paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/efficient-learning-of-generative-models-via
|
Efficient Learning of Generative Models via Finite-Difference Score Matching
|
2007.03317
|
https://arxiv.org/abs/2007.03317v2
|
https://arxiv.org/pdf/2007.03317v2.pdf
|
https://github.com/taufikxu/FD-ScoreMatching
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/learning-individualized-treatment-rules-with
|
Learning Individualized Treatment Rules with Estimated Translated Inverse Propensity Score
|
2007.01083
|
https://arxiv.org/abs/2007.01083v1
|
https://arxiv.org/pdf/2007.01083v1.pdf
|
https://github.com/ZhiliangWu/etips
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/gradient-temporal-difference-learning-with
|
Gradient Temporal-Difference Learning with Regularized Corrections
|
2007.00611
|
https://arxiv.org/abs/2007.00611v4
|
https://arxiv.org/pdf/2007.00611v4.pdf
|
https://github.com/rlai-lab/Regularized-GradientTD
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/deep-bayesian-quadrature-policy-optimization
|
Deep Bayesian Quadrature Policy Optimization
|
2006.15637
|
https://arxiv.org/abs/2006.15637v3
|
https://arxiv.org/pdf/2006.15637v3.pdf
|
https://github.com/Akella17/Deep-Bayesian-Quadrature-Policy-Optimization
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/gnn3dmot-graph-neural-network-for-3d-multi-1
|
GNN3DMOT: Graph Neural Network for 3D Multi-Object Tracking with Multi-Feature Learning
|
2006.07327
|
https://arxiv.org/abs/2006.07327v1
|
https://arxiv.org/pdf/2006.07327v1.pdf
|
https://github.com/xinshuoweng/GNN3DMOT
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/rethinking-the-truly-unsupervised-image-to
|
Rethinking the Truly Unsupervised Image-to-Image Translation
|
2006.06500
|
https://arxiv.org/abs/2006.06500v2
|
https://arxiv.org/pdf/2006.06500v2.pdf
|
https://github.com/clovaai/tunit
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/compositional-convolutional-neural-networks-a
|
Compositional Convolutional Neural Networks: A Deep Architecture with Innate Robustness to Partial Occlusion
|
2003.04490
|
https://arxiv.org/abs/2003.04490v3
|
https://arxiv.org/pdf/2003.04490v3.pdf
|
https://github.com/AdamKortylewski/CompositionalNets
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/intra-3d-intracranial-aneurysm-dataset-for
|
IntrA: 3D Intracranial Aneurysm Dataset for Deep Learning
|
2003.02920
|
https://arxiv.org/abs/2003.02920v2
|
https://arxiv.org/pdf/2003.02920v2.pdf
|
https://github.com/intra3d2019/IntrA
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/few-shot-learning-on-graphs-via-super-classes-1
|
Few-Shot Learning on Graphs via Super-Classes based on Graph Spectral Measures
|
2002.12815
|
https://arxiv.org/abs/2002.12815v1
|
https://arxiv.org/pdf/2002.12815v1.pdf
|
https://github.com/chauhanjatin10/GraphsFewShot
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/roto-translation-equivariant-convolutional
|
Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis
|
2002.08725
|
https://arxiv.org/abs/2002.08725v1
|
https://arxiv.org/pdf/2002.08725v1.pdf
|
https://github.com/tueimage/se2cnn
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/efficient-policy-learning-from-surrogate-loss
|
Efficient Policy Learning from Surrogate-Loss Classification Reductions
|
2002.05153
|
https://arxiv.org/abs/2002.05153v1
|
https://arxiv.org/pdf/2002.05153v1.pdf
|
https://github.com/CausalML/ESPRM
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/detecting-stable-communities-in-link-streams
|
Detecting Stable Communities in Link Streams at Multiple Temporal Scales
|
1907.10453
|
https://arxiv.org/abs/1907.10453v1
|
https://arxiv.org/pdf/1907.10453v1.pdf
|
https://github.com/Yquetzal/ECML_PKDD_2019
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/reinforcement-learning-enhanced-quantum
|
Reinforcement Learning Enhanced Quantum-inspired Algorithm for Combinatorial Optimization
