paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/extended-reduced-order-surrogate-models-for
|
Extended reduced-order surrogate models for scalar-tensor gravity in the strong field and applications to binary pulsars and gravitational waves
|
2106.01622
|
https://arxiv.org/abs/2106.01622v2
|
https://arxiv.org/pdf/2106.01622v2.pdf
|
https://github.com/mh-guo/pySTGROMX
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/polyvector-fields-for-fano-3-folds
|
Polyvector fields for Fano 3-folds
|
2104.07626
|
https://arxiv.org/abs/2104.07626v3
|
https://arxiv.org/pdf/2104.07626v3.pdf
|
https://github.com/pbelmans/bivector-fields-fano-3-folds
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/bitwidth-adaptive-quantization-aware-neural
|
Bitwidth-Adaptive Quantization-Aware Neural Network Training: A Meta-Learning Approach
|
2207.10188
|
https://arxiv.org/abs/2207.10188v1
|
https://arxiv.org/pdf/2207.10188v1.pdf
|
https://github.com/jsjs0369/MEBQAT
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/global-hash-tables-strike-back-an-analysis-of
|
Global Hash Tables Strike Back! An Analysis of Parallel GROUP BY Aggregation
|
2505.04153
|
https://arxiv.org/abs/2505.04153v1
|
https://arxiv.org/pdf/2505.04153v1.pdf
|
https://github.com/danielxue/global-hash-tables-strike-back
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/fast-and-eager-k-medoids-clustering-o-k
|
Fast and Eager k-Medoids Clustering: O(k) Runtime Improvement of the PAM, CLARA, and CLARANS Algorithms
|
2008.05171
|
https://arxiv.org/abs/2008.05171v2
|
https://arxiv.org/pdf/2008.05171v2.pdf
|
https://github.com/kno10/python-kmedoids
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/attention-is-all-you-need
|
Attention Is All You Need
|
1706.03762
|
https://arxiv.org/abs/1706.03762v7
|
https://arxiv.org/pdf/1706.03762v7.pdf
|
https://github.com/Zehui127/SQUAD_BERT
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/mlosp-towards-a-unified-implementation-of
|
mlOSP: Towards a Unified Implementation of Regression Monte Carlo Algorithms
|
2012.00729
|
https://arxiv.org/abs/2012.00729v2
|
https://arxiv.org/pdf/2012.00729v2.pdf
|
https://github.com/mludkov/mlOSP
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/consistency-regularization-and-cutmix-for
|
Semi-supervised semantic segmentation needs strong, varied perturbations
|
1906.01916
|
https://arxiv.org/abs/1906.01916v5
|
https://arxiv.org/pdf/1906.01916v5.pdf
|
https://github.com/Britefury/cutmix-semisup-seg
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/semantic-style-transfer-and-turning-two-bit
|
Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artworks
|
1603.01768
|
http://arxiv.org/abs/1603.01768v1
|
http://arxiv.org/pdf/1603.01768v1.pdf
|
https://github.com/paulwarkentin/pytorch-neural-doodle
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/dgcl-an-efficient-communication-library-for
|
DGCL: an efficient communication library for distributed GNN training
| null |
https://dl.acm.org/doi/10.1145/3447786.3456233
|
https://dl.acm.org/doi/pdf/10.1145/3447786.3456233
|
https://github.com/czkkkkkk/gccl
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/syntheticfur-dataset-for-neural-rendering
|
SyntheticFur dataset for neural rendering
|
2105.06409
|
https://arxiv.org/abs/2105.06409v1
|
https://arxiv.org/pdf/2105.06409v1.pdf
|
https://github.com/google-research-datasets/synthetic-fur
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/learning-near-optimal-convex-combinations-of
|
Greedy Convex Ensemble
|
1910.03742
|
https://arxiv.org/abs/1910.03742v2
|
https://arxiv.org/pdf/1910.03742v2.pdf
|
https://github.com/tan1889/gce
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/fisher-rao-metric-geometry-and-complexity-of
|
Fisher-Rao Metric, Geometry, and Complexity of Neural Networks
|
1711.01530
|
http://arxiv.org/abs/1711.01530v2
|
http://arxiv.org/pdf/1711.01530v2.pdf
|
https://github.com/ML-KA/PDG-Theory
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/neural-moving-horizon-estimation-for-robust
