paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/spatial-memory-for-context-reasoning-in
|
Spatial Memory for Context Reasoning in Object Detection
|
1704.04224
|
http://arxiv.org/abs/1704.04224v1
|
http://arxiv.org/pdf/1704.04224v1.pdf
|
https://github.com/tigerofmurder/tf-faster-rcnn
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/towards-robust-federated-analytics-via
|
Towards Robust Federated Analytics via Differentially Private Measurements of Statistical Heterogeneity
|
2411.04579
|
https://arxiv.org/abs/2411.04579v2
|
https://arxiv.org/pdf/2411.04579v2.pdf
|
https://github.com/mary-python/agm-cgm
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/facenet-a-unified-embedding-for-face
|
FaceNet: A Unified Embedding for Face Recognition and Clustering
|
1503.03832
|
http://arxiv.org/abs/1503.03832v3
|
http://arxiv.org/pdf/1503.03832v3.pdf
|
https://github.com/suyash0612/face_recognitionandverification
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition
|
Deep Residual Learning for Image Recognition
|
1512.03385
|
http://arxiv.org/abs/1512.03385v1
|
http://arxiv.org/pdf/1512.03385v1.pdf
|
https://github.com/Rohed/ml-1
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/you-only-look-once-unified-real-time-object
|
You Only Look Once: Unified, Real-Time Object Detection
|
1506.02640
|
http://arxiv.org/abs/1506.02640v5
|
http://arxiv.org/pdf/1506.02640v5.pdf
|
https://github.com/Rohed/ml-1
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/recurrent-attention-model-with-log-polar
|
Recurrent Attention Model with Log-Polar Mapping is Robust against Adversarial Attacks
|
2002.05388
|
https://arxiv.org/abs/2002.05388v1
|
https://arxiv.org/pdf/2002.05388v1.pdf
|
https://github.com/wangxiao5791509/RAM-LPM-PyTorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/show-and-tell-a-neural-image-caption
|
Show and Tell: A Neural Image Caption Generator
|
1411.4555
|
http://arxiv.org/abs/1411.4555v2
|
http://arxiv.org/pdf/1411.4555v2.pdf
|
https://github.com/hashi0203/image-captioning
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/mace-model-agnostic-concept-extractor-for
|
MACE: Model Agnostic Concept Extractor for Explaining Image Classification Networks
|
2011.01472
|
https://arxiv.org/abs/2011.01472v1
|
https://arxiv.org/pdf/2011.01472v1.pdf
|
https://github.com/mace19/MACE
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/meta-learning-for-natural-language
|
Meta-Learning for Natural Language Understanding under Continual Learning Framework
|
2011.01452
|
https://arxiv.org/abs/2011.01452v1
|
https://arxiv.org/pdf/2011.01452v1.pdf
|
https://github.com/lexili24/NLUProject
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/description-of-quantum-dynamics-of-open
|
Description of quantum dynamics of open systems based on collision-like models
|
quant-ph/0410161
|
https://arxiv.org/abs/quant-ph/0410161v1
|
https://arxiv.org/pdf/quant-ph/0410161v1.pdf
|
https://github.com/abhayhegde/qubit-lindblad-form
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/effective-distances-for-epidemics-spreading
|
Effective Distances for Epidemics Spreading on Complex Networks
|
1608.06201
|
http://arxiv.org/abs/1608.06201v3
|
http://arxiv.org/pdf/1608.06201v3.pdf
|
https://github.com/lucasvt01/Distance_metric_
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/global-disease-spread-statistics-and
|
Global disease spread: statistics and estimation of arrival times
|
0801.1846
|
http://arxiv.org/abs/0801.1846v1
|
http://arxiv.org/pdf/0801.1846v1.pdf
|
https://github.com/lucasvt01/Distance_metric_
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/senteval-an-evaluation-toolkit-for-universal
|
SentEval: An Evaluation Toolkit for Universal Sentence Representations