|
2002.04676
|
https://arxiv.org/abs/2002.04676v2
|
https://arxiv.org/pdf/2002.04676v2.pdf
|
https://github.com/BeloborodovDS/SIMCIM-RL
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/a-probabilistic-formulation-of-unsupervised-1
|
A Probabilistic Formulation of Unsupervised Text Style Transfer
|
2002.03912
|
https://arxiv.org/abs/2002.03912v3
|
https://arxiv.org/pdf/2002.03912v3.pdf
|
https://github.com/cindyxinyiwang/deep-latent-sequence-model
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/correcting-knowledge-base-assertions
|
Correcting Knowledge Base Assertions
|
2001.06917
|
https://arxiv.org/abs/2001.06917v1
|
https://arxiv.org/pdf/2001.06917v1.pdf
|
https://github.com/ChenJiaoyan/KG_Curation
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/nonparametric-estimation-of-population
|
Nonparametric Estimation of Population Average Dose-Response Curves using Entropy Balancing Weights for Continuous Exposures
|
2003.02938
|
https://arxiv.org/abs/2003.02938v1
|
https://arxiv.org/pdf/2003.02938v1.pdf
|
https://github.com/EddieYang211/ebal-python
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/learning-fairness-in-multi-agent-systems
|
Learning Fairness in Multi-Agent Systems
|
1910.14472
|
https://arxiv.org/abs/1910.14472v1
|
https://arxiv.org/pdf/1910.14472v1.pdf
|
https://github.com/PKU-AI-Edge/FEN
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/a-holistic-approach-to-polyphonic-music
|
A holistic approach to polyphonic music transcription with neural networks
|
1910.12086
|
https://arxiv.org/abs/1910.12086v1
|
https://arxiv.org/pdf/1910.12086v1.pdf
|
https://github.com/mangelroman/audio2score
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/inherent-weight-normalization-in-stochastic
|
Inherent Weight Normalization in Stochastic Neural Networks
|
1910.12316
|
https://arxiv.org/abs/1910.12316v1
|
https://arxiv.org/pdf/1910.12316v1.pdf
|
https://github.com/nmi-lab/neural_sampling_machines
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/bottom-up-meta-policy-search
|
Bottom-Up Meta-Policy Search
|
1910.10232
|
https://arxiv.org/abs/1910.10232v2
|
https://arxiv.org/pdf/1910.10232v2.pdf
|
https://github.com/luckeciano/bumps
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/meme-generating-rnn-model-explanations-via-1
|
MEME: Generating RNN Model Explanations via Model Extraction
| null |
https://openreview.net/forum?id=0beaSUVK_n4
|
https://openreview.net/pdf?id=0beaSUVK_n4
|
https://github.com/dmitrykazhdan/MEME-RNN-XAI
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/compacting-picking-and-growing-for
|
Compacting, Picking and Growing for Unforgetting Continual Learning
|
1910.06562
|
https://arxiv.org/abs/1910.06562v3
|
https://arxiv.org/pdf/1910.06562v3.pdf
|
https://github.com/ivclab/CPG
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/how-does-language-influence-documentation
|
How Does Language Influence Documentation Workflow? Unsupervised Word Discovery Using Translations in Multiple Languages
|
1910.05154
|
https://arxiv.org/abs/1910.05154v1
|
https://arxiv.org/pdf/1910.05154v1.pdf
|
https://github.com/mzboito/mmboshi
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/smoothfool-an-efficient-framework-for
|
SmoothFool: An Efficient Framework for Computing Smooth Adversarial Perturbations
|
1910.03624
|
https://arxiv.org/abs/1910.03624v1
|
https://arxiv.org/pdf/1910.03624v1.pdf
|
https://github.com/alldbi/SmoothFool
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/epca-high-dimensional-exponential-family-pca
|
$e$PCA: High Dimensional Exponential Family PCA
|
1611.05550
|
https://arxiv.org/abs/1611.05550v2
|
https://arxiv.org/pdf/1611.05550v2.pdf
|
https://github.com/lydiatliu/epca
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/biobert-a-pre-trained-biomedical-language
|