|
Neural Moving Horizon Estimation for Robust Flight Control
|
2206.10397
|
https://arxiv.org/abs/2206.10397v9
|
https://arxiv.org/pdf/2206.10397v9.pdf
|
https://github.com/rcl-nus/neuromhe
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/brain-signal-classification-via-learning
|
EEG-based Emotional Video Classification via Learning Connectivity Structure
|
1905.11678
|
https://arxiv.org/abs/1905.11678v4
|
https://arxiv.org/pdf/1905.11678v4.pdf
|
https://github.com/ELEMKEP/bsc_lcs
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/do-the-machine-learning-models-on-a-crowd
|
Do the Machine Learning Models on a Crowd Sourced Platform Exhibit Bias? An Empirical Study on Model Fairness
|
2005.12379
|
https://arxiv.org/abs/2005.12379v2
|
https://arxiv.org/pdf/2005.12379v2.pdf
|
https://github.com/sumonbis/ML-Fairness
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/quantum-constraint-problems-can-be-complete
|
Quantum Constraint Problems can be complete for $\mathsf{BQP}$, $\mathsf{QCMA}$, and more
|
2101.08381
|
https://arxiv.org/abs/2101.08381v3
|
https://arxiv.org/pdf/2101.08381v3.pdf
|
https://github.com/Timeroot/4StatesIn4Qubits
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/170501453
|
Distributed Proportional-Fairness Control in MicroGrids via Blockchain Smart Contracts
|
1705.01453
|
http://arxiv.org/abs/1705.01453v2
|
http://arxiv.org/pdf/1705.01453v2.pdf
|
https://github.com/danzipie/fairness-control-contract
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/youmakeup-vqa-challenge-towards-fine-grained
|
YouMakeup VQA Challenge: Towards Fine-grained Action Understanding in Domain-Specific Videos
|
2004.05573
|
https://arxiv.org/abs/2004.05573v1
|
https://arxiv.org/pdf/2004.05573v1.pdf
|
https://github.com/AIM3-RUC/YouMakeup_Baseline
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-persistence-landscapes-toolbox-for
|
A persistence landscapes toolbox for topological statistics
|
1501.00179
|
http://arxiv.org/abs/1501.00179v3
|
http://arxiv.org/pdf/1501.00179v3.pdf
|
https://github.com/queenBNE/Persistent-Landscape-Wrapper
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/optimal-market-making-by-reinforcement
|
Optimal Market Making by Reinforcement Learning
|
2104.04036
|
https://arxiv.org/abs/2104.04036v1
|
https://arxiv.org/pdf/2104.04036v1.pdf
|
https://github.com/mselser95/optimal-market-making
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-refined-deep-learning-architecture-for
|
A Refined Deep Learning Architecture for Diabetic Foot Ulcers Detection
|
2007.07922
|
https://arxiv.org/abs/2007.07922v1
|
https://arxiv.org/pdf/2007.07922v1.pdf
|
https://github.com/Manugoyal12345/Yet-Another-EfficientDet-Pytorch
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/revisiting-data-complexity-metrics-based-on
|
Revisiting Data Complexity Metrics Based on Morphology for Overlap and Imbalance: Snapshot, New Overlap Number of Balls Metrics and Singular Problems Prospect
|
2007.07935
|
https://arxiv.org/abs/2007.07935v1
|
https://arxiv.org/pdf/2007.07935v1.pdf
|
https://github.com/jdpastri/morphology-metrics
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/don-t-stop-pretraining-adapt-language-models
|
Don't Stop Pretraining: Adapt Language Models to Domains and Tasks
|
2004.10964
|
https://arxiv.org/abs/2004.10964v3
|
https://arxiv.org/pdf/2004.10964v3.pdf
|
https://github.com/shizhediao/t-dna
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/manifold-mixup-better-representations-by
|
Manifold Mixup: Better Representations by Interpolating Hidden States
|
1806.05236
|
https://arxiv.org/abs/1806.05236v7
|
https://arxiv.org/pdf/1806.05236v7.pdf
|
https://github.com/rahulmadanahalli/manifold_mixup
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/auto-encoding-variational-bayes
|
Auto-Encoding Variational Bayes
|
1312.6114
|
http://arxiv.org/abs/1312.6114v10
|
http://arxiv.org/pdf/1312.6114v10.pdf
|
https://github.com/jarrydmartinx/generative-models