|
1803.05449
|
http://arxiv.org/abs/1803.05449v1
|
http://arxiv.org/pdf/1803.05449v1.pdf
|
https://github.com/HUSTLyn/SentEval
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-to-adapt-structured-output-space-for
|
Learning to Adapt Structured Output Space for Semantic Segmentation
|
1802.10349
|
https://arxiv.org/abs/1802.10349v3
|
https://arxiv.org/pdf/1802.10349v3.pdf
|
https://github.com/KookHoiKim/AdaptSegNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/domain-adaptation-for-structured-output-via
|
Domain Adaptation for Structured Output via Discriminative Patch Representations
|
1901.05427
|
https://arxiv.org/abs/1901.05427v4
|
https://arxiv.org/pdf/1901.05427v4.pdf
|
https://github.com/KookHoiKim/AdaptSegNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/adversarial-learning-for-semi-supervised
|
Adversarial Learning for Semi-Supervised Semantic Segmentation
|
1802.07934
|
http://arxiv.org/abs/1802.07934v2
|
http://arxiv.org/pdf/1802.07934v2.pdf
|
https://github.com/KookHoiKim/AdaptSegNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/no-more-discrimination-cross-city-adaptation
|
No More Discrimination: Cross City Adaptation of Road Scene Segmenters
|
1704.08509
|
http://arxiv.org/abs/1704.08509v1
|
http://arxiv.org/pdf/1704.08509v1.pdf
|
https://github.com/KookHoiKim/AdaptSegNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/real-time-hand-gesture-detection-and
|
Real-time Hand Gesture Detection and Classification Using Convolutional Neural Networks
|
1901.10323
|
https://arxiv.org/abs/1901.10323v3
|
https://arxiv.org/pdf/1901.10323v3.pdf
|
https://github.com/Blitzkrieg37/Kinesic
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/neural-processes
|
Neural Processes
|
1807.01622
|
http://arxiv.org/abs/1807.01622v1
|
http://arxiv.org/pdf/1807.01622v1.pdf
|
https://github.com/wesselb/NeuralProcesses.jl
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/yolov4-optimal-speed-and-accuracy-of-object
|
YOLOv4: Optimal Speed and Accuracy of Object Detection
|
2004.10934
|
https://arxiv.org/abs/2004.10934v1
|
https://arxiv.org/pdf/2004.10934v1.pdf
|
https://github.com/VinishUchiha/Object-Detection-Using-Yolo4
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/improved-evaluation-and-generation-of-grid
|
Improved Evaluation and Generation of Grid Layouts using Distance Preservation Quality and Linear Assignment Sorting
|
2205.04255
|
https://arxiv.org/abs/2205.04255v2
|
https://arxiv.org/pdf/2205.04255v2.pdf
|
https://github.com/visual-computing/las_flas
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/progressive-growing-of-gans-for-improved
|
Progressive Growing of GANs for Improved Quality, Stability, and Variation
|
1710.10196
|
http://arxiv.org/abs/1710.10196v3
|
http://arxiv.org/pdf/1710.10196v3.pdf
|
https://github.com/alexeyhorkin/ProGAN-PyTorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/reinforcement-learning-with-prototypical
|
Reinforcement Learning with Prototypical Representations
|
2102.11271
|
https://arxiv.org/abs/2102.11271v2
|
https://arxiv.org/pdf/2102.11271v2.pdf
|
https://github.com/denisyarats/proto
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/the-statistical-mechanics-of-networks
|
The statistical mechanics of networks
|
cond-mat/0405566
|
https://arxiv.org/abs/cond-mat/0405566v1
|
https://arxiv.org/pdf/cond-mat/0405566v1.pdf
|
https://github.com/rapharomero/PaperNotes
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-simple-baseline-for-multi-object-tracking
|
FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking
|
2004.01888
|
https://arxiv.org/abs/2004.01888v6
|
https://arxiv.org/pdf/2004.01888v6.pdf
|
https://github.com/ankitsinghsuraj/mot20