BioBERT: a pre-trained biomedical language representation model for biomedical text mining
|
1901.08746
|
https://arxiv.org/abs/1901.08746v4
|
https://arxiv.org/pdf/1901.08746v4.pdf
|
https://github.com/jpablou/Matching-The-Blanks-Ths
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/generalized-inner-loop-meta-learning
|
Generalized Inner Loop Meta-Learning
|
1910.01727
|
https://arxiv.org/abs/1910.01727v2
|
https://arxiv.org/pdf/1910.01727v2.pdf
|
https://github.com/facebookresearch/higher
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/albert-a-lite-bert-for-self-supervised
|
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
|
1909.11942
|
https://arxiv.org/abs/1909.11942v6
|
https://arxiv.org/pdf/1909.11942v6.pdf
|
https://github.com/jpablou/Matching-The-Blanks-Ths
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/mtab-matching-tabular-data-to-knowledge-graph
|
MTab: Matching Tabular Data to Knowledge Graph using Probability Models
|
1910.00246
|
https://arxiv.org/abs/1910.00246v2
|
https://arxiv.org/pdf/1910.00246v2.pdf
|
https://github.com/phucty/MTab
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/matching-the-blanks-distributional-similarity
|
Matching the Blanks: Distributional Similarity for Relation Learning
|
1906.03158
|
https://arxiv.org/abs/1906.03158v1
|
https://arxiv.org/pdf/1906.03158v1.pdf
|
https://github.com/jpablou/Matching-The-Blanks-Ths
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/well-calibrated-model-uncertainty-with
|
Well-calibrated Model Uncertainty with Temperature Scaling for Dropout Variational Inference
|
1909.13550
|
https://arxiv.org/abs/1909.13550v3
|
https://arxiv.org/pdf/1909.13550v3.pdf
|
https://github.com/mlaves/bayesian-temperature-scaling
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/social-and-scene-aware-trajectory-prediction
|
Social and Scene-Aware Trajectory Prediction in Crowded Spaces
|
1909.08840
|
https://arxiv.org/abs/1909.08840v1
|
https://arxiv.org/pdf/1909.08840v1.pdf
|
https://github.com/Oghma/sns-lstm
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/revealing-the-importance-of-semantic
|
Revealing the Importance of Semantic Retrieval for Machine Reading at Scale
|
1909.08041
|
https://arxiv.org/abs/1909.08041v1
|
https://arxiv.org/pdf/1909.08041v1.pdf
|
https://github.com/easonnie/semanticRetrievalMRS
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/stacking-models-for-nearly-optimal-link
|
Stacking Models for Nearly Optimal Link Prediction in Complex Networks
|
1909.07578
|
https://arxiv.org/abs/1909.07578v1
|
https://arxiv.org/pdf/1909.07578v1.pdf
|
https://github.com/Aghasemian/OptimalLinkPrediction
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/say-anything-automatic-semantic-infelicity
|
Say Anything: Automatic Semantic Infelicity Detection in L2 English Indefinite Pronouns
|
1909.07928
|
https://arxiv.org/abs/1909.07928v1
|
https://arxiv.org/pdf/1909.07928v1.pdf
|
https://github.com/ellarabi/indefinite-pronouns
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/basketballgan-generating-basketball-play
|
BasketballGAN: Generating Basketball Play Simulation Through Sketching
|
1909.07088
|
https://arxiv.org/abs/1909.07088v2
|
https://arxiv.org/pdf/1909.07088v2.pdf
|
https://github.com/chychen/BasketballGAN
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/efficient-low-rank-gaussian-variational
|
Efficient Low Rank Gaussian Variational Inference for Neural Networks
| null |
http://proceedings.neurips.cc/paper/2020/hash/310cc7ca5a76a446f85c1a0d641ba96d-Abstract.html
|
http://proceedings.neurips.cc/paper/2020/file/310cc7ca5a76a446f85c1a0d641ba96d-Paper.pdf
|
https://github.com/marctom/elrgvi
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/neural-abstractive-text-summarization-with
|
Neural Abstractive Text Summarization with Sequence-to-Sequence Models
|
1812.02303
|
https://arxiv.org/abs/1812.02303v4
|
https://arxiv.org/pdf/1812.02303v4.pdf