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/carp-compression-through-adaptive-recursive
|
CARP: Compression through Adaptive Recursive Partitioning for Multi-dimensional Images
|
1912.05622
|
https://arxiv.org/abs/1912.05622v2
|
https://arxiv.org/pdf/1912.05622v2.pdf
|
https://github.com/xylimeng/CARP
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/dart-noise-injection-for-robust-imitation
|
DART: Noise Injection for Robust Imitation Learning
|
1703.09327
|
http://arxiv.org/abs/1703.09327v2
|
http://arxiv.org/pdf/1703.09327v2.pdf
|
https://github.com/autonomousvision/data_aggregation
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/wasserstein-gan
|
Wasserstein GAN
|
1701.07875
|
http://arxiv.org/abs/1701.07875v3
|
http://arxiv.org/pdf/1701.07875v3.pdf
|
https://github.com/catalyst-team/gan
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-solution-to-the-generalized-ros-hardware-io
|
A Solution to the Generalized ROS Hardware IO Problem -- A Generic Modbus/TCP Device Driver for PLCs, Sensors and Actuators
|
2112.11102
|
https://arxiv.org/abs/2112.11102v1
|
https://arxiv.org/pdf/2112.11102v1.pdf
|
https://github.com/bitmeal/ros-modbus-device-driver
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/listen-to-look-action-recognition-by
|
Listen to Look: Action Recognition by Previewing Audio
|
1912.04487
|
https://arxiv.org/abs/1912.04487v3
|
https://arxiv.org/pdf/1912.04487v3.pdf
|
https://github.com/facebookresearch/Listen-to-Look
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/semantic-triples-verbalization-with
|
Semantic Triples Verbalization with Generative Pre-Training Model
| null |
https://aclanthology.org/2020.webnlg-1.17
|
https://aclanthology.org/2020.webnlg-1.17.pdf
|
https://github.com/blinovpd/ru-rdf2text
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/atomic-loans-cryptocurrency-debt-instruments
|
Atomic Loans: Cryptocurrency Debt Instruments
|
1901.05117
|
http://arxiv.org/abs/1901.05117v1
|
http://arxiv.org/pdf/1901.05117v1.pdf
|
https://github.com/AtomicLoans/technicalpaper
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/student-performance-prediction-using-dynamic
|
Student Performance Prediction Using Dynamic Neural Models
|
2106.00524
|
https://arxiv.org/abs/2106.00524v1
|
https://arxiv.org/pdf/2106.00524v1.pdf
|
https://github.com/delmarin35/Dynamic-Neural-Models-for-Knowledge-Tracing
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/animegan-a-novel-lightweight-gan-for-photo
|
AnimeGAN: A Novel Lightweight GAN for Photo Animation
| null |
https://link.springer.com/chapter/10.1007/978-981-15-5577-0_18
|
https://link.springer.com/chapter/10.1007/978-981-15-5577-0_18
|
https://github.com/mindspore-courses/heads-on-mindspore/tree/main/2-AnimeGAN
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/from-words-to-sound-neural-audio-synthesis-of
|
From Words to Sound: Neural Audio Synthesis of Guitar Sounds with Timbral Descriptors
| null |
https://zenodo.org/record/7088416
|
https://zenodo.org/record/7088416
|
https://github.com/TheSoundOfAIOSR/thesoundofaiosr.github.io
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/deep-cnns-with-spatially-weighted-pooling-for
|
Deep CNNs With Spatially Weighted Pooling for Fine-Grained Car Recognition
| null |
https://ieeexplore.ieee.org/document/7891907
|
https://www.researchgate.net/profile/Qichang-Hu/publication/316027349_Deep_CNNs_With_Spatially_Weighted_Pooling_for_Fine-Grained_Car_Recognition/links/59da13dca6fdcc2aad1299eb/Deep-CNNs-With-Spatially-Weighted-Pooling-for-Fine-Grained-Car-Recognition.pdf?_sg%5B0%5D=kFfa3QAo81iOIGlcjQ8XRVrfle6Ja-f3PbBzcCVIn3hbSh6EvHLERWho98fUz31FG9fT0TblP-aepGOCPxoarQ.OjIShztuvZs6W2EaIPef4wBuCkjA7vhzJphfFK-0w1_CjLGnxrWAUXxW4JP-7CEbBxDP3jW_tMo-sBuVDJfDqQ&_sg%5B1%5D=VMpD6s3ZN7MRfqLrLI8TiDC4DPHlksWNxOtrIPd7m-hc6H8V3yhKpndR7TsXCFyoHW8KFaQN-R7LmMcq-GO55-TxkzshV7BCIBpLq159AsWm.OjIShztuvZs6W2EaIPef4wBuCkjA7vhzJphfFK-0w1_CjLGnxrWAUXxW4JP-7CEbBxDP3jW_tMo-sBuVDJfDqQ&_iepl=
|