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/systematically-exploring-redundancy-reduction
|
Systematically Exploring Redundancy Reduction in Summarizing Long Documents
|
2012.00052
|
https://arxiv.org/abs/2012.00052v1
|
https://arxiv.org/pdf/2012.00052v1.pdf
|
https://github.com/Wendy-Xiao/redundancy_reduction_longdoc
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/a-connectedness-constraint-for-learning
|
A Connectedness Constraint for Learning Sparse Graphs
|
1708.09021
|
http://arxiv.org/abs/1708.09021v1
|
http://arxiv.org/pdf/1708.09021v1.pdf
|
https://github.com/MartinSundin/Connected-graph-constraint
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/toward-a-generalization-metric-for-deep
|
Toward a Generalization Metric for Deep Generative Models
|
2011.00754
|
https://arxiv.org/abs/2011.00754v3
|
https://arxiv.org/pdf/2011.00754v3.pdf
|
https://github.com/htt210/GeneralizationMetricGAN
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/uncertainty-guided-continual-learning-with
|
Uncertainty-guided Continual Learning with Bayesian Neural Networks
|
1906.02425
|
https://arxiv.org/abs/1906.02425v2
|
https://arxiv.org/pdf/1906.02425v2.pdf
|
https://github.com/SaynaEbrahimi/UCB
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/factorised-neural-relational-inference-for
|
Factorised Neural Relational Inference for Multi-Interaction Systems
|
1905.08721
|
https://arxiv.org/abs/1905.08721v1
|
https://arxiv.org/pdf/1905.08721v1.pdf
|
https://github.com/quizzicalkudu/shiny-bassoon
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/tener-adapting-transformer-encoder-for-name
|
TENER: Adapting Transformer Encoder for Named Entity Recognition
|
1911.04474
|
https://arxiv.org/abs/1911.04474v3
|
https://arxiv.org/pdf/1911.04474v3.pdf
|
https://github.com/jaykay233/TF2.0-TENER
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/moviescope-large-scale-analysis-of-movies
|
Moviescope: Large-scale Analysis of Movies using Multiple Modalities
|
1908.03180
|
https://arxiv.org/abs/1908.03180v1
|
https://arxiv.org/pdf/1908.03180v1.pdf
|
https://github.com/IsaacRodgz/multimodal-transformers-movies
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/quo-vadis-action-recognition-a-new-model-and
|
Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
|
1705.07750
|
http://arxiv.org/abs/1705.07750v3
|
http://arxiv.org/pdf/1705.07750v3.pdf
|
https://github.com/helloxy96/CS5242_Project2020
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/h-0-tension-phantom-dark-energy-and
|
$H_0$ Tension, Phantom Dark Energy and Cosmological Parameter Degeneracies
|
2004.08363
|
https://arxiv.org/abs/2004.08363v3
|
https://arxiv.org/pdf/2004.08363v3.pdf
|
https://github.com/GeorgeAlestas/H0_Tension_Data
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/deformable-linear-object-prediction-using
|
Deformable Linear Object Prediction Using Locally Linear Latent Dynamics
|
2103.14184
|
https://arxiv.org/abs/2103.14184v1
|
https://arxiv.org/pdf/2103.14184v1.pdf
|
https://github.com/zwbgood6/deform
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/doing-more-by-doing-less-how-structured
|
Doing More by Doing Less: How Structured Partial Backpropagation Improves Deep Learning Clusters
|
2111.10672
|
https://arxiv.org/abs/2111.10672v1
|
https://arxiv.org/pdf/2111.10672v1.pdf
|
https://github.com/adarsh-kr/paper_jigsaw-
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-partially-reversible-u-net-for-memory
|
A Partially Reversible U-Net for Memory-Efficient Volumetric Image Segmentation
|
1906.06148
|
https://arxiv.org/abs/1906.06148v2
|
https://arxiv.org/pdf/1906.06148v2.pdf
|
https://github.com/gigantenbein/UNet-Zoo