|
https://github.com/freeflyxiaoma/pycorrector
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/distributional-policy-optimization-an
|
Distributional Policy Optimization: An Alternative Approach for Continuous Control
|
1905.09855
|
https://arxiv.org/abs/1905.09855v2
|
https://arxiv.org/pdf/1905.09855v2.pdf
|
https://github.com/tesslerc/GAC
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/neural-language-correction-with-character
|
Neural Language Correction with Character-Based Attention
|
1603.09727
|
http://arxiv.org/abs/1603.09727v1
|
http://arxiv.org/pdf/1603.09727v1.pdf
|
https://github.com/freeflyxiaoma/pycorrector
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/a-zeroth-order-block-coordinate-descent
|
A Zeroth-Order Block Coordinate Descent Algorithm for Huge-Scale Black-Box Optimization
|
2102.10707
|
https://arxiv.org/abs/2102.10707v2
|
https://arxiv.org/pdf/2102.10707v2.pdf
|
https://github.com/YuchenLou/ZO-BCD
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/when-a-good-translation-is-wrong-in-context
|
When a Good Translation is Wrong in Context: Context-Aware Machine Translation Improves on Deixis, Ellipsis, and Lexical Cohesion
|
1905.05979
|
https://arxiv.org/abs/1905.05979v2
|
https://arxiv.org/pdf/1905.05979v2.pdf
|
https://github.com/lena-voita/good-translation-wrong-in-context
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/190503706
|
Accurate Visual Localization for Automotive Applications
|
1905.03706
|
http://arxiv.org/abs/1905.03706v1
|
http://arxiv.org/pdf/1905.03706v1.pdf
|
https://github.com/getnexar/Nexar-Visual-Localization
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/lifelong-sequential-modeling-with
|
Lifelong Sequential Modeling with Personalized Memorization for User Response Prediction
|
1905.00758
|
https://arxiv.org/abs/1905.00758v2
|
https://arxiv.org/pdf/1905.00758v2.pdf
|
https://github.com/alimamarankgroup/HPMN
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/data-hand-fostering-visual-exploration-of
|
Data@Hand: Fostering Visual Exploration of Personal Data on Smartphones Leveraging Speech and Touch Interaction
|
2101.06283
|
https://arxiv.org/abs/2101.06283v1
|
https://arxiv.org/pdf/2101.06283v1.pdf
|
https://github.com/umdsquare/data-at-hand-mobile
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/190411800
|
Adaptive Matrix Completion for the Users and the Items in Tail
|
1904.11800
|
https://arxiv.org/abs/1904.11800v2
|
https://arxiv.org/pdf/1904.11800v2.pdf
|
https://github.com/mohit-shrma/matfac
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/190409324
|
Mask-Predict: Parallel Decoding of Conditional Masked Language Models
|
1904.09324
|
https://arxiv.org/abs/1904.09324v2
|
https://arxiv.org/pdf/1904.09324v2.pdf
|
https://github.com/facebookresearch/Mask-Predict
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/neural-message-passing-for-multi-label-1
|
Neural Message Passing for Multi-Label Classification
|
1904.08049
|
http://arxiv.org/abs/1904.08049v1
|
http://arxiv.org/pdf/1904.08049v1.pdf
|
https://github.com/QData/LaMP
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/difficulty-aware-image-super-resolution-via
|
Difficulty-aware Image Super Resolution via Deep Adaptive Dual-Network
|
1904.05802
|
http://arxiv.org/abs/1904.05802v2
|
http://arxiv.org/pdf/1904.05802v2.pdf
|
https://github.com/xzwlx/Difficulty-SR
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/remasc-realistic-replay-attack-corpus-for
|
ReMASC: Realistic Replay Attack Corpus for Voice Controlled Systems
|
1904.03365
|
https://arxiv.org/abs/1904.03365v2
|
https://arxiv.org/pdf/1904.03365v2.pdf
|
https://github.com/YuanGongND/ReMASC
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/an-open-source-toolkit-for-the-tracking
|
An open source toolkit for the tracking, termination and recovery of high altitude balloon flights and payloads
