiv.org/abs/1904.05049v3
|
https://arxiv.org/pdf/1904.05049v3.pdf
|
https://github.com/tuanzhangCS/octconv_resnet
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/semi-supervised-sequence-learning
|
Semi-supervised Sequence Learning
|
1511.01432
|
http://arxiv.org/abs/1511.01432v1
|
http://arxiv.org/pdf/1511.01432v1.pdf
|
https://github.com/Zehui127/SQUAD_BERT
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/weird-faccts-how-western-educated
|
WEIRD FAccTs: How Western, Educated, Industrialized, Rich, and Democratic is FAccT?
|
2305.06415
|
https://arxiv.org/abs/2305.06415v1
|
https://arxiv.org/pdf/2305.06415v1.pdf
|
https://github.com/aliakbars/weird-facct
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/hypernetworks
|
HyperNetworks
|
1609.09106
|
http://arxiv.org/abs/1609.09106v4
|
http://arxiv.org/pdf/1609.09106v4.pdf
|
https://github.com/gahaalt/continual-learning-overview
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/three-scenarios-for-continual-learning
|
Three scenarios for continual learning
|
1904.07734
|
http://arxiv.org/abs/1904.07734v1
|
http://arxiv.org/pdf/1904.07734v1.pdf
|
https://github.com/gahaalt/continual-learning-overview
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/detecting-dga-domains-with-recurrent-neural
|
Detecting DGA domains with recurrent neural networks and side information
|
1810.02023
|
https://arxiv.org/abs/1810.02023v2
|
https://arxiv.org/pdf/1810.02023v2.pdf
|
https://github.com/alistairwgillespie/deep_dga_detection
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/accelerating-the-super-resolution
|
Accelerating the Super-Resolution Convolutional Neural Network
|
1608.00367
|
http://arxiv.org/abs/1608.00367v1
|
http://arxiv.org/pdf/1608.00367v1.pdf
|
https://github.com/yjn870/FSRCNN-pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/deep-learning-with-topological-signatures
|
Deep Learning with Topological Signatures
|
1707.04041
|
http://arxiv.org/abs/1707.04041v3
|
http://arxiv.org/pdf/1707.04041v3.pdf
|
https://github.com/billy-mosse/spiderman
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/sql-rank-a-listwise-approach-to-collaborative
|
SQL-Rank: A Listwise Approach to Collaborative Ranking
|
1803.00114
|
http://arxiv.org/abs/1803.00114v3
|
http://arxiv.org/pdf/1803.00114v3.pdf
|
https://github.com/wuliwei9278/SQL-Rank
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/drop-a-reading-comprehension-benchmark
|
DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs
|
1903.00161
|
http://arxiv.org/abs/1903.00161v2
|
http://arxiv.org/pdf/1903.00161v2.pdf
|
https://github.com/m3yrin/naqanet_notebook
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/on-finding-gray-pixels
|
On Finding Gray Pixels
|
1901.03198
|
https://arxiv.org/abs/1901.03198v3
|
https://arxiv.org/pdf/1901.03198v3.pdf
|
https://github.com/mahmoudnafifi/SIIE
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/efficient-selection-of-predictive-biomarkers
|
Efficient selection of predictive biomarkers for individual treatment selection
|
1905.01582
|
https://arxiv.org/abs/1905.01582v1
|
https://arxiv.org/pdf/1905.01582v1.pdf
|
https://github.com/sshonosuke/SB-ITS
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-hierarchical-model-of-non-homogeneous
|
A hierarchical model of non-homogeneous Poisson processes for Twitter retweets
|
1802.01987
|
http://arxiv.org/abs/1802.01987v2
|
http://arxiv.org/pdf/1802.01987v2.pdf
|
https://github.com/clement-lee/hybridProcess
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/discontinuous-constituent-parsing-with
|
Discontinuous Constituent Parsing with Pointer Networks
|
2002.01824
|
https://arxiv.org/abs/2002.01824v1
|
https://arxiv.org/pdf/2002.01824v1.pdf
|
https://github.com/danifg/DiscoPointer
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/wikihow-a-large-scale-text-summarization
|
WikiHow: A Large Scale Text Summarization Dataset
|
1810.09305
|
http://arxiv.org/abs/1810.09305v1
|
http://arxiv.org/pdf/1810.09305v1.pdf
|
https://github.com/LubdaMax/Data-Science-1
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/computing-stable-models-of-normal-logic
|
Computing Stable Models of Normal Logic Programs Without Grounding
|
1709.00501
|
https://arxiv.org/abs/1709.00501v1
|
https://arxiv.org/pdf/1709.00501v1.pdf
|
https://github.com/sarat-chandra-varanasi/pysasp
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/unsupervised-domain-adaptation-through-self-1
|
Unsupervised Domain Adaptation through Self-Supervision
|
1909.11825
|
https://arxiv.org/abs/1909.11825v2
|
https://arxiv.org/pdf/1909.11825v2.pdf
|
https://github.com/Jinsung-Jeon/DomainAdaptation
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/joint-learning-of-the-embedding-of-words-and
|
Joint Learning of the Embedding of Words and Entities for Named Entity Disambiguation