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-scripted-control-system-for-autonomous
|
A scripted control system for autonomous hardware timed experiments
|
1303.0080
|
https://arxiv.org/abs/1303.0080v3
|
https://arxiv.org/pdf/1303.0080v3.pdf
|
https://github.com/labscript-suite-temp-2-archive/cbillington-installer--forked-from--labscript_suite-installer
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
|
U-Net: Convolutional Networks for Biomedical Image Segmentation
|
1505.04597
|
http://arxiv.org/abs/1505.04597v1
|
http://arxiv.org/pdf/1505.04597v1.pdf
|
https://github.com/JifeiWang-WHU/Pytorch_Building_extraction
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/road-extraction-by-deep-residual-u-net
|
Road Extraction by Deep Residual U-Net
|
1711.10684
|
http://arxiv.org/abs/1711.10684v1
|
http://arxiv.org/pdf/1711.10684v1.pdf
|
https://github.com/JifeiWang-WHU/Pytorch_Building_extraction
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
|
U-Net: Convolutional Networks for Biomedical Image Segmentation
|
1505.04597
|
http://arxiv.org/abs/1505.04597v1
|
http://arxiv.org/pdf/1505.04597v1.pdf
|
https://github.com/SharadGitHub/OctaveUnet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/configuration-of-the-atlas-trigger-system
|
Configuration of the ATLAS Trigger System
|
physics/0306046
|
https://arxiv.org/abs/physics/0306046v1
|
https://arxiv.org/pdf/physics/0306046v1.pdf
|
https://github.com/mirguest/paper
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/phiseg-capturing-uncertainty-in-medical-image
|
PHiSeg: Capturing Uncertainty in Medical Image Segmentation
|
1906.04045
|
https://arxiv.org/abs/1906.04045v2
|
https://arxiv.org/pdf/1906.04045v2.pdf
|
https://github.com/gigantenbein/UNet-Zoo
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/fully-trainable-deep-matching
|
Fully-Trainable Deep Matching
|
1609.03532
|
http://arxiv.org/abs/1609.03532v1
|
http://arxiv.org/pdf/1609.03532v1.pdf
|
https://github.com/vwegn/dm
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/deepmatching-hierarchical-deformable-dense
|
DeepMatching: Hierarchical Deformable Dense Matching
|
1506.07656
|
http://arxiv.org/abs/1506.07656v2
|
http://arxiv.org/pdf/1506.07656v2.pdf
|
https://github.com/vwegn/dm
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/the-simple-essence-of-automatic
|
The simple essence of automatic differentiation
|
1804.00746
|
http://arxiv.org/abs/1804.00746v2
|
http://arxiv.org/pdf/1804.00746v2.pdf
|
https://github.com/bond15/Haskell-Examples
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-diagrammatic-axiomatisation-for-qubit
|
A Diagrammatic Axiomatisation for Qubit Entanglement
|
1501.07082
|
https://arxiv.org/abs/1501.07082v1
|
https://arxiv.org/pdf/1501.07082v1.pdf
|
https://github.com/bond15/Haskell-Examples
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/mixup-beyond-empirical-risk-minimization
|
mixup: Beyond Empirical Risk Minimization
|
1710.09412
|
http://arxiv.org/abs/1710.09412v2
|
http://arxiv.org/pdf/1710.09412v2.pdf
|
https://github.com/Yangget/Mixup_All-use
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/improving-attacks-on-round-reduced-speck32-64
|
Improving Attacks on Round-Reduced Speck32/64 Using Deep Learning
| null |
https://eprint.iacr.org/2019/037.pdf
|
https://eprint.iacr.org/2019/037.pdf
|
https://github.com/agohr/deep_speck
| false
| true
| false
|
tf
|
https://paperswithcode.com/paper/revisiting-the-inverted-indices-for-billion
|
Revisiting the Inverted Indices for Billion-Scale Approximate Nearest Neighbors
|
1802.02422
|
http://arxiv.org/abs/1802.02422v2
|
http://arxiv.org/pdf/1802.02422v2.pdf
|
https://github.com/merria28/hnswlib
| false
| false
| true
|
mxnet
|