|
1904.04321
|
http://arxiv.org/abs/1904.04321v1
|
http://arxiv.org/pdf/1904.04321v1.pdf
|
https://github.com/PaulZC/Balloon_Cut-Down_Device
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/vest-very-sparse-tucker-factorization-of
|
VeST: Very Sparse Tucker Factorization of Large-Scale Tensors
|
1904.02603
|
http://arxiv.org/abs/1904.02603v1
|
http://arxiv.org/pdf/1904.02603v1.pdf
|
https://github.com/leesael/VeST
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/et-bert-a-contextualized-datagram
|
ET-BERT: A Contextualized Datagram Representation with Pre-training Transformers for Encrypted Traffic Classification
|
2202.06335
|
https://arxiv.org/abs/2202.06335v2
|
https://arxiv.org/pdf/2202.06335v2.pdf
|
https://github.com/linwhitehat/et-bert
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/robust-graph-learning-from-noisy-data
|
Robust Graph Learning from Noisy Data
|
1812.06673
|
http://arxiv.org/abs/1812.06673v1
|
http://arxiv.org/pdf/1812.06673v1.pdf
|
https://github.com/sckangz/RGC
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/lsicc-a-large-scale-informal-chinese-corpus
|
LSICC: A Large Scale Informal Chinese Corpus
|
1811.10167
|
http://arxiv.org/abs/1811.10167v1
|
http://arxiv.org/pdf/1811.10167v1.pdf
|
https://github.com/JaniceZhao/Chinese-Forum-Corpus
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/using-sentiment-induction-to-understand
|
Using Sentiment Induction to Understand Variation in Gendered Online Communities
|
1811.07061
|
http://arxiv.org/abs/1811.07061v1
|
http://arxiv.org/pdf/1811.07061v1.pdf
|
https://github.com/lucy3/reddit-sent
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/on-pruning-for-score-based-bayesian-network
|
On Pruning for Score-Based Bayesian Network Structure Learning
|
1905.09943
|
https://arxiv.org/abs/1905.09943v2
|
https://arxiv.org/pdf/1905.09943v2.pdf
|
https://github.com/AlCorreia/BDeu-Structure-Learning
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/derpn-taking-a-further-step-toward-more
|
DeRPN: Taking a further step toward more general object detection
|
1811.06700
|
http://arxiv.org/abs/1811.06700v1
|
http://arxiv.org/pdf/1811.06700v1.pdf
|
https://github.com/HCIILAB/DeRPN
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/counterfactual-learning-from-human
|
Counterfactual Learning from Human Proofreading Feedback for Semantic Parsing
|
1811.12239
|
http://arxiv.org/abs/1811.12239v1
|
http://arxiv.org/pdf/1811.12239v1.pdf
|
https://github.com/carolinlawrence/nematus
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/gated-hierarchical-attention-for-image
|
Gated Hierarchical Attention for Image Captioning
|
1810.12535
|
http://arxiv.org/abs/1810.12535v2
|
http://arxiv.org/pdf/1810.12535v2.pdf
|
https://github.com/qingzwang/GHA-ImageCaptioning
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/global-deep-learning-methods-for
|
Non-local U-Net for Biomedical Image Segmentation
|
1812.04103
|
https://arxiv.org/abs/1812.04103v2
|
https://arxiv.org/pdf/1812.04103v2.pdf
|
https://github.com/divelab/Non-local-U-Nets
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/context-dependent-word-representation-for
|
Context-Dependent Word Representation for Neural Machine Translation
|
1607.00578
|
http://arxiv.org/abs/1607.00578v1
|
http://arxiv.org/pdf/1607.00578v1.pdf
|
https://github.com/kyunghyuncho/WordVectorManifold
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/interactive-language-learning-by-question
|
Interactive Language Learning by Question Answering
|
1908.10909
|
https://arxiv.org/abs/1908.10909v1
|
https://arxiv.org/pdf/1908.10909v1.pdf
|
https://github.com/xingdi-eric-yuan/qait_public
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/building-a-hebrew-semantic-role-labeling
|
Building a Hebrew Semantic Role Labeling Lexical Resource from Parallel Movie Subtitles
|
2005.08206
|