https://github.com/duongttr/SWP
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/modeling-constrained-preemption-dynamics-of
|
Modeling Constrained Preemption Dynamics Of Transient Cloud Servers
|
1911.05160
|
https://arxiv.org/abs/1911.05160v1
|
https://arxiv.org/pdf/1911.05160v1.pdf
|
https://github.com/kadupitiya/goog-preemption-data
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/some-stylometric-remarks-on-ovid-s-heroides
|
Some Stylometric Remarks on Ovid's Heroides and the Epistula Sapphus
|
2202.11864
|
https://arxiv.org/abs/2202.11864v1
|
https://arxiv.org/pdf/2202.11864v1.pdf
|
https://github.com/bnagy/heroides-paper
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/amr-parsing-as-sequence-to-graph-transduction
|
AMR Parsing as Sequence-to-Graph Transduction
|
1905.08704
|
https://arxiv.org/abs/1905.08704v2
|
https://arxiv.org/pdf/1905.08704v2.pdf
|
https://github.com/sheng-z/stog
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/provable-defense-against-privacy-leakage-in
|
Provable Defense against Privacy Leakage in Federated Learning from Representation Perspective
|
2012.06043
|
https://arxiv.org/abs/2012.06043v1
|
https://arxiv.org/pdf/2012.06043v1.pdf
|
https://github.com/jeremy313/Soteria
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/clusttr-clustering-training-for-robustness
|
Rethinking Clustering for Robustness
|
2006.07682
|
https://arxiv.org/abs/2006.07682v3
|
https://arxiv.org/pdf/2006.07682v3.pdf
|
https://github.com/clustr-official-account/ClusTR-Clustering-Training-For-Robustness
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/visual-chirality-1
|
Visual Chirality
|
2006.09512
|
https://arxiv.org/abs/2006.09512v1
|
https://arxiv.org/pdf/2006.09512v1.pdf
|
https://github.com/linzhiqiu/digital_chirality
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/partial-policy-iteration-for-l1-robust-markov
|
Partial Policy Iteration for L1-Robust Markov Decision Processes
|
2006.09484
|
https://arxiv.org/abs/2006.09484v1
|
https://arxiv.org/pdf/2006.09484v1.pdf
|
https://github.com/marekpetrik/PPI_paper
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/phase-aware-speech-enhancement-with-deep-1
|
Phase-aware Speech Enhancement with Deep Complex U-Net
|
1903.03107
|
http://arxiv.org/abs/1903.03107v2
|
http://arxiv.org/pdf/1903.03107v2.pdf
|
https://github.com/chanil1218/DCUnet.pytorch
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/the-gh-exin-neural-network-for-hierarchical
|
The GH-EXIN neural network for hierarchical clustering
| null |
https://www.sciencedirect.com/science/article/pii/S0893608019302060
|
https://www.sciencedirect.com/science/article/pii/S0893608019302060
|
https://github.com/pietrobarbiero/ghexin
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/urcdm-ultra-resolution-image-synthesis-in
|
URCDM: Ultra-Resolution Image Synthesis in Histopathology
|
2407.13277
|
https://arxiv.org/abs/2407.13277v1
|
https://arxiv.org/pdf/2407.13277v1.pdf
|
https://github.com/scechnicka/URCDM
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/hsemotion-team-at-the-7th-abaw-challenge
|
HSEmotion Team at the 7th ABAW Challenge: Multi-Task Learning and Compound Facial Expression Recognition
|
2407.13184
|
https://arxiv.org/abs/2407.13184v1
|
https://arxiv.org/pdf/2407.13184v1.pdf
|
https://github.com/HSE-asavchenko/face-emotion-recognition
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/neural-architecture-retrieval
|
Neural Architecture Retrieval
|
2307.07919
|
https://arxiv.org/abs/2307.07919v2
|
https://arxiv.org/pdf/2307.07919v2.pdf
|
https://github.com/terrypei/nnretrieval
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/rt-bene-a-dataset-and-baselines-for-real-time
|
RT-BENE: A Dataset and Baselines for Real-Time Blink Estimation in Natural Environments
| null |
http://openaccess.thecvf.com/content_ICCVW_2019/html/GAZE/Cortacero_RT-BENE_A_Dataset_and_Baselines_for_Real-Time_Blink_Estimation_in_ICCVW_2019_paper.html
|