https://paperswithcode.com/paper/solving-statistical-mechanics-using
|
Solving Statistical Mechanics Using Variational Autoregressive Networks
|
1809.10606
|
http://arxiv.org/abs/1809.10606v2
|
http://arxiv.org/pdf/1809.10606v2.pdf
|
https://github.com/wangleiphy/VAN.jl
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/efficient-and-robust-approximate-nearest
|
Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs
|
1603.09320
|
http://arxiv.org/abs/1603.09320v4
|
http://arxiv.org/pdf/1603.09320v4.pdf
|
https://github.com/merria28/hnswlib
| false
| false
| true
|
mxnet
|
https://paperswithcode.com/paper/adversarially-guided-actor-critic-1
|
Adversarially Guided Actor-Critic
|
2102.04376
|
https://arxiv.org/abs/2102.04376v1
|
https://arxiv.org/pdf/2102.04376v1.pdf
|
https://github.com/yfletberliac/adversarially-guided-actor-critic
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/dynamic-routing-between-capsules
|
Dynamic Routing Between Capsules
|
1710.09829
|
http://arxiv.org/abs/1710.09829v2
|
http://arxiv.org/pdf/1710.09829v2.pdf
|
https://github.com/sahil02235/CAPSULE-NETWORK-IMPLEMENTATION
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/perceptual-losses-for-real-time-style
|
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
|
1603.08155
|
http://arxiv.org/abs/1603.08155v1
|
http://arxiv.org/pdf/1603.08155v1.pdf
|
https://github.com/anjalipemmaraju/styletransfernetwork
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/graph-embedding-on-biomedical-networks
|
Graph Embedding on Biomedical Networks: Methods, Applications, and Evaluations
|
1906.05017
|
https://arxiv.org/abs/1906.05017v3
|
https://arxiv.org/pdf/1906.05017v3.pdf
|
https://github.com/QustKcz/BioNEV
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/time-complexity-analysis-of-an-evolutionary
|
Time Complexity Analysis of an Evolutionary Algorithm for approximating Nash Equilibriums
|
2110.13563
|
https://arxiv.org/abs/2110.13563v1
|
https://arxiv.org/pdf/2110.13563v1.pdf
|
https://github.com/AadeshSalecha/evol-sim
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/optimal-transport-based-distributionally
|
Optimal Transport Based Distributionally Robust Optimization: Structural Properties and Iterative Schemes
|
1810.02403
|
https://arxiv.org/abs/1810.02403v3
|
https://arxiv.org/pdf/1810.02403v3.pdf
|
https://github.com/AndyZhang92/DRO-Portfolio-Opt
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/estimation-of-singly-transiting-k2-planet
|
Estimation of singly-transiting K2 planet periods with Gaia parallaxes
|
1908.08548
|
https://arxiv.org/abs/1908.08548v1
|
https://arxiv.org/pdf/1908.08548v1.pdf
|
https://github.com/nespinoza/single
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/yolov3-an-incremental-improvement
|
YOLOv3: An Incremental Improvement
|
1804.02767
|
http://arxiv.org/abs/1804.02767v1
|
http://arxiv.org/pdf/1804.02767v1.pdf
|
https://github.com/jianmingwuhasco/yolov3
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/rlpyt-a-research-code-base-for-deep
|
rlpyt: A Research Code Base for Deep Reinforcement Learning in PyTorch
|
1909.01500
|
https://arxiv.org/abs/1909.01500v2
|
https://arxiv.org/pdf/1909.01500v2.pdf
|
https://github.com/akterskii/rlpyt
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/accelerated-methods-for-deep-reinforcement
|
Accelerated Methods for Deep Reinforcement Learning
|
1803.02811
|
http://arxiv.org/abs/1803.02811v2
|
http://arxiv.org/pdf/1803.02811v2.pdf
|
https://github.com/akterskii/rlpyt
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/an-empirical-model-of-large-batch-training
|
An Empirical Model of Large-Batch Training
|
1812.06162
|
http://arxiv.org/abs/1812.06162v1
|
http://arxiv.org/pdf/1812.06162v1.pdf