https://arxiv.org/abs/2005.08206v1
|
https://arxiv.org/pdf/2005.08206v1.pdf
|
https://github.com/bgunlp/hebrew_srl
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/data-driven-meta-set-based-fine-grained
|
Data-driven Meta-set Based Fine-Grained Visual Classification
|
2008.02438
|
https://arxiv.org/abs/2008.02438v1
|
https://arxiv.org/pdf/2008.02438v1.pdf
|
https://github.com/NUST-Machine-Intelligence-Laboratory/dmbfgvr
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/survae-flows-surjections-to-bridge-the-gap
|
SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows
|
2007.02731
|
https://arxiv.org/abs/2007.02731v2
|
https://arxiv.org/pdf/2007.02731v2.pdf
|
https://github.com/didriknielsen/survae_flows
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/foreground-segmentation-using-a-triplet
|
Foreground Segmentation Using a Triplet Convolutional Neural Network for Multiscale Feature Encoding
|
1801.02225
|
http://arxiv.org/abs/1801.02225v1
|
http://arxiv.org/pdf/1801.02225v1.pdf
|
https://github.com/lim-anggun/FgSegNet
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/morphological-analyzer-and-generator-for
|
Morphological Analyzer and Generator for Russian and Ukrainian Languages
|
1503.07283
|
http://arxiv.org/abs/1503.07283v1
|
http://arxiv.org/pdf/1503.07283v1.pdf
|
https://github.com/kmike/pymorphy2
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/how-to-find-a-unicorn-a-novel-model-free
|
How to find a unicorn: a novel model-free, unsupervised anomaly detection method for time series
|
2004.11468
|
https://arxiv.org/abs/2004.11468v3
|
https://arxiv.org/pdf/2004.11468v3.pdf
|
https://github.com/phrenico/uniqed
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/image-to-image-translation-via-group-wise
|
Image-to-Image Translation via Group-wise Deep Whitening-and-Coloring Transformation
|
1812.09912
|
https://arxiv.org/abs/1812.09912v2
|
https://arxiv.org/pdf/1812.09912v2.pdf
|
https://github.com/WonwoongCho/GDWCT
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/modular-representation-underlies-systematic
|
Neural Natural Language Inference Models Partially Embed Theories of Lexical Entailment and Negation
|
2004.14623
|
https://arxiv.org/abs/2004.14623v4
|
https://arxiv.org/pdf/2004.14623v4.pdf
|
https://github.com/atticusg/MoNLI
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/modelicagym-applying-reinforcement-learning
|
ModelicaGym: Applying Reinforcement Learning to Modelica Models
|
1909.08604
|
https://arxiv.org/abs/1909.08604v1
|
https://arxiv.org/pdf/1909.08604v1.pdf
|
https://github.com/ucuapps/modelicagym
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/finding-temporal-patterns-using-algebraic
|
Finding path motifs in large temporal graphs using algebraic fingerprints
|
2001.07158
|
https://arxiv.org/abs/2001.07158v4
|
https://arxiv.org/pdf/2001.07158v4.pdf
|
https://github.com/suhastheju/temporal-patterns-mk2
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/towards-precise-completion-of-deformable
|
Towards Precise Completion of Deformable Shapes
| null |
https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/4619_ECCV_2020_paper.php
|
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123690358.pdf
|
https://github.com/OshriHalimi/precise_shape_completion
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/towards-compact-single-image-super-resolution
|
Towards Compact Single Image Super-Resolution via Contrastive Self-distillation
|
2105.11683
|
https://arxiv.org/abs/2105.11683v1
|
https://arxiv.org/pdf/2105.11683v1.pdf
|
https://github.com/mindspore-ai/contrib/tree/master/papers/CSD
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/eigendecompositions-of-transfer-operators-in
|
Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces
|
1712.01572
|
https://arxiv.org/abs/1712.01572v3
|
https://arxiv.org/pdf/1712.01572v3.pdf
|
https://github.com/sklus/d3s