http://openaccess.thecvf.com/content_ICCVW_2019/papers/GAZE/Cortacero_RT-BENE_A_Dataset_and_Baselines_for_Real-Time_Blink_Estimation_in_ICCVW_2019_paper.pdf
|
https://github.com/Tobias-Fischer/rt_gene
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/robot-localization-in-floor-plans-using-a
|
Robot Localization in Floor Plans Using a Room Layout Edge Extraction Network
|
1903.01804
|
https://arxiv.org/abs/1903.01804v2
|
https://arxiv.org/pdf/1903.01804v2.pdf
|
https://github.com/ayusefi/Localization-Papers
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/training-deep-neural-networks-on-noisy-labels
|
Training Deep Neural Networks on Noisy Labels with Bootstrapping
|
1412.6596
|
http://arxiv.org/abs/1412.6596v3
|
http://arxiv.org/pdf/1412.6596v3.pdf
|
https://github.com/dr-darryl-wright/Noisy-Labels-with-Bootstrapping
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/efficientdet-scalable-and-efficient-object
|
EfficientDet: Scalable and Efficient Object Detection
|
1911.09070
|
https://arxiv.org/abs/1911.09070v7
|
https://arxiv.org/pdf/1911.09070v7.pdf
|
https://github.com/Manugoyal12345/Yet-Another-EfficientDet-Pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/adahessian-an-adaptive-second-order-optimizer
|
ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning
|
2006.00719
|
https://arxiv.org/abs/2006.00719v3
|
https://arxiv.org/pdf/2006.00719v3.pdf
|
https://github.com/amirgholami/adahessian
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/picar-an-efficient-extendable-approach-for
|
PICAR: An Efficient Extendable Approach for Fitting Hierarchical Spatial Models
|
1912.02382
|
https://arxiv.org/abs/1912.02382v2
|
https://arxiv.org/pdf/1912.02382v2.pdf
|
https://github.com/benee55/PICAR_code
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-systematic-approach-to-robustness-modelling
|
A Training Rate and Survival Heuristic for Inference and Robustness Evaluation (TRASHFIRE)
|
2401.13751
|
https://arxiv.org/abs/2401.13751v2
|
https://arxiv.org/pdf/2401.13751v2.pdf
|
https://github.com/simplymathematics/deckard/tree/main/examples/pytorch
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/human-whole-body-dynamics-estimation-for
|
Human Whole-Body Dynamics Estimation for Enhancing Physical Human-Robot Interaction
|
1912.01136
|
https://arxiv.org/abs/1912.01136v1
|
https://arxiv.org/pdf/1912.01136v1.pdf
|
https://github.com/claudia-lat/MAPest
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/temporal-cycle-consistency-learning
|
Temporal Cycle-Consistency Learning
|
1904.07846
|
http://arxiv.org/abs/1904.07846v1
|
http://arxiv.org/pdf/1904.07846v1.pdf
|
https://github.com/google-research/google-research/tree/master/tcc
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/mixup-beyond-empirical-risk-minimization
|
mixup: Beyond Empirical Risk Minimization
|
1710.09412
|
http://arxiv.org/abs/1710.09412v2
|
http://arxiv.org/pdf/1710.09412v2.pdf
|
https://github.com/CaoShuning/MIXUP
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/ssd-single-shot-multibox-detector
|
SSD: Single Shot MultiBox Detector
|
1512.02325
|
http://arxiv.org/abs/1512.02325v5
|
http://arxiv.org/pdf/1512.02325v5.pdf
|
https://github.com/chandra411/Product-Detection
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/high-efficiency-calculation-of-elastic
|
Investigating elastic constants across diverse strain-matrix sets
|
2002.00005
|
https://arxiv.org/abs/2002.00005v2
|
https://arxiv.org/pdf/2002.00005v2.pdf
|
https://github.com/zhongliliu/elastool
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/meta-learning-framework-with-applications-to
|
Meta-learning framework with applications to zero-shot time-series forecasting
|
2002.02887
|
https://arxiv.org/abs/2002.02887v3
|
https://arxiv.org/pdf/2002.02887v3.pdf
|
https://github.com/dmitri-carpov/deepar_evaluation
| false
| false
| true
|
mxnet
|
https://paperswithcode.com/paper/auto-encoding-variational-bayes
|
Auto-Encoding Variational Bayes
|
1312.6114
|
http://arxiv.org/abs/1312.6114v10
|