|
https://github.com/akterskii/rlpyt
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/sparse-estimation-for-case-control-studies
|
Sparse estimation for case-control studies with multiple subtypes of cases
|
1901.01583
|
https://arxiv.org/abs/1901.01583v2
|
https://arxiv.org/pdf/1901.01583v2.pdf
|
https://github.com/NadimBLT/SL1CLR
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/gridless-variational-bayesian-channel
|
Gridless Variational Bayesian Channel Estimation for Antenna Array Systems with Low Resolution ADCs
|
1906.00576
|
https://arxiv.org/abs/1906.00576v1
|
https://arxiv.org/pdf/1906.00576v1.pdf
|
https://github.com/RiverZhu/GL-QVBCE
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/relational-inductive-biases-deep-learning-and
|
Relational inductive biases, deep learning, and graph networks
|
1806.01261
|
http://arxiv.org/abs/1806.01261v3
|
http://arxiv.org/pdf/1806.01261v3.pdf
|
https://github.com/DeepaliVerma/https-github.com-deepmind-graph_nets
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/teaching-algebraic-curves-for-gifted-learners
|
Teaching algebraic curves for gifted learners at age 11 by using LEGO linkages and GeoGebra
|
1909.04964
|
https://arxiv.org/abs/1909.04964v3
|
https://arxiv.org/pdf/1909.04964v3.pdf
|
https://github.com/kovzol/lego-linkages
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/stack-pointer-networks-for-dependency-parsing
|
Stack-Pointer Networks for Dependency Parsing
|
1805.01087
|
http://arxiv.org/abs/1805.01087v1
|
http://arxiv.org/pdf/1805.01087v1.pdf
|
https://github.com/XuezheMax/NeuroNLP2
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/unsupervised-domain-adaptation-by
|
Unsupervised Domain Adaptation by Backpropagation
|
1409.7495
|
http://arxiv.org/abs/1409.7495v2
|
http://arxiv.org/pdf/1409.7495v2.pdf
|
https://github.com/sroutray/da-ganin
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/using-deep-learning-for-image-based-plant
|
Using Deep Learning for Image-Based Plant Disease Detection
|
1604.03169
|
http://arxiv.org/abs/1604.03169v2
|
http://arxiv.org/pdf/1604.03169v2.pdf
|
https://github.com/abhimangalms/PlantDoctor
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/image-super-resolution-using-deep
|
Image Super-Resolution Using Deep Convolutional Networks
|
1501.00092
|
http://arxiv.org/abs/1501.00092v3
|
http://arxiv.org/pdf/1501.00092v3.pdf
|
https://github.com/Weifeng73/Zero-Shot-Super-resolution
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/unsupervised-representation-learning-with-1
|
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
|
1511.06434
|
http://arxiv.org/abs/1511.06434v2
|
http://arxiv.org/pdf/1511.06434v2.pdf
|
https://github.com/iamkucuk/DCGAN-Face-Generation
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/hyper-process-model-a-zero-shot-learning
|
Hyper-Process Model: A Zero-Shot Learning algorithm for Regression Problems based on Shape Analysis
|
1810.10330
|
http://arxiv.org/abs/1810.10330v1
|
http://arxiv.org/pdf/1810.10330v1.pdf
|
https://github.com/joaoreis-feup/hyper_process_model
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
|
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
|
1810.04805
|
https://arxiv.org/abs/1810.04805v2
|
https://arxiv.org/pdf/1810.04805v2.pdf
|
https://github.com/liuqiangict/lamb_optimizer
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/the-omniglot-challenge-a-3-year-progress
|
The Omniglot challenge: a 3-year progress report
|
1902.03477
|
https://arxiv.org/abs/1902.03477v2
|
https://arxiv.org/pdf/1902.03477v2.pdf
|
https://github.com/farhanhubble/omniglot
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for
|
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