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-genre-aware-attention-model-to-improve-the
|
A Genre-Aware Attention Model to Improve the Likability Prediction of Books
| null |
https://aclanthology.org/D18-1375
|
https://aclanthology.org/D18-1375.pdf
|
https://github.com/sjmaharjan/genre_aware_attention
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/prema-principled-tensor-data-recovery-from
|
PREMA: Principled Tensor Data Recovery from Multiple Aggregated Views
|
1910.12001
|
https://arxiv.org/abs/1910.12001v2
|
https://arxiv.org/pdf/1910.12001v2.pdf
|
https://github.com/FaisalAlmutairi/Prema
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/learning-to-generate-move-by-move-commentary
|
Learning to Generate Move-by-Move Commentary for Chess Games from Large-Scale Social Forum Data
| null |
https://aclanthology.org/P18-1154
|
https://aclanthology.org/P18-1154.pdf
|
https://github.com/harsh19/ChessCommentaryGeneration
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/interactive-text-ranking-with-bayesian
|
Interactive Text Ranking with Bayesian Optimisation: A Case Study on Community QA and Summarisation
|
1911.10183
|
https://arxiv.org/abs/1911.10183v3
|
https://arxiv.org/pdf/1911.10183v3.pdf
|
https://github.com/UKPLab/tacl2020-interactive-ranking
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/wavelet-integrated-cnns-for-noise-robust
|
Wavelet Integrated CNNs for Noise-Robust Image Classification
|
2005.03337
|
https://arxiv.org/abs/2005.03337v2
|
https://arxiv.org/pdf/2005.03337v2.pdf
|
https://github.com/LiQiufu/WaveCNet
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/generating-market-comments-referring-to
|
Generating Market Comments Referring to External Resources
| null |
https://aclanthology.org/W18-6515
|
https://aclanthology.org/W18-6515.pdf
|
https://github.com/aistairc/market-reporter
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/comment-on-androdet-an-adaptive-android
|
Comment on "AndrODet: An adaptive Android obfuscation detector"
|
1910.06192
|
https://arxiv.org/abs/1910.06192v2
|
https://arxiv.org/pdf/1910.06192v2.pdf
|
https://github.com/alirezamohammadinodooshan/androdet-se-eval
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/real-world-multiobject-multigrasp-detection
|
Real-world multiobject, multigrasp detection
| null |
https://arxiv.org/abs/1802.00520
|
https://arxiv.org/pdf/1802.00520.pdf
|
https://github.com/ivalab/grasp_multiObject
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/unsupervised-feature-learning-via-non-1
|
Unsupervised Feature Learning via Non-Parametric Instance Discrimination
| null |
http://openaccess.thecvf.com/content_cvpr_2018/html/Wu_Unsupervised_Feature_Learning_CVPR_2018_paper.html
|
http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_Unsupervised_Feature_Learning_CVPR_2018_paper.pdf
|
https://github.com/zhirongw/lemniscate.pytorch
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/zipper-logic
|
Zipper logic
|
1405.6095
|
https://arxiv.org/abs/1405.6095v1
|
https://arxiv.org/pdf/1405.6095v1.pdf
|
https://github.com/mbuliga/zss
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/mobilenets-efficient-convolutional-neural
|
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
|
1704.04861
|
http://arxiv.org/abs/1704.04861v1
|
http://arxiv.org/pdf/1704.04861v1.pdf
|
https://github.com/sivaole/Face_Detection
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/reinforcement-learning-with-prototypical-1
|
Reinforcement Learning with Prototypical Representations
| null |
https://openreview.net/forum?id=NVd9b1sFO0R
|
https://openreview.net/pdf?id=NVd9b1sFO0R
|
https://github.com/denisyarats/proto
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/evaluating-bayesian-deep-learning-methods-for
|
Evaluating Bayesian Deep Learning Methods for Semantic Segmentation
|
1811.12709
|
http://arxiv.org/abs/1811.12709v2