http://arxiv.org/pdf/1312.6114v10.pdf
|
https://github.com/sarus-tech/tf2-published-models
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/quaternion-equivariant-capsule-networks-for-1
|
Quaternion Equivariant Capsule Networks for 3D Point Clouds
|
1912.12098
|
https://arxiv.org/abs/1912.12098v3
|
https://arxiv.org/pdf/1912.12098v3.pdf
|
https://github.com/tolgabirdal/qecnetworks
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/phase-transitions-of-wave-packet-dynamics-in
|
Phase transitions of wave packet dynamics in disordered non-Hermitian systems
|
2301.07370
|
https://arxiv.org/abs/2301.07370v2
|
https://arxiv.org/pdf/2301.07370v2.pdf
|
https://zenodo.org/record/7535012
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/beyond-graph-neural-networks-with-lifted
|
Beyond Graph Neural Networks with Lifted Relational Neural Networks
|
2007.06286
|
https://arxiv.org/abs/2007.06286v1
|
https://arxiv.org/pdf/2007.06286v1.pdf
|
https://github.com/GustikS/GNNwLRNNs
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/i2l-meshnet-image-to-lixel-prediction-network-1
|
I2L-MeshNet: Image-to-Lixel Prediction Network for Accurate 3D Human Pose and Mesh Estimation from a Single RGB Image
|
2008.03713
|
https://arxiv.org/abs/2008.03713v2
|
https://arxiv.org/pdf/2008.03713v2.pdf
|
https://github.com/mks0601/I2L-MeshNet_RELEASE
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/spatial-semantic-embedding-network-fast-3d
|
Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning
|
2007.03169
|
https://arxiv.org/abs/2007.03169v1
|
https://arxiv.org/pdf/2007.03169v1.pdf
|
https://github.com/96lives/ssen
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/meta-learning-representations-for-continual
|
Meta-Learning Representations for Continual Learning
|
1905.12588
|
https://arxiv.org/abs/1905.12588v2
|
https://arxiv.org/pdf/1905.12588v2.pdf
|
https://github.com/lexili24/NLUProject
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/cellular-automaton-decoders-with-provable
|
Cellular-automaton decoders with provable thresholds for topological codes
|
1809.10145
|
https://arxiv.org/abs/1809.10145v1
|
https://arxiv.org/pdf/1809.10145v1.pdf
|
https://github.com/MikeVasmer/Sweep-Decoder-Boundaries
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/harmonic-networks-deep-translation-and
|
Harmonic Networks: Deep Translation and Rotation Equivariance
|
1612.04642
|
http://arxiv.org/abs/1612.04642v2
|
http://arxiv.org/pdf/1612.04642v2.pdf
|
https://github.com/deworrall92/harmonicConvolutions
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/real-world-attack-on-mtcnn-face-detection
|
Real-world adversarial attack on MTCNN face detection system
|
1910.06261
|
https://arxiv.org/abs/1910.06261v2
|
https://arxiv.org/pdf/1910.06261v2.pdf
|
https://github.com/Mind23-2/MindCode-101/tree/main/MTCNN
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/a-discrete-representation-of-einsteins
|
A Discrete Representation of Einstein's Geometric Theory of Gravitation: The Fundamental Role of Dual Tessellations in Regge Calculus
|
0804.0279
|
http://arxiv.org/abs/0804.0279v1
|
http://arxiv.org/pdf/0804.0279v1.pdf
|
https://github.com/EelcoHoogendoorn/pycomplex
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/paragraph-level-neural-question-generation
|
Paragraph-level Neural Question Generation with Maxout Pointer and Gated Self-attention Networks
| null |
https://aclanthology.org/D18-1424
|
https://aclanthology.org/D18-1424.pdf
|
https://github.com/seanie12/neural-question-generation
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/geometry-aware-supertagging-with
|
Geometry-Aware Supertagging with Heterogeneous Dynamic Convolutions
|
2203.12235
|
https://arxiv.org/abs/2203.12235v3
|
https://arxiv.org/pdf/2203.12235v3.pdf
|
https://github.com/konstantinoskokos/dynamic-graph-supertagging
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/clones-in-deep-learning-code-what-where-and
|
Clones in Deep Learning Code: What, Where, and Why?