|
1905.11946
|
https://arxiv.org/abs/1905.11946v5
|
https://arxiv.org/pdf/1905.11946v5.pdf
|
https://github.com/filipmu/Kaggle-APTOS-2019-Blindness
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-texture-manifolds-with-the-periodic
|
Learning Texture Manifolds with the Periodic Spatial GAN
|
1705.06566
|
http://arxiv.org/abs/1705.06566v2
|
http://arxiv.org/pdf/1705.06566v2.pdf
|
https://github.com/oist/psgan
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/copy-the-old-or-paint-anew-an-adversarial
|
Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Image Stylization
|
1811.09236
|
http://arxiv.org/abs/1811.09236v1
|
http://arxiv.org/pdf/1811.09236v1.pdf
|
https://github.com/oist/psgan
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/very-deep-convolutional-networks-for-large
|
Very Deep Convolutional Networks for Large-Scale Image Recognition
|
1409.1556
|
http://arxiv.org/abs/1409.1556v6
|
http://arxiv.org/pdf/1409.1556v6.pdf
|
https://github.com/vwegn/dm
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/joint-energy-based-model-training-for-better
|
Joint Energy-based Model Training for Better Calibrated Natural Language Understanding Models
|
2101.06829
|
https://arxiv.org/abs/2101.06829v2
|
https://arxiv.org/pdf/2101.06829v2.pdf
|
https://github.com/salesforce/ebm_calibration_nlu
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/adversarial-parametric-pose-prior
|
Adversarial Parametric Pose Prior
|
2112.04203
|
https://arxiv.org/abs/2112.04203v1
|
https://arxiv.org/pdf/2112.04203v1.pdf
|
https://github.com/cvlab-epfl/adv_param_pose_prior
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/top-down-neural-attention-by-excitation
|
Top-down Neural Attention by Excitation Backprop
|
1608.00507
|
http://arxiv.org/abs/1608.00507v1
|
http://arxiv.org/pdf/1608.00507v1.pdf
|
https://github.com/greydanus/excitationbp
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/contrastive-embedding-distribution-refinement
|
Contrastive Embedding Distribution Refinement and Entropy-Aware Attention for 3D Point Cloud Classification
|
2201.11388
|
https://arxiv.org/abs/2201.11388v1
|
https://arxiv.org/pdf/2201.11388v1.pdf
|
https://github.com/yangfengseu/cedr
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/w2s-a-joint-denoising-and-super-resolution
|
W2S: Microscopy Data with Joint Denoising and Super-Resolution for Widefield to SIM Mapping
|
2003.05961
|
https://arxiv.org/abs/2003.05961v2
|
https://arxiv.org/pdf/2003.05961v2.pdf
|
https://github.com/IVRL/w2s
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/maniqa-multi-dimension-attention-network-for
|
MANIQA: Multi-dimension Attention Network for No-Reference Image Quality Assessment
|
2204.08958
|
https://arxiv.org/abs/2204.08958v2
|
https://arxiv.org/pdf/2204.08958v2.pdf
|
https://github.com/tianhewu/assessor360
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/efficient-one-pass-end-to-end-entity-linking
|
Efficient One-Pass End-to-End Entity Linking for Questions
|
2010.02413
|
https://arxiv.org/abs/2010.02413v1
|
https://arxiv.org/pdf/2010.02413v1.pdf
|
https://github.com/shmsw25/GraphRetriever
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/kiu-net-towards-accurate-segmentation-of
|
KiU-Net: Towards Accurate Segmentation of Biomedical Images using Over-complete Representations
|
2006.04878
|
https://arxiv.org/abs/2006.04878v2
|
https://arxiv.org/pdf/2006.04878v2.pdf
|
https://github.com/jeya-maria-jose/KiU-Net-pytorch
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/wide-residual-networks
|
Wide Residual Networks
|
1605.07146
|
http://arxiv.org/abs/1605.07146v4
|
http://arxiv.org/pdf/1605.07146v4.pdf
|
https://github.com/georgeretsi/SparsityLoss