|
http://arxiv.org/pdf/1811.12709v2.pdf
|
https://github.com/IntelLabs/AVUC
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/your-answer-is-incorrect-would-you-like-to-1
|
Your Answer is Incorrect... Would you like to know why? Introducing a Bilingual Short Answer Feedback Dataset
| null |
https://aclanthology.org/2022.acl-long.587
|
https://aclanthology.org/2022.acl-long.587.pdf
|
https://github.com/sebochs/saf
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/online-geolocalized-emotion-across-us-cities
|
Online geolocalized emotion across US cities during the COVID crisis: Universality, policy response, and connection with local mobility
|
2009.10461
|
https://arxiv.org/abs/2009.10461v1
|
https://arxiv.org/pdf/2009.10461v1.pdf
|
https://github.com/aleckirkley/US-covid-tweets-with-sentiments-and-geolocations
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/pre-training-auto-generated-volumetric-shapes
|
Pre-Training Auto-Generated Volumetric Shapes for 3D Medical Image Segmentation
| null |
https://openaccess.thecvf.com/content/CVPR2023W/ECV/html/Tadokoro_Pre-Training_Auto-Generated_Volumetric_Shapes_for_3D_Medical_Image_Segmentation_CVPRW_2023_paper.html
|
https://openaccess.thecvf.com/content/CVPR2023W/ECV/papers/Tadokoro_Pre-Training_Auto-Generated_Volumetric_Shapes_for_3D_Medical_Image_Segmentation_CVPRW_2023_paper.pdf
|
https://github.com/super-tadory/primgeoseg
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/comparison-by-conversion-reverse-engineering
|
Comparison by Conversion: Reverse-Engineering UCCA from Syntax and Lexical Semantics
|
2011.00834
|
https://arxiv.org/abs/2011.00834v1
|
https://arxiv.org/pdf/2011.00834v1.pdf
|
https://github.com/danielhers/hit-scir-ucca-parser
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/bracketing-encodings-for-2-planar-dependency
|
Bracketing Encodings for 2-Planar Dependency Parsing
|
2011.00596
|
https://arxiv.org/abs/2011.00596v2
|
https://arxiv.org/pdf/2011.00596v2.pdf
|
https://github.com/mstrise/dep2label
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-unifying-theory-of-transition-based-and
|
A Unifying Theory of Transition-based and Sequence Labeling Parsing
|
2011.00584
|
https://arxiv.org/abs/2011.00584v1
|
https://arxiv.org/pdf/2011.00584v1.pdf
|
https://github.com/mstrise/dep2label
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/transitive-learning-exploring-the
|
Transitional Learning: Exploring the Transition States of Degradation for Blind Super-resolution
|
2103.15290
|
https://arxiv.org/abs/2103.15290v2
|
https://arxiv.org/pdf/2103.15290v2.pdf
|
https://github.com/YuanfeiHuang/TLSR
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-to-play-cup-and-ball-with-noisy
|
Learning to Play Cup-and-Ball with Noisy Camera Observations
|
2007.09562
|
https://arxiv.org/abs/2007.09562v1
|
https://arxiv.org/pdf/2007.09562v1.pdf
|
https://github.com/MPC-Berkeley/kendama
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/an-implementation-of-faster-rcnn-with-study
|
An Implementation of Faster RCNN with Study for Region Sampling
|
1702.02138
|
http://arxiv.org/abs/1702.02138v2
|
http://arxiv.org/pdf/1702.02138v2.pdf
|
https://github.com/tigerofmurder/tf-faster-rcnn
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/faster-r-cnn-towards-real-time-object
|
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
|
1506.01497
|
http://arxiv.org/abs/1506.01497v3
|
http://arxiv.org/pdf/1506.01497v3.pdf
|
https://github.com/tigerofmurder/tf-faster-rcnn
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/feature-pyramid-networks-for-object-detection
|
Feature Pyramid Networks for Object Detection
|
1612.03144
|
http://arxiv.org/abs/1612.03144v2
|
http://arxiv.org/pdf/1612.03144v2.pdf
|
https://github.com/tigerofmurder/tf-faster-rcnn
| false
| false
| true
|
tf
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.