|
2107.13614
|
https://arxiv.org/abs/2107.13614v1
|
https://arxiv.org/pdf/2107.13614v1.pdf
|
https://github.com/Hadhemii/ClonesInDLCode
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/interpretable-and-transferable-models-to
|
Interpretable and Transferable Models to Understand the Impact of Lockdown Measures on Local Air Quality
|
2011.10144
|
https://arxiv.org/abs/2011.10144v2
|
https://arxiv.org/pdf/2011.10144v2.pdf
|
https://github.com/johanna-einsiedler/covid-19-air-pollution
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/out-of-distribution-detection-with-energy
|
Master's Thesis: Out-of-distribution Detection with Energy-based Models
|
2302.12002
|
https://arxiv.org/abs/2302.12002v2
|
https://arxiv.org/pdf/2302.12002v2.pdf
|
https://github.com/selflein/ma-ebm
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/emergence-and-stability-of-self-evolved
|
Emergence and Stability of Self-Evolved Cooperative Strategies using Stochastic Machines
|
2010.13024
|
https://arxiv.org/abs/2010.13024v1
|
https://arxiv.org/pdf/2010.13024v1.pdf
|
https://github.com/jinhongkuan/evol-sim
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/joint-power-control-and-lsfd-for-wireless
|
Joint Power Control and LSFD for Wireless-Powered Cell-Free Massive MIMO
|
2002.09270
|
https://arxiv.org/abs/2002.09270v2
|
https://arxiv.org/pdf/2002.09270v2.pdf
|
https://github.com/emilbjornson/wireless-powered-cell-free
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/bottom-up-and-top-down-attention-for-image
|
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
|
1707.07998
|
http://arxiv.org/abs/1707.07998v3
|
http://arxiv.org/pdf/1707.07998v3.pdf
|
https://github.com/xiaobai714/image_caption
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/neural-machine-translating-from-natural
|
Neural Machine Translating from Natural Language to SPARQL
|
1906.09302
|
https://arxiv.org/abs/1906.09302v1
|
https://arxiv.org/pdf/1906.09302v1.pdf
|
https://github.com/xiaoyuin/tntspa
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/semantic-histogram-based-graph-matching-for
|
Semantic Histogram Based Graph Matching for Real-Time Multi-Robot Global Localization in Large Scale Environment
|
2010.09297
|
https://arxiv.org/abs/2010.09297v2
|
https://arxiv.org/pdf/2010.09297v2.pdf
|
https://github.com/gxytcrc/Semantic-Graph-based--global-Localization
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/adahessian-an-adaptive-second-order-optimizer
|
ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning
|
2006.00719
|
https://arxiv.org/abs/2006.00719v3
|
https://arxiv.org/pdf/2006.00719v3.pdf
|
https://github.com/morganmcg1/ImageNette_ImageWoof_ImageWang
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/normalization-matters-in-weakly-supervised
|
Normalization Matters in Weakly Supervised Object Localization
|
2107.13221
|
https://arxiv.org/abs/2107.13221v1
|
https://arxiv.org/pdf/2107.13221v1.pdf
|
https://github.com/GenDisc/IVR
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/vehicle-and-license-plate-recognition-with
|
Vehicle and License Plate Recognition with Novel Dataset for Toll Collection
|
2202.05631
|
https://arxiv.org/abs/2202.05631v2
|
https://arxiv.org/pdf/2202.05631v2.pdf
|
https://dagshub.com/arnavr.neo/VT-LPR
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/real-time-mdnet
|
Real-Time MDNet
|
1808.08834
|
http://arxiv.org/abs/1808.08834v1
|
http://arxiv.org/pdf/1808.08834v1.pdf
|
https://github.com/Amgao/RLS-RTMDNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/sequence-tagging-with-contextual-and-non
|
Sequence Tagging with Contextual and Non-Contextual Subword Representations: A Multilingual Evaluation
|
1906.01569
|
https://arxiv.org/abs/1906.01569v1
|
https://arxiv.org/pdf/1906.01569v1.pdf
|
https://github.com/bheinzerling/subword-sequence-tagging
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/coordinated-exploration-via-intrinsic-rewards