|
1601.01343
|
http://arxiv.org/abs/1601.01343v4
|
http://arxiv.org/pdf/1601.01343v4.pdf
|
https://github.com/wikipedia2vec/wikipedia2vec
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/high-quality-monocular-depth-estimation-via
|
High Quality Monocular Depth Estimation via Transfer Learning
|
1812.11941
|
http://arxiv.org/abs/1812.11941v2
|
http://arxiv.org/pdf/1812.11941v2.pdf
|
https://github.com/KarthikGangadhar/depth-estimation
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/towards-a-general-purpose-cnn-for-long-range
|
Towards a General Purpose CNN for Long Range Dependencies in $N$D
|
2206.03398
|
https://arxiv.org/abs/2206.03398v2
|
https://arxiv.org/pdf/2206.03398v2.pdf
|
https://github.com/david-knigge/ccnn
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/axiomatic-ranking-of-network-role-similarity
|
Axiomatic Ranking of Network Role Similarity
|
1102.3937
|
https://arxiv.org/abs/1102.3937v2
|
https://arxiv.org/pdf/1102.3937v2.pdf
|
https://github.com/abhishekmaha23/RoleSim_python
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/neural-machine-translation-by-jointly
|
Neural Machine Translation by Jointly Learning to Align and Translate
|
1409.0473
|
http://arxiv.org/abs/1409.0473v7
|
http://arxiv.org/pdf/1409.0473v7.pdf
|
https://github.com/mike-a-yen/date-translation
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/explainable-neural-computation-via-stack
|
Explainable Neural Computation via Stack Neural Module Networks
|
1807.08556
|
http://arxiv.org/abs/1807.08556v3
|
http://arxiv.org/pdf/1807.08556v3.pdf
|
https://github.com/ronghanghu/snmn
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/dftatom-a-robust-and-general-schrodinger-and
|
dftatom: A robust and general Schrödinger and Dirac solver for atomic structure calculations
|
1209.1752
|
http://arxiv.org/abs/1209.1752v2
|
http://arxiv.org/pdf/1209.1752v2.pdf
|
https://github.com/certik/dftatom
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/friendship-paradox-biases-perceptions-in
|
Friendship Paradox Biases Perceptions in Directed Networks
|
1905.05286
|
https://arxiv.org/abs/1905.05286v1
|
https://arxiv.org/pdf/1905.05286v1.pdf
|
https://github.com/ninoch/perception_bias
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/local-global-fusion-network-for-video-super
|
Local-Global Fusion Network for Video Super-Resolution
| null |
https://ieeexplore.ieee.org/document/9203860/authors#authors
|
https://ieeexplore.ieee.org/document/9203860/authors#authors
|
https://github.com/BIOINSu/LGFN
| false
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/learning-new-physics-from-a-machine
|
Learning New Physics from a Machine
|
1806.02350
|
https://arxiv.org/abs/1806.02350v1
|
https://arxiv.org/pdf/1806.02350v1.pdf
|
https://github.com/gvlos/LNPFM
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/on-network-design-spaces-for-visual
|
On Network Design Spaces for Visual Recognition
|
1905.13214
|
https://arxiv.org/abs/1905.13214v1
|
https://arxiv.org/pdf/1905.13214v1.pdf
|
https://github.com/tuggeluk/pycls
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/unsupervised-feature-learning-via-non
|
Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination
|
1805.01978
|
http://arxiv.org/abs/1805.01978v1
|
http://arxiv.org/pdf/1805.01978v1.pdf
|
https://github.com/zhirongw/lemniscate.pytorch
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/towards-k-means-friendly-spaces-simultaneous
|
Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering
|
1610.04794
|
http://arxiv.org/abs/1610.04794v2
|
http://arxiv.org/pdf/1610.04794v2.pdf
|
https://github.com/XiaoxiangLin/DCN-keras
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/generative-adversarial-networks
|
Generative Adversarial Networks
|
1406.2661
|
https://arxiv.org/abs/1406.2661v1
|
https://arxiv.org/pdf/1406.2661v1.pdf
|
https://github.com/catalyst-team/gan
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/modeling-and-control-of-a-reconfigurable
|
Modeling and Control of a Reconfigurable Photonic Circuit using Deep Learning
|
1907.08023
|
https://arxiv.org/abs/1907.08023v1
|
https://arxiv.org/pdf/1907.08023v1.pdf
|
https://github.com/akramyoussry/GRUBI
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/a-very-low-resource-language-speech-corpus
|
A Very Low Resource Language Speech Corpus for Computational Language Documentation Experiments
|
1710.03501
|
http://arxiv.org/abs/1710.03501v3
|
http://arxiv.org/pdf/1710.03501v3.pdf
|
https://github.com/mzboito/mmboshi
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/empirical-evaluation-of-scoring-functions-for
|
Empirical evaluation of scoring functions for Bayesian network model selection
| null |
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-13-S15-S14#Abs1