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-theoretically-grounded-application-of
|
A Theoretically Grounded Application of Dropout in Recurrent Neural Networks
|
1512.05287
|
http://arxiv.org/abs/1512.05287v5
|
http://arxiv.org/pdf/1512.05287v5.pdf
|
https://github.com/SuperKam91/bnn
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/invertible-generative-modeling-using-linear
|
Invertible Generative Modeling using Linear Rational Splines
|
2001.05168
|
https://arxiv.org/abs/2001.05168v4
|
https://arxiv.org/pdf/2001.05168v4.pdf
|
https://github.com/hmdolatabadi/LRS_NF
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/image-to-image-translation-with-conditional
|
Image-to-Image Translation with Conditional Adversarial Networks
|
1611.07004
|
http://arxiv.org/abs/1611.07004v3
|
http://arxiv.org/pdf/1611.07004v3.pdf
|
https://github.com/tianhai123/pix2pix
| false
| false
| true
|
torch
|
https://paperswithcode.com/paper/automatically-optimized-gradient-boosting
|
Automatically Optimized Gradient Boosting Trees for Classifying Large Volume High Cardinality Data Streams Under Concept Drift
| null |
https://link.springer.com/chapter/10.1007/978-3-030-29135-8_13
|
https://link.springer.com/chapter/10.1007/978-3-030-29135-8_13
|
https://github.com/flytxtds/AutoGBT
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/learning-to-orient-surfaces-by-self
|
Learning to Orient Surfaces by Self-supervised Spherical CNNs
|
2011.03298
|
https://arxiv.org/abs/2011.03298v2
|
https://arxiv.org/pdf/2011.03298v2.pdf
|
https://github.com/CVLAB-Unibo/compass
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/roft-a-tool-for-evaluating-human-detection-of
|
RoFT: A Tool for Evaluating Human Detection of Machine-Generated Text
|
2010.03070
|
https://arxiv.org/abs/2010.03070v1
|
https://arxiv.org/pdf/2010.03070v1.pdf
|
https://github.com/kirubarajan/roft
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/knowledge-association-with-hyperbolic
|
Knowledge Association with Hyperbolic Knowledge Graph Embeddings
|
2010.02162
|
https://arxiv.org/abs/2010.02162v1
|
https://arxiv.org/pdf/2010.02162v1.pdf
|
https://github.com/nju-websoft/HyperKA
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/waveq-gradient-based-deep-quantization-of
|
WAVEQ: GRADIENT-BASED DEEP QUANTIZATION OF NEURAL NETWORKS THROUGH SINUSOIDAL REGULARIZATION
| null |
https://openreview.net/forum?id=uELnyih9gqb
|
https://openreview.net/pdf?id=uELnyih9gqb
|
https://github.com/waveq-reg/waveq
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/attention-forcing-for-machine-translation
|
Attention Forcing for Machine Translation
|
2104.01264
|
https://arxiv.org/abs/2104.01264v1
|
https://arxiv.org/pdf/2104.01264v1.pdf
|
https://github.com/3dmaisons/af-mnt
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/learning-by-minimizing-the-sum-of-ranked
|
Learning by Minimizing the Sum of Ranked Range
|
2010.01741
|
https://arxiv.org/abs/2010.01741v1
|
https://arxiv.org/pdf/2010.01741v1.pdf
|
https://github.com/discovershu/SoRR
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/gradient-waveform-design-for-tensor-valued
|
Gradient waveform design for tensor-valued encoding in diffusion MRI
|
2007.07631
|
https://arxiv.org/abs/2007.07631v1
|
https://arxiv.org/pdf/2007.07631v1.pdf
|
https://github.com/filip-szczepankiewicz/safe_pns_prediction
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/domain-adversarial-fine-tuning-as-an
|
Domain Adversarial Fine-Tuning as an Effective Regularizer
|
2009.13366
|
https://arxiv.org/abs/2009.13366v2
|
https://arxiv.org/pdf/2009.13366v2.pdf
|
https://github.com/GeorgeVern/AFTERV1.0
| true
| true
| true
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.