|
Coordinated Exploration via Intrinsic Rewards for Multi-Agent Reinforcement Learning
|
1905.12127
|
https://arxiv.org/abs/1905.12127v3
|
https://arxiv.org/pdf/1905.12127v3.pdf
|
https://github.com/shariqiqbal2810/Multi-Explore
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/certainty-equivalent-perception-based-control
|
Certainty Equivalent Perception-Based Control
|
2008.12332
|
https://arxiv.org/abs/2008.12332v2
|
https://arxiv.org/pdf/2008.12332v2.pdf
|
https://github.com/modestyachts/certainty_equiv_perception_control
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/factorised-representation-learning-in-cardiac
|
Disentangled Representation Learning in Cardiac Image Analysis
|
1903.09467
|
https://arxiv.org/abs/1903.09467v4
|
https://arxiv.org/pdf/1903.09467v4.pdf
|
https://github.com/TsaftarisCollaboratory/CSDisentanglement_Metrics_Library
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/fast-deep-reinforcement-learning-using-online
|
Fast deep reinforcement learning using online adjustments from the past
|
1810.08163
|
http://arxiv.org/abs/1810.08163v1
|
http://arxiv.org/pdf/1810.08163v1.pdf
|
https://github.com/AnnaNikitaRL/EVA
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/machine-learning-based-generalized-model-for
|
Machine Learning-Based Generalized Model for Finite Element Analysis of Roll Deflection During the Austenitic Stainless Steel 316L Strip Rolling
|
2102.02470
|
https://arxiv.org/abs/2102.02470v2
|
https://arxiv.org/pdf/2102.02470v2.pdf
|
https://github.com/mahshadlotfinia/Stress316L
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/kinship-identification-through-joint-learning
|
Kinship Identification through Joint Learning Using Kinship Verification Ensembles
|
2004.06382
|
https://arxiv.org/abs/2004.06382v4
|
https://arxiv.org/pdf/2004.06382v4.pdf
|
https://github.com/we-wan/JLNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/parallel-streaming-wasserstein-barycenters
|
Parallel Streaming Wasserstein Barycenters
|
1705.07443
|
http://arxiv.org/abs/1705.07443v2
|
http://arxiv.org/pdf/1705.07443v2.pdf
|
https://github.com/mstaib/stochastic-barycenter-code
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/pano-avqa-grounded-audio-visual-question-1
|
Pano-AVQA: Grounded Audio-Visual Question Answering on 360$^\circ$ Videos
|
2110.05122
|
https://arxiv.org/abs/2110.05122v1
|
https://arxiv.org/pdf/2110.05122v1.pdf
|
https://github.com/hs-yn/panoavqa
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/prepended-domain-transformer-heterogeneous
|
Prepended Domain Transformer: Heterogeneous Face Recognition without Bells and Whistles
|
2210.06529
|
https://arxiv.org/abs/2210.06529v1
|
https://arxiv.org/pdf/2210.06529v1.pdf
|
https://github.com/anjith2006/bob.paper.tifs2022_hfr_prepended_domain_transformer
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/why-not-simply-translate-a-first-swedish
|
Why Not Simply Translate? A First Swedish Evaluation Benchmark for Semantic Similarity
|
2009.03116
|
https://arxiv.org/abs/2009.03116v2
|
https://arxiv.org/pdf/2009.03116v2.pdf
|
https://github.com/timpal0l/sts-benchmark-swedish
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/solving-classification-problems-using
|
Solving classification problems using Traceless Genetic Programming
|
2111.14790
|
https://arxiv.org/abs/2111.14790v1
|
https://arxiv.org/pdf/2111.14790v1.pdf
|
https://github.com/mihaioltean/traceless-genetic-programming
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/performance-of-openbci-eeg-binary-intent
|
Performance of OpenBCI EEG Binary Intent Classification with Laryngeal Imagery
|
2107.00045
|
https://arxiv.org/abs/2107.00045v1
|
https://arxiv.org/pdf/2107.00045v1.pdf
|
https://github.com/nateGeorge/openbci_laryngeal_imagery
| true
| true
| false
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.