|
https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-13-S15-S14
|
https://github.com/miladce/Bayesian-network-learning
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/hierarchical-human-parsing-with-typed-part
|
Hierarchical Human Parsing with Typed Part-Relation Reasoning
|
2003.04845
|
https://arxiv.org/abs/2003.04845v2
|
https://arxiv.org/pdf/2003.04845v2.pdf
|
https://github.com/hlzhu09/Hierarchical-Human-Parsing
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/continuous-control-with-deep-reinforcement
|
Continuous control with deep reinforcement learning
|
1509.02971
|
https://arxiv.org/abs/1509.02971v6
|
https://arxiv.org/pdf/1509.02971v6.pdf
|
https://github.com/prajwalgatti/DRL-Continuous-Control
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/fine-grained-visual-classification-via
|
Fine-Grained Visual Classification via Progressive Multi-Granularity Training of Jigsaw Patches
|
2003.03836
|
https://arxiv.org/abs/2003.03836v3
|
https://arxiv.org/pdf/2003.03836v3.pdf
|
https://github.com/RuoyiDu/PMG-Progressive-Multi-Granularity-Training
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/mfes-hb-efficient-hyperband-with-multi
|
MFES-HB: Efficient Hyperband with Multi-Fidelity Quality Measurements
|
2012.03011
|
https://arxiv.org/abs/2012.03011v2
|
https://arxiv.org/pdf/2012.03011v2.pdf
|
https://github.com/thomas-young-2013/open-box
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/openbox-a-generalized-black-box-optimization
|
OpenBox: A Generalized Black-box Optimization Service
|
2106.00421
|
https://arxiv.org/abs/2106.00421v3
|
https://arxiv.org/pdf/2106.00421v3.pdf
|
https://github.com/thomas-young-2013/open-box
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/spotting-macro-and-micro-expression-intervals
|
Spotting Macro- and Micro-expression Intervals in Long Video Sequences
|
1912.11985
|
https://arxiv.org/abs/1912.11985v3
|
https://arxiv.org/pdf/1912.11985v3.pdf
|
https://github.com/HeyingGithub/Baseline-project-for-MEGC2020_spotting
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/keyfilter-aware-real-time-uav-object-tracking
|
Keyfilter-Aware Real-Time UAV Object Tracking
|
2003.05218
|
https://arxiv.org/abs/2003.05218v1
|
https://arxiv.org/pdf/2003.05218v1.pdf
|
https://github.com/vision4robotics/KAOT-tracker
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/energy-aware-coverage-planning-for
|
Energy-Aware Coverage Planning for Heterogeneous Multi-Robot System
|
2411.02230
|
https://arxiv.org/abs/2411.02230v1
|
https://arxiv.org/pdf/2411.02230v1.pdf
|
https://github.com/herolab-uga/energy-aware-coverage
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/advances-in-collaborative-filtering-and
|
Advances in Collaborative Filtering and Ranking
|
2002.12312
|
https://arxiv.org/abs/2002.12312v1
|
https://arxiv.org/pdf/2002.12312v1.pdf
|
https://github.com/wuliwei9278/SQL-Rank
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-clockwork-rnn
|
A Clockwork RNN
|
1402.3511
|
http://arxiv.org/abs/1402.3511v1
|
http://arxiv.org/pdf/1402.3511v1.pdf
|
https://github.com/html1101/Science-Fair-2019-2020
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/approximating-network-centrality-measures
|
Approximating Network Centrality Measures Using Node Embedding and Machine Learning
|
2006.16392
|
https://arxiv.org/abs/2006.16392v4
|
https://arxiv.org/pdf/2006.16392v4.pdf
|
https://github.com/MatheusMRFM/NCA-GE
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/power-law-distributions-in-empirical-data
|
Power-law distributions in empirical data
|
0706.1062
|
http://arxiv.org/abs/0706.1062v2
|
http://arxiv.org/pdf/0706.1062v2.pdf
|
https://github.com/jlapeyre/MaximumLikelihoodPower.jl
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/class-balanced-loss-based-on-effective-number
|
Class-Balanced Loss Based on Effective Number of Samples
|
1901.05555
|
http://arxiv.org/abs/1901.05555v1
|
http://arxiv.org/pdf/1901.05555v1.pdf
|
https://github.com/feidfoe/AdjustBnd4Imbalance
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/fast-context-adaptation-via-meta-learning
|
Fast Context Adaptation via Meta-Learning
|
1810.03642
|
https://arxiv.org/abs/1810.03642v4
|
https://arxiv.org/pdf/1810.03642v4.pdf
|
https://github.com/lmzintgraf/cavia
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/dual-attention-guided-dropblock-module-for
|
Dual-attention Guided Dropblock Module for Weakly Supervised Object Localization
|
2003.04719
|
https://arxiv.org/abs/2003.04719v3
|
https://arxiv.org/pdf/2003.04719v3.pdf
|
https://github.com/cpuimage/DualAttentionGuidedDropout
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/can-connected-autonomous-vehicles-really
|
Can Connected Autonomous Vehicles really improve mixed traffic efficiency in realistic scenarios?
|
2107.03078
|
https://arxiv.org/abs/2107.03078v2
|
https://arxiv.org/pdf/2107.03078v2.pdf
|
https://github.com/gargmohit24/ITSC_2021
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/contrastive-multiview-coding
|
Contrastive Multiview Coding
|
1906.05849
|
https://arxiv.org/abs/1906.05849v5
|
https://arxiv.org/pdf/1906.05849v5.pdf
|
https://github.com/szq0214/Rethinking-Image-Mixture-for-Unsupervised-Learning
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/structural-regularities-in-text-based-entity
|
Structural Regularities in Text-based Entity Vector Spaces
|
1707.07930
|
http://arxiv.org/abs/1707.07930v1
|
http://arxiv.org/pdf/1707.07930v1.pdf
|
https://github.com/cvangysel/SERT
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/network-modelling-of-topological-domains
|
Network modelling of topological domains using Hi-C data
|
1707.09587
|
http://arxiv.org/abs/1707.09587v2
|
http://arxiv.org/pdf/1707.09587v2.pdf
|
https://github.com/zhongmicai/Hic_tools_collection
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/pt2pc-learning-to-generate-3d-point-cloud
|
PT2PC: Learning to Generate 3D Point Cloud Shapes from Part Tree Conditions
|
2003.08624
|
https://arxiv.org/abs/2003.08624v2
|
https://arxiv.org/pdf/2003.08624v2.pdf
|
https://github.com/daerduoCarey/pt2pc
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/zero-shot-learning-a-comprehensive-evaluation
|
Zero-Shot Learning -- A Comprehensive Evaluation of the Good, the Bad and the Ugly
|
1707.00600
|
https://arxiv.org/abs/1707.00600v4
|
https://arxiv.org/pdf/1707.00600v4.pdf
|
https://github.com/vkverma01/Zero-Shot
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/robrose-a-robust-approach-for-dealing-with
|
robROSE: A robust approach for dealing with imbalanced data in fraud detection
|
2003.11915
|
https://arxiv.org/abs/2003.11915v1
|
https://arxiv.org/pdf/2003.11915v1.pdf
|
https://github.com/SebastiaanHoppner/robROSE
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/testing-of-deep-reinforcement-learning-agents
|
Testing of Deep Reinforcement Learning Agents with Surrogate Models
|
2305.12751
|
https://arxiv.org/abs/2305.12751v2
|
https://arxiv.org/pdf/2305.12751v2.pdf
|
https://github.com/matteobiagiola/drl-testing-experiments
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/faster-fast-tensor-completion-with-nonconvex
|
FasTer: Fast Tensor Completion with Nonconvex Regularization
|
1807.08725
|
http://arxiv.org/abs/1807.08725v3
|
http://arxiv.org/pdf/1807.08725v3.pdf
|
https://github.com/quanmingyao/FasTer
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/chatgpt-in-the-context-of-precision
|
ChatGPT in the context of precision agriculture data analytics
|
2311.06390
|
https://arxiv.org/abs/2311.06390v1
|
https://arxiv.org/pdf/2311.06390v1.pdf
|
https://github.com/potamitis123/chatgpt-in-the-context-of-precision-agriculture-data-analytics
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/fd-gan-pose-guided-feature-distilling-gan-for
|
FD-GAN: Pose-guided Feature Distilling GAN for Robust Person Re-identification
|
1810.02936
|
http://arxiv.org/abs/1810.02936v2
|
http://arxiv.org/pdf/1810.02936v2.pdf
|
https://github.com/NVlabs/DG-Net
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/accurate-large-minibatch-sgd-training
|
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
|
1706.02677
|
http://arxiv.org/abs/1706.02677v2
|
http://arxiv.org/pdf/1706.02677v2.pdf
|
https://github.com/kenziyuliu/ms-g3d
| false
| false
| true